JP2004008437A - Cultural bone - Google Patents

Cultural bone Download PDF

Info

Publication number
JP2004008437A
JP2004008437A JP2002165345A JP2002165345A JP2004008437A JP 2004008437 A JP2004008437 A JP 2004008437A JP 2002165345 A JP2002165345 A JP 2002165345A JP 2002165345 A JP2002165345 A JP 2002165345A JP 2004008437 A JP2004008437 A JP 2004008437A
Authority
JP
Japan
Prior art keywords
bone
cultured
skeletal member
cells
pieces
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2002165345A
Other languages
Japanese (ja)
Inventor
Hiroyuki Irie
入江 洋之
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Olympus Corp
Original Assignee
Olympus Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Olympus Corp filed Critical Olympus Corp
Priority to JP2002165345A priority Critical patent/JP2004008437A/en
Publication of JP2004008437A publication Critical patent/JP2004008437A/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/28Bones
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2002/30001Additional features of subject-matter classified in A61F2/28, A61F2/30 and subgroups thereof

Landscapes

  • Health & Medical Sciences (AREA)
  • Orthopedic Medicine & Surgery (AREA)
  • Cardiology (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Transplantation (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Vascular Medicine (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Prostheses (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a cultural bone which can efficiently be manufactured by infiltrating cultured cells speedily and fully thereinto. <P>SOLUTION: This cultural bone 11 is used for filling a bone defective part. A plurality of bone filling body pieces 14 imparted with the cultured cells are integrated with a bone framework 12 with a biological adhesive 13. Thus, since the bone filling body pieces 14 is set to be small pieces, the cultured cells infiltrate speedily to inside of them. Moreover, the whole shape is held satisfactorily by the framework 12. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、骨欠損部を再生する際に使用される培養骨に関する。
【0002】
【従来の技術】
近年、骨腫瘍摘出や外傷等により生じた骨欠損部に骨補填材を補填することにより、骨を再生させて骨欠損部を修復することが可能になってきている。骨補填材としては、ハイドロキシアパタイト(HAP)やリン酸三カルシウム(TCP)が知られているが、体内に異物を残さないとする考え方から、例えば、β−TCPのようなリン酸カルシウム多孔体からなる足場材が使用される。β−TCPを骨欠損部の骨組織に接触させておくと、破骨細胞がβ−TCPを食べ、骨芽細胞が新しい骨を形成する、いわゆるリモデリングが行われる。すなわち、骨欠損部に補填された骨補填材は、経時的に自家骨に置換されていくことになる。
【0003】
一方、術後の骨欠損部の修復速度を高めるために、患者から採取した骨髄液に含まれる間葉系幹細胞を骨補填材とともに培養することにより製造される培養骨を使用することが提案されている。培養されることにより骨補填材を足場にして増殖した多くの間葉系幹細胞を含む培養骨を骨欠損部に補填するので、手術後に体内で細胞を増殖させる方法と比較すると、自家骨に置換されるまでの日数を大幅に短縮することができる。このような培養骨を製造する場合、多孔質ブロック状の骨補填材を培養細胞を含む培養液に投入することで製造することが考えられている。
【0004】
【発明が解決しようとする課題】
しかしながら、骨補填材の気孔は微細なものであるため、骨補填材の気孔内に細胞が十分に浸入するには長時間を要するという問題がある。大きな骨欠損部に補填するための大型の培養骨を得ようとした場合にはさらに長時間を要することになる。一方、骨補填材の気孔を大きく設定することにより、浸入性を向上することも考えられるが、気孔率の大きさは修復される骨の強度にも影響を与えるものであるため、過度に気孔を大きくすることはできない。
【0005】
したがって、本発明は、全体に培養細胞を迅速に浸入させることができ、効率の良い製造が可能な培養骨の提供を目的とする。
【0006】
【課題を解決するための手段】
上記目的を達成するために、本発明は、骨欠損部に補填される培養骨であって、培養細胞が付与された複数の骨補填体片を生体用接着剤で骨格部材に一体化してなることを特徴としている。
【0007】
このように、骨補填体片が小片とされているため、骨補填体片には培養細胞が迅速に内部まで浸入させられることになる。そして、このようにして迅速に内部まで培養細胞が浸入させられた複数の骨補填体片を生体用接着剤で骨格部材に一体化するため、結果的に、全体に培養細胞が浸入したものが迅速に得られることになる。しかも、複数の骨補填体片を生体用接着剤で骨格部材に一体化するため、骨格部材によって全体の形状を良好に保持できる。
【0008】
そして、前記骨格部材を生体吸収性材料とすれば、全体として自家骨化されることになる。
【0009】
また、前記骨格部材を生体適合性金属とすれば、荷重のかかる部位に補填することができる。
【0010】
さらに、前記骨格部材をカゴ型にすれば、複数の骨補填体片を生体用接着剤で骨格部材に一体化する際の作業性が良好となる上、骨格部材ひいては全体の強度を向上させることができる。
【0011】
加えて、前記骨格部材を中央に配置される支柱部と該支柱部から外側に延出する複数の枝部とを有する形状にすれば、複数の骨補填体片が生体用接着剤で骨格部材にさらに容易に接着されることになり、一体化する際の作業性がさらに良好となる。
【0012】
【発明の実施の形態】
本発明の第1実施形態の培養骨を図1を参照して以下に説明する。
【0013】
第1実施形態の培養骨11は、骨欠損部に補填されるものであって、図1に示すように、骨格部材12と、この骨格部材12に生体用接着剤13で一体化される複数の顆粒状を含む骨補填体片14とを有している。
【0014】
骨格部材12は、生体吸収性有機材料であるポリ乳酸(PLA)からなるもので、全体としてカゴ型をなしている。
【0015】
具体的に、骨格部材12は、同一径の円環状をなす複数のリング部17と、これらリング部17を連結させる直線状の複数の連結部18とを有している。複数のリング部17は、互いの中心軸線を一致させ軸線方向に等間隔で順にずれるように配設されており、複数の連結部18は、リング部17の円周方向に等間隔で順にずれるように配設されている。
【0016】
骨補填体片14は、例えば、特開平5−237178号公報に開示されている方法により製造されたβ−TCPからなる多孔質の骨補填材小片を基本としている。そして、このような骨補填材小片を、例えば、培養細胞を含有した培養液に浸し、所定の培養条件下において培養する。これにより、培養細胞中の間葉系幹細胞が骨補填材小片を足場にして増殖し、培養細胞が浸入した骨補填体片14が得られる。ここで、骨補填体片14を得るためにサイズの小さい骨補填材小片を用いるため、培養細胞が内部に浸入する時間が短縮される。なお、培養細胞は、例えば、腸骨の骨髄液から抽出した間葉系幹細胞である。
【0017】
そして、このようにして培養細胞が内部まで付与された複数の骨補填体片14にフィブリン糊等の生体用接着剤13を所定の比率で混ぜることで互いに接着性をもたせて練り物状とし、このような生体用接着剤13を混合した骨補填体片14を骨格部材12に塗りつけることで、培養骨11が得られる。このとき、生体用接着剤13を混合した骨補填体片14は、カゴ型の骨格部材12のリング部17間および連結部18間の隙間から骨格部材12の内部に隙間無く入れ込まれるとともに、骨格部材12の外側にも塗りつけられることになる。このようにして得られた培養骨11は、生体用接着剤13の接着性で骨格部材12に生体用接着剤13および骨補填体片14が接着し、生体用接着剤13および骨補填体片14の混合物のみの状態では保持困難であった円柱形状に良好に保持されることになる。
【0018】
このようにして得られた培養骨11が患者の骨欠損部に補填されることになる。
【0019】
以上に述べたように、第1実施形態の培養骨11によれば、骨補填体片14が小片とされているため、骨補填体片14には培養細胞が迅速に内部まで浸入させられることになる。そして、このようにして迅速に内部まで培養細胞が浸入させられた複数の骨補填体片14を生体用接着剤13で骨格部材12に一体化するため、結果的に、全体に培養細胞が浸入したものが迅速に得られることになる。これにより、効率の良く製造することができる。しかも、複数の骨補填体片14を生体用接着剤13で骨格部材12に一体化するため、骨格部材12によって全体の形状を良好に保持することができる。
【0020】
また、骨格部材12の形状を例えば屈曲形状や湾曲形状に変更することで、骨欠損部の形状に合わせた例えば屈曲形状や湾曲形状の培養骨11を容易に製造できることになる。
【0021】
さらに、大きな骨欠損部への補填に対応可能な大きな培養骨11を製造する場合も、骨補填体片14を生体用接着剤13で骨格部材12に接着させることから、培養細胞は骨補填体片14に浸入させれば良い。したがって、この場合も効率良く製造できることになる。
【0022】
加えて、骨格部材12も生体吸収性材料であるポリ乳酸からなるため、培養骨11が全体として自家骨化されることになる。
【0023】
さらに、骨格部材12がカゴ型であるため、複数の骨補填体片14を生体用接着剤13で骨格部材12に一体化する際の作業性が良好となる上、骨格部材12ひいては全体の強度を向上させることができる。
【0024】
本発明の第2実施形態の培養骨を図2を参照して第1実施形態との相違部分を中心に以下に説明する。なお、第1実施形態と同様の部分には同一の符号を付しその説明は略す。
【0025】
第2実施形態では、第1実施形態に対し骨格部材12の形状が相違している。すなわち、第2実施形態の骨格部材12は、中央に配置される支柱部21と、この支柱部21から外側に延出する複数の枝部22とを有する形状をなしている。
【0026】
ここで、支柱部21は直線状をなしており、枝部22も直線状をなすとともに支柱部21の長さ方向の等間隔の位置から支柱部21に直交して外側に延出している。
【0027】
このような形状の骨格部材12を有する第2実施形態の培養骨11においては、図2に示すように第1実施形態とほぼ同様に製造されることになり、第1実施形態とほぼ同様の効果を奏することになる。また、第1実施形態の骨格部材12に対し若干強度が不足するものの、形状が簡素であるため、複数の骨補填体片14が生体用接着剤13で骨格部材12にさらに容易に接着されることになり、一体化する際の作業性がさらに良好となる。
【0028】
なお、第1実施形態および第2実施形態の培養骨11においては、骨格部材12を生体吸収性有機材料であるポリ乳酸で形成する場合を例にとり説明したが、チタン等の生体適合性金属で形成しても良い。このように、骨格部材を生体適合性金属とすれば、荷重のかかる部位に補填することができる。
【0029】
また、骨補填体片14は、生体組織に親和性のある材料ならいずれでも良く、生体吸収性の材料であればさらに良い。生体組織補填材としての多孔体は、生体適合性を有する多孔性のセラミックスやコラーゲン、ポリ乳酸またはメタル等であり、多数の気孔を有するもので有れば、これらに限定されず、種々のものを用いることができる。多孔体として、一般にアパタイトやβ−リン酸三カルシウム(β−TCP)等のリン酸カルシウム系セラミックス、コラーゲン、ポリ乳酸等を使用することができる。また、リン酸カルシウム系セラミックスとコラーゲンとを組み合わせたり、リン酸カルシウム系セラミックスとポリ乳酸とを組み合わせたりしても良い。β−リン酸三カルシウム、コラーゲン、ポリ乳酸は生分解性で生体に吸収される特徴を有し、アパタイトはその強度が高いという特徴を有する。当業者であれば、移植する部位等に応じて、適切な種類の多孔体を適宜選んで使用することができるのは言うまでもない。
骨補填体片14に付加する細胞は、ES細胞、体性幹細胞、間葉系幹細胞、骨細胞や軟骨細胞等の体細胞でも良い。自家細胞でも他家細胞でも良い。
さらに、骨補填体片14に成長因子を付加しても良い。付加する成長因子としては、BMP、FGF、TGF−β、VEGF、IGF、PDGF、HGF等を採用できる。勿論、細胞と併せて成長因子を付加しても良い。
【0030】
【発明の効果】
以上詳述したように、本発明によれば、骨補填体片が小片とされているため、骨補填体片には培養細胞が迅速に内部まで浸入させられることになる。そして、このようにして迅速に内部まで培養細胞が浸入させられた複数の骨補填体片を生体用接着剤で骨格部材に一体化するため、結果的に、全体に培養細胞が浸入したものが迅速に得られることになる。これにより、効率良く製造できることになる。しかも、複数の骨補填体片を生体用接着剤で骨格部材に一体化するため、骨格部材によって全体の形状を良好に保持することができる。また、骨格部材の形状を変更することで、骨欠損部の形状に合わせた形状に容易に対応可能となる。さらに、大きな骨欠損部への補填に対応可能な大きな培養骨を製造する場合も、骨補填体片を生体用接着剤で骨格部材に接着させることから、培養細胞は骨補填体片に浸入させれば良い。したがって、この場合も効率良く製造できることになる。
【0031】
そして、前記骨格部材を生体吸収性材料とすれば、全体として自家骨化されることになる。
【0032】
また、前記骨格部材を生体適合性金属とすれば、荷重のかかる部位に補填することができる。
【0033】
さらに、前記骨格部材をカゴ型にすれば、複数の骨補填体片を生体用接着剤で骨格部材に一体化する際の作業性が良好となる上、骨格部材ひいては全体の強度を向上させることができる。
【0034】
加えて、前記骨格部材を中央に配置される支柱部と該支柱部から外側に延出する複数の枝部とを有する形状にすれば、複数の骨補填体片が生体用接着剤で骨格部材にさらに容易に接着されることになり、一体化する際の作業性がさらに良好となる。
【図面の簡単な説明】
【図1】本発明の第1実施形態の培養骨の製造工程を示す図である。
【図2】本発明の第2実施形態の培養骨の製造工程を示す図である。
【符号の説明】
11 培養骨
12 骨格部材
13 生体用接着剤
14 骨補填体片
17 リング部
18 連結部
21 支柱部
22 枝部
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a cultured bone used for regenerating a bone defect.
[0002]
[Prior art]
2. Description of the Related Art In recent years, it has become possible to regenerate bone and repair the bone defect by replenishing the bone with a bone replacement material in a bone defect caused by excision of bone tumor or trauma. Hydroxyapatite (HAP) and tricalcium phosphate (TCP) are known as bone replacement materials. However, from the viewpoint that no foreign substance is left in the body, for example, a calcium phosphate porous material such as β-TCP is used. Scaffolding is used. When β-TCP is kept in contact with the bone tissue of a bone defect, so-called remodeling is performed in which osteoclasts eat β-TCP and osteoblasts form new bone. That is, the bone replacement material that has been repaired in the bone defect part is replaced with autologous bone over time.
[0003]
On the other hand, it has been proposed to use cultured bone produced by culturing mesenchymal stem cells contained in bone marrow fluid collected from a patient together with a bone filling material in order to increase the repair rate of a bone defect after surgery. ing. The cultured bone containing many mesenchymal stem cells that grew using the bone-filling material as a scaffold after being cultured is filled in the bone defect, so it is replaced with autologous bone compared to the method of growing cells in the body after surgery. The number of days before the operation can be greatly reduced. In the case of producing such a cultured bone, it has been considered to produce the cultured bone by adding a porous block-shaped bone filling material to a culture solution containing cultured cells.
[0004]
[Problems to be solved by the invention]
However, since the pores of the bone replacement material are minute, there is a problem that it takes a long time for cells to sufficiently enter the pores of the bone replacement material. It takes a longer time to obtain a large cultured bone for filling a large bone defect. On the other hand, it is conceivable to improve the infiltration property by setting the pores of the bone replacement material to be large, but since the magnitude of the porosity also affects the strength of the bone to be repaired, excessive pores are required. Cannot be increased.
[0005]
Therefore, an object of the present invention is to provide a cultured bone in which cultured cells can be rapidly infiltrated into the whole and which can be efficiently produced.
[0006]
[Means for Solving the Problems]
In order to achieve the above object, the present invention relates to a cultured bone to be supplemented to a bone defect, wherein a plurality of bone filling pieces provided with cultured cells are integrated into a skeletal member with a biological adhesive. It is characterized by:
[0007]
As described above, since the bone replacement piece is made into a small piece, the cultured cells are quickly infiltrated into the bone replacement piece. Then, since a plurality of pieces of the bone filling body into which the cultured cells have rapidly penetrated into the inside in this way are integrated into the skeletal member with a bioadhesive, as a result, the cells into which the cultured cells have penetrated as a whole may be obtained. You will get it quickly. In addition, since the plurality of pieces of the bone prosthesis are integrated with the skeletal member using the biological adhesive, the entire shape can be favorably held by the skeletal member.
[0008]
Then, if the skeletal member is made of a bioabsorbable material, it will be self-ossified as a whole.
[0009]
Further, if the skeleton member is made of a biocompatible metal, it can be supplemented to a portion where a load is applied.
[0010]
Further, if the skeletal member is formed in a cage shape, workability when integrating a plurality of bone prosthetic pieces into the skeletal member with a biological adhesive is improved, and the skeletal member and thus the overall strength are improved. Can be.
[0011]
In addition, if the skeletal member is formed into a shape having a pillar portion disposed at the center and a plurality of branch portions extending outward from the pillar portion, a plurality of bone replacement pieces can be formed using a biological adhesive. And the workability at the time of integration is further improved.
[0012]
BEST MODE FOR CARRYING OUT THE INVENTION
The cultured bone according to the first embodiment of the present invention will be described below with reference to FIG.
[0013]
The cultured bone 11 of the first embodiment is to be supplemented to a bone defect, and as shown in FIG. 1, a skeletal member 12 and a plurality of skeletal members 12 integrated with the skeletal member 12 with a biological adhesive 13. And a bone prosthesis piece 14 containing the granules.
[0014]
The skeleton member 12 is made of polylactic acid (PLA), which is a bioabsorbable organic material, and has a cage shape as a whole.
[0015]
Specifically, the skeletal member 12 has a plurality of ring portions 17 having an annular shape having the same diameter, and a plurality of linear connecting portions 18 connecting the ring portions 17. The plurality of ring portions 17 are arranged so that the center axes thereof are aligned with each other and are sequentially shifted at equal intervals in the axial direction, and the plurality of connecting portions 18 are sequentially shifted at equal intervals in the circumferential direction of the ring portion 17. It is arranged as follows.
[0016]
The bone replacement piece 14 is based on a small piece of a porous bone replacement material made of β-TCP manufactured by the method disclosed in Japanese Patent Application Laid-Open No. 5-237178, for example. Then, such a small piece of bone filling material is immersed in, for example, a culture solution containing cultured cells, and cultured under predetermined culture conditions. As a result, the mesenchymal stem cells in the cultured cells proliferate using the small pieces of the bone filling material as scaffolds, and the bone filling pieces 14 into which the cultured cells have infiltrated are obtained. Here, since small pieces of the bone-reinforcing material are used to obtain the bone-reinforcing body pieces 14, the time required for the cultured cells to enter the interior is reduced. The cultured cells are, for example, mesenchymal stem cells extracted from the iliac bone marrow fluid.
[0017]
Then, by mixing the biological cells 13 such as fibrin glue at a predetermined ratio into the plurality of bone filling pieces 14 to which the cultured cells have been applied to the inside, adhesiveness is given to each other to form a kneaded product. The cultured bone 11 can be obtained by painting the skeletal member 12 with the bone substitute piece 14 mixed with the biological adhesive 13. At this time, the bone prosthetic piece 14 mixed with the biological adhesive 13 is inserted into the skeletal member 12 through the gaps between the ring portions 17 and the connecting portions 18 of the cage-shaped skeletal member 12 without any gaps. The outside of the skeletal member 12 will also be painted. The cultured bone 11 thus obtained is bonded to the skeletal member 12 with the adhesiveness of the biological adhesive 13 and the biological adhesive 13 and the bone replacement piece 14. In a state where only the mixture of No. 14 was used, it was satisfactorily held in a cylindrical shape which was difficult to hold.
[0018]
The cultured bone 11 obtained in this manner is filled in the bone defect of the patient.
[0019]
As described above, according to the cultured bone 11 of the first embodiment, since the bone replacement piece 14 is a small piece, the cultured cells can quickly penetrate into the bone replacement piece 14 to the inside. become. Then, the plurality of pieces of the bone filling body 14 into which the cultured cells have rapidly penetrated into the inside in this way are integrated into the skeletal member 12 with the biological adhesive 13, and as a result, the cultured cells infiltrate into the whole. Will be obtained quickly. As a result, efficient production can be achieved. In addition, since the plurality of pieces of the bone prosthesis 14 are integrated into the skeletal member 12 with the biological adhesive 13, the skeletal member 12 can maintain the overall shape well.
[0020]
In addition, by changing the shape of the skeletal member 12 to, for example, a bent shape or a curved shape, the cultured bone 11 having, for example, a bent shape or a curved shape adapted to the shape of the bone defect can be easily manufactured.
[0021]
Furthermore, when manufacturing a large cultured bone 11 capable of coping with a large bone defect, the bone replacement piece 14 is adhered to the skeletal member 12 with the biological adhesive 13. What is necessary is just to infiltrate the piece 14. Therefore, also in this case, it can be manufactured efficiently.
[0022]
In addition, since the skeletal member 12 is also made of polylactic acid, which is a bioabsorbable material, the cultured bone 11 is entirely autogenous.
[0023]
Further, since the skeletal member 12 is of a cage type, workability when integrating the plurality of bone replacement pieces 14 with the skeletal member 12 with the biological adhesive 13 is improved, and the skeletal member 12 and thus the overall strength are improved. Can be improved.
[0024]
The cultured bone according to the second embodiment of the present invention will be described below with reference to FIG. 2 focusing on the differences from the first embodiment. The same parts as those in the first embodiment are denoted by the same reference numerals, and description thereof is omitted.
[0025]
In the second embodiment, the shape of the skeleton member 12 is different from that of the first embodiment. That is, the skeletal member 12 of the second embodiment has a shape having a column 21 disposed at the center and a plurality of branches 22 extending outward from the column 21.
[0026]
Here, the strut portion 21 has a straight shape, and the branch portion 22 also has a straight shape, and extends outward at right angles to the strut portion 21 from equidistant positions in the length direction of the strut portion 21.
[0027]
In the cultured bone 11 of the second embodiment having the skeletal member 12 having such a shape, as shown in FIG. 2, it is manufactured in substantially the same manner as in the first embodiment, and is substantially the same as in the first embodiment. It will be effective. Further, although the strength is slightly insufficient with respect to the skeletal member 12 of the first embodiment, since the shape is simple, the plurality of bone replacement pieces 14 are more easily adhered to the skeletal member 12 with the biological adhesive 13. That is, the workability at the time of integration is further improved.
[0028]
In the cultured bone 11 of the first and second embodiments, the case where the skeletal member 12 is formed of polylactic acid, which is a bioabsorbable organic material, has been described as an example. It may be formed. As described above, when the skeleton member is made of a biocompatible metal, it can be supplemented to a portion where a load is applied.
[0029]
In addition, the bone replacement piece 14 may be any material as long as it has an affinity for living tissue, and more preferably a material that is bioabsorbable. The porous body as a living tissue filling material is not limited thereto, as long as it is a porous ceramic having biocompatibility, collagen, polylactic acid, metal, or the like, and has many pores. Can be used. As the porous body, generally, calcium phosphate ceramics such as apatite and β-tricalcium phosphate (β-TCP), collagen, polylactic acid, and the like can be used. Moreover, you may combine calcium phosphate ceramics and collagen, and may combine calcium phosphate ceramics and polylactic acid. β-tricalcium phosphate, collagen, and polylactic acid have the characteristic of being biodegradable and absorbed by the living body, and apatite has the characteristic of high strength. Needless to say, those skilled in the art can appropriately select and use an appropriate type of porous body depending on the site to be transplanted or the like.
Cells to be added to the bone filling piece 14 may be ES cells, somatic stem cells, mesenchymal stem cells, and somatic cells such as bone cells and chondrocytes. Autologous cells or allogeneic cells may be used.
Further, a growth factor may be added to the bone filling piece 14. As the growth factor to be added, BMP, FGF, TGF-β, VEGF, IGF, PDGF, HGF and the like can be adopted. Of course, a growth factor may be added together with the cells.
[0030]
【The invention's effect】
As described above in detail, according to the present invention, since the bone replacement piece is made into a small piece, the cultured cells can quickly penetrate into the bone replacement piece. Then, since a plurality of pieces of the bone filling body into which the cultured cells have rapidly penetrated into the inside in this way are integrated into the skeletal member with a bioadhesive, as a result, the cells into which the cultured cells have penetrated as a whole may be obtained. You will get it quickly. Thereby, it can be manufactured efficiently. In addition, since the plurality of pieces of the bone prosthesis are integrated with the skeletal member using the biological adhesive, the entire shape can be favorably held by the skeletal member. Further, by changing the shape of the skeletal member, it is possible to easily cope with a shape that matches the shape of the bone defect. Furthermore, when manufacturing a large cultured bone that can be used for filling a large bone defect, the bone replacement piece is adhered to the skeletal member with a biological adhesive, so that the cultured cells are infiltrated into the bone replacement piece. Just do it. Therefore, also in this case, it can be manufactured efficiently.
[0031]
Then, if the skeletal member is made of a bioabsorbable material, it will be self-ossified as a whole.
[0032]
Further, if the skeleton member is made of a biocompatible metal, it can be supplemented to a portion where a load is applied.
[0033]
Further, if the skeletal member is formed in a cage shape, workability when integrating a plurality of bone prosthetic pieces into the skeletal member with a biological adhesive is improved, and the skeletal member and thus the overall strength are improved. Can be.
[0034]
In addition, if the skeletal member is formed into a shape having a pillar portion disposed at the center and a plurality of branch portions extending outward from the pillar portion, a plurality of bone replacement pieces can be formed using a biological adhesive. And the workability at the time of integration is further improved.
[Brief description of the drawings]
FIG. 1 is a view showing a production process of a cultured bone according to a first embodiment of the present invention.
FIG. 2 is a view showing a process for producing a cultured bone according to a second embodiment of the present invention.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 11 Cultured bone 12 Skeletal member 13 Biological adhesive 14 Bone filler piece 17 Ring part 18 Connecting part 21 Prop part 22 Branch part

Claims (5)

骨欠損部に補填される培養骨であって、
培養細胞が付与された複数の骨補填体片を生体用接着剤で骨格部材に一体化してなることを特徴とする培養骨。
A cultured bone to be filled in a bone defect,
A cultured bone, wherein a plurality of pieces of a bone substitute to which cultured cells are provided are integrated with a skeletal member using a biological adhesive.
前記骨格部材は生体吸収性材料からなることを特徴とする請求項1記載の培養骨。The cultured bone according to claim 1, wherein the skeleton member is made of a bioabsorbable material. 前記骨格部材は生体適合性金属からなることを特徴とする請求項1記載の培養骨。The cultured bone according to claim 1, wherein the skeleton member is made of a biocompatible metal. 前記骨格部材はカゴ型をなしていることを特徴とする請求項1乃至3のいずれか一項記載の培養骨。The cultured bone according to any one of claims 1 to 3, wherein the skeleton member has a cage shape. 前記骨格部材は中央に配置される支柱部と該支柱部から外側に延出する複数の枝部とを有することを特徴とする請求項1乃至3のいずれか一項記載の培養骨。The cultured bone according to any one of claims 1 to 3, wherein the skeletal member has a column disposed at the center and a plurality of branches extending outward from the column.
JP2002165345A 2002-06-06 2002-06-06 Cultural bone Withdrawn JP2004008437A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002165345A JP2004008437A (en) 2002-06-06 2002-06-06 Cultural bone

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002165345A JP2004008437A (en) 2002-06-06 2002-06-06 Cultural bone

Publications (1)

Publication Number Publication Date
JP2004008437A true JP2004008437A (en) 2004-01-15

Family

ID=30433205

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002165345A Withdrawn JP2004008437A (en) 2002-06-06 2002-06-06 Cultural bone

Country Status (1)

Country Link
JP (1) JP2004008437A (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005237956A (en) * 2004-02-09 2005-09-08 Depuy Mitek Inc Composite implant for restoring tissue defect in patient and method for repairing tissue defect
US7824701B2 (en) 2002-10-18 2010-11-02 Ethicon, Inc. Biocompatible scaffold for ligament or tendon repair
US7875296B2 (en) 2003-11-26 2011-01-25 Depuy Mitek, Inc. Conformable tissue repair implant capable of injection delivery
US7901461B2 (en) 2003-12-05 2011-03-08 Ethicon, Inc. Viable tissue repair implants and methods of use
US8016867B2 (en) 1999-07-23 2011-09-13 Depuy Mitek, Inc. Graft fixation device and method
US8137686B2 (en) 2004-04-20 2012-03-20 Depuy Mitek, Inc. Nonwoven tissue scaffold
US8221780B2 (en) 2004-04-20 2012-07-17 Depuy Mitek, Inc. Nonwoven tissue scaffold
US8226715B2 (en) 2003-06-30 2012-07-24 Depuy Mitek, Inc. Scaffold for connective tissue repair
US8449561B2 (en) 1999-07-23 2013-05-28 Depuy Mitek, Llc Graft fixation device combination
US8691259B2 (en) 2000-12-21 2014-04-08 Depuy Mitek, Llc Reinforced foam implants with enhanced integrity for soft tissue repair and regeneration
US8895045B2 (en) 2003-03-07 2014-11-25 Depuy Mitek, Llc Method of preparation of bioabsorbable porous reinforced tissue implants and implants thereof
JP2015516243A (en) * 2012-05-14 2015-06-11 モーブライフ・ナムローゼ・フエンノートシャップMobelife N.V. Implantable bone augmentation and method for manufacturing implantable bone augmentation
US9511171B2 (en) 2002-10-18 2016-12-06 Depuy Mitek, Llc Biocompatible scaffolds with tissue fragments
US10583220B2 (en) 2003-08-11 2020-03-10 DePuy Synthes Products, Inc. Method and apparatus for resurfacing an articular surface

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8449561B2 (en) 1999-07-23 2013-05-28 Depuy Mitek, Llc Graft fixation device combination
US8016867B2 (en) 1999-07-23 2011-09-13 Depuy Mitek, Inc. Graft fixation device and method
US8691259B2 (en) 2000-12-21 2014-04-08 Depuy Mitek, Llc Reinforced foam implants with enhanced integrity for soft tissue repair and regeneration
US8637066B2 (en) 2002-10-18 2014-01-28 Depuy Mitek, Llc Biocompatible scaffold for ligament or tendon repair
US9511171B2 (en) 2002-10-18 2016-12-06 Depuy Mitek, Llc Biocompatible scaffolds with tissue fragments
US10603408B2 (en) 2002-10-18 2020-03-31 DePuy Synthes Products, Inc. Biocompatible scaffolds with tissue fragments
US7824701B2 (en) 2002-10-18 2010-11-02 Ethicon, Inc. Biocompatible scaffold for ligament or tendon repair
US8895045B2 (en) 2003-03-07 2014-11-25 Depuy Mitek, Llc Method of preparation of bioabsorbable porous reinforced tissue implants and implants thereof
US8226715B2 (en) 2003-06-30 2012-07-24 Depuy Mitek, Inc. Scaffold for connective tissue repair
US9211362B2 (en) 2003-06-30 2015-12-15 Depuy Mitek, Llc Scaffold for connective tissue repair
US10583220B2 (en) 2003-08-11 2020-03-10 DePuy Synthes Products, Inc. Method and apparatus for resurfacing an articular surface
US7875296B2 (en) 2003-11-26 2011-01-25 Depuy Mitek, Inc. Conformable tissue repair implant capable of injection delivery
US8137702B2 (en) 2003-11-26 2012-03-20 Depuy Mitek, Inc. Conformable tissue repair implant capable of injection delivery
US8496970B2 (en) 2003-11-26 2013-07-30 Depuy Mitek, Llc Conformable tissue repair implant capable of injection delivery
US8641775B2 (en) 2003-12-05 2014-02-04 Depuy Mitek, Llc Viable tissue repair implants and methods of use
US7901461B2 (en) 2003-12-05 2011-03-08 Ethicon, Inc. Viable tissue repair implants and methods of use
US11395865B2 (en) 2004-02-09 2022-07-26 DePuy Synthes Products, Inc. Scaffolds with viable tissue
JP2005237956A (en) * 2004-02-09 2005-09-08 Depuy Mitek Inc Composite implant for restoring tissue defect in patient and method for repairing tissue defect
JP4717459B2 (en) * 2004-02-09 2011-07-06 デピュイ・ミテック・インコーポレイテッド Combination graft for repairing a tissue defect in a patient and method for repairing a tissue defect
US8137686B2 (en) 2004-04-20 2012-03-20 Depuy Mitek, Inc. Nonwoven tissue scaffold
US8221780B2 (en) 2004-04-20 2012-07-17 Depuy Mitek, Inc. Nonwoven tissue scaffold
JP2015516243A (en) * 2012-05-14 2015-06-11 モーブライフ・ナムローゼ・フエンノートシャップMobelife N.V. Implantable bone augmentation and method for manufacturing implantable bone augmentation

Similar Documents

Publication Publication Date Title
Yin et al. Recent advances in scaffold design and material for vascularized tissue‐engineered bone regeneration
Shahabipour et al. Key components of engineering vascularized 3-dimensional bioprinted bone constructs
Kim et al. Biomimetic materials and fabrication approaches for bone tissue engineering
Kim et al. Bone tissue engineering with premineralized silk scaffolds
JP2004008437A (en) Cultural bone
Ghanaati et al. Collagen-embedded hydroxylapatite–beta-tricalcium phosphate–silicon dioxide bone substitute granules assist rapid vascularization and promote cell growth
Yang et al. Performance of different three-dimensional scaffolds for in vivo endochondral bone generation
US20090299475A1 (en) Bone graft substitute
JP2011500299A (en) Method for producing growth factor-filled particles and particles thus obtained
JP2005160669A (en) Manufacturing method of biological tissue prosthesis
Ben-Ari et al. Isolation and implantation of bone marrow–derived mesenchymal stem cells with fibrin micro beads to repair a critical-size bone defect in mice
Zhang et al. Surface-treated 3D printed Ti-6Al-4V scaffolds with enhanced bone regeneration performance: An in vivo study
CN105148319B (en) The preparation method of complex microsphere
Osypko et al. Bone tissue 3D bioprinting in regenerative dentistry through the perspective of the diamond concept of healing: A narrative review
Zaidman et al. Advancing with ceramic biocomposites for bone graft implants
JP2005110709A (en) Biotissue filler
WO2004087020A1 (en) Material for repairing biological tissues and process for producing the same
Lewandowska-Szumiel et al. Bone tissue engineering-a field for new medicinal products?
Shiratori et al. Bone formation in β-tricalcium phosphate-filled bone defects of the rat femur: Morphometric analysis and expression of bone related protein mRNA
JP2006230683A (en) Bone compensation material, bone compensation body and cultivated bone
CN105013004B (en) Complex microsphere is preparing the application in being used to treat the medicine of Cranial defect
JP2005205074A (en) Method for manufacturing cultured bone
JP3931134B2 (en) Implant for living tissue regeneration and method for producing the same
JP4549016B2 (en) Biomaterial
JP2004016288A (en) Organism tissue prosthesis, method for manufacturing the same, and medical operation method

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20050906