JP2004002582A - Fine particle containing natural polysaccharides and method for producing the same - Google Patents

Fine particle containing natural polysaccharides and method for producing the same Download PDF

Info

Publication number
JP2004002582A
JP2004002582A JP2002161181A JP2002161181A JP2004002582A JP 2004002582 A JP2004002582 A JP 2004002582A JP 2002161181 A JP2002161181 A JP 2002161181A JP 2002161181 A JP2002161181 A JP 2002161181A JP 2004002582 A JP2004002582 A JP 2004002582A
Authority
JP
Japan
Prior art keywords
emulsion
aqueous solution
polysaccharide
particles
phase
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002161181A
Other languages
Japanese (ja)
Other versions
JP4250740B2 (en
Inventor
Tadao Nakajima
中島 忠夫
Masataka Shimizu
清水 正高
Yoshinari Baba
馬場 由成
Kaoru Oe
大栄 薫
Kanji Fujimoto
藤本 幹治
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Miyazaki Prefecture
Original Assignee
Miyazaki Prefecture
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Miyazaki Prefecture filed Critical Miyazaki Prefecture
Priority to JP2002161181A priority Critical patent/JP4250740B2/en
Publication of JP2004002582A publication Critical patent/JP2004002582A/en
Application granted granted Critical
Publication of JP4250740B2 publication Critical patent/JP4250740B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Medical Preparation Storing Or Oral Administration Devices (AREA)
  • Medicinal Preparation (AREA)
  • Cosmetics (AREA)
  • Processes Of Treating Macromolecular Substances (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • General Preparation And Processing Of Foods (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide natural polysaccharide fine particles having desired physical properties. <P>SOLUTION: This method for producing the fine particles containing the natural polysaccharide from a W/O emulsion or O/W/O emulsion having the first aqueous solution containing the natural polysaccharide as the aqueous phase is characterized by having a concentration-controlling process for mixing the W/O emulsion or O/W/O emulsion with (1) the second aqueous solution having a higher osmotic pressure than that of the first aqueous solution and/or (2) a W/O emulsion having the second aqueous solution as an aqueous phase to control the concentration of the natural polysaccharide in the aqueous phase. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、食品、医薬品、化粧品等に利用されているキチン、キトサン等をはじめとする天然由来多糖類の微粒子の製造方法に関する。
【0002】
【従来技術】
天然由来多糖類を基剤とするマイクロカプセルは、DDS製剤、生分解性基剤等の様々な用途への応用が期待されている。このマイクロカプセルは、従来より、ノズル滴下法によってカプセル化される方法がよく利用されている。例えば、天然由来多糖類の一つであるキトサンを酢酸水溶液に溶解攪拌させながら、芯液となるカルボキシメチルセルロース水溶液をノズルに通して滴下し、両物質を瞬時に反応させて高分子複合カプセルが生成するという報告例がある(矢吹稔著、「キチン、キトサンの応用」p.167−174、(1990))。ところが、上記のようなノズル滴下法では、粒径がミリオーダーの比較的大きなカプセルしか製造することができない。
【0003】
このため、さらに小さなカプセルを調製するためには、乳化を経由する手法が用いられている。すなわち、ホモミキサーを用いて調製したエマルションから球状粒子を製造できることが知られている。これについては、例えばポリ乳酸マイクロスフィアを生成させた報告がある(Suong−Hyu Hyon著、Yonsei Med J.、6、 p.720−734(2000))。しかし、この方法で調製さるれエマルションが多分散であるため、得られた球状粒子も多分散となり、単分散粒子を得ることは困難である。特に、天然由来多糖類がキトサンである場合、酸に溶解したキトサンは中和反応によって増粘化する際に、W/Oエマルションの状態で増粘が進むと不定形粒子が固着し、いったん固着するとその再分散が困難となる。このため、キトサンのような増粘する物質を用い、実用性のある粒子又はカプセルを製造することはほとんど不可能である。
【0004】
これに対し、多孔質ガラス膜を用いる乳化方法を利用して海草由来多糖類の均一球状粒子の製造方法が提案されている(特許第2607990号)。これは単分散W/Oエマルションから海草由来多糖類の均一粒子を製造する方法である。しかし、多糖類がアルギン酸ナトリウムである場合、反応液のCaCl濃度をかなり高くしなければ粒子が形成されず、得られた粒子も緻密体であり、多孔質粒子又はマイクロカプセルを製造できない。また、上記方法では、対象となる物質は海草由来の多糖類に限られる。
【0005】
【発明が解決しようとする課題】
このように、従来技術では、粒径等を制御しつつ、キトサン、キチン等の天然由来多糖類の微粒子を製造することが困難であり、かかる製造技術の改良が求められているのが現状である。
【0006】
従って、本発明の主な目的は、粒径等の所望の物性を制御しながら天然由来多糖類の微粒子をより確実に製造することを目的とする。
【0007】
【課題を解決するための手段】
本発明者は、かかる従来技術の問題点を解決すべく鋭意研究を重ねた結果、所定のW/Oエマルションを用いて特定の工程を採用することにより上記目的を達成できることを見出し、ついに本発明を完成した。
【0008】
すなわち、本発明は、天然由来多糖類を含有する微粒子及びその製造方法に係る。
【0009】
1. 天然由来多糖類を含有し、その平均粒径が0.1〜50μmである微粒子。
【0010】
2. 積算体積分布の10%径が50%径の0.5倍以上、積算体積分布の90%径が50%径の1.5倍以下である前記項1記載の微粒子。
【0011】
3. 乾燥時の空隙率が0〜50容積%である前記項1又は2に記載の微粒子。
【0012】
4. 天然由来多糖類がキトサンである前記項1〜3のいずれかに記載の微粒子。
【0013】
5.さらに有機酸を含有する前記項1〜4のいずれかに記載の微粒子。
【0014】
6. 天然由来多糖類が溶解した第一水溶液を水相とするW/Oエマルション又はO/W/Oエマルションから、天然由来多糖類を含有する微粒子を製造する方法であって、
上記W/Oエマルション又はO/W/Oエマルションと、1)当該第一水溶液の浸透圧よりも高い浸透圧を有する第二水溶液及び/又は2)その第二水溶液を水相とするW/Oエマルションとを混合することにより、当該第一水溶液からなる水相中の天然由来多糖類の濃度を制御する濃度調整工程を有することを特徴とする天然由来多糖類を含有する微粒子の製造方法。
【0015】
7. W/Oエマルションが、多孔質ガラス膜を用いた膜乳化法により得られるエマルションであって、
1)当該多孔質ガラス膜を介して、天然由来多糖類が溶解した第一水溶液を油相中に分散して得られたエマルション、又は
2)天然由来多糖類が溶解した第一水溶液を水相とするW/Oエマルションを多孔質ガラス膜に通過させて得られたエマルション
である前記項6記載の製造方法。
【0016】
8. O/W/Oエマルションが、多孔質ガラス膜を用いた膜乳化法により得られたエマルションであって、
当該多孔質ガラス膜を介して、天然由来多糖類が溶解した第一水溶液を水相とするO/Wエマルションを油相中に分散して得られたエマルション
である前記項6記載の製造方法。
【0017】
9. 第一水溶液が、キトサンが有機酸水溶液に溶解した溶液である前記項6〜8のいずれかに記載の製造方法。
【0018】
10. 前記項6〜9のいずれかに記載の濃度調整工程で得られた混合物に、さらに天然由来多糖類を不溶化し得る物質を添加することを特徴とする天然由来多糖類を含有する微粒子の製造方法。
【0019】
11. 天然由来多糖類を不溶化し得る物質を、当該物質の水溶液又はその水溶液を水相とするW/Oエマルションとして添加する前記項10記載の製造方法。
【0020】
12. 天然由来多糖類を不溶化し得る物質の水溶液の浸透圧及び/又は添加量を変化させることにより、得られる微粒子の空隙率を制御する前記項11記載の製造方法。
【0021】
13. 前記項6〜12のいずれかに記載の製造方法により得られる天然由来多糖類を含有する微粒子。
【0022】
【発明の実施の形態】
1.天然由来多糖類を含有する微粒子
本発明の天然由来多糖類を含有する微粒子(以下「本発明微粒子」ともいう。)は、天然由来多糖類を含有し、その平均粒径が0.1〜50μmであることを特徴とする。
【0023】
平均粒径は、通常0.1〜50μm程度であるが、特に0.5〜20μmであることが望ましい。本発明の「平均粒子」とは、積算体積分布において、当該分布の50体積%に対応する粒径を上記「平均粒径」とする。例えば、図5に実施例で得られたキトサン粒子の積算体積分布(20)を示す。図5では、縦軸の相対粒子体積数が50体積%に対応する粒径が「平均粒径」を示し、この場合の平均粒径は約9μmとなる。
【0024】
また、本発明粒子は、積算体積分布の10体積%に対応する粒径(以下「10%径」という。)が上記50%径の0.5倍以上であり、かつ、当該分布の90体積%に対応する粒径(以下「90%径」という。)が上記50%径の1.5倍以下であることが望ましい。
【0025】
本発明粒子は、空隙を有していても良い。すなわち、本発明粒子は、多孔質構造又はマイクロカプセル構造をもつ粒子であっても良い。多孔質構造の場合は、乾燥時の空隙率が0〜50容積%の範囲であることが好ましい。空隙率は、窒素ガス吸着法により測定することができる。
【0026】
本発明の天然由来多糖類としては、天然界で合成される多糖類(天然多糖類)であれば限定的されない。例えば、アルギン酸ナトリウム、カルボキシメチルセルロースナトリウム、アラビアゴム、ジェランガム、キチン、キトサン、カラギーナン等のほか、これらの誘導体も挙げられる。これらは1種又は2種以上で使用することができる。
【0027】
また、本発明粒子は、天然由来多糖類を主成分(基質)とすれば良く、実質的に天然由来多糖類からなる粒子も包含される。本発明の効果を妨げない範囲内で他の成分を含んでいても良い。例えば、油性乳化剤又は水性乳化剤、浸透圧調整剤、有機酸又は無機酸等が挙げられる。これらは、後記に示すようなものを使用することができる。
【0028】
2.本発明粒子の製造方法
本発明粒子の製造方法は、天然由来多糖類が溶解した第一水溶液を水相とするW/Oエマルション又はO/W/Oエマルションから、天然由来多糖類を含有する微粒子を製造する方法であって、
上記W/Oエマルション又はO/W/Oエマルションと、1)当該第一水溶液の浸透圧よりも高い浸透圧を有する第二水溶液及び/又は2)その第二水溶液を水相とするW/Oエマルションとを混合することにより、当該第一水溶液からなる水相中の天然由来多糖類の濃度を制御する濃度調整工程を有することを特徴とする。図1には、W/Oエマルションを用いた場合の製造フロー図を示す。必要により図1の製造フロー図を使用しながら説明する。
(1)W/Oエマルション又はO/W/Oエマルションの水相及び油相
a)水相
上記W/Oエマルション又はO/W/Oエマルションにおける水相としては、天然由来多糖類の水溶液(第一水溶液)を使用する。天然由来多糖類は限定的でなく、前記に示したものを1種又は2種以上を用いることができる。
【0029】
第一水溶液を調製する際の溶媒は、通常は水を使用できるほか、各種の水溶液を溶媒として使用することもできる。天然由来多糖類は、一般的には、アルギン酸ナトリウム、カルボキシメチルセルロースナトリウム、アラビアゴム、ゲランガム等の水可溶性の多糖類、キトサン等の酸に溶解し得る多糖類等に分けられる。
【0030】
酸に溶解し得る多糖類は、酸の存在下で水に溶解させれば良い。例えば、酸の水溶液に天然由来多糖類を溶解させたり、あるいは水中に天然由来多糖類を懸濁させた後、酸を滴下しながら溶解させれば良い。
【0031】
酸としては、使用する天然由来多糖類を水に溶解させることができるものであれば限定されず、例えば酢酸、プロピオン酸、酪酸、L−アスコルビン酸、アクリル酸、クエン酸、マレイン酸、乳酸、リンゴ酸等の有機酸のほか、塩酸、ホウ酸等の無機酸が使用できる。本発明では、これらの中では、特に弱酸が好適である。
【0032】
第一水溶液の天然由来多糖類の濃度は特に限定されないが、通常は0.001〜5重量%程度、好ましくは0.1〜2重量%とすれば良い。
【0033】
また、必要に応じて第一水溶液に添加剤を適宜加えても良い。添加剤としては、溶解している天然由来多糖類を不溶化しないものであれば限定されない。例えば、NaCl、ブドウ糖、ラクトース、グリセリン等の浸透圧調整剤、ショ糖脂肪酸エステル、モノグリセリン脂肪酸エステル、ジグリセリン脂肪酸エステル、ポリグリセリン酸脂肪酸エステル、ポリオキシエチレン・ゾルビタン系界面活性剤、レシチン、ポリオキシエチレン硬化ヒマシ油系界面活性剤等の水性乳化剤等が挙げられる。浸透圧調整剤の使用量は、所望の浸透圧に応じて適宜決定することができる。水性乳化剤の使用量は限定的でなく、通常は0.01〜10重量%程度とすることができる。
【0034】
b)油相
油相は、W/Oエマルションの場合には連続相(連続油相)(2)、O/W/Oエマルションの場合には内油相及び外油相を構成する。
【0035】
油相の油剤としては、公知のW/Oエマルション等の油相として使用されているものであれば良く、例えば油脂類、石油系油剤、有機溶剤、合成系油剤等を挙げることができる。これらは1種又は2種以上で使用しても良い。特に、粒子回収の際に油剤を除去する必要がある場合には、沸点の低いヘキサン等の石油系油剤のほか、トルエン、ベンゼン等の有機溶剤を使用することが好ましい。
【0036】
また、油相には、必要に応じて乳化剤(油性乳化剤)等の添加剤を加えても良い。油性乳化剤としては、ショ糖脂肪酸エステル、ポリグリセリン脂肪酸エステル、ポリグリセリン縮合リシノレイン酸エステル、ソルビタン系界面活性剤、レシチン、ポリオキシエチレン硬化ヒマシ油系界面活性剤等を使用することができる。油性乳化剤の添加量は、使用する油性乳化剤の種類等に応じて適宜設定すれば良いが、通常0.5〜10重量%の範囲にすれば良い。
(2)W/Oエマルション又はO/W/Oエマルションの調製
本発明では、上記の水相及び油相を用いてW/Oエマルション又はO/W/Oエマルションを調製できる。
【0037】
a)W/Oエマルションの調製
上記第一水溶液を水相(分散水相)として用い、これを油相(連続油相)に分散してW/Oエマルション(4)を調製する。W/Oエマルション中の分散水相の体積比は限定的ではないが、一般には0.1〜70容積%、好ましくは10〜50容積%に設定すれば良い。
【0038】
W/Oエマルションを調製するための乳化(3)の方法は特に限定されず、攪拌法、ホモミキサーによる混合方法、多孔質膜を用いる膜乳化法等が利用できるが、特に多孔質膜を用いる膜乳化法による方法が望ましい。
【0039】
具体的には、1)当該多孔質ガラス膜を介して、天然由来多糖類が溶解した第一水溶液を油相中に分散して得られたエマルション、又は2)天然由来多糖類が溶解した第一水溶液を水相とするW/Oエマルションを多孔質ガラス膜に通過させて得られたエマルションを好適に用いることができる。膜乳化法によれば、分散水相の水滴(粒子)の粒径を制御でき、単分散のエマルションを効率良く製造することができる。
【0040】
上記多孔質膜の形状は特に限定されず、本発明粒子の製造条件等に応じて適宜決定すれば良い。例えば、板状(平膜状)、円筒状(パイプ状)等の形状が挙げられる。また、多孔質膜の細孔径も限定的でなく、所望の粒径等に応じて適宜選択すれば良い。本発明では、多孔質膜の相対累積細孔分布曲線において、細孔容積が全体の10%を占める時の細孔径が全体の90%を占める時の細孔径で除した値が実質的に1から1.5までの範囲内にあるミクロ多孔質膜が好ましい。このような膜自体は、公知の方法によって製造することができる。
【0041】
貫通孔(細孔)は、その断面形状が楕円状、長方形(スリット状)、正方形等のいずれであっても良い。また、貫通孔は、膜面に対して垂直に貫通していても良いし、斜めに貫通していても良い。貫通孔どうしが絡み合った状態になっても良い。多孔質膜の材質も限定的でなく、例えば、ガラス、セラミックス、シリコン、樹脂、金属等が挙げられる。
【0042】
本発明方法では、特に多孔質ガラス膜を用いることが望ましい。多孔質ガラス膜としては、例えばガラスのミクロ相分離を利用して製造される多孔質ガラス膜が好適である。具体的には、特許第1504002号に開示されたCaO−B−SiO−Al系多孔質ガラス、特許第1518989号に開示されたCaO−B−SiO−Al−NaO系多孔質ガラス、CaO−B−SiO−Al−NaO−MgO系多孔質ガラス等が挙げられる。これらの多孔質ガラス膜としても、その相対累積細孔分布曲線において、細孔容積が全体の10%を占める時の細孔径が全体の90%を占める時の細孔径で除した値が実質的に1から1.5までの範囲内にあるミクロ多孔質ガラス膜が好ましい。
【0043】
膜乳化法では、多孔質ガラス膜表面の界面化学的性質が単分散エマルション調製に際して重要である(特許第2106958号及び特許第2733729号)。例えばW/Oエマルションを調製する場合は、親油性膜であることが好ましい。従って、多孔質ガラス膜の表面が親油性であればそのまま使用することができ、親水性又は疎油性であれば表面改質により膜表面を親油性化した後に使用すれば単分散W/Oエマルションを安定して生成することができる。
【0044】
親油化の処理方法としては、表面改質によって多孔質膜自体の細孔構造が損なわれない限り、特に方法は限定されない。例えば、シランカップリング剤等種々の反応試薬を用いて炭化水素基を導入する方法、有機系コーティング剤を付与する方法等が適用できる。
【0045】
膜乳化法を実施するための装置も限定的でなく、例えば図2に示すような公知の膜乳化装置を使用することができる。天然多糖類含有水相を分散相容器(11)に入れ、これを圧力計(12)でモニターしながらポンプ(13)によって加圧する。一方、分散相容器の先端にはパイプ状多孔質ガラス膜(14)が装着されており、これを連続油相容器(15)の連続油相中に浸漬しておく。この連続油相はマグネッチックスターラー(16)によって回転子(17)を回転運動させて流動させる。水相は多孔質ガラス膜の細孔を透過した後、均一な水相粒子(18)となって油相中に分散されることになり、所定の単分散W/Oエマルションが得られる。
【0046】
b)O/W/Oエマルションの調製
O/W/Oエマルションを調製する場合は、第一水溶液に油剤を添加し、攪拌法、膜乳化法等によりO/Wエマルションを調製する。第一水溶液には適宜水性乳化剤等の添加剤を加え、O/Wエマルション中の油剤の体積割合は0.1〜70容積%、好ましくは10〜50容積%に設定すれば良い。
【0047】
こうして得られたO/Wエマルションを膜乳化法等を用いて連続油相に分散すればO/W/Oエマルションが得られる。特に、多孔質ガラス膜を介して、天然由来多糖類が溶解した第一水溶液を水相とするO/Wエマルションを油相中に分散して得られたエマルションを好適に用いることができる。
【0048】
このときの分散相(O/Wエマルション)の体積割合はO/W/Oエマルション中0.1〜70容積%程度、好ましくは10〜50容積%に設定すれば良い。
【0049】
本発明方法において、O/W/Oエマルションを使用した場合には、粒子内部が空洞である粒子(マイクロカプセル(中空粒子))を得ることもできる。特に、空隙率が0〜95体積%のマイクロカプセルを好適に製造することができる。
(3)濃度調整工程
本発明方法では、上記W/Oエマルション又はO/W/Oエマルションと、1)当該第一水溶液の浸透圧よりも高い浸透圧を有する第二水溶液及び/又は2)その第二水溶液を水相とするW/Oエマルションとを混合することにより、当該第一水溶液からなる水相中の天然由来多糖類の濃度を制御する。
【0050】
本発明方法では、上記混合により、上記W/Oエマルション又はO/W/Oエマルションの天然由来多糖類の水溶液を脱水濃縮することができる。脱水濃縮は、加熱、真空加熱等によっても可能であるが、使用する油剤が低沸点であったり、脱水量を精密にコントロールすることが難しい等の制限があるため、第一水溶液の浸透圧よりも高い浸透圧を有する第二水溶液(5)及び/又は第二水溶液を水相(分散相)とするW/Oエマルションを混合することにより、混合エマルション(混合物)(6)の状態において、浸透圧差を駆動力となって低浸透圧の分散水滴から水を奪い、第一水溶液の天然由来多糖類を濃縮する。
【0051】
また、上記濃縮により天然由来多糖類を含有する水相の粘度が高くなるが、後述する不溶化処理により形成した粒子の形状と分散性に多大な影響を及ぼす。すなわち、濃縮率が高く、ゲル化等により高粘度化が進んだ状態になればなるほど水相粒子の変形が少なく、球状に近く、しかも分散性に富む粒子が得られる。なお、上記混合物は、W/Oエマルション又はW/O/Wエマルションあるいは両者が混在した状態であっても良い。
【0052】
第二水溶液は、浸透圧調整剤を水に溶解したものを使用することができる。浸透圧調整剤としては、高い浸透圧を生むことができる物質であれば、その種類に制限はない。例えば、NaCl、CaCl等の無機塩類、グルコース、蔗糖等の糖類、グリセリン等が挙げられる。
【0053】
第二水溶液の濃度は、第一水溶液の浸透圧よりも高い浸透圧を有するように調整すれば良い。具体的には、所望の濃縮率に基づいて、予め第二水溶液の濃度を設定することができる。
【0054】
ここに、濃縮率ε%は、第一水溶液▲1▼の浸透圧をΠa、水相体積をVa、第二水溶液▲5▼の浸透圧をΠb、水相体積をVbとし、水の移動が進んで両水相の浸透圧が等しくなった時の平衡浸透圧をΠeとすると、次式によって概算することができる。
【0055】

Figure 2004002582
天然由来多糖類は高分子であることから、通常は溶解量も少なく、一般に浸透圧は低い。従って、本発明方法では、これよりも高い浸透圧の第二水溶液を用意すれば良い。
【0056】
一般的には、濃縮率の調整によって、得られる微粒子の空隙率を0〜50体積%の範囲内で制御することができる。すなわち、本発明では、多孔質構造又はマイクロカプセル構造を有する微粒子をつくることができる。
【0057】
本発明では、第二水溶液をそのまま使用するほか、第二水溶液を水相とするW/Oエマルションを単独又は第二水溶液とともに使用することができる。このW/Oエマルションとしては、水相として上記第二水溶液を使用するほかは、前記a)W/Oエマルションの調製と同様にして調製することができる。
(4)不溶化処理
本発明方法は、上記の濃度調整工程で得られた混合物に、さらに天然由来多糖類を不溶化(ないしは固化)し得る物質(不溶化物質)を添加する方法も包含する。不溶化を必要としない場合は、上記混合物をそのまま使用したり、あるいは上記混合物から粒子を回収すれば良い。
【0058】
上記不溶化物質としては、溶解している天然由来多糖類を不溶化させる(析出させる)ようなものであれば限定的でなく、用いる天然由来多糖類(第一水溶液)の種類によって適宜選択することができる。一般的には、アルカリ金属、アルカリ土類金属等の水酸化物;アルカリ金属、アルカリ土類金属、遷移金属等の無機酸塩(塩化物、炭酸塩等)のほか、アンモニウム塩等の1種又は2種以上を適宜採用すれば良い。
【0059】
上記不溶化物質は、当該物質の水溶液又はその水溶液を水相とするW/Oエマルションの形態で添加することが望ましい。これら水溶液又はW/Oエマルションも、使用する天然由来多糖類(第一水溶液)の種類によって適宜選択することができる。例えば、第一水溶液が弱酸に溶解したキトサンの場合は、NaOH、NaCO、(NHCO等を溶解したアルカリ水溶液;第一水溶液がアルギン酸ナトリウム水溶液の場合はCaCl、FeCl等の多価陽イオンを生成する電解質水溶液等を不溶化液として使用できる。
【0060】
上記不溶化物質の添加量又は濃度(水溶液とする場合)は、使用する天然由来多糖類の不溶化できるのに十分な量であれば良い。従って、使用する天然由来多糖類の種類、濃度等に応じて適宜設定することができる。
【0061】
特に、本発明方法では、不溶化物質の水溶液の浸透圧は、目的に応じで適宜変更できる。すなわち、(i)上記平衡浸透圧Πeに等しい浸透圧に設定した場合は、天然由来多糖類の高粘度粒子がそのまま不溶化される。(ii)Πeより高く設定した場合は、高粘度粒子がさらに脱水されながら不溶化することになる。(iii)Πeより低く設定した場合は、水を取り込んで膨潤しながら不溶化する。このように、不溶化液の浸透圧によっても、粒子の粒径、形状、空隙率等を任意的に制御することができる。上記浸透圧は、上記水溶液の濃度等によって適宜変更することができる。同様の制御は、上記水溶液又はW/Oエマルションの添加量を変えることによって実施することができる。
【0062】
また、上記水溶液又はW/Oエマルションを添加しなくても不溶化できる天然由来多糖類も存在する。例えば、カラギーナンの場合ように、溶解と不溶化の境に明確な温度が存在する多糖類では、図1の(1)〜(6)の工程を加温しながら実施し、その後に冷却すれば不溶化した粒子を生成させることができる。
(5)回収
本発明では、上記の濃度調整工程又は不溶化処理で得られた混合物を種々の用途にそのまま使用することができるが、必要に応じて油相を取り除いて洗浄した後に回収しても良い。これにより、固化した天然由来多糖類の粒子を回収(10)できる。油相の除去方法、洗浄方法等は、本発明の粒子特性に影響を及ぼさない限り、公知の方法に従って行えば良い。例えば、天然由来多糖類がキトサンの場合、不溶化が終了した混合エマルション(8)をろ過等により固液分離し、得られた固形分をアルコールで洗浄した後に乾燥すれば、本発明粒子を固化粒子として回収することができる。
【0063】
O/W/Oエマルションを使用した場合も、同じ操作を実施すれば良い。また、必要に応じて、粒子内部の空洞を形成している油相を取り除く工程を実施しても良い。例えば、液中乾燥法、凍結乾燥法等によって上記油相を除去することができる。
【0064】
本発明の特徴の1つは、均一な大きさの粒子を自由に製造できることにある。これは、W/Oエマルション(4)あるいはO/W/Oエマルションの水相粒径あるいはO/W粒径が自由に制御できる膜乳化法の特徴を利用しており、多糖類の水相濃度と浸透圧を精密に調整することで空隙率や粒子の収縮率をコントロールでき、エマルションの粒径分布と同じ形のまま小さい方へシフトした天然由来多糖類の粒子を得ることができる。
【0065】
本発明微粒子は、粒子内部に有用物質を封入し、有用物質のキャリアとして使用することもできる。有用物質の封入方法自体は公知の方法に従えば良い。例えば、予め第一水溶液を調製する際に併せて有用物質を溶解しておけば本発明微粒子に有用物質を封入することができる。有用物質が有機酸である場合、キトサン等を溶解する弱酸として有機酸を用いることにより、これを微粒子に封入することができる。また例えば、微粒子を回収した後に、有用物質が溶解した溶液(水溶液、アルコール溶液等)に投入して粒子内に有用物質を含浸させる方法でも良い。
【0066】
【作用】
混合エマルションでは、第一水溶液の水相(1)と第二水溶液の水相(5)の浸透圧差が駆動力となり、低浸透圧の第一水溶液の水が油相を介して第二水溶液の水相の方へ移動し、脱水されることにより第一水溶液の水相粒子内の粘性は非常に高くなる。その結果、濃縮された天然由来多糖類を含有する水相は、通常の方法では得られなかった高粘性の粒子となる。
【0067】
【発明の効果】
本発明によれば、以下のような効果を得ることができる。
(1)従来は困難とされていたサブミクロンないしはナノオーダーの天然由来多糖類の微粒子を提供することが可能である。しかも、その粒径を比較的自由に調節することができ、天然由来多糖類の単分散粒子も提供することができる。
(2)製造工程が比較的簡易であり、しかも連続的に天然由来多糖類粒子を製造できることから、本発明方法は工業的規模での生産に適している。
(3)緻密な微粒子〜多孔質構造〜マイクロカプセル構造というような種々の構造をもつ微粒子を比較的容易に製造することができる。
【0068】
【実施例】
以下、実施例を示し、本発明の特徴をより明確に示す。なお、本発明は、これらの実施例に限定されない。実施例中の「wt%」は「重量%」、「vol%」は「容積%」をそれぞれ示す。
【0069】
実施例1
天然由来多糖類としてキトサン、油剤としてn−ヘキサン、乳化剤としてテトラグリセリン縮合リシノレイン酸エステル(以下「TGCR」という)(製品名「CR−310」阪本薬品工業製)、多孔質膜として平均細孔径8.82μmの疎水性多孔質ガラス膜(エス・ピー・ジーテクノ製)、浸透圧調整剤として食塩NaCl、不溶化物質として重炭酸アンモニウム(NHCOをそれぞれ用いた。
【0070】
また、膜乳化装置として図2に示すような装置を使用した。この装置は、分散相を収容する上部容器(11)、多孔質ガラス膜(14)、連続油相を収容する下部容器(15)、圧力計(12)、ポンプ(13)、マグネッチックスターラー(16)及び回転子(17)を基本構成とする。ポンプにより上部容器に供給された分散相は、多孔質ガラス膜を介して、下部容器の連続油相中に圧入分散され、水相粒子(18)を形成する。
【0071】
まず、10wt%の酢酸水溶液にキトサンを溶解し、キトサン濃度を2wt%となるように調整し、これを水相として用いた。次に、TGCRをn−ヘキサンに溶解し、TGCR濃度を5wt%にしたものを油相とした。
【0072】
疎水性多孔質ガラス膜を介して水相を油相中に圧入分散し、平均粒径23μm、水相の体積割合33vol%の単分散W/Oエマルション(以下「キトサンエマルション」という。)を調製した。得られたキトサンエマルションの光学顕微鏡による観察結果を図3、レーザー回折/散乱式粒度分布計(製品名「SALD−2000」島津製作所製)で測定した水相粒子の積算粒径分布を図5の(19)にそれぞれ示す。
【0073】
次に、NaCl濃度1.6mol/Lの高浸透圧水溶液と上記油相を同じ体積割合で混合し、ホモミキサー(製品名「ULUTRA−TURRAX」、JANKE & KUNKEL製)を用いて、24000rpmで1分間の高速攪拌を行って高浸透圧のW/Oエマルション(以下「高浸透圧エマルション」という。)を調製した。
【0074】
キトサンエマルションと高浸透圧エマルションを体積比1:2の割合で混合し、翼型攪拌機にて500rpmの回転数で攪拌した。キトサンエマルションの水相から浸透圧差による脱水が終了する3時間後に、今度は、先の混合W/Oエマルションに1.0mol/L濃度の(NHCO反応水溶液を等量加え、翼型攪拌機を用いて回転数500rpmで20時間攪拌した。
【0075】
その後、キトサンエマルション、高浸透圧エマルション、反応水溶液が混在する溶液をろ紙を用いて吸引ろ過し、ろ紙上の粒子をエタノールで十分洗浄した。こうして得られたキトサン粒子を走査型電子顕微鏡により観察した結果を図4に示す。図4によれば、従来の手法では製造できなかった均一な大きさのキトサン粒子であることがわかる。
【0076】
図5(20)にキトサン粒子の積算粒径分布を示す。キトサンエマルション水相粒子の積算粒径分布がそのまま小さい方へシフトしており、キトサン粒子の粒径分布は水相粒子の粒径分布によって決定できることがわかる。すなわち、本発明の製造方法が確かなものであり、特徴ある天然由来多糖類の粒子を生成
できることが判明した。
【0077】
実施例2
浸透圧調整剤含有水相の浸透圧によって粒子の形状、分散性等を制御する本発明の特徴を明らかにするため、以下の実験を実施した。
【0078】
実施例1と同じキトサン含有酢酸水溶液、油相、平均細孔径8.82μmの多孔質ガラス膜を用い、膜乳化により単分散W/Oエマルションを調製した。次に、NaCl濃度0.17mol/Lと0.51mol/Lの高浸透圧水溶液を準備し、そのW/Oエマルションをホモミキサーで調製した。
【0079】
両エマルションを等量混合した後、実施例1と同じ条件で脱水操作、さらに、固化反応を行い、キトサン粒子を回収した。得られた粒子を電子顕微鏡によって観察した結果を図6及び図7にそれぞれ示す。
【0080】
NaCl水溶液の濃度、すなわち、浸透圧が高い場合、図4のように表面が滑らかで球状のキトサン粒子が生成した。一方、浸透圧が低い場合は、図6のように表面の凹凸が著しい粒子になった。図7に示す粒子は、それらの中間の状態であった。また、乾燥状態の空隙率は浸透圧が低いものほど高く、これらを水中に再分散した場合、浸透圧が低いものほどよく膨潤した。
【0081】
浸透圧が高い場合は、分散水相のキトサン濃縮率は高くなり、キトサン分子が密な高粘度状態で固化反応(不溶化反応)が進んだため、空隙率の低い粒子になったと推測される。一方、浸透圧が低い場合は、キトサン分子がルーズな高粘度状態で固化反応が進み、空隙率が大きな粒子になったと考えられる。図6の粒子を水中に再分散すると水和によって大きく膨潤し、表面が滑らかな粒子に変化する。このことから、図6における粒子表面は、大きな空隙が乾燥によって収縮したために著しい凸凹が形成されたと推定される。
【0082】
実施例3
キトサン水溶液の濃度が粒径制御に及ぼす影響を以下の実施例で調べた。
【0083】
キトサンの濃度が0.5wt%、1wt%、2wt%及び3wt%の4種類の水溶液をそれぞれ準備し、実施例1の手順に従ってキトサン粒子を製造した。ただし、油剤として灯油、油性界面活性剤としてソルビタン・モノオレート(製品名「Span80」和光純薬工業製)をそれぞれ使用した。
【0084】
図8には、キトサン濃度と平均粒径との関係を示す。平均細孔径が8.82μmの多孔質ガラス膜を用いて調製したW/Oエマルションの水相平均粒径を(21)、固化反応後に回収したキトサン粒子の平均粒径を(22)にそれぞれ示す。キトサンの濃度を変化させた場合、その水溶液の粘度は5〜100mPa・sの範囲で変化した。それにもかかわらず、(21)のように水相平均粒径は22〜23μmの範囲で一定である。ところが、これを固化反応させると、濃度が低い場合のキトサン粒子は小さく、濃度が高くなるに従って粒径は大きくなった。キトサン粒子の平均粒径をDp、キトサンの濃度をCm、水相平均粒径をDWとすると、粒子の空隙率が一定であるとして算出される次式に従った。
【0085】
Dp=A×Cml/3×DW
(ただし、Aは実験で求められる定数を示す。)
このことから、生成手順と条件が同一であれば、キトサンの濃度とW/Oエマルションの水相粒径からキトサン粒子の粒径を制御できることがわかる。
【0086】
実施例4
使用した多孔質膜の孔径が天然由来多糖類の粒径制御に及ぼす影響を明らかにした。
【0087】
キトサン水溶液を平均細孔径が2μm、5.5μm、8.82μm及び19.4μmの4種類の多孔質ガラス膜を介して連続油相に圧入分散し単分散W/Oエマルションを調製した。多孔質ガラス膜以外は実施例1と同じ条件にし、キトサン粒子を生成して回収した。
【0088】
図9には、多孔質ガラス膜の孔径とそれにより得られた粒子の平均粒径との関係を示す。得られたW/Oエマルションの水相平均粒径を(23)に示し、キトサン粒子の平均粒径を(24)に示す。両粒径は直線関係で表され、水相粒径が多孔質ガラス膜で決定されれば、キトサン粒子の粒径もほぼ予想できることがわかる。
【0089】
実施例3の式を使って求められるキトサン粒子の空隙率は約90vol%であった。粒径測定に用いたレーザー回折/散乱式粒度分布計は湿式法に基づいており、粒子を水に再分散して粒径を測定する。従って、粒子は水和して膨潤しており、このため空隙率が90vol%になったと考えられる。この粒子の乾燥状態での空隙率を窒素ガス吸着測定装置(製品名「ソープトマッチック1800型」ファイソンズ社製)で測定した。具体的には、真空脱気した試料を液体窒素温度に保持し、窒素ガスを物理吸着させることにより、その窒素ガス吸着量(窒素ガスが液化した液体窒素の体積)から空隙率を求めた。その結果、空隙率は5vol%程度しかなく、膨潤が顕著であることが判明した。さらに、これらの水和膨潤と乾燥収縮は繰り返し起こり、天然由来多糖類の粒子に特有の機能であることも明らかになった。
【0090】
これらの機能を利用し、あらかじめ粒子内に封入した有用成分を水和によって一挙に放出できる新たなタイプのキャリアを調製できることがわかる。
【0091】
実施例5
W/Oエマルションの代わりにO/W/Oエマルションを出発エマルションとし、マイクロカプセルを調製した。
【0092】
天然由来多糖類としてキトサン、油剤にn−ヘキサン、乳化剤としてテトラグリセリン縮合リシノレイン酸エステルTGCR、多孔質膜として平均細孔径8.82μmの疎水性多孔質ガラス膜、浸透圧調整剤にNaCl、不溶化物質に(NHCOと苛性ソーダNaOHを用いた。
【0093】
まず、キトサンが2wt%、水性界面活性剤のポリオキシエチレン硬化ヒマシ油(製品名「HCO−60」日光ケミカルズ製)が0.5wt%溶解した酢酸10wt%水溶液を水相とした。これに水相と等量のn−ヘキサンを添加してホモミキサーによりO/Wエマルションを調製した。一方、TGCRをn−ヘキサンに溶解し、濃度5wt%に調整したものを油相とした。次に、疎水性多孔質ガラスを介して上記O/Wエマルションを油相中に圧入分散し、平均粒径23μm、O/W相の体積割合33vol%のO/W/Oエマルションを調製した後、実施例1と同じ手順でマイクロカプセルを調製した。
【0094】
その結果、キトサン粒子の平均粒径は9μm、乾燥状態での空隙率は45vol%であり、実施例1〜4の粒子より空隙率がはるかに大きなマイクロカプセルが得られることがわかる。また、分散した油相の割合を変えることにより、マイクロカプセルの空隙率を制御できることも判明した。なお、不溶化物質を変えても粒径と空隙率に差がなかった。
【図面の簡単な説明】
【図1】天然由来多糖類を基質とする微粒子の製造フロー図である。
【図2】膜乳化装置の概要を示す図である。
【図3】W/Oエマルションの粒子を観察した結果を示す図(イメージ図)である。
【図4】キトサン粒子の粒子を観察した結果を示す図(イメージ図)である。
【図5】水相粒子とキトサン粒子の積算粒径分布を示す図である。
【図6】NaCl濃度0.17mol/Lを浸透圧調整剤水溶液に用いて合成したキトサン粒子の粒子を観察した結果を示す図(イメージ図)である。
【図7】NaCl濃度0.51mol/Lを浸透圧調整剤水溶液に用いて合成したキトサン粒子の粒子を観察した結果を示す図(イメージ図)である。
【図8】W/Oエマルションの水相平均粒径とキトサン粒子の平均粒径とを比較した図である。
【図9】W/Oエマルションの水相平均粒径とキトサン粒子の平均粒径を比較した図である。
【符号の説明】
(1)天然由来多糖類含有水相
(2)連続油相
(3)乳化
(4)W/Oエマルション
(5)浸透圧調整剤含有水相
(6)混合エマルション
(7)反応液(天然多糖類を不溶化し得る溶液)
(8)混合エマルション
(9)固化
(10)回収
(11)分散相容器(上部容器)
(12)圧力計
(13)ポンプ
(14)多孔質ガラス膜
(15)連続油相容器(下部容器)
(16)マグネッチックスターラー
(17)回転子
(18)水相粒子
(19)水相粒子の積算粒径分布
(20)キトサン粒子の積算粒径分布
(21)W/Oエマルションの水相平均粒径
(22)キトサン粒子の平均粒径
(23)W/Oエマルションの水相平均粒径
(24)キトサン粒子の平均粒径[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for producing fine particles of naturally-occurring polysaccharides such as chitin and chitosan that are used in foods, pharmaceuticals, cosmetics and the like.
[0002]
[Prior art]
Microcapsules based on naturally occurring polysaccharides are expected to be applied to various uses such as DDS preparations and biodegradable bases. Conventionally, a method of encapsulating the microcapsules by a nozzle dropping method is often used. For example, while dissolving chitosan, which is one of the naturally derived polysaccharides, in an acetic acid aqueous solution and stirring it, a carboxymethyl cellulose aqueous solution as a core solution is dropped through a nozzle, and both substances are reacted instantaneously to form a polymer composite capsule. There is a report example of “Mr. Yabuki,“ Application of chitin and chitosan ”p.167-174, (1990)). However, the nozzle dropping method as described above can produce only a relatively large capsule having a particle size of the order of millimeters.
[0003]
For this reason, in order to prepare a smaller capsule, a method via emulsification is used. That is, it is known that spherical particles can be produced from an emulsion prepared using a homomixer. For example, there is a report that polylactic acid microspheres are generated (Sung-Hyu Hyon, Yonsei Med J., 6, p. 720-734 (2000)). However, since the emulsion prepared by this method is polydispersed, the obtained spherical particles are also polydispersed, and it is difficult to obtain monodispersed particles. In particular, when the naturally-derived polysaccharide is chitosan, the chitosan dissolved in the acid is thickened by a neutralization reaction, and when the thickening proceeds in the state of a W / O emulsion, the amorphous particles are fixed. Then, the redispersion becomes difficult. For this reason, it is almost impossible to produce practical particles or capsules using a thickening substance such as chitosan.
[0004]
On the other hand, the manufacturing method of the uniform spherical particle of the seaweed origin polysaccharide is proposed using the emulsification method using a porous glass membrane (patent 2607990). This is a method for producing uniform particles of a seaweed-derived polysaccharide from a monodispersed W / O emulsion. However, when the polysaccharide is sodium alginate, the reaction solution CaCl 2 If the concentration is not significantly increased, particles are not formed, and the obtained particles are also dense, so that porous particles or microcapsules cannot be produced. Moreover, in the said method, the substance used as object is restricted to the polysaccharide derived from a seaweed.
[0005]
[Problems to be solved by the invention]
As described above, in the conventional technology, it is difficult to produce fine particles of naturally-derived polysaccharides such as chitosan and chitin while controlling the particle size and the like. is there.
[0006]
Accordingly, the main object of the present invention is to more reliably produce fine particles of naturally occurring polysaccharides while controlling desired physical properties such as particle size.
[0007]
[Means for Solving the Problems]
As a result of intensive studies to solve the problems of the prior art, the present inventor has found that the above object can be achieved by adopting a specific process using a predetermined W / O emulsion, and finally the present invention. Was completed.
[0008]
That is, the present invention relates to fine particles containing a naturally-derived polysaccharide and a method for producing the same.
[0009]
1. Fine particles containing a naturally-derived polysaccharide and having an average particle size of 0.1 to 50 μm.
[0010]
2. Item 2. The fine particles according to Item 1, wherein the 10% diameter of the integrated volume distribution is 0.5 times or more of the 50% diameter and the 90% diameter of the integrated volume distribution is 1.5 times or less of the 50% diameter.
[0011]
3. Item 3. The fine particles according to Item 1 or 2, wherein the porosity during drying is 0 to 50% by volume.
[0012]
4). Item 4. The fine particles according to any one of Items 1 to 3, wherein the naturally-derived polysaccharide is chitosan.
[0013]
5. Item 5. The fine particles according to any one of Items 1 to 4, further containing an organic acid.
[0014]
6). A method for producing fine particles containing a naturally occurring polysaccharide from a W / O emulsion or an O / W / O emulsion in which the first aqueous solution in which the naturally occurring polysaccharide is dissolved is an aqueous phase,
W / O emulsion or O / W / O emulsion, 1) a second aqueous solution having an osmotic pressure higher than that of the first aqueous solution, and / or 2) W / O having the second aqueous solution as an aqueous phase. The manufacturing method of the microparticles | fine-particles containing a natural origin polysaccharide characterized by having a density | concentration adjustment process which controls the density | concentration of the natural origin polysaccharide in the water phase which consists of the said 1st aqueous solution by mixing with an emulsion.
[0015]
7). The W / O emulsion is an emulsion obtained by a membrane emulsification method using a porous glass membrane,
1) An emulsion obtained by dispersing a first aqueous solution in which a naturally derived polysaccharide is dissolved in an oil phase through the porous glass membrane, or
2) An emulsion obtained by passing a W / O emulsion having a first aqueous solution in which a naturally-derived polysaccharide is dissolved as an aqueous phase, through a porous glass membrane.
The manufacturing method of said claim | item 6 which is these.
[0016]
8). The O / W / O emulsion is an emulsion obtained by a membrane emulsification method using a porous glass membrane,
An emulsion obtained by dispersing an O / W emulsion in which the first aqueous solution in which the naturally derived polysaccharide is dissolved in the water phase is dispersed in the oil phase through the porous glass membrane.
The manufacturing method of said claim | item 6 which is these.
[0017]
9. Item 9. The production method according to any one of Items 6 to 8, wherein the first aqueous solution is a solution in which chitosan is dissolved in an organic acid aqueous solution.
[0018]
10. 10. A method for producing fine particles containing a natural polysaccharide, further comprising adding a substance capable of insolubilizing the natural polysaccharide to the mixture obtained in the concentration adjusting step according to any one of Items 6 to 9. .
[0019]
11. Item 11. The method according to Item 10, wherein a substance capable of insolubilizing the naturally-derived polysaccharide is added as an aqueous solution of the substance or a W / O emulsion containing the aqueous solution as an aqueous phase.
[0020]
12 Item 12. The method according to Item 11, wherein the porosity of the resulting fine particles is controlled by changing the osmotic pressure and / or the amount of the aqueous solution of the substance capable of insolubilizing the naturally occurring polysaccharide.
[0021]
13. Fine particles containing a naturally-derived polysaccharide obtained by the production method according to any one of Items 6 to 12.
[0022]
DETAILED DESCRIPTION OF THE INVENTION
1. Fine particles containing naturally occurring polysaccharides
The fine particles containing the naturally occurring polysaccharide of the present invention (hereinafter also referred to as “the fine particles of the present invention”) contain the naturally occurring polysaccharide and have an average particle size of 0.1 to 50 μm.
[0023]
The average particle size is usually about 0.1 to 50 μm, but is particularly preferably 0.5 to 20 μm. The “average particle” of the present invention refers to a particle diameter corresponding to 50% by volume of the distribution in the cumulative volume distribution as the “average particle diameter”. For example, FIG. 5 shows the cumulative volume distribution (20) of chitosan particles obtained in the example. In FIG. 5, the particle diameter corresponding to the relative particle volume number of 50 vol% on the vertical axis indicates “average particle diameter”, and the average particle diameter in this case is about 9 μm.
[0024]
The particles of the present invention have a particle size corresponding to 10% by volume of the cumulative volume distribution (hereinafter referred to as “10% size”) of 0.5 times or more of the 50% size and 90 volumes of the distribution. It is desirable that the particle size corresponding to% (hereinafter referred to as “90% diameter”) is not more than 1.5 times the 50% diameter.
[0025]
The particles of the present invention may have voids. That is, the particles of the present invention may be particles having a porous structure or a microcapsule structure. In the case of a porous structure, the porosity during drying is preferably in the range of 0 to 50% by volume. The porosity can be measured by a nitrogen gas adsorption method.
[0026]
The naturally-derived polysaccharide of the present invention is not limited as long as it is a polysaccharide synthesized in nature (natural polysaccharide). For example, sodium alginate, sodium carboxymethylcellulose, gum arabic, gellan gum, chitin, chitosan, carrageenan and the like, as well as derivatives thereof. These can be used alone or in combination of two or more.
[0027]
In addition, the particles of the present invention may have a naturally-derived polysaccharide as a main component (substrate), and particles substantially consisting of a naturally-derived polysaccharide are also included. Other components may be included within a range not impeding the effects of the present invention. For example, an oily emulsifier or an aqueous emulsifier, an osmotic pressure adjusting agent, an organic acid or an inorganic acid can be used. These can use what is shown to a postscript.
[0028]
2. Production method of the particles of the present invention
The method for producing the particles of the present invention is a method for producing fine particles containing a naturally-derived polysaccharide from a W / O emulsion or an O / W / O emulsion in which the first aqueous solution in which the naturally-derived polysaccharide is dissolved is an aqueous phase. And
W / O emulsion or O / W / O emulsion, 1) a second aqueous solution having an osmotic pressure higher than that of the first aqueous solution, and / or 2) W / O having the second aqueous solution as an aqueous phase. It has the density | concentration adjustment process which controls the density | concentration of the natural origin polysaccharide in the aqueous phase which consists of the said 1st aqueous solution by mixing with an emulsion, It is characterized by the above-mentioned. FIG. 1 shows a production flow chart when a W / O emulsion is used. This will be described using the manufacturing flow diagram of FIG. 1 as necessary.
(1) Water phase and oil phase of W / O emulsion or O / W / O emulsion
a) Water phase
As an aqueous phase in the W / O emulsion or the O / W / O emulsion, an aqueous solution (first aqueous solution) of naturally-derived polysaccharide is used. Naturally-derived polysaccharides are not limited, and one or more of those shown above can be used.
[0029]
As the solvent for preparing the first aqueous solution, water can be usually used, and various aqueous solutions can also be used as the solvent. Naturally-derived polysaccharides are generally classified into water-soluble polysaccharides such as sodium alginate, sodium carboxymethylcellulose, gum arabic, and gellan gum, polysaccharides that can be dissolved in acids such as chitosan, and the like.
[0030]
A polysaccharide that can be dissolved in an acid may be dissolved in water in the presence of an acid. For example, the natural polysaccharide may be dissolved in an acid aqueous solution, or the natural polysaccharide may be suspended in water and then dissolved while dropping the acid.
[0031]
The acid is not limited as long as the natural polysaccharide to be used can be dissolved in water. For example, acetic acid, propionic acid, butyric acid, L-ascorbic acid, acrylic acid, citric acid, maleic acid, lactic acid, In addition to organic acids such as malic acid, inorganic acids such as hydrochloric acid and boric acid can be used. In the present invention, among these, a weak acid is particularly preferable.
[0032]
The concentration of the naturally-derived polysaccharide in the first aqueous solution is not particularly limited, but is usually about 0.001 to 5% by weight, preferably 0.1 to 2% by weight.
[0033]
Moreover, you may add an additive suitably to 1st aqueous solution as needed. The additive is not limited as long as it does not insolubilize the naturally-occurring polysaccharide. For example, osmotic pressure regulators such as NaCl, glucose, lactose, glycerin, sucrose fatty acid ester, monoglycerin fatty acid ester, diglycerin fatty acid ester, polyglyceric acid fatty acid ester, polyoxyethylene / sorbitan surfactant, lecithin, poly Examples include aqueous emulsifiers such as oxyethylene hydrogenated castor oil surfactants. The amount of the osmotic pressure adjusting agent used can be appropriately determined according to the desired osmotic pressure. The amount of the aqueous emulsifier used is not limited, and can usually be about 0.01 to 10% by weight.
[0034]
b) Oil phase
The oil phase comprises a continuous phase (continuous oil phase) (2) in the case of a W / O emulsion, and an inner oil phase and an outer oil phase in the case of an O / W / O emulsion.
[0035]
As the oil agent in the oil phase, any oil agent such as a known W / O emulsion may be used, and examples thereof include fats and oils, petroleum oil agents, organic solvents, and synthetic oil agents. You may use these by 1 type (s) or 2 or more types. In particular, when it is necessary to remove the oil agent during particle recovery, it is preferable to use an organic solvent such as toluene or benzene in addition to a petroleum oil agent such as hexane having a low boiling point.
[0036]
Moreover, you may add additives, such as an emulsifier (oil-based emulsifier), to an oil phase as needed. As the oily emulsifier, sucrose fatty acid ester, polyglycerin fatty acid ester, polyglycerin condensed ricinoleic acid ester, sorbitan surfactant, lecithin, polyoxyethylene hydrogenated castor oil surfactant and the like can be used. The addition amount of the oil emulsifier may be appropriately set according to the type of the oil emulsifier to be used and the like, but may be usually in the range of 0.5 to 10% by weight.
(2) Preparation of W / O emulsion or O / W / O emulsion
In the present invention, a W / O emulsion or an O / W / O emulsion can be prepared using the water phase and the oil phase.
[0037]
a) Preparation of W / O emulsion
Using said 1st aqueous solution as a water phase (dispersion water phase), this is disperse | distributed to an oil phase (continuous oil phase), and a W / O emulsion (4) is prepared. The volume ratio of the dispersed aqueous phase in the W / O emulsion is not limited, but is generally 0.1 to 70% by volume, preferably 10 to 50% by volume.
[0038]
The method of emulsification (3) for preparing the W / O emulsion is not particularly limited, and a stirring method, a mixing method using a homomixer, a membrane emulsification method using a porous membrane, and the like can be used. In particular, a porous membrane is used. A membrane emulsification method is desirable.
[0039]
Specifically, 1) an emulsion obtained by dispersing the first aqueous solution in which the naturally-derived polysaccharide is dissolved in the oil phase through the porous glass membrane, or 2) the emulsion in which the naturally-derived polysaccharide is dissolved. An emulsion obtained by passing a W / O emulsion having one aqueous solution as an aqueous phase through a porous glass membrane can be suitably used. According to the membrane emulsification method, the particle size of water droplets (particles) in the dispersed aqueous phase can be controlled, and a monodispersed emulsion can be efficiently produced.
[0040]
The shape of the porous membrane is not particularly limited, and may be appropriately determined according to the production conditions of the particles of the present invention. Examples of the shape include a plate shape (flat membrane shape) and a cylindrical shape (pipe shape). Further, the pore diameter of the porous membrane is not limited, and may be appropriately selected according to a desired particle diameter or the like. In the present invention, in the relative cumulative pore distribution curve of the porous membrane, the value obtained by dividing the pore diameter when the pore volume accounts for 10% of the whole by 90% of the whole is substantially 1. A microporous membrane in the range of from 1.5 to 1.5 is preferred. Such a film itself can be produced by a known method.
[0041]
The cross-sectional shape of the through hole (pore) may be any of an elliptical shape, a rectangular shape (slit shape), a square shape, and the like. Moreover, the through-hole may penetrate perpendicularly | vertically with respect to the film surface, and may penetrate diagonally. The through holes may be in an intertwined state. The material of the porous film is not limited, and examples thereof include glass, ceramics, silicon, resin, and metal.
[0042]
In the method of the present invention, it is particularly desirable to use a porous glass membrane. As the porous glass membrane, for example, a porous glass membrane produced by utilizing microphase separation of glass is suitable. Specifically, CaO-B disclosed in Japanese Patent No. 1504002 2 O 3 -SiO 2 -Al 2 O 3 -Based porous glass, CaO-B disclosed in Japanese Patent No. 1518989 2 O 3 -SiO 2 -Al 2 O 3 -Na 2 O-based porous glass, CaO-B 2 O 3 -SiO 2 -Al 2 O 3 -Na 2 O-MgO type | system | group porous glass etc. are mentioned. Also for these porous glass membranes, in the relative cumulative pore distribution curve, the value obtained by dividing the pore diameter when the pore volume occupies 10% of the whole is divided by the pore diameter when occupying 90% of the whole is substantial. A microporous glass membrane in the range of 1 to 1.5 is preferred.
[0043]
In the membrane emulsification method, the interfacial chemical properties on the surface of the porous glass membrane are important when preparing a monodisperse emulsion (Patent Nos. 2106958 and 2733729). For example, when preparing a W / O emulsion, a lipophilic film is preferable. Therefore, if the surface of the porous glass membrane is lipophilic, it can be used as it is, and if it is hydrophilic or oleophobic, a monodispersed W / O emulsion can be used after making the membrane surface lipophilic by surface modification. Can be stably generated.
[0044]
The treatment method for lipophilicity is not particularly limited as long as the pore structure of the porous membrane itself is not impaired by the surface modification. For example, a method of introducing a hydrocarbon group using various reaction reagents such as a silane coupling agent, a method of applying an organic coating agent, and the like can be applied.
[0045]
An apparatus for carrying out the membrane emulsification method is not limited. For example, a known membrane emulsification apparatus as shown in FIG. 2 can be used. The natural polysaccharide-containing aqueous phase is placed in a dispersed phase vessel (11) and pressurized by a pump (13) while monitoring with a pressure gauge (12). On the other hand, a pipe-like porous glass membrane (14) is attached to the tip of the dispersed phase container, and this is immersed in the continuous oil phase of the continuous oil phase container (15). This continuous oil phase is caused to flow by rotating the rotor (17) by a magnetic stirrer (16). After passing through the pores of the porous glass membrane, the aqueous phase becomes uniform aqueous phase particles (18) and is dispersed in the oil phase, whereby a predetermined monodispersed W / O emulsion is obtained.
[0046]
b) Preparation of O / W / O emulsion
When preparing an O / W / O emulsion, an oil agent is added to the first aqueous solution, and an O / W emulsion is prepared by a stirring method, a membrane emulsification method, or the like. An additive such as an aqueous emulsifier is appropriately added to the first aqueous solution, and the volume ratio of the oil agent in the O / W emulsion may be set to 0.1 to 70% by volume, preferably 10 to 50% by volume.
[0047]
An O / W / O emulsion can be obtained by dispersing the O / W emulsion thus obtained in a continuous oil phase using a membrane emulsification method or the like. In particular, an emulsion obtained by dispersing an O / W emulsion in which the first aqueous solution in which the naturally derived polysaccharide is dissolved in the water phase is dispersed in the oil phase through the porous glass membrane can be suitably used.
[0048]
The volume ratio of the dispersed phase (O / W emulsion) at this time may be set to about 0.1 to 70% by volume, preferably 10 to 50% by volume in the O / W / O emulsion.
[0049]
In the method of the present invention, when an O / W / O emulsion is used, particles (microcapsules (hollow particles)) in which the inside of the particles is hollow can also be obtained. In particular, microcapsules having a porosity of 0 to 95% by volume can be preferably produced.
(3) Concentration adjustment process
In the method of the present invention, the above W / O emulsion or O / W / O emulsion, 1) a second aqueous solution having an osmotic pressure higher than the osmotic pressure of the first aqueous solution, and / or 2) the second aqueous solution is used as an aqueous phase. The concentration of the naturally-derived polysaccharide in the aqueous phase composed of the first aqueous solution is controlled by mixing with the W / O emulsion.
[0050]
In the method of the present invention, the aqueous solution of the naturally-derived polysaccharide of the W / O emulsion or O / W / O emulsion can be dehydrated and concentrated by the mixing. Dehydration and concentration can also be performed by heating, vacuum heating, etc., but since the oil agent used has a low boiling point and it is difficult to precisely control the amount of dehydration, the osmotic pressure of the first aqueous solution In the state of the mixed emulsion (mixture) (6) by mixing the second aqueous solution (5) having a high osmotic pressure and / or a W / O emulsion in which the second aqueous solution is an aqueous phase (dispersed phase). The pressure difference is used as a driving force to remove water from the dispersed water droplets with low osmotic pressure, thereby concentrating the naturally occurring polysaccharide in the first aqueous solution.
[0051]
Moreover, although the viscosity of the water phase containing naturally derived polysaccharide becomes high by the said concentration, it has a great influence on the shape and dispersibility of the particle | grains formed by the insolubilization process mentioned later. That is, the higher the concentration ratio and the higher the viscosity due to gelation, the smaller the deformation of the water phase particles, and the closer the shape to a sphere and the more dispersible. The mixture may be a W / O emulsion, a W / O / W emulsion, or a mixture of both.
[0052]
As the second aqueous solution, an osmotic pressure adjusting agent dissolved in water can be used. There is no limitation on the type of the osmotic pressure adjusting agent as long as it is a substance capable of producing a high osmotic pressure. For example, NaCl, CaCl 2 Inorganic salts such as glucose, sugars such as glucose and sucrose, glycerin and the like.
[0053]
The concentration of the second aqueous solution may be adjusted so as to have an osmotic pressure higher than that of the first aqueous solution. Specifically, the concentration of the second aqueous solution can be set in advance based on the desired concentration rate.
[0054]
Here, the concentration rate ε% is defined as follows. The osmotic pressure of the first aqueous solution (1) is Πa, the aqueous phase volume is Va, the osmotic pressure of the second aqueous solution (5) is Πb, and the aqueous phase volume is Vb. Assuming that the equilibrium osmotic pressure when the osmotic pressure of both aqueous phases becomes equal is Πe, it can be estimated by the following equation.
[0055]
Figure 2004002582
Naturally-occurring polysaccharides are macromolecules and therefore usually have a small amount of dissolution and generally have low osmotic pressure. Therefore, in the method of the present invention, a second aqueous solution having a higher osmotic pressure may be prepared.
[0056]
Generally, the porosity of fine particles obtained can be controlled within the range of 0 to 50% by volume by adjusting the concentration rate. That is, in the present invention, fine particles having a porous structure or a microcapsule structure can be produced.
[0057]
In the present invention, in addition to using the second aqueous solution as it is, a W / O emulsion having the second aqueous solution as an aqueous phase can be used alone or together with the second aqueous solution. This W / O emulsion can be prepared in the same manner as in the preparation of a) W / O emulsion except that the second aqueous solution is used as an aqueous phase.
(4) Insolubilization treatment
The method of the present invention also includes a method of adding a substance (insolubilized substance) capable of insolubilizing (or solidifying) the naturally-derived polysaccharide to the mixture obtained in the above-described concentration adjusting step. When insolubilization is not required, the mixture may be used as it is, or particles may be recovered from the mixture.
[0058]
The insolubilizing substance is not limited as long as it dissolves (precipitates) the dissolved natural polysaccharide, and may be appropriately selected depending on the type of the natural polysaccharide (first aqueous solution) to be used. it can. In general, hydroxides such as alkali metals and alkaline earth metals; inorganic acid salts (chlorides, carbonates, etc.) such as alkali metals, alkaline earth metals, transition metals, and ammonium salts Alternatively, two or more kinds may be adopted as appropriate.
[0059]
The insolubilizing substance is preferably added in the form of an aqueous solution of the substance or a W / O emulsion having the aqueous solution as an aqueous phase. These aqueous solutions or W / O emulsions can also be appropriately selected depending on the type of naturally-derived polysaccharide (first aqueous solution) to be used. For example, when the first aqueous solution is chitosan dissolved in a weak acid, NaOH, NaCO 3 , (NH 4 ) 2 CO 3 An aqueous alkaline solution in which the aqueous solution is dissolved; when the first aqueous solution is an aqueous sodium alginate solution, CaCl 2 , FeCl 3 An aqueous electrolyte solution that generates polyvalent cations such as can be used as the insolubilizing solution.
[0060]
The addition amount or concentration (in the case of an aqueous solution) of the insolubilizing substance may be an amount sufficient to insolubilize the naturally derived polysaccharide to be used. Therefore, it can be set as appropriate according to the type and concentration of the naturally-derived polysaccharide to be used.
[0061]
In particular, in the method of the present invention, the osmotic pressure of the aqueous solution of the insolubilizing substance can be appropriately changed depending on the purpose. That is, (i) When the osmotic pressure is set equal to the equilibrium osmotic pressure e, the high-viscosity particles of the naturally-derived polysaccharide are insolubilized as they are. (Ii) When it is set higher than Πe, the high viscosity particles are insolubilized while being further dehydrated. (Iii) When set lower than Πe, water is taken in and insolubilized while swelling. Thus, the particle diameter, shape, porosity and the like of the particles can be arbitrarily controlled also by the osmotic pressure of the insolubilizing solution. The osmotic pressure can be appropriately changed depending on the concentration of the aqueous solution. Similar control can be carried out by changing the amount of the aqueous solution or W / O emulsion added.
[0062]
There are also naturally occurring polysaccharides that can be insolubilized without the addition of the aqueous solution or W / O emulsion. For example, as in the case of carrageenan, in the case of a polysaccharide having a clear temperature at the boundary between dissolution and insolubilization, the steps (1) to (6) in FIG. 1 are performed while heating and then insolubilized by cooling. Particles can be produced.
(5) Collection
In the present invention, the mixture obtained in the above-described concentration adjustment step or insolubilization treatment can be used as it is for various applications, but it may be recovered after removing the oil phase and washing as necessary. Thereby, the solid-derived polysaccharide particles can be recovered (10). The oil phase removal method, washing method and the like may be performed according to known methods as long as they do not affect the particle characteristics of the present invention. For example, when the naturally derived polysaccharide is chitosan, the mixed emulsion (8) that has been insolubilized is subjected to solid-liquid separation by filtration or the like, and the solid content thus obtained is washed with alcohol and then dried to obtain the solidified particles. Can be recovered.
[0063]
The same operation may be performed when an O / W / O emulsion is used. Moreover, you may implement the process of removing the oil phase which forms the cavity inside particle | grains as needed. For example, the oil phase can be removed by a submerged drying method, a freeze drying method, or the like.
[0064]
One of the features of the present invention is that particles of uniform size can be produced freely. This utilizes the characteristics of the membrane emulsification method in which the water phase particle size or O / W particle size of the W / O emulsion (4) or O / W / O emulsion can be freely controlled, and the aqueous phase concentration of the polysaccharide. By precisely adjusting the osmotic pressure, the porosity and particle shrinkage can be controlled, and the naturally occurring polysaccharide particles shifted to the smaller side can be obtained with the same shape as the particle size distribution of the emulsion.
[0065]
The fine particles of the present invention can also be used as a carrier for useful substances by encapsulating useful substances inside the particles. The method for encapsulating the useful substance itself may follow a known method. For example, if the useful substance is dissolved in advance when the first aqueous solution is prepared, the useful substance can be encapsulated in the fine particles of the present invention. When the useful substance is an organic acid, it can be encapsulated in fine particles by using an organic acid as a weak acid that dissolves chitosan and the like. Further, for example, a method may be used in which after collecting the fine particles, the particles are put into a solution in which the useful substance is dissolved (aqueous solution, alcohol solution, etc.) and impregnated with the useful substance.
[0066]
[Action]
In the mixed emulsion, the osmotic pressure difference between the aqueous phase (1) of the first aqueous solution and the aqueous phase (5) of the second aqueous solution becomes a driving force, and the water of the first aqueous solution having a low osmotic pressure passes through the oil phase to the second aqueous solution. By moving toward the water phase and dehydrating, the viscosity in the water phase particles of the first aqueous solution becomes very high. As a result, the aqueous phase containing the concentrated naturally-derived polysaccharide becomes highly viscous particles that could not be obtained by ordinary methods.
[0067]
【The invention's effect】
According to the present invention, the following effects can be obtained.
(1) It is possible to provide fine particles of naturally occurring polysaccharides of submicron or nano-order, which has been considered difficult in the past. Moreover, the particle size can be adjusted relatively freely, and monodisperse particles of naturally derived polysaccharides can also be provided.
(2) Since the production process is relatively simple and the naturally-derived polysaccharide particles can be produced continuously, the method of the present invention is suitable for production on an industrial scale.
(3) Fine particles having various structures such as a fine fine particle, a porous structure, and a microcapsule structure can be produced relatively easily.
[0068]
【Example】
Hereinafter, an Example is shown and the characteristic of this invention is shown more clearly. The present invention is not limited to these examples. In the examples, “wt%” indicates “wt%”, and “vol%” indicates “volume%”.
[0069]
Example 1
Chitosan as a naturally derived polysaccharide, n-hexane as an oil agent, tetraglycerin condensed ricinoleic acid ester (hereinafter referred to as “TGCR”) (product name “CR-310” manufactured by Sakamoto Yakuhin Kogyo Co., Ltd.) as an emulsifier, average pore diameter 8 as a porous membrane .82 μm hydrophobic porous glass membrane (manufactured by SPG Techno), NaCl as an osmotic pressure regulator, ammonium bicarbonate (NH as an insolubilizing substance) 4 ) 2 CO 3 Were used respectively.
[0070]
Moreover, the apparatus as shown in FIG. 2 was used as a membrane emulsification apparatus. This apparatus comprises an upper container (11) containing a dispersed phase, a porous glass membrane (14), a lower container (15) containing a continuous oil phase, a pressure gauge (12), a pump (13), a magnetic stirrer ( 16) and the rotor (17) are the basic components. The dispersed phase supplied to the upper container by the pump is press-fitted and dispersed into the continuous oil phase of the lower container through the porous glass film to form water phase particles (18).
[0071]
First, chitosan was dissolved in a 10 wt% aqueous acetic acid solution, and the chitosan concentration was adjusted to 2 wt%, which was used as the aqueous phase. Next, TGCR was dissolved in n-hexane, and a TGCR concentration of 5 wt% was used as the oil phase.
[0072]
A water phase is press-fitted and dispersed in an oil phase through a hydrophobic porous glass membrane to prepare a monodispersed W / O emulsion (hereinafter referred to as “chitosan emulsion”) having an average particle size of 23 μm and a volume fraction of the water phase of 33 vol%. did. FIG. 3 shows the observation result of the obtained chitosan emulsion with an optical microscope, and FIG. (19) respectively.
[0073]
Next, a high osmotic pressure aqueous solution having a NaCl concentration of 1.6 mol / L and the above oil phase are mixed at the same volume ratio, and 1 at 24000 rpm using a homomixer (product name “ULUTRA-TURRAX”, manufactured by JANKE & KUNKEL). A high osmotic pressure W / O emulsion (hereinafter referred to as “high osmotic pressure emulsion”) was prepared by stirring at high speed for 5 minutes.
[0074]
A chitosan emulsion and a high osmotic pressure emulsion were mixed at a volume ratio of 1: 2, and stirred with a wing-type stirrer at a rotation speed of 500 rpm. Three hours after the dehydration due to the osmotic pressure difference from the aqueous phase of the chitosan emulsion is completed, this time, the mixed W / O emulsion is added with a 1.0 mol / L concentration of (NH 4 ) 2 CO 3 An equal amount of the aqueous reaction solution was added, and the mixture was stirred for 20 hours at 500 rpm using a blade-type stirrer.
[0075]
Thereafter, a solution containing a chitosan emulsion, a high osmotic pressure emulsion, and a reaction aqueous solution was suction filtered using a filter paper, and the particles on the filter paper were sufficiently washed with ethanol. The results of observation of the chitosan particles thus obtained with a scanning electron microscope are shown in FIG. FIG. 4 shows that the chitosan particles have a uniform size that could not be produced by the conventional method.
[0076]
FIG. 5 (20) shows the cumulative particle size distribution of the chitosan particles. It can be seen that the cumulative particle size distribution of the chitosan emulsion water phase particles is shifted to a smaller one as it is, and the particle size distribution of the chitosan particles can be determined by the particle size distribution of the water phase particles. That is, the production method of the present invention is reliable and produces characteristic natural polysaccharide particles.
It turns out that you can.
[0077]
Example 2
In order to clarify the characteristics of the present invention that control the shape, dispersibility, etc. of the particles by the osmotic pressure of the osmotic pressure adjusting agent-containing aqueous phase, the following experiment was conducted.
[0078]
A monodispersed W / O emulsion was prepared by membrane emulsification using the same chitosan-containing acetic acid aqueous solution as in Example 1, an oil phase, and a porous glass membrane having an average pore size of 8.82 μm. Next, high osmotic pressure aqueous solutions with NaCl concentrations of 0.17 mol / L and 0.51 mol / L were prepared, and the W / O emulsion was prepared with a homomixer.
[0079]
After mixing equal amounts of both emulsions, dehydration operation was performed under the same conditions as in Example 1, and further a solidification reaction was performed to recover chitosan particles. The results of observation of the obtained particles with an electron microscope are shown in FIGS. 6 and 7, respectively.
[0080]
When the concentration of the NaCl aqueous solution, that is, the osmotic pressure was high, spherical chitosan particles having a smooth surface as shown in FIG. 4 were produced. On the other hand, when the osmotic pressure was low, the particles became extremely uneven as shown in FIG. The particles shown in FIG. 7 were in an intermediate state between them. The lower the osmotic pressure, the higher the porosity in the dry state. When these were redispersed in water, the lower the osmotic pressure, the better the swelling.
[0081]
When the osmotic pressure is high, the chitosan concentration rate of the dispersed aqueous phase is high, and the solidification reaction (insolubilization reaction) has progressed in a state where the chitosan molecules are dense and highly viscous. On the other hand, when the osmotic pressure is low, the solidification reaction proceeds with the chitosan molecule in a loose high-viscosity state, and it is considered that the particles have a large porosity. When the particles shown in FIG. 6 are redispersed in water, the particles swell greatly by hydration, and the surface changes to smooth particles. From this, it is presumed that the particle surface in FIG. 6 was formed with significant irregularities because large voids were shrunk by drying.
[0082]
Example 3
The effect of the concentration of chitosan aqueous solution on particle size control was investigated in the following examples.
[0083]
Four types of aqueous solutions having concentrations of chitosan of 0.5 wt%, 1 wt%, 2 wt% and 3 wt% were prepared, respectively, and chitosan particles were produced according to the procedure of Example 1. However, kerosene was used as the oil agent, and sorbitan monooleate (product name “Span80” manufactured by Wako Pure Chemical Industries, Ltd.) was used as the oily surfactant.
[0084]
FIG. 8 shows the relationship between chitosan concentration and average particle size. The water phase average particle diameter of a W / O emulsion prepared using a porous glass membrane having an average pore diameter of 8.82 μm is shown in (21), and the average particle diameter of chitosan particles recovered after the solidification reaction is shown in (22). . When the concentration of chitosan was changed, the viscosity of the aqueous solution changed in the range of 5 to 100 mPa · s. Nevertheless, as in (21), the water phase average particle size is constant in the range of 22-23 μm. However, when this was subjected to a solidification reaction, the chitosan particles were low when the concentration was low, and the particle size increased as the concentration increased. When the average particle diameter of chitosan particles is Dp, the concentration of chitosan is Cm, and the average particle diameter of the water phase is DW, the following equation is calculated, assuming that the porosity of the particles is constant.
[0085]
Dp = A × Cm l / 3 × DW
(However, A represents a constant obtained by experiment.)
From this, it can be seen that if the production procedure and conditions are the same, the particle size of chitosan particles can be controlled from the concentration of chitosan and the water phase particle size of the W / O emulsion.
[0086]
Example 4
The effect of the pore size of the porous membrane used on the particle size control of naturally derived polysaccharides was clarified.
[0087]
A chitosan aqueous solution was press-dispersed into a continuous oil phase through four types of porous glass membranes having an average pore size of 2 μm, 5.5 μm, 8.82 μm, and 19.4 μm to prepare a monodispersed W / O emulsion. Except for the porous glass membrane, the same conditions as in Example 1 were used to generate and recover chitosan particles.
[0088]
FIG. 9 shows the relationship between the pore diameter of the porous glass film and the average particle diameter of the particles obtained thereby. The aqueous phase average particle diameter of the obtained W / O emulsion is shown in (23), and the average particle diameter of chitosan particles is shown in (24). Both particle sizes are expressed in a linear relationship, and it can be seen that if the water phase particle size is determined by a porous glass membrane, the particle size of chitosan particles can also be almost predicted.
[0089]
The porosity of chitosan particles determined using the formula of Example 3 was about 90 vol%. The laser diffraction / scattering particle size distribution analyzer used for particle size measurement is based on a wet method, and the particle size is measured by redispersing the particles in water. Therefore, the particles are hydrated and swollen, and it is considered that the porosity is 90 vol%. The porosity of the particles in a dry state was measured with a nitrogen gas adsorption measuring device (product name “Sorpted Matchock 1800”, manufactured by Faisons). Specifically, the vacuum degassed sample was held at a liquid nitrogen temperature, and nitrogen gas was physically adsorbed, whereby the porosity was determined from the nitrogen gas adsorption amount (volume of liquid nitrogen in which nitrogen gas was liquefied). As a result, it was found that the porosity is only about 5 vol% and the swelling is remarkable. Furthermore, these hydration swelling and drying shrinkage occurred repeatedly, and it became clear that it was a function peculiar to the particle | grains of a natural origin polysaccharide.
[0090]
It can be seen that by using these functions, a new type of carrier capable of releasing useful components encapsulated in the particles in advance by hydration can be prepared.
[0091]
Example 5
A microcapsule was prepared by using an O / W / O emulsion as a starting emulsion instead of the W / O emulsion.
[0092]
Chitosan as natural polysaccharide, n-hexane as oil agent, tetraglycerin condensed ricinoleate TGCR as emulsifier, hydrophobic porous glass membrane with an average pore diameter of 8.82 μm as porous membrane, NaCl as osmotic pressure regulator, insolubilized substance (NH 4 ) 2 CO 3 And caustic soda NaOH.
[0093]
First, an aqueous 10 wt% acetic acid solution containing 2 wt% chitosan and 0.5 wt% polyoxyethylene hydrogenated castor oil (product name “HCO-60” manufactured by Nikko Chemicals) as an aqueous surfactant was used as an aqueous phase. To this was added n-hexane in an amount equivalent to the aqueous phase, and an O / W emulsion was prepared with a homomixer. On the other hand, the oil phase was prepared by dissolving TGCR in n-hexane and adjusting the concentration to 5 wt%. Next, after the O / W emulsion is pressed and dispersed in the oil phase through a hydrophobic porous glass, an O / W / O emulsion having an average particle size of 23 μm and a volume ratio of 33 vol% of the O / W phase is prepared. Microcapsules were prepared by the same procedure as in Example 1.
[0094]
As a result, the average particle diameter of the chitosan particles is 9 μm, the porosity in the dry state is 45 vol%, and it can be seen that microcapsules having a much higher porosity than the particles of Examples 1 to 4 can be obtained. It has also been found that the porosity of the microcapsules can be controlled by changing the proportion of the dispersed oil phase. Even when the insolubilizing material was changed, there was no difference in particle size and porosity.
[Brief description of the drawings]
FIG. 1 is a production flow diagram of fine particles using a naturally occurring polysaccharide as a substrate.
FIG. 2 is a diagram showing an outline of a membrane emulsification apparatus.
FIG. 3 is a diagram (image diagram) showing the results of observation of particles of a W / O emulsion.
FIG. 4 is a diagram (image diagram) showing the result of observing chitosan particle particles.
FIG. 5 is a graph showing the cumulative particle size distribution of water phase particles and chitosan particles.
FIG. 6 is a diagram (image diagram) showing the result of observing chitosan particles synthesized using an NaCl concentration of 0.17 mol / L in an osmotic pressure adjusting agent aqueous solution.
FIG. 7 is a diagram (image diagram) showing the result of observing chitosan particles synthesized using an NaCl concentration 0.51 mol / L in an osmotic pressure adjusting agent aqueous solution.
FIG. 8 is a diagram comparing a water phase average particle diameter of a W / O emulsion and an average particle diameter of chitosan particles.
FIG. 9 is a diagram comparing a water phase average particle diameter of a W / O emulsion and an average particle diameter of chitosan particles.
[Explanation of symbols]
(1) Naturally derived polysaccharide-containing aqueous phase
(2) Continuous oil phase
(3) Emulsification
(4) W / O emulsion
(5) Osmotic pressure adjusting agent-containing aqueous phase
(6) Mixed emulsion
(7) Reaction solution (solution capable of insolubilizing natural polysaccharides)
(8) Mixed emulsion
(9) Solidification
(10) Collection
(11) Dispersed phase container (upper container)
(12) Pressure gauge
(13) Pump
(14) Porous glass membrane
(15) Continuous oil phase container (lower container)
(16) Magnetic stirrer
(17) Rotor
(18) Water phase particles
(19) Integrated particle size distribution of water phase particles
(20) Integrated particle size distribution of chitosan particles
(21) Water phase average particle diameter of W / O emulsion
(22) Average particle size of chitosan particles
(23) Water phase average particle diameter of W / O emulsion
(24) Average particle size of chitosan particles

Claims (13)

天然由来多糖類を含有し、その平均粒径が0.1〜50μmである微粒子。Fine particles containing a naturally-derived polysaccharide and having an average particle size of 0.1 to 50 μm. 積算体積分布の10%径が50%径の0.5倍以上、積算体積分布の90%径が50%径の1.5倍以下である請求項1記載の微粒子。The fine particles according to claim 1, wherein the 10% diameter of the integrated volume distribution is 0.5 times or more of the 50% diameter and the 90% diameter of the integrated volume distribution is 1.5 times or less of the 50% diameter. 乾燥時の空隙率が0〜50容積%である請求項1又は2に記載の微粒子。The fine particles according to claim 1 or 2, wherein the porosity during drying is 0 to 50% by volume. 天然由来多糖類がキトサンである請求項1〜3のいずれかに記載の微粒子。The microparticle according to any one of claims 1 to 3, wherein the naturally derived polysaccharide is chitosan. さらに有機酸を含有する請求項1〜4のいずれかに記載の微粒子。Furthermore, the fine particle in any one of Claims 1-4 containing an organic acid. 天然由来多糖類が溶解した第一水溶液を水相とするW/Oエマルション又はO/W/Oエマルションから、天然由来多糖類を含有する微粒子を製造する方法であって、
上記W/Oエマルション又はO/W/Oエマルションと、1)当該第一水溶液の浸透圧よりも高い浸透圧を有する第二水溶液及び/又は2)その第二水溶液を水相とするW/Oエマルションとを混合することにより、当該第一水溶液からなる水相中の天然由来多糖類の濃度を制御する濃度調整工程を有することを特徴とする天然由来多糖類を含有する微粒子の製造方法。
A method for producing fine particles containing a naturally occurring polysaccharide from a W / O emulsion or an O / W / O emulsion in which the first aqueous solution in which the naturally occurring polysaccharide is dissolved is an aqueous phase,
W / O emulsion or O / W / O emulsion, 1) a second aqueous solution having an osmotic pressure higher than that of the first aqueous solution, and / or 2) W / O having the second aqueous solution as an aqueous phase. The manufacturing method of the microparticles | fine-particles containing a natural origin polysaccharide characterized by having a density | concentration adjustment process which controls the density | concentration of the natural origin polysaccharide in the water phase which consists of the said 1st aqueous solution by mixing with an emulsion.
W/Oエマルションが、多孔質ガラス膜を用いた膜乳化法により得られるエマルションであって、
1)当該多孔質ガラス膜を介して、天然由来多糖類が溶解した第一水溶液を油相中に分散して得られたエマルション、又は
2)天然由来多糖類が溶解した第一水溶液を水相とするW/Oエマルションを多孔質ガラス膜に通過させて得られたエマルション
である請求項6記載の製造方法。
The W / O emulsion is an emulsion obtained by a membrane emulsification method using a porous glass membrane,
1) An emulsion obtained by dispersing a first aqueous solution in which a natural-derived polysaccharide is dissolved in the oil phase through the porous glass membrane, or 2) an aqueous phase in which the first aqueous solution in which the natural-derived polysaccharide is dissolved. The production method according to claim 6, wherein the W / O emulsion is an emulsion obtained by passing the W / O emulsion through a porous glass membrane.
O/W/Oエマルションが、多孔質ガラス膜を用いた膜乳化法により得られたエマルションであって、
当該多孔質ガラス膜を介して、天然由来多糖類が溶解した第一水溶液を水相とするO/Wエマルションを油相中に分散して得られたエマルション
である請求項6記載の製造方法。
The O / W / O emulsion is an emulsion obtained by a membrane emulsification method using a porous glass membrane,
The production method according to claim 6, which is an emulsion obtained by dispersing, in the oil phase, an O / W emulsion in which the first aqueous solution in which the naturally derived polysaccharide is dissolved is an aqueous phase through the porous glass membrane.
第一水溶液が、キトサンが有機酸水溶液に溶解した溶液である請求項6〜8のいずれかに記載の製造方法。The production method according to claim 6, wherein the first aqueous solution is a solution in which chitosan is dissolved in an organic acid aqueous solution. 請求項6〜9のいずれかに記載の濃度調整工程で得られた混合物に、さらに天然由来多糖類を不溶化し得る物質を添加することを特徴とする天然由来多糖類を含有する微粒子の製造方法。A method for producing microparticles containing naturally occurring polysaccharides, wherein a substance capable of insolubilizing naturally occurring polysaccharides is further added to the mixture obtained in the concentration adjusting step according to any one of claims 6 to 9. . 天然由来多糖類を不溶化し得る物質を、当該物質の水溶液又はその水溶液を水相とするW/Oエマルションとして添加する請求項10記載の製造方法。The manufacturing method of Claim 10 which adds the substance which can insolubilize naturally derived polysaccharide as a W / O emulsion which uses the aqueous solution of the said substance, or its aqueous solution as a water phase. 天然由来多糖類を不溶化し得る物質の水溶液の浸透圧及び/又は添加量を変化させることにより、得られる微粒子の空隙率を制御する請求項11記載の製造方法。The manufacturing method of Claim 11 which controls the porosity of the microparticles | fine-particles obtained by changing the osmotic pressure and / or addition amount of the aqueous solution of the substance which can insolubilize naturally-derived polysaccharide. 請求項6〜12のいずれかに記載の製造方法により得られる天然由来多糖類を含有する微粒子。The microparticles | fine-particles containing the natural origin polysaccharide obtained by the manufacturing method in any one of Claims 6-12.
JP2002161181A 2002-06-03 2002-06-03 Fine particles containing naturally-derived polysaccharide and method for producing the same Expired - Fee Related JP4250740B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002161181A JP4250740B2 (en) 2002-06-03 2002-06-03 Fine particles containing naturally-derived polysaccharide and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002161181A JP4250740B2 (en) 2002-06-03 2002-06-03 Fine particles containing naturally-derived polysaccharide and method for producing the same

Publications (2)

Publication Number Publication Date
JP2004002582A true JP2004002582A (en) 2004-01-08
JP4250740B2 JP4250740B2 (en) 2009-04-08

Family

ID=30430316

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002161181A Expired - Fee Related JP4250740B2 (en) 2002-06-03 2002-06-03 Fine particles containing naturally-derived polysaccharide and method for producing the same

Country Status (1)

Country Link
JP (1) JP4250740B2 (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006160672A (en) * 2004-12-08 2006-06-22 Nishikawa Rubber Co Ltd Allergy inhibitor, food, allergy-inhibiting method using the same, immunosuppressed animal and method for making the same
JP2006191869A (en) * 2005-01-14 2006-07-27 Miyazaki Prefecture Method and device for producing whipped cream
JP2008095072A (en) * 2006-09-15 2008-04-24 Miyazaki Tlo:Kk Polymer useful as scavenger for noble metal ion
JP2009537652A (en) * 2006-05-18 2009-10-29 マリリン,レイナー Membrane manufacturing method and membrane for emulsification
JP2010525138A (en) * 2007-04-25 2010-07-22 ジーイー・ヘルスケア・バイオ−サイエンシズ・アーベー Manufacture of polysaccharide beads
WO2014030204A1 (en) * 2012-08-20 2014-02-27 大日本住友製薬株式会社 Medicament-containing hollow particle
JP2014076971A (en) * 2012-10-11 2014-05-01 Pola Chem Ind Inc Method of producing nano particles including chitosan and hyaluronan
US20150150776A1 (en) * 2008-10-14 2015-06-04 Solazyme, Inc. Microalgal Polysaccharide Compositions
JP5841257B2 (en) * 2012-08-20 2016-01-13 大日本住友製薬株式会社 Drug-containing hollow particles
JP2016029097A (en) * 2012-08-20 2016-03-03 大日本住友製薬株式会社 Drug-containing hollow particles
CN113637188A (en) * 2021-08-27 2021-11-12 中国科学院长春应用化学研究所 Chitosan microsphere and preparation method thereof
CN113980154A (en) * 2021-11-19 2022-01-28 南开大学 High-strength chitosan ligand exchange resin and preparation method thereof

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006160672A (en) * 2004-12-08 2006-06-22 Nishikawa Rubber Co Ltd Allergy inhibitor, food, allergy-inhibiting method using the same, immunosuppressed animal and method for making the same
JP4586131B2 (en) * 2005-01-14 2010-11-24 宮崎県 Whipping cream manufacturing method and manufacturing apparatus
JP2006191869A (en) * 2005-01-14 2006-07-27 Miyazaki Prefecture Method and device for producing whipped cream
JP2009537652A (en) * 2006-05-18 2009-10-29 マリリン,レイナー Membrane manufacturing method and membrane for emulsification
JP2008095072A (en) * 2006-09-15 2008-04-24 Miyazaki Tlo:Kk Polymer useful as scavenger for noble metal ion
EP2139596A4 (en) * 2007-04-25 2014-03-05 Ge Healthcare Bio Sciences Ab Preparation of polysaccharide beads
JP2010525138A (en) * 2007-04-25 2010-07-22 ジーイー・ヘルスケア・バイオ−サイエンシズ・アーベー Manufacture of polysaccharide beads
US20150150776A1 (en) * 2008-10-14 2015-06-04 Solazyme, Inc. Microalgal Polysaccharide Compositions
US10278912B2 (en) * 2008-10-14 2019-05-07 Algenist Holdings, Inc. Microalgal polysaccharide compositions
WO2014030204A1 (en) * 2012-08-20 2014-02-27 大日本住友製薬株式会社 Medicament-containing hollow particle
WO2014030656A1 (en) * 2012-08-20 2014-02-27 大日本住友製薬株式会社 Medicament-containing hollow particle
JP5841257B2 (en) * 2012-08-20 2016-01-13 大日本住友製薬株式会社 Drug-containing hollow particles
JP2016029097A (en) * 2012-08-20 2016-03-03 大日本住友製薬株式会社 Drug-containing hollow particles
JP2014076971A (en) * 2012-10-11 2014-05-01 Pola Chem Ind Inc Method of producing nano particles including chitosan and hyaluronan
CN113637188A (en) * 2021-08-27 2021-11-12 中国科学院长春应用化学研究所 Chitosan microsphere and preparation method thereof
CN113980154A (en) * 2021-11-19 2022-01-28 南开大学 High-strength chitosan ligand exchange resin and preparation method thereof
CN113980154B (en) * 2021-11-19 2022-12-02 南开大学 High-strength chitosan ligand exchange resin and preparation method thereof

Also Published As

Publication number Publication date
JP4250740B2 (en) 2009-04-08

Similar Documents

Publication Publication Date Title
JP4250740B2 (en) Fine particles containing naturally-derived polysaccharide and method for producing the same
CA2483563C (en) Particles from supercritical fluid extraction of emulsion
CN107868161B (en) Preparation method and application of polymer hollow microcapsule
JP4704039B2 (en) Porous beads and method for producing the same
Li et al. Microgel particles at the fluid–fluid interfaces
Moner-Girona et al. Sol-gel route to direct formation of silica aerogel microparticles using supercritical solvents
Jativa et al. Confined self-assembly of cellulose nanocrystals in a shrinking droplet
WO2017015120A1 (en) Surfactant for enhanced oil recovery
CN104001437A (en) Pickering emulsion with uniform particle size, and preparation method and application thereof
Pan et al. Size and strength distributions of melamine-formaldehyde microcapsules prepared by membrane emulsification
US20110217553A1 (en) Frozen Ionic Liquid Microparticles and Nanoparticles, and Methods for their Synthesis and Use
Singh et al. Preparation of Eudragit E100 microspheres by modified solvent evaporation method
Baudron et al. A continuous approach to the emulsion gelation method for the production of aerogel micro-particle
JP2012520173A (en) Templating systems and methods using particles such as colloidal particles
Skale et al. Feasibility of w/o Pickering emulsion ultrafiltration
WO2018187595A1 (en) Additive manufacturing support material
Fang et al. Fabrication and characterization of microcapsule encapsulating EOR surfactants by microfluidic technique
Giorno et al. Preparation of oil-in-water emulsions using polyamide 10 kDa hollow fiber membrane
JPH0522646B2 (en)
Wan et al. Influence of hydrophile-lipophile balance on alginate microspheres
JP7199871B2 (en) POROUS CELLULOSE PARTICLES, MANUFACTURING METHOD THEREOF, AND CLEANING COSMETIC
US8551916B2 (en) Method for preparation of aqueous emulsion using interfacially active organic compound as emulsifying agent
Jia et al. Synergistic effects of AlOOH and sodium benzenesulfonate on the generation of Pickering emulsions and their application for enhanced oil recovery
WO2020072735A1 (en) Lignin composition, methods of making and using the composition for adsorption onto petrochemical oil and oil removal
JP5256404B2 (en) Method for producing fine silica gel spherical particles

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050509

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20060307

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20060307

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060323

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20060307

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060425

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071116

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071121

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080121

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080619

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20081126

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081219

R150 Certificate of patent or registration of utility model

Ref document number: 4250740

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120130

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120130

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130130

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130130

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130130

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140130

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees