JP2004002141A - Lithium nickel manganese oxide, its manufacturing method and lithium-ion secondary cell using the same - Google Patents

Lithium nickel manganese oxide, its manufacturing method and lithium-ion secondary cell using the same Download PDF

Info

Publication number
JP2004002141A
JP2004002141A JP2002344480A JP2002344480A JP2004002141A JP 2004002141 A JP2004002141 A JP 2004002141A JP 2002344480 A JP2002344480 A JP 2002344480A JP 2002344480 A JP2002344480 A JP 2002344480A JP 2004002141 A JP2004002141 A JP 2004002141A
Authority
JP
Japan
Prior art keywords
nickel
lithium
manganese
composite oxide
oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2002344480A
Other languages
Japanese (ja)
Inventor
Yasuhiro Fujii
藤井 康浩
Hiroshi Miura
三浦 比呂志
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tosoh Corp
Original Assignee
Tosoh Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tosoh Corp filed Critical Tosoh Corp
Priority to JP2002344480A priority Critical patent/JP2004002141A/en
Publication of JP2004002141A publication Critical patent/JP2004002141A/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Inorganic Compounds Of Heavy Metals (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide LiNi<SB>1/2+α</SB>Mn<SB>1/2-α</SB>O<SB>2</SB>which suppresses cation mixing between the 3a-3b sites significant in Li Ni Mn O and has excellent output under high load and to provide a method for manufacturing the same. <P>SOLUTION: The compound is a positive electrode active substance expressed by the general formula of Li<SB>1+x</SB>Ni<SB>1/2+α</SB>Mn<SB>1/2-α</SB>O<SB>2</SB>with x and α satisfying x≥0 and -0.05≤α≤0.05 and shows ≥1.15 ratio of diffraction peak intensities (003)/(104) on the (003) face and the (104) face in terms of the Miller indices hkl in the powder X-ray diffraction using Cu-Kα ray. The method for manufacturing the compound includes a process of mixing nickel manganese oxide having an illmenite structure with a lithium compound and a process of calcining the mixture at ≥750°C in an oxygen-containing atmosphere. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は二次電池用正極活物質等に使用されるリチウム−ニッケル−マンガン複合酸化物とその製造方法及びそれを用いるリチウムイオン二次電池に関するものである。
【0002】
【従来の技術】
近年、AV機器、携帯電話、パソコンなどの小型化、コードレス化が急速に進んでおり、これらの駆動用電源としてLiCoO, LiNiO,LiMnなどが研究されてきた。しかしながら、いずれも容量、安全性、コスト全てを満足する材料とは言い難いものがあり、最近ではLiNi0.5Mn0.5のようなLi−Ni−Mn複合酸化物が高エネルギー密度、安全性、コストを満足する材料として期待されている。(例えば、非特許文献1参照)
従来、このようなLi−Ni−Mn複合酸化物の合成には、NiO,MnO,LiOH・HOなどの粉末を混合して得られる乾式混合法(例えば非特許文献2参照)が多く用いられてきた。しかしながらMn含有量が高い場合、原子の均一性が不十分なため不純物相を含有し結晶性が低く十分な電気化学特性を得るに至らなかった。
【0003】
また、Mn酸化物などの粉末とNi溶液、Li溶液などをスラリー状にして混合、焼成する湿式スラリーを用いる方法においては、乾式法に比し結晶性、電気化学特性等の面で改善はみられるものの、窒素酸化物などの腐食性ガスの発生などの課題を有している。
【0004】
一方、共沈法においては、水酸化物、炭酸塩、シュウ酸塩などの形態で共沈させることにより構成原子の均一分散性の向上が可能である。共沈物においては、前駆体の結晶構造がリチウム化合物との反応性、ひいてはLi−Ni−Mn複合酸化物の結晶構造、電池性能にも大きく影響するため、前駆体の選択が重要になる。例えばLi−Ni−Mn複合酸化物を得る方法として、ニッケル−マンガン複合水酸化物およびリチウム化合物から、直接Li−Ni−Mn複合酸化物を得る方法が開示されているが、開示の方法ではマンガン2価の水酸化物が不安定なため、大気中での操作で前駆体の均一性に問題が生じる可能性がある。(例えば、特許文献1参照)したがって、構成原子の均一分散性が高く、リチウム化合物との反応性に富み、かつ大気中で安定な結晶構造を有するNi−Mn化合物の選択、およびそのNi−Mn化合物を用いたLi−Ni−Mn化合物の製造方法の確立が急務であった。
【0005】
また従来、Ni−Mn複合水酸化物を原料に用いたLiNi0.5Mn0.5の合成には、1000℃以上という高温での焼成が望ましいとされ、850℃以下ではサイクル寿命に問題があるとの報告もある。(例えば、特許文献1および非特許文献1参照)一方、LiNiOをMnで置換したLiNi1−XMnの焼成温度には600〜800℃と比較的低温が必要である報告も見受けられるが、あくまでもMn置換率が低い場合であり、LiNiOを基本とするリチウム含有複合酸化物を800℃以上の高温で合成することはあまり好ましくないとの見解がある。(例えば特許文献2参照)
【特許文献1】
特開2002−42813公報(第4−5頁、第10図)
【特許文献2】
特開平8−171910公報(第2頁
【0006】欄)
【非特許文献1】
小槻ら第41回電池討論会予稿集(2000)460−461
【非特許文献2】
E.RossenらSolid State Ionics 57(1992)311−318
【0007】
【発明が解決しようとする課題】
本発明は、殊に十分な結晶性と優れた電気化学特性を有するリチウムイオン二次電池用正極活物質を得ることを目的として、結晶完成度が高く出力特性に優れたLiNi0.5Mn0.5と、前記LiNi0.5Mn0.5を得るための、イルメナイト構造ニッケル−マンガン酸化物とリチウム化合物とを反応させることによるリチウム−ニッケル−マンガン化合物の製造方法を提供するものである。
【0008】
本発明者らがNi−Mn複合水酸化物を原料にして合成したLiNi0.5Mn .5の焼成温度と前記材料の物性、電気化学特性との相関を検討した結果、950℃以上という温度域ではLi層へのNi2+の移動、すなわち3a−3bサイト間のCation mixingが顕在化し、高負荷条件での出力特性が著しく低下することが明らかになった。したがって、Ni−Mn複合水酸化物を原料にしたLiNi0.5Mn0.5において前記Cation mixingを抑制し高負荷での出力特性を向上させたLiNi0.5Mn0.5とその製造方法の確立が急務であった。
【0009】
また、1000℃といった高温では炉材の消耗が著しく、リチウムの蒸散も顕著になり組成バラツキを生じ易いものとなる。反面、従来のLiCoOやLiMnなどの合成にみられるような800〜900℃といった比較的低温で焼成することには高温焼成に比し製造上メリットが大きい。したがって、前記結晶完成度を保ち、かつ高負荷の出力特性を有するLiNi0.5Mn0.5を低温で合成可能な製造方法が望まれていた。
【0010】
【課題を解決するための手段】
上記課題を解決するために本発明のリチウム−ニッケル−マンガン複合酸化物は、一般式Li1+XNi1/2+ αMn1/2− αで表される式中のX値をX≧0、α値を−0.05≦α≦0.05として、前記複合酸化物の粒子が六方晶で帰属されるミラー指数hklにおける(104)面を双晶面とする双晶粒子もしくは多重双晶粒子を含有し、Cu−Kα線を用いた粉末X線回折のミラー指数hklにおける(003)面及び(104)面での回折ピーク強度比(003)/(104)が1.15以上である。また、ヨード滴定法により測定された前記リチウム−ニッケル−マンガン複合酸化物のニッケルおよびマンガンの平均価数が3.0以上3.1以下であることを特徴とするものである。
【0011】
また、その製造方法はイルメナイト型ニッケル−マンガン酸化物とリチウム化合物とを混合する工程と前記混合物を有酸素雰囲気下750℃以上で焼成する工程からなることを特徴とするものである。
【0012】
【作用】
以下、本発明を詳細に説明する。
【0013】
本発明のリチウム−ニッケル−マンガン複合酸化物は、一般式Li1+XNi1/2 +αMn1/2− αで表されるものである。ここでX<0である場合、副生相が生成する傾向がありCation mixingが顕著になることからX≧0が必須であり、好ましくは0.01≦X≦0.10である。過度にX値の増加させるとNi2+に対するNi3+の割合が高くなり電気化学容量の低下につながり不都合である。また、α値は−0.05≦α≦0.05、好ましくはα=0である。α値が0.05を超えるとNi2+に対するNi3+の割合が高くなり充放電サイクル特性などに影響を及ぼす。また、αが−0.05未満であると層状岩塩構造の単相は得られない。
【0014】
また、本発明のリチウム−ニッケル−マンガン複合酸化物は、Cu−Kα線を用いた粉末X線回折のミラー指数hklにおける(003)面及び(104)面での回折ピーク強度比(003)/(104)が1.15以上である。ここで前記回折ピーク強度比はCation mixingの指標であり、前記強度比が高い場合は層構造が発達した結晶完成度の高いものであり、前記強度比が低い場合はCation mixingによる層構造の乱れが存在するものと考えられている(例えば、Ohzukuら、J.Elecrochem. Soc., 140, No.7,(1993)1862−1870)。本化合物においてcation mixingが顕在化せず、高負荷での出力が保たれる前記回折ピーク強度比は1.15以上である。
【0015】
また、本発明のリチウム−ニッケル−マンガン複合酸化物は、ヨード滴定法により測定されたニッケルおよびマンガンの平均価数が3.0以上3.1以下である。前記平均価数がこの範囲外であると、副生相の生成が顕在化し電池容量の低下を引き起こし好ましくない。
【0016】
さらに、本発明のリチウム−ニッケル−マンガン複合酸化物は、六方晶で帰属されるミラー指数hklにおける(104)面を双晶面とする双晶粒子もしくは多重双晶粒子であることがFE−TEMおよび電子線回折により明らかになった。このような構造は層状岩塩化合物全般に特有のものでなく、本発明に特徴的なものである。
【0017】
本発明のリチウムイオン二次電池用正極活物質の製造方法は、イルメナイト構造型ニッケルマンガン酸化物とリチウム化合物とを混合する工程と前記混合物を有酸素雰囲気下750℃以上で焼成する工程からなることを特徴とする。これらの操作により、前記回折ピーク強度比(003)/(104)が1.15以上である前記正極活物質Li1+XNi1/2+ αMn1/2ー αが得られる。共沈法により原子レベルでの均一性が保たれることが不可欠であり、粉末混合法などの操作では結晶完成度が高く電気化学特性の良好なものは得られない。また、Ni−Mn複合水酸化物を原料である場合、有酸素雰囲気下750℃以上950℃以下で焼成することが、Cation mixingを抑制する最も重要な条件である。この際、リチウム化合物は水酸化物、酢酸塩、炭酸塩、シュウ酸塩、硝酸塩、塩化物、硫酸塩などを用いることができる。この場合、分解温度が低く腐食性ガスを発生しない水酸化物を用いることが望ましい。
【0018】
本発明で使用するニッケルマンガン酸化物は、イルメナイト構造のものがリチウム化合物との反応性が高いので好ましい。イルメナイト構造ニッケル−マンガン酸化物は化学式NiMnOで表されるものである。イルメナイト構造とはFeTiOに特徴的なコランダムの規則構造であり、層状構造を有する。Ni/Mn原子比は1に近いものが好ましく、酸素欠損型になるのが通常である。イルメナイト構造を有するニッケル−マンガン酸化物の製造方法としては、高圧下での合成が多く見受けられるが、例えば、Journal of Alloys and Compounds, 196 (1993)75−79に示されているように、酢酸塩とシュウ酸を用いた共沈法を用いた常圧での合成も可能である。
【0019】
又、一般式Ni1/2+ αMn1/2− α(OH)(COO)・nHO(y+z=2、0.5≦z≦1.5、αは前記に同じ、n≧0)で表されるニッケル−マンガン化合物を有酸素雰囲気下550℃以上800℃未満で焼成しても得られる。
【0020】
Ni1/2+ αMn1/2− α(OH)(COO)・nHOを空気流中で焼成した場合、550℃以上800℃未満でイルメナイト構造が得ることができる。
【0021】
また、イルメナイト構造型ニッケル−マンガン酸化物は、ニッケル−マンガン複合水酸化物を焼成することによっても得ることが可能である。その際、ニッケル−マンガン複合水酸化物は水酸化ニッケルと水酸化マンガンが固溶した均一な結晶相であることが好ましい。通常、ニッケル−マンガン複合水酸化物を調製するにはNiSO、Ni(NO、Ni(CHCOO)等のニッケル塩およびMnSO、Mn(NO、Mn(CHCOO)等のマンガン塩を原料とした水酸化物共沈法により調製することが可能である。しかしながら、得られた複合水酸化物は2価のマンガン水酸化物が不安定なため、操作中に空気中の酸素により酸化されMn等の酸化物を副生し、均一な結晶相のニッケル−マンガン複合水酸化物を得るのは困難である。そこで、空気中で安定で均一な結晶相のニッケル−マンガン複合水酸化物を調製するためには、水酸化ニッケルと水酸化マンガンが固溶した均一な状態のまま、ニッケル−マンガン複合水酸化物中のマンガンを過酸化水素などの酸化剤により安定な3価以上の状態に酸化することが必須である。この場合、ニッケル2価以上およびマンガン3価以上でニッケルとマンガンの平均酸化数は2.5価以上となる。
【0022】
過酸化水素などの酸化剤による酸化は通常の空気などによる酸化とは異なり、水酸化マンガンをトポタティック(構造を変化させず)にβ−オキシ水酸化マンガン(β−MnOOH)のような安定な3価以上の状態に酸化させる効果があると考えられる。またβ−オキシ水酸化マンガンは水酸化ニッケルに極めて近い結晶構造を有するため、均一な固溶状態を維持しやすく複合水酸化物が安定化されると考えられる。
【0023】
酸化剤による酸化方法は特に限定されないが、例えば、共沈により得られたニッケル−マンガン複合水酸化物をそのまま過酸化水素等の酸化剤を含んだアルカリ性水溶液に投入することで酸化することができる。また、ニッケル−マンガン複合水酸化物を共沈させる際には、ニッケル水酸化物の結晶性を向上させるために添加されるようなアンモニア等の錯化剤を添加しても良い。このようにして得られたニッケル−マンガン化合物を有酸素雰囲気下で焼成することによりイルメナイト構造を有するニッケル−マンガン酸化物を得ることができる。この際、イルメナイト構造は約300℃以上800℃未満の範囲で得られるが、300〜500℃といった低温で焼成した低結晶性のものがリチウム化合物との反応性が高く望ましい。
【0024】
イルメナイト構造型ニッケルマンガン酸化物とリチウム化合物との混合方法としては乾式混合法の他、リチウム塩を水もしくはアルコール等に溶解させてニッケル−マンガン化合物に含浸させた後、乾燥、焼成する湿式スラリーを用いる方法も有効である。なお、前記スラリーはスプレーにて噴霧、乾燥してもよい。また、焼成雰囲気は有酸素雰囲気が不可欠である。窒素やアルゴンなど無酸素雰囲気下で焼成すると還元が生じる為、目的とする生成物は得られない。ここで有酸素雰囲気とは、空気もしくは純酸素など空気より酸素分圧の高い雰囲気を表す。
【0025】
【実施例】
以下、本発明を具体的な実施例に沿って説明する。
【0026】
実施例1
0.20molの硫酸ニッケルと0.20molの硫酸マンガンを溶解した水溶液450mlと0.80molの水酸化ナトリウムを溶解した水溶液450mlを、1.6mol/Lのアンモニウム水溶液800mlに攪拌および窒素バブリングを行いながら同時に滴下した後、25℃にて一夜間攪拌混合した。その後、純水1.5Lを攪拌しながら、1.6mol/Lのアンモニウム水溶液50mlと35%の過酸化水素水100mlと得られたニッケル−マンガンの共沈スラリーを上記順序で投入し、更に3時間攪拌を行った。その後、沈殿物をろ過分離して80℃にて一夜間乾燥した。
【0027】
このようにして得られたニッケル−マンガン複合水酸化物のニッケル−マンガン平均酸化数をヨード滴定法により求めた結果、平均酸化数は2.71であった。またX線回折パターンを図1に示した。図1の通り、Ni(OH)、β−MnOOHに近い単相のピークを示した。その後前記ニッケル−マンガン複合水酸化物を400℃で空気流中、2時間焼成した。得られた酸化物をICPにて化学分析した結果、組成はNiMnOで表された。また、前記酸化物のX線回折パターンは図2に示すようなイルメナイト構造を示した。
【0028】
また、前記イルメナイト構造ニッケル−マンガン酸化物と水酸化リチウム一水和物とをリチウム原子/(ニッケル原子+マンガン原子)(モル比)が1.01となるように自動乳鉢にて1時間混合した。得られた混合物を空気流中750℃にて12時間焼成しLi−Ni−Mn複合酸化物を得た。ICP組成分析の結果、Li1.01Ni0.50Mn0.50であった。X線回折パターンは図3に示す通りで、副生相を含有しないR3mまたはその類縁構造を示した。ここでミラー指数hklにおける(003)面及び(104)面での回折ピーク強度比(003)/(104)は1.20であった。
【0029】
前記Li1.01Ni0.50Mn0.50につきヨード滴定法による(Ni+Mn)平均価数測定を行った。ヨード滴定法はDyerらJ.American Chem Soc.,76(1954)1499−1503を参考に行った。
【0030】
ヨード滴定法は、強い酸化剤に過剰のヨウ化物イオンを添加するとヨウ素が定量的に遊離する性質を利用したものであり、この遊離ヨウ素をチオ硫酸塩で滴定し定量する方法である。試料0.3gとヨウ化カリウム3.0gとを6N−HCl50ccに遮光した状態で溶解させた後、1N−NaOH200ccを添加した。これにデンプン溶液を1cc添加した後、0.1N−Naで滴定を行った。なお、試料を含まない系でのブランク測定も行い適定量を補正した。その結果、(Ni+Mn)平均価数は3.054であった。
【0031】
次に前記Li1.01Ni0.50Mn0.50につきTEM観察を行った。試料は粉砕せずにエタノール中で超音波分散させた懸濁液を、マイクログリッドに滴下し補集したものを顕微試料とした。JEOL JEM−2010F電界放射型200kV−TEMを用いた。図4にドメイン境界の格子像を示した。(003)面間隔に対応する格子縞が約110°の角度をなしており、2つのドメインのc軸が互いに約70°の角度をなしている。ドメイン境界は明確でなく2つのドメインが互いに入り組んでおり、電子線の入射方向に重なった部分がモアレ状の交差格子縞として現れている。ただし、ドメイン境界は(104)面とほぼ平行である。図4中(104)面を双晶面とする理想的なドメイン境界モデルを示した。このように、六方晶で帰属されるミラー指数hklにおける(104)面を双晶面とする双晶粒子もしくは多重双晶粒子構造は層状岩塩化合物全般に特有のものでなく、本発明に特徴的なものである。
【0032】
さらに、これを電池の正極材料として、導電剤のポリテトラフルオロエチレンとアセチレンブラックとの混合物(商品名:TAB−2)重量比で2:1の割合で混合し、1ton/cmの圧力でメッシュ(SUS316製)上にペレット状に成型した後、150℃で減圧乾燥し電池用正極を作製した。得られた電池用正極と、金属リチウム箔(厚さ0.2mm)からなる負極、およびプロピレンカーボネートとジエチルカーボネートとの混合溶媒に六フッ化リン酸リチウムを1mol/dmの濃度で溶解した電解液を用いて電池を構成した。このようにして作製した電池を用いて定電流で電池電圧が4.3Vから2.5Vの間23℃で充放電させた。充電は0.4mA・cm−2にて行い、放電は0.4mA・cm−2および2.5mA・cm−2の定電流で2通り行った。ハイレート放電比率を放電容量比(2.5mA・cm−2/0.4mA・cm−2)で表した。その結果、初期放電容量(0.4mA・cm−2)147mAh/g、ハイレート放電比率91.9%であった。
【0033】
実施例2
また、実施例1記載の750℃で合成したLi1.01Ni0.50Mn0.50につき、充放電サイクル試験を実施例1と同様に0.4mA・cm−2にて30サイクルまで行った。充放電サイクル特性を図5に示した。本発明の正極物質ならびに製造方法で得られたLiNi0.5Mn0.5では、750℃という低温焼成でも劣化はほとんどみられなかった。
【0034】
実施例3
次に実施例1と同様にニッケル−マンガン複合水酸化物を調製し650℃で空気流中、2時間焼成した。得られた酸化物をICPにて化学分析した結果、組成はNiMnOで表された。また、前記酸化物のX線回折パターンは図6に示す通り実施例1に比し結晶性の高いイルメナイト構造を示した。また、前記イルメナイト構造ニッケル−マンガン酸化物と水酸化リチウム一水和物とをリチウム原子/(ニッケル原子+マンガン原子)(モル比)が1.01となるように自動乳鉢にて1時間混合した。得られた混合物を空気流中750℃にて12時間焼成しLi−Ni−Mn複合酸化物を得た。ICP組成分析の結果、Li1.01Ni0.50Mn0.50であった。前記Li1.01Ni0.50Mn0.50につき実施例1と同様な電池評価試験を行った結果、初期放電容量(0.4mA・cm−2)は140.0mAh/gであり、実施例1に比し低い値を示した。従って、電池性能の高いLiNi0.5Mn0.5を得るには、イルメナイト構造の結晶性が低いことが必要であり、ニッケル−マンガン複合水酸化物の焼成温度は300〜500℃であることが望ましい。
【0035】
実施例4
リチウム化における焼成温度を900℃とした以外は、実施例1と同様に調製した。ICP組成分析の結果、Li1.01Ni0.50Mn0.50であった。X線回折パターンは図7に示す通りで、R3mまたはその類縁構造を示した。ミラー指数hklにおける(003)面及び(104)面での回折ピーク強度比(003)/(104)は1.19、ヨード滴定法による(Ni+Mn)平均価数測定を行ったところ、3.072であった。
【0036】
また、実施例1と同様な電池評価試験を行った結果、初期放電容量(0.4mA・cm−2)150.4mAh/g、ハイレート放電比率89.9%であった。
【0037】
実施例5
リチウム化における焼成温度を925℃とした以外は、実施例1と同様に調製した。ICP組成分析の結果、Li1.01Ni0.50Mn0.50であった。X線回折パターンは図8に示す通りで、R3mまたはその類縁構造を示した。ミラー指数hklにおける(003)面及び(104)面での回折ピーク強度比(003)/(104)は1.21、ヨード滴定法による(Ni+Mn)平均価数測定を行ったところ、3.097であった。
【0038】
また、実施例1と同様な電池評価試験を行った結果、初期放電容量(0.4mA・cm−2)147.0mAh/g、ハイレート放電比率89.0%であった。
【0039】
実施例6
リチウム化における焼成温度を950℃とした以外は、実施例1と同様に調製した。ICP組成分析の結果、Li1.00Ni0.50Mn0.50であった。X線回折パターンは図9に示す通りで、R3mまたはその類縁構造を示した。ミラー指数hklにおける(003)面及び(104)面での回折ピーク強度比(003)/(104)は1.16、ヨード滴定法による(Ni+Mn)平均価数測定を行ったところ、3.087であった。
【0040】
また、実施例1と同様な電池評価試験を行った結果、初期放電容量(0.4mA・cm−2)147.4mAh/g、ハイレート放電比率87.5%であった。
【0041】
実施例7
ニッケル−マンガン酸化物と水酸化リチウム一水和物とをリチウム原子/(ニッケル原子+マンガン原子)(モル比)が1.05となるように混合し、Li化における焼成温度を900℃とした以外は実施例1と同様に調製した。ICP組成分析の結果、Li1.04Ni0.50Mn0.50であった。X線回折パターンは図10に示す通りで、R3mまたはその類縁構造を示した。ミラー指数hklにおける(003)面及び(104)面での回折ピーク強度比(003)/(104)は1.24、ヨード滴定法による(Ni+Mn)平均価数測定を行ったところ、3.080であった。
【0042】
また、実施例1と同様な電池評価試験を行った結果、初期放電容量(0.4mA・cm−2)150.1mAh/g、ハイレート放電比率89.2%であった。
【0043】
実施例8
ニッケル−マンガン酸化物と水酸化リチウム一水和物とをリチウム原子/(ニッケル原子+マンガン原子)(モル比)が1.11となるように混合し、Li化における焼成温度を900℃とした以外は実施例1と同様に調製した。ICP組成分析の結果、Li1.10Ni0.50Mn0.50であった。X線回折パターンは図11に示す通りで、R3mまたはその類縁構造を示した。ここでミラー指数hklにおける(003)面及び(104)面での回折ピーク強度比(003)/(104)は1.33、ヨード滴定法による(Ni+Mn)平均価数測定を行ったところ、3.091であった。
【0044】
また、実施例1と同様な電池評価試験を行った結果、初期放電容量(0.4mA・cm−2)139.5mAh/g、ハイレート放電比率94.8%であった。
【0045】
実施例9
0.50molの硝酸ニッケルと0.50molの硝酸マンガンとを溶解した水溶液1.0Lに0.50mol/Lのシュウ酸アンモニウム水溶液1.0Lを添加、25℃にて1日間攪拌混合した。その後、沈殿物をろ過分離して60℃にて1日間乾燥した。このようにして得られた沈殿物の組成はNi0.49Mn0.51(OH)1.0(COO)1.0・0.05HOで表された。その後前記沈殿物を650℃で空気流中、12時間焼成した。得られた酸化物をICPにて化学分析した結果、組成はNi0.49Mn0.511.5で表された。また、前記酸化物のX線回折パターンはイルメナイト構造を示した。
【0046】
また前記Ni0.49Mn0.511.5に水酸化リチウム水溶液を含浸した後、空気流中1000℃にて10時間焼成しLi−Ni−Mn複合酸化物を得た。ICP分析の結果、Li1.01Ni0.49Mn0.51となった。前記Li1.01Ni0.49Mn0.51のX線回折パターンを図12に示す通りである。図12の通り、不純物相を含有しないR3mまたはその類縁構造を示した。ミラー指数hklにおける(003)面及び(104)面での回折ピーク強度比(003)/(104)は1.18、ヨード滴定法による(Ni+Mn)平均価数測定を行ったところ、3.020であった。
【0047】
また、実施例1と同様な電池評価試験を行った結果、初期放電容量(0.4mA・cm−2)140.4mAh/g、ハイレート放電比率90.9%であった。
【0048】
実施例10
0.5mol/Lの硝酸マンガンと0.5mol/Lの硝酸ニッケルとの混合水溶液1.0Lに0.5mol/Lのシュウ酸アンモニウム水溶液1.0Lを添加、25℃にて1日間攪拌混合した。その後、沈殿物をろ過分離して60℃にて1日間乾燥した。このようにして得られた沈殿物の組成はNi0.50Mn0.50(OH)1.0(COO)1.0・0.05HOで表された。前記沈殿物を空気流中500、550、600、650、700、750、800、850℃で12時間焼成し、X線回折パターンを調べた。その結果、イルメナイト構造が得られる前記沈殿物の焼成温度は550℃以上800℃未満の範囲であった。
【0049】
実施例11
0.50molの硫酸ニッケルと0.50molの硫酸マンガンとを溶解した水溶液1.0Lに0.50mol/Lのシュウ酸アンモニウム水溶液1.0Lを添加、70℃にて1日間攪拌混合した。その後、沈殿物をろ過分離して60℃にて1日間乾燥した。このようにして得られた沈殿物の組成はNi0.51Mn0.49(OH)1.0(COO)1.0で表された。その後前記沈殿物を650℃で空気流中、12時間焼成した。得られた酸化物をICPにて化学分析した結果、組成はNi0.51Mn0.491.5で表された。また、前記酸化物のX線回折パターンは図6と同様なイルメナイト構造を示した。
【0050】
また前記Ni0.51Mn0.491.5に1.0mol/L酢酸リチウム水溶液をリチウム原子/(ニッケル原子+マンガン原子)(モル比)が1.00となるように含浸した後、酸素気流中900℃にて40時間焼成しLi−Ni−Mn複合酸化物を得た。ICP分析の結果、Li1.00Ni0.51Mn0.49でありX線回折パターンは図12と同様な不純物相を含有しないR3mまたはその類縁構造を示した。また実施例1記載の電池試験を行った結果、約140mAh/gの初期放電容量を示した。
【0051】
実施例12
0.10molの酢酸ニッケルと0.10molの酢酸マンガンとを溶解した4wt%酢酸溶液400mlに0.20molのシュウ酸を溶解した水溶液100mlを添加、10分間沸騰させ攪拌混合した。その後、沈殿物をろ過分離して60℃にて1日間乾燥した。このようにして得られた沈殿物の組成はNi0.52Mn0.48(OH)1.0(COO)1.0・0.07HOで表された。その後前記沈殿物を650℃で空気流中、12時間焼成した。得られた酸化物をICPにて化学分析した結果、組成はNi0.52Mn0.481.5で表された。また、前記酸化物のX線回折パターンは図6と同様なイルメナイト構造を示した。
【0052】
また前記Ni0.52Mn0.481.5に1.0mol/L酢酸リチウム水溶液をリチウム原子/(ニッケル原子+マンガン原子)(モル比)が1.05となるように含浸した後、空気流中1050℃にて5時間焼成しLi−Ni−Mn複合酸化物を得た。ICP分析の結果、Li1.05Ni0.52Mn0.48でありX線回折パターンは図12と同様な不純物相を含有しないR3mまたはその類縁構造を示した。また実施例1記載の電池試験を行った結果、約145mAh/gの初期放電容量を示した。
【0053】
実施例13
0.50molの酢酸ニッケルと0.50molの酢酸マンガンとを溶解した水溶液1.0Lに0.50mol/Lのシュウ酸アンモニウム水溶液1.0Lを添加、70℃にて1日間攪拌混合した。その後、沈殿物をろ過分離して60℃にて1日間乾燥した。このようにして得られた沈殿物の組成はNi0.51Mn0.49(OH)1.0(COO)1.0・0.08HOで表された。その後前記沈殿物を650℃で空気流中、12時間焼成した。得られた酸化物をICPにて化学分析した結果、組成はNi0.51Mn0.491.5で表された。また、前記酸化物のX線回折パターンは図6と同様なイルメナイト構造を示した。
【0054】
また前記Ni0.51Mn0.491.5に1.0mol/L酢酸リチウム水溶液をリチウム原子/(ニッケル原子+マンガン原子)(モル比)が1.00となるように含浸した後、空気流中1000℃にて12時間焼成しLi−Ni−Mn複合酸化物を得た。ICP分析の結果、Li1.00Ni0.51Mn0.49であり、X線回折パターンは図12と同様な不純物相を含有しないR3mまたはその類縁構造を示した。また実施例1記載の電池試験を行った結果、約143mAh/gの初期放電容量を示した。
【0055】
実施例14
実施例1で得られたニッケル−マンガン複合水酸化物を600℃で空気流中、3時間焼成した。得られた酸化物をICPにて化学分析した結果、組成はNiMnOで表された。また、前記酸化物のX線回折パターンは図6と同様なイルメナイト構造を示した。
【0056】
また、前記イルメナイト構造ニッケル−マンガン酸化物に1.0mol/L水酸化リチウム水溶液をリチウム原子/(ニッケル原子+マンガン原子)(モル比)が1.01となるように含浸した後、空気流中1000℃で10時間焼成しLi−Ni−Mn複合酸化物を得た。ICP分析の結果、Li1.00Ni0.50Mn0. 50であり、X線回折パターンは図9と同様な副生相を含有しないR3mまたはその類縁構造を示した。また実施例1記載の電池試験を行った結果、約154mAh/gの初期放電容量を示した。
【0057】
比較例1
リチウム化における焼成温度を975℃とした以外は、実施例1と同様に調製した。ICP組成分析の結果、Li1.01Ni0.50Mn0.50であった。X線回折パターンは図13に示す通りで、R3mまたはその類縁構造を示した。ミラー指数hklにおける(003)面及び(104)面での回折ピーク強度比(003)/(104)は1.10、ヨード滴定法による(Ni+Mn)平均価数測定を行ったところ、3.088であった。
【0058】
また、実施例1と同様な電池評価試験を行った結果、初期放電容量(0.4mA・cm−2)139.8mAh/g、ハイレート放電比率79.6%であった。
【0059】
比較例2
リチウム化における焼成温度を1000℃とした以外は、実施例1と同様に調製した。ICP組成分析の結果、Li1.01Ni0.50Mn0.50であった。X線回折パターンは図14に示す通りで、R3mまたはその類縁構造を示した。ミラー指数hklにおける(003)面及び(104)面での回折ピーク強度比(003)/(104)は1.06、、ヨード滴定法による(Ni+Mn)平均価数測定を行ったところ、3.109であった。
【0060】
また、実施例1と同様な電池評価試験を行った結果、初期放電容量(0.4mA・cm−2)133.9mAh/g、ハイレート放電比率75.7%であった。
【0061】
比較例3
リチウム化における焼成温度を1050℃とした以外は、実施例1と同様に調製した。ICP組成分析の結果、Li1.00Ni0.50Mn0.50であった。X線回折パターンは図15に示す通りで、R3mまたはその類縁構造を示した。ミラー指数hklにおける(003)面及び(104)面での回折ピーク強度比(003)/(104)は1.03、ヨード滴定法による(Ni+Mn)平均価数測定を行ったところ、3.098であった。
【0062】
また、実施例1と同様な電池評価試験を行った結果、初期放電容量(0.4mA・cm−2)34.9mAh/g、ハイレート放電比率33.0%であった。
【0063】
比較例4
ニッケル−マンガン酸化物と水酸化リチウム一水和物とをリチウム原子/(ニッケル原子+マンガン原子)(モル比)が0.98となるように混合し、Li化における焼成温度を900℃とした以外は実施例1と同様に調製した。ICP組成分析の結果、Li0.98Ni0.50Mn0.50であった。X線回折パターンは図16に示す通りで、LiMnOなどの副生相を含有する混合相が得られた。また、ヨード滴定法による(Ni+Mn)平均価数測定を行ったところ、3.100であった。
【0064】
また、実施例1と同様な電池評価試験を行った結果、初期放電容量(0.4mA・cm−2)42.89mAh/g、ハイレート放電比率23.8%であった。
【0065】
比較例5
また、比較例2記載の1000℃で合成したLi1.01Ni0.50Mn0.50につき、充放電サイクル試験を実施例2と同様に0.4mA・cm−2にて30サイクルまで行った。充放電サイクル特性を図17に示した。実施例2における図5の充放電サイクル特性図に比し劣化する傾向を呈した。
【0066】
比較例6
0.50molの硝酸ニッケルと0.50molの硝酸マンガンとを溶解した水溶液1.0Lに0.50mol/Lのシュウ酸アンモニウム水溶液1.0Lを添加、70℃にて1日間攪拌混合した。その後、沈殿物をろ過分離して60℃にて1日間乾燥した。その後前記沈殿物を800℃で空気流中、12時間焼成した。得られた酸化物をICPにて化学分析した結果、Mn/Ni原子比は0.968であった。また、前記酸化物のX線回折パターンはスピネル構造を示した。
【0067】
また前記酸化物と水酸化リチウム一水和物とを混合した後、酸素気流中1000℃にて10時間焼成しLi−Ni−Mn複合酸化物を得た。ICP分析の結果、Li1.01Ni0.51Mn0.49であり、X線回折パターンはR3mまたはその類縁構造を示した。しかしながら、実施例1記載の電池試験を行った結果、初期放電容量は約125mAh/gであった。
【0068】
比較例7
0.50molの硝酸ニッケルと0.50molの硝酸マンガンとを溶解した水溶液1.0Lに0.50mol/Lのシュウ酸アンモニウム水溶液1.0Lを添加、70℃にて1日間攪拌混合した。その後、沈殿物をろ過分離して60℃にて1日間乾燥した。その後前記沈殿物を400℃で空気流中、12時間焼成した。得られた酸化物をICPにて化学分析した結果、Mn/Ni原子比は0.968であった。また、前記酸化物のX線回折パターンは、低結晶性のスピネル構造を示した。
【0069】
また前記酸化物と水酸化リチウム一水和物とを混合した後、酸素気流中1000℃にて10時間焼成しLi−Ni−Mn複合酸化物を得た。ICP分析の結果、Li1.01Ni0.51Mn0.49であり、X線回折パターンは不純物相を含有しないR3mまたはその類縁構造を示したが、実施例1記載の電池試験を行った結果、初期放電容量は約115mAh/gであった。
【0070】
比較例8
実施例9と同様にイルメナイト構造のNi0.49Mn0.511.5を合成した。
【0071】
また前記酸化物と水酸化リチウム一水和物とをリチウム原子/(ニッケル原子+マンガン原子)(モル比)が1.05となるように混合した後、酸素気流中1100℃にて10時間焼成しLi−Ni−Mn複合酸化物を得た。ICP分析の結果、Li1.02Ni0.49Mn0.51でありX線回折パターンはR3mまたはその類縁構造を示した。しかしながら、実施例1記載の電池試験では約84mAh/gの低い初期放電容量を示した。
【0072】
比較例9
実施例9と同様にイルメナイト構造のNi0.49Mn0.511.5を合成した。
【0073】
また前記酸化物と水酸化リチウム一水和物と混合した後、酸素気流中850℃にて10時間焼成しLi−Ni−Mn複合酸化物を得た。ICP分析の結果、Li1.01Ni0.49Mn0.51であった。しかしながら、X線回折パターンは、R3mまたはその類縁構造を示したが比較的低結晶性であった。また実施例1記載の電池試験を行った結果、初期放電容量は約99mAh/gであった。
【0074】
本発明の実施例および比較例のX線回折ピーク強度比(003)/(104)および電池試験結果を表1に示した。ここで原料Aとは原料にNi−Mn複合水酸化物を用いた場合、原料Bとは原料にNi1/2+ αMn1/2ー α(OH)(COO)・nHOを用いた場合を表す。
【0075】
また、本発明実施例および比較例のリチウム−ニッケル−マンガン化合物におけるニッケルおよびマンガンの平均価数を表2に示した。
【0076】
【表1】

Figure 2004002141
【表2】
Figure 2004002141
【発明の効果】
本発明のリチウム−ニッケル−マンガン複合酸化物とその製造方法を用いることにより、Cation mixingを抑制し高負荷での出力特性を向上させたLiNi0.5+ αMn0.5ー αおよびこれを用いたリチウムイオン二次電池を提供可能である。
【図面の簡単な説明】
【図1】本発明実施例1に従って得られたニッケル−マンガン複合水酸化物の粉末X線回折図を示す。
【図2】本発明実施例1に従って得られたNiMnOの粉末X線回折図を示す。
【図3】本発明実施例1に従って得られたLi1.01Ni0.50Mn0.50の粉末X線回折図を示す。
【図4】本発明実施例1に従って得られたLi1.01Ni0.50Mn0.50のTEM観察写真および結晶構造モデル図を示す。
【図5】本発明実施例2に従って測定したLi1.02Ni0.50Mn0.50の充放電サイクル特性図を示す。
【図6】本発明実施例3に従って得られたNiMnOの粉末X線回折図を示す。
【図7】本発明実施例4に従って得られたLi1.01Ni0.50Mn0.50の粉末X線回折図を示す。
【図8】本発明実施例5に従って得られたLi1.01Ni0.50Mn0.50の粉末X線回折図を示す。
【図9】本発明実施例6に従って得られたLi1.00Ni0.50Mn0.50の粉末X線回折図を示す。
【図10】本発明実施例7に従って得られたLi1.04Ni0.50Mn0.50の粉末X線回折図を示す。
【図11】本発明実施例8に従って得られたLi1.10Ni0.50Mn0.50の粉末X線回折図を示す。
【図12】本発明実施例9に従って得られたLi1.01Ni0.49Mn0.51の粉末X線回折図を示す。
【図13】比較例1に従って得られたLi1.01Ni0.50Mn0.50の粉末X線回折図を示す。
【図14】比較例2に従って得られたLi1.01Ni0.50Mn0.50の粉末X線回折図を示す。
【図15】比較例3に従って得られたLi1.00Ni0.50Mn0.50の粉末X線回折図を示す。
【図16】比較例4に従って得られたLi0.98Ni0.50Mn0.50の粉末X線回折図を示す。
【図17】比較例5に従って測定したLi1.01Ni0.50Mn0.50の充放電サイクル特性図を示す。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a lithium-nickel-manganese composite oxide used as a positive electrode active material for a secondary battery, a method for producing the same, and a lithium ion secondary battery using the same.
[0002]
[Prior art]
In recent years, the miniaturization and cordlessness of AV equipment, mobile phones, personal computers, and the like have been rapidly progressing.2, @ LiNiO2, LiMn2O4Etc. have been studied. However, none of these materials can be said to satisfy all of capacity, safety, and cost.0.5Mn0.5O2Li-Ni-Mn composite oxides such as described above are expected as materials satisfying high energy density, safety and cost. (For example, see Non-Patent Document 1)
Conventionally, synthesis of such a Li—Ni—Mn composite oxide includes NiO, MnO, LiOH.H2A dry mixing method obtained by mixing powders such as O (for example, see Non-Patent Document 2) has been widely used. However, when the Mn content is high, the uniformity of atoms is insufficient, so that an impurity phase is contained and the crystallinity is low, so that sufficient electrochemical characteristics cannot be obtained.
[0003]
In addition, in a method using a wet slurry in which a powder of Mn oxide or the like and a Ni solution, a Li solution, etc. are mixed into a slurry and fired, improvement in crystallinity, electrochemical properties, etc. is not achieved as compared with the dry method. However, there are problems such as generation of corrosive gas such as nitrogen oxides.
[0004]
On the other hand, in the coprecipitation method, it is possible to improve the uniform dispersibility of constituent atoms by coprecipitating in the form of hydroxide, carbonate, oxalate, or the like. In the coprecipitate, the choice of the precursor is important because the crystal structure of the precursor greatly affects the reactivity with the lithium compound, and furthermore, the crystal structure of the Li—Ni—Mn composite oxide and battery performance. For example, as a method of obtaining a Li-Ni-Mn composite oxide, a method of directly obtaining a Li-Ni-Mn composite oxide from a nickel-manganese composite hydroxide and a lithium compound is disclosed. Due to the instability of the divalent hydroxides, operation in air may cause a problem with the uniformity of the precursor. (See, for example, Patent Document 1.) Therefore, selection of a Ni—Mn compound having a high uniform dispersibility of constituent atoms, a high reactivity with a lithium compound, and a crystal structure stable in the air, and its Ni—Mn There was an urgent need to establish a method for producing a Li-Ni-Mn compound using the compound.
[0005]
Conventionally, LiNi using a Ni—Mn composite hydroxide as a raw material0.5Mn0.5O2It has been reported that firing at a high temperature of 1000 ° C. or more is desirable for the synthesis of, and there is a report that there is a problem in cycle life at 850 ° C. or less. (For example, see Patent Document 1 and Non-Patent Document 1) On the other hand, LiNiO2Replaced with Mn1-XMnXO2Although there is a report that a relatively low firing temperature of 600 to 800 ° C. is required, it is only when the Mn substitution rate is low and LiNiO2There is a view that it is not preferable to synthesize a lithium-containing composite oxide based on the above at a high temperature of 800 ° C. or higher. (For example, see Patent Document 2)
[Patent Document 1]
JP-A-2002-42813 (pages 4 to 5, FIG. 10)
[Patent Document 2]
JP-A-8-171910 (page 2
Column)
[Non-patent document 1]
Kotsuki et al. Proceedings of the 41st Battery Symposium (2000) 460-461
[Non-patent document 2]
E. FIG. Rossen et al. Solid State Ionics 57 (1992) 311-318.
[0007]
[Problems to be solved by the invention]
The present invention aims at obtaining a positive electrode active material for a lithium ion secondary battery having sufficient crystallinity and excellent electrochemical characteristics, in particular, to provide LiNi having a high degree of crystal perfection and excellent output characteristics.0.5Mn0.5O2And the LiNi0.5Mn0.5O2The present invention provides a method for producing a lithium-nickel-manganese compound by reacting a nickel-manganese oxide having an ilmenite structure with a lithium compound to obtain the compound.
[0008]
LiNi synthesized by the present inventors using a Ni-Mn composite hydroxide as a raw material0.5Mn0 . 5O2As a result of examining the correlation between the sintering temperature of the material and the physical properties and electrochemical properties of the material, it was found that Ni in the Li layer in the temperature range of 950 ° C. or higher.2+Movement, that is, Cation mixing between the 3a and 3b sites became apparent, and it became clear that the output characteristics under a high load condition were significantly reduced. Therefore, LiNi using Ni—Mn composite hydroxide as a raw material0.5Mn0.5O2LiNi with reduced Cation mixing and improved output characteristics under high load0.5Mn0.5O2And the establishment of its manufacturing method was urgently needed.
[0009]
At a high temperature such as 1000 ° C., the furnace material is significantly consumed, and the evaporation of lithium becomes remarkable, so that the composition tends to vary. On the other hand, conventional LiCoO2And LiMn2O4Firing at a relatively low temperature, such as 800 to 900 ° C., which is found in the synthesis of, for example, has a great merit in production as compared with high-temperature firing. Therefore, LiNi having the crystal perfection and maintaining high load output characteristics is obtained.0.5Mn0.5O2There has been a demand for a production method capable of synthesizing at low temperature.
[0010]
[Means for Solving the Problems]
In order to solve the above problems, the lithium-nickel-manganese composite oxide of the present invention has a general formula Li1 + XNi1/2 + αMn1 / 2- αO2The X value in the formula represented by X ≧ 0, the α value is −0.05 ≦ α ≦ 0.05, and the (104) plane at the Miller index hkl where the particles of the composite oxide are hexagonal. The ratio of the diffraction peak intensity at the (003) plane and the (104) plane in the Miller index hkl of the powder X-ray diffraction using Cu-Kα ray is contained. 003) / (104) is 1.15 or more. Further, the average valence of nickel and manganese of the lithium-nickel-manganese composite oxide measured by an iodine titration method is 3.0 or more and 3.1 or less.
[0011]
Further, the production method is characterized by comprising a step of mixing an ilmenite type nickel-manganese oxide and a lithium compound, and a step of firing the mixture at 750 ° C. or more in an oxygen-containing atmosphere.
[0012]
[Action]
Hereinafter, the present invention will be described in detail.
[0013]
The lithium-nickel-manganese composite oxide of the present invention has the general formula Li1 + XNi1/2 + ΑMn1 / 2- αO2It is represented by Here, when X <0, X ≧ 0 is indispensable because a by-product phase tends to be generated and Cation mixing becomes remarkable, and preferably 0.01 ≦ X ≦ 0.10. Excessive increase in X value causes Ni2+Ni for3+Increases, leading to a decrease in electrochemical capacity, which is inconvenient. The α value is −0.05 ≦ α ≦ 0.05, preferably α = 0. If the α value exceeds 0.05, Ni2+Ni for3+Increase the charge-discharge cycle characteristics. If α is less than -0.05, a single phase having a layered rock salt structure cannot be obtained.
[0014]
In addition, the lithium-nickel-manganese composite oxide of the present invention has a diffraction peak intensity ratio (003) / (003) / (104) plane at a Miller index hkl of powder X-ray diffraction using Cu-Kα ray. (104) is 1.15 or more. Here, the diffraction peak intensity ratio is an index of Cation mixing, and when the intensity ratio is high, the crystal perfection with a developed layer structure is high, and when the intensity ratio is low, the layer structure is disordered due to Cation mixing. (Eg, Ohzuku et al., J. Electrochem. @Soc., @ 140, @No. 7, (1993) 1862-1870). In the present compound, the ratio of the diffraction peak intensity at which the cation mixing does not become apparent and the output under a high load is maintained is 1.15 or more.
[0015]
In the lithium-nickel-manganese composite oxide of the present invention, the average valence of nickel and manganese measured by an iodine titration method is 3.0 or more and 3.1 or less. If the average valence is out of this range, the formation of a by-product phase becomes apparent and the battery capacity is reduced, which is not preferable.
[0016]
Further, the lithium-nickel-manganese composite oxide of the present invention is a FE-TEM which is a twin particle or a multiple twin particle having a (104) plane as a twin plane at a Miller index hkl assigned to a hexagonal system. And electron diffraction. Such a structure is not peculiar to layered rock salt compounds in general, but is characteristic of the present invention.
[0017]
The method for producing a positive electrode active material for a lithium ion secondary battery according to the present invention includes a step of mixing an ilmenite structure type nickel manganese oxide and a lithium compound, and a step of firing the mixture at 750 ° C. or more in an oxygen atmosphere. It is characterized by. By these operations, the positive electrode active material Li having the diffraction peak intensity ratio (003) / (104) of 1.15 or more is obtained.1 + XNi1/2 + αMn1 / 2- αO2Is obtained. It is essential that uniformity at the atomic level is maintained by the coprecipitation method, and an operation such as a powder mixing method cannot provide a material having high crystal perfection and good electrochemical characteristics. When the Ni—Mn composite hydroxide is used as a raw material, firing at 750 ° C. or more and 950 ° C. or less in an oxygen-containing atmosphere is the most important condition for suppressing the cation mixing. At this time, as the lithium compound, hydroxide, acetate, carbonate, oxalate, nitrate, chloride, sulfate and the like can be used. In this case, it is desirable to use a hydroxide having a low decomposition temperature and generating no corrosive gas.
[0018]
The nickel manganese oxide used in the present invention is preferably of an ilmenite structure because of its high reactivity with lithium compounds. The ilmenite nickel-manganese oxide has the chemical formula NiMnO3It is represented by Ilmenite structure is FeTiO3And has a layered structure. The atomic ratio of Ni / Mn is preferably close to 1, and usually becomes an oxygen-deficient type. As a method for producing a nickel-manganese oxide having an ilmenite structure, synthesis under high pressure is often found. For example, as shown in Journal of Alloys and Compounds, {196} (1993) 75-79 Synthesis under normal pressure using a coprecipitation method using salt and oxalic acid is also possible.
[0019]
Also, the general formula Ni1/2 + αMn1 / 2- α(OH)y(COO)z・ NH2The nickel-manganese compound represented by O (y + z = 2, 0.5 ≦ z ≦ 1.5, α is the same as described above, and n ≧ 0) is fired at 550 ° C. or higher and lower than 800 ° C. in an oxygen atmosphere. can get.
[0020]
Ni1/2 + αMn1 / 2- α(OH)y(COO)z・ NH2When O is fired in a stream of air, an ilmenite structure can be obtained at 550 ° C. or higher and lower than 800 ° C.
[0021]
The ilmenite structure type nickel-manganese oxide can also be obtained by firing a nickel-manganese composite hydroxide. In this case, the nickel-manganese composite hydroxide is preferably in a uniform crystal phase in which nickel hydroxide and manganese hydroxide are dissolved. Usually, NiSO is used to prepare a nickel-manganese composite hydroxide.4, Ni (NO3)2, Ni (CH3COO)2Nickel salts and MnSO4, Mn (NO3)2, Mn (CH3COO)2It can be prepared by a hydroxide coprecipitation method using a manganese salt as a raw material. However, since the obtained composite hydroxide is unstable in divalent manganese hydroxide, it is oxidized by oxygen in the air during the operation and becomes Mn.3O4It is difficult to obtain a nickel-manganese composite hydroxide having a uniform crystal phase by-producing such oxides. Therefore, in order to prepare a nickel-manganese composite hydroxide having a stable and uniform crystal phase in air, it is necessary to prepare a nickel-manganese composite hydroxide in a uniform state in which nickel hydroxide and manganese hydroxide are dissolved. It is essential to oxidize the manganese therein to a stable trivalent or higher valent state with an oxidizing agent such as hydrogen peroxide. In this case, the average oxidation number of nickel and manganese is 2.5 or more when nickel is 2 or more and manganese is 3 or more.
[0022]
Oxidation with an oxidizing agent such as hydrogen peroxide is different from ordinary oxidation with air, etc., in that manganese hydroxide is converted to topotactic (without changing the structure) and stable manganese hydroxide such as β-manganese oxyhydroxide (β-MnOOH). It is considered that there is an effect of oxidizing to a state higher than the valence. Since β-manganese oxyhydroxide has a crystal structure very close to nickel hydroxide, it is considered that a uniform solid solution state is easily maintained and the composite hydroxide is stabilized.
[0023]
The oxidizing method using the oxidizing agent is not particularly limited. For example, the nickel-manganese composite hydroxide obtained by co-precipitation can be oxidized by being directly introduced into an alkaline aqueous solution containing an oxidizing agent such as hydrogen peroxide. . When co-precipitating the nickel-manganese composite hydroxide, a complexing agent such as ammonia which is added for improving the crystallinity of the nickel hydroxide may be added. By firing the nickel-manganese compound thus obtained in an oxygen-containing atmosphere, a nickel-manganese oxide having an ilmenite structure can be obtained. At this time, the ilmenite structure can be obtained in a range of about 300 ° C. or more and less than 800 ° C., but a low-crystalline one fired at a low temperature of 300 to 500 ° C. is desirable because of its high reactivity with a lithium compound.
[0024]
As a method of mixing the ilmenite structure type nickel manganese oxide and the lithium compound, in addition to the dry mixing method, a lithium slurry is dissolved in water or alcohol or the like to impregnate the nickel-manganese compound, and then the wet slurry is dried and fired. The method used is also effective. The slurry may be sprayed and dried by a spray. In addition, an oxygen atmosphere is essential for the firing atmosphere. If calcination is performed in an oxygen-free atmosphere such as nitrogen or argon, the desired product cannot be obtained because reduction occurs. Here, the aerobic atmosphere refers to an atmosphere having a higher oxygen partial pressure than air, such as air or pure oxygen.
[0025]
【Example】
Hereinafter, the present invention will be described with reference to specific examples.
[0026]
Example 1
450 ml of an aqueous solution in which 0.20 mol of nickel sulfate and 0.20 mol of manganese sulfate are dissolved and 450 ml of an aqueous solution in which 0.80 mol of sodium hydroxide are dissolved are stirred into 800 ml of a 1.6 mol / L aqueous ammonium solution while performing nitrogen bubbling. After the dropwise addition at the same time, the mixture was stirred and mixed at 25 ° C. overnight. Thereafter, while stirring 1.5 L of pure water, 50 ml of a 1.6 mol / L ammonium aqueous solution, 100 ml of 35% hydrogen peroxide solution and 100 ml of the obtained nickel-manganese coprecipitated slurry were added in the above order, and further 3 parts were added. Stirring was performed for hours. Thereafter, the precipitate was separated by filtration and dried at 80 ° C. overnight.
[0027]
The average oxidation number of nickel-manganese of the nickel-manganese composite hydroxide thus obtained was determined by iodometric titration, and as a result, the average oxidation number was 2.71. The X-ray diffraction pattern is shown in FIG. As shown in FIG. 1, Ni (OH)2, Β-MnOOH. Thereafter, the nickel-manganese composite hydroxide was calcined at 400 ° C. in an air stream for 2 hours. As a result of chemical analysis of the obtained oxide by ICP, the composition was NiMnO.3It was represented by The X-ray diffraction pattern of the oxide showed an ilmenite structure as shown in FIG.
[0028]
In addition, the ilmenite nickel-manganese oxide and lithium hydroxide monohydrate were mixed in an automatic mortar for 1 hour so that lithium atom / (nickel atom + manganese atom) (molar ratio) was 1.01. . The obtained mixture was calcined at 750 ° C. for 12 hours in an air stream to obtain a Li—Ni—Mn composite oxide. As a result of ICP composition analysis, Li1.01Ni0.50Mn0.50O2Met. The X-ray diffraction pattern was as shown in FIG. 3 and showed R3m containing no by-product phase or its analogous structure. Here, the diffraction peak intensity ratio (003) / (104) on the (003) plane and the (104) plane at the Miller index hkl was 1.20.
[0029]
The Li1.01Ni0.50Mn0.50O2Was measured for (Ni + Mn) average valence by iodometric titration. Iodometric titration is described in Dyer et al. American Chem Soc. , 76 (1954) 1499-1503.
[0030]
The iodine titration method utilizes the property that iodine is quantitatively released when an excessive amount of iodide ion is added to a strong oxidizing agent, and is a method of titrating and quantifying the free iodine with thiosulfate. After dissolving 0.3 g of a sample and 3.0 g of potassium iodide in 50 cc of 6 N HCl under light shielding, 200 cc of 1 N NaOH was added. After adding 1 cc of starch solution thereto, 0.1N-Na2S2O3Was titrated. In addition, a blank measurement was performed in a system containing no sample, and the appropriate amount was corrected. As a result, the (Ni + Mn) average valence was 3.054.
[0031]
Next, the Li1.01Ni0.50Mn0.50O2Was observed by TEM. The sample was ultrasonically dispersed in ethanol without pulverization, and the suspension was dropped on a microgrid and collected to obtain a microscopic sample. A JEOL @ JEM-2010F field emission type 200 kV-TEM was used. FIG. 4 shows a lattice image of the domain boundary. The lattice fringes corresponding to the (003) plane spacing form an angle of about 110 °, and the c-axes of the two domains form an angle of about 70 ° with each other. The domain boundaries are not clear, and the two domains are intertwined with each other, and a portion overlapping in the direction of incidence of the electron beam appears as moire-like cross lattice fringes. However, the domain boundary is substantially parallel to the (104) plane. An ideal domain boundary model in which the (104) plane in FIG. 4 is a twin plane is shown. As described above, the twin or multi-twin particle structure having the (104) plane as the twin plane at the Miller index hkl assigned to the hexagonal crystal is not peculiar to the layered rock salt compound in general, and is characteristic of the present invention. It is something.
[0032]
Further, this was mixed as a positive electrode material of a battery at a ratio of 2: 1 by weight of a mixture of a conductive agent, polytetrafluoroethylene and acetylene black (trade name: TAB-2), and 1 ton / cm2After being formed into a pellet shape on a mesh (made of SUS316) at a pressure of 5 ° C., it was dried at 150 ° C. under reduced pressure to prepare a positive electrode for a battery. 1 mol / dm. Of lithium hexafluorophosphate in a mixed solvent of propylene carbonate and diethyl carbonate, and a negative electrode composed of the obtained battery positive electrode, a metal lithium foil (0.2 mm thick),3A battery was constructed using an electrolytic solution dissolved at a concentration of. Using the battery thus manufactured, the battery was charged and discharged at 23 ° C. with a constant current and a battery voltage of 4.3 V to 2.5 V. Charging is 0.4mA · cm-2And discharge is 0.4 mA · cm-2And 2.5 mA · cm-2At two constant currents. Change the high rate discharge ratio to the discharge capacity ratio (2.5 mA-2/0.4mA·cm-2). As a result, the initial discharge capacity (0.4 mA · cm-2) 147 mAh / g, high rate discharge ratio: 91.9%.
[0033]
Example 2
Li synthesized at 750 ° C. described in Example 11.01Ni0.50Mn0.50O2, A charge / discharge cycle test was performed at 0.4 mA · cm as in Example 1.-2Up to 30 cycles. FIG. 5 shows the charge-discharge cycle characteristics. LiNi obtained by the positive electrode material and the manufacturing method of the present invention0.5Mn0.5O2Showed almost no deterioration even at a low temperature of 750 ° C.
[0034]
Example 3
Next, a nickel-manganese composite hydroxide was prepared in the same manner as in Example 1, and calcined at 650 ° C. in an air stream for 2 hours. As a result of chemical analysis of the obtained oxide by ICP, the composition was NiMnO.3It was represented by The X-ray diffraction pattern of the oxide showed an ilmenite structure having higher crystallinity than that of Example 1 as shown in FIG. Further, the ilmenite nickel-manganese oxide and lithium hydroxide monohydrate were mixed in an automatic mortar for 1 hour so that lithium atom / (nickel atom + manganese atom) (molar ratio) was 1.01. . The obtained mixture was calcined at 750 ° C. for 12 hours in an air stream to obtain a Li—Ni—Mn composite oxide. As a result of ICP composition analysis, Li1.01Ni0.50Mn0.50O2Met. The Li1.01Ni0.50Mn0.50O2As a result of the same battery evaluation test as in Example 1, the initial discharge capacity (0.4 mA · cm-2) Was 140.0 mAh / g, which was lower than that of Example 1. Therefore, LiNi with high battery performance0.5Mn0.5O2In order to obtain, the crystallinity of the ilmenite structure needs to be low, and the firing temperature of the nickel-manganese composite hydroxide is desirably 300 to 500 ° C.
[0035]
Example 4
The preparation was performed in the same manner as in Example 1 except that the firing temperature in the lithiation was set to 900 ° C. As a result of ICP composition analysis, Li1.01Ni0.50Mn0.50O2Met. The X-ray diffraction pattern was as shown in FIG. 7 and showed R3m or its analogous structure. The diffraction peak intensity ratio (003) / (104) on the (003) plane and the (104) plane at the Miller index hkl was 1.19, and the average valence measurement of (Ni + Mn) by iodometric titration was 3.072. Met.
[0036]
Further, as a result of performing the same battery evaluation test as in Example 1, the initial discharge capacity (0.4 mA · cm-2) 150.4 mAh / g, high rate discharge ratio: 89.9%.
[0037]
Example 5
The preparation was carried out in the same manner as in Example 1 except that the firing temperature in the lithiation was 925 ° C. As a result of ICP composition analysis, Li1.01Ni0.50Mn0.50O2Met. The X-ray diffraction pattern was as shown in FIG. 8 and showed R3m or its analogous structure. The diffraction peak intensity ratio (003) / (104) on the (003) plane and the (104) plane at the Miller index hkl was 1.21, and the (Ni + Mn) average valence measurement by iodometric titration was 3.097. Met.
[0038]
Further, as a result of performing the same battery evaluation test as in Example 1, the initial discharge capacity (0.4 mA · cm-2) 147.0 mAh / g and a high rate discharge ratio of 89.0%.
[0039]
Example 6
The preparation was performed in the same manner as in Example 1 except that the firing temperature in the lithiation was 950 ° C. As a result of ICP composition analysis, Li1.00Ni0.50Mn0.50O2Met. The X-ray diffraction pattern was as shown in FIG. 9 and showed R3m or its analogous structure. The diffraction peak intensity ratio (003) / (104) on the (003) plane and the (104) plane at the Miller index hkl was 1.16, and the average valence measurement of (Ni + Mn) by iodometric titration was 3.087. Met.
[0040]
Further, as a result of performing the same battery evaluation test as in Example 1, the initial discharge capacity (0.4 mA · cm-2) 147.4 mAh / g and a high rate discharge ratio of 87.5%.
[0041]
Example 7
A nickel-manganese oxide and lithium hydroxide monohydrate were mixed such that lithium atom / (nickel atom + manganese atom) (molar ratio) was 1.05, and the firing temperature in Li conversion was 900 ° C. Except for the above, it was prepared in the same manner as in Example 1. As a result of ICP composition analysis, Li1.04Ni0.50Mn0.50O2Met. The X-ray diffraction pattern was as shown in FIG. 10 and showed R3m or its analogous structure. The diffraction peak intensity ratio (003) / (104) on the (003) plane and the (104) plane at the Miller index hkl was 1.24, and the (Ni + Mn) average valence measurement by iodometric titration was 3.080. Met.
[0042]
Further, as a result of performing the same battery evaluation test as in Example 1, the initial discharge capacity (0.4 mA · cm-2) 150.1 mAh / g, high rate discharge ratio: 89.2%.
[0043]
Example 8
A nickel-manganese oxide and lithium hydroxide monohydrate were mixed such that a lithium atom / (nickel atom + manganese atom) (molar ratio) was 1.11 and the firing temperature in Li conversion was 900 ° C. Except for the above, it was prepared in the same manner as in Example 1. As a result of ICP composition analysis, Li1.10Ni0.50Mn0.50O2Met. The X-ray diffraction pattern was as shown in FIG. 11, and showed R3m or its analogous structure. Here, the diffraction peak intensity ratio (003) / (104) on the (003) plane and the (104) plane at the Miller index hkl was 1.33, and (Ni + Mn) average valence measurement by an iodometric titration method revealed that 0.091.
[0044]
Further, as a result of performing the same battery evaluation test as in Example 1, the initial discharge capacity (0.4 mA · cm-2) 139.5 mAh / g, high rate discharge ratio: 94.8%.
[0045]
Example 9
1.0 L of an aqueous 0.50 mol / L ammonium oxalate solution was added to 1.0 L of an aqueous solution in which 0.50 mol of nickel nitrate and 0.50 mol of manganese nitrate were dissolved, and the mixture was stirred and mixed at 25 ° C. for 1 day. Thereafter, the precipitate was separated by filtration and dried at 60 ° C. for 1 day. The composition of the precipitate thus obtained is Ni0.49Mn0.51(OH)1.0(COO)1.0・ 0.05H2It was represented by O. Thereafter, the precipitate was calcined at 650 ° C. in an air stream for 12 hours. As a result of chemical analysis of the obtained oxide by ICP, the composition was Ni0.49Mn0.51O1.5It was represented by The X-ray diffraction pattern of the oxide showed an ilmenite structure.
[0046]
The Ni0.49Mn0.51O1.5Was impregnated with a lithium hydroxide aqueous solution, and calcined at 1000 ° C. for 10 hours in an air stream to obtain a Li—Ni—Mn composite oxide. As a result of ICP analysis, Li1.01Ni0.49Mn0.51O2It became. The Li1.01Ni0.49Mn0.51O2X-ray diffraction pattern is shown in FIG. As shown in FIG. 12, R3m containing no impurity phase or its related structure is shown. The diffraction peak intensity ratio (003) / (104) at the (003) plane and the (104) plane at the Miller index hkl was 1.18, and the (Ni + Mn) average valence measurement by iodometric titration was 3.020. Met.
[0047]
Further, as a result of performing the same battery evaluation test as in Example 1, the initial discharge capacity (0.4 mA · cm-2) 140.4 mAh / g, high rate discharge ratio 90.9%.
[0048]
Example 10
1.0 L of a 0.5 mol / L aqueous solution of ammonium oxalate was added to 1.0 L of a mixed aqueous solution of 0.5 mol / L manganese nitrate and 0.5 mol / L nickel nitrate, followed by stirring and mixing at 25 ° C. for 1 day. . Thereafter, the precipitate was separated by filtration and dried at 60 ° C. for 1 day. The composition of the precipitate thus obtained is Ni0.50Mn0.50(OH)1.0(COO)1.0・ 0.05H2It was represented by O. The precipitate was calcined at 500, 550, 600, 650, 700, 750, 800 and 850 ° C. for 12 hours in an air stream, and the X-ray diffraction pattern was examined. As a result, the firing temperature of the precipitate from which the ilmenite structure was obtained was in the range of 550 ° C. or more and less than 800 ° C.
[0049]
Example 11
To 1.0 L of an aqueous solution in which 0.50 mol of nickel sulfate and 0.50 mol of manganese sulfate were dissolved, 1.0 L of a 0.50 mol / L aqueous solution of ammonium oxalate was added, followed by stirring and mixing at 70 ° C. for 1 day. Thereafter, the precipitate was separated by filtration and dried at 60 ° C. for 1 day. The composition of the precipitate thus obtained is Ni0.51Mn0.49(OH)1.0(COO)1.0It was represented by Thereafter, the precipitate was calcined at 650 ° C. in an air stream for 12 hours. As a result of chemical analysis of the obtained oxide by ICP, the composition was Ni0.51Mn0.49O1.5It was represented by The X-ray diffraction pattern of the oxide showed an ilmenite structure similar to that shown in FIG.
[0050]
The Ni0.51Mn0.49O1.5Is impregnated with a 1.0 mol / L aqueous solution of lithium acetate so that the ratio of lithium atom / (nickel atom + manganese atom) (molar ratio) becomes 1.00, and calcined at 900 ° C. for 40 hours in an oxygen stream to obtain Li—Ni. -Mn composite oxide was obtained. As a result of ICP analysis, Li1.00Ni0.51Mn0.49O2The X-ray diffraction pattern showed R3m or an analogous structure thereof containing no impurity phase as in FIG. The battery test described in Example 1 showed an initial discharge capacity of about 140 mAh / g.
[0051]
Example 12
100 ml of an aqueous solution in which 0.20 mol of oxalic acid was dissolved was added to 400 ml of a 4 wt% acetic acid solution in which 0.10 mol of nickel acetate and 0.10 mol of manganese acetate were dissolved, and the mixture was boiled for 10 minutes and mixed with stirring. Thereafter, the precipitate was separated by filtration and dried at 60 ° C. for 1 day. The composition of the precipitate thus obtained is Ni0.52Mn0.48(OH)1.0(COO)1.0・ 0.07H2It was represented by O. Thereafter, the precipitate was calcined at 650 ° C. in an air stream for 12 hours. As a result of chemical analysis of the obtained oxide by ICP, the composition was Ni0.52Mn0.48O1.5It was represented by The X-ray diffraction pattern of the oxide showed an ilmenite structure similar to that shown in FIG.
[0052]
The Ni0.52Mn0.48O1.5Is impregnated with a 1.0 mol / L aqueous solution of lithium acetate so that the lithium atom / (nickel atom + manganese atom) (molar ratio) becomes 1.05, and calcined at 1050 ° C. for 5 hours in an air stream to obtain Li-Ni -Mn composite oxide was obtained. As a result of ICP analysis, Li1.05Ni0.52Mn0.48O2The X-ray diffraction pattern showed R3m or an analogous structure thereof containing no impurity phase as in FIG. In addition, as a result of performing the battery test described in Example 1, the battery exhibited an initial discharge capacity of about 145 mAh / g.
[0053]
Example 13
1.0 L of a 0.50 mol / L aqueous solution of ammonium oxalate was added to 1.0 L of an aqueous solution in which 0.50 mol of nickel acetate and 0.50 mol of manganese acetate were dissolved, and the mixture was stirred and mixed at 70 ° C. for 1 day. Thereafter, the precipitate was separated by filtration and dried at 60 ° C. for 1 day. The composition of the precipitate thus obtained is Ni0.51Mn0.49(OH)1.0(COO)1.0・ 0.08H2It was represented by O. Thereafter, the precipitate was calcined at 650 ° C. in an air stream for 12 hours. As a result of chemical analysis of the obtained oxide by ICP, the composition was Ni0.51Mn0.49O1.5It was represented by The X-ray diffraction pattern of the oxide showed an ilmenite structure similar to that shown in FIG.
[0054]
The Ni0.51Mn0.49O1.5Is impregnated with a 1.0 mol / L aqueous lithium acetate solution such that the lithium atom / (nickel atom + manganese atom) (molar ratio) becomes 1.00, and calcined at 1000 ° C. for 12 hours in an air stream to obtain Li—Ni. -Mn composite oxide was obtained. As a result of ICP analysis, Li1.00Ni0.51Mn0.49O2The X-ray diffraction pattern showed R3m or an analogous structure thereof containing no impurity phase as in FIG. As a result of the battery test described in Example 1, the battery showed an initial discharge capacity of about 143 mAh / g.
[0055]
Example 14
The nickel-manganese composite hydroxide obtained in Example 1 was calcined at 600 ° C. in an air stream for 3 hours. As a result of chemical analysis of the obtained oxide by ICP, the composition was NiMnO.3It was represented by The X-ray diffraction pattern of the oxide showed an ilmenite structure similar to that shown in FIG.
[0056]
Also, after impregnating the ilmenite structure nickel-manganese oxide with a 1.0 mol / L aqueous solution of lithium hydroxide so that the ratio of lithium atom / (nickel atom + manganese atom) (molar ratio) becomes 1.01, the mixture was exposed to an air stream. Calcination was performed at 1000 ° C. for 10 hours to obtain a Li—Ni—Mn composite oxide. As a result of ICP analysis, Li1.00Ni0.50Mn0. 50O2The X-ray diffraction pattern showed R3m containing no by-product phase as shown in FIG. 9 or an analogous structure thereof. In addition, as a result of performing the battery test described in Example 1, the battery exhibited an initial discharge capacity of about 154 mAh / g.
[0057]
Comparative Example 1
The preparation was carried out in the same manner as in Example 1 except that the firing temperature in the lithiation was 975 ° C. As a result of ICP composition analysis, Li1.01Ni0.50Mn0.50O2Met. The X-ray diffraction pattern was as shown in FIG. 13 and showed R3m or its analogous structure. The diffraction peak intensity ratio (003) / (104) on the (003) plane and the (104) plane at the Miller index hkl was 1.10, and the average valence measurement of (Ni + Mn) by iodometric titration was 3.088. Met.
[0058]
Further, as a result of performing the same battery evaluation test as in Example 1, the initial discharge capacity (0.4 mA · cm-2) 139.8 mAh / g, high rate discharge ratio: 79.6%.
[0059]
Comparative Example 2
The preparation was carried out in the same manner as in Example 1 except that the firing temperature in the lithiation was changed to 1000 ° C. As a result of ICP composition analysis, Li1.01Ni0.50Mn0.50O2Met. The X-ray diffraction pattern was as shown in FIG. 14, and showed R3m or its analogous structure. The diffraction peak intensity ratio (003) / (104) on the (003) plane and the (104) plane at the Miller index hkl was 1.06, and (Ni + Mn) average valence measurement by iodometric titration was performed. 109.
[0060]
Further, as a result of performing the same battery evaluation test as in Example 1, the initial discharge capacity (0.4 mA · cm-2) 133.9 mAh / g and a high rate discharge ratio of 75.7%.
[0061]
Comparative Example 3
The preparation was carried out in the same manner as in Example 1, except that the firing temperature in the lithiation was 1050 ° C. As a result of ICP composition analysis, Li1.00Ni0.50Mn0.50O2Met. The X-ray diffraction pattern was as shown in FIG. 15, and showed R3m or its analogous structure. The diffraction peak intensity ratio (003) / (104) on the (003) plane and the (104) plane at the Miller index hkl was 1.03, and the (Ni + Mn) average valence measurement by iodometric titration was 3.098. Met.
[0062]
Further, as a result of performing the same battery evaluation test as in Example 1, the initial discharge capacity (0.4 mA · cm-2) 34.9 mAh / g, high rate discharge ratio: 33.0%.
[0063]
Comparative Example 4
Nickel-manganese oxide and lithium hydroxide monohydrate were mixed so that lithium atom / (nickel atom + manganese atom) (molar ratio) was 0.98, and the firing temperature in Li conversion was 900 ° C. Except for the above, it was prepared in the same manner as in Example 1. As a result of ICP composition analysis, Li0.98Ni0.50Mn0.50O2Met. The X-ray diffraction pattern is as shown in FIG.2MnO3Thus, a mixed phase containing a by-product phase was obtained. Further, when the (Ni + Mn) average valence was measured by an iodine titration method, it was 3.100.
[0064]
Further, as a result of performing the same battery evaluation test as in Example 1, the initial discharge capacity (0.4 mA · cm-2) 42.89 mAh / g and a high rate discharge ratio of 23.8%.
[0065]
Comparative Example 5
Further, Li synthesized at 1000 ° C. described in Comparative Example 21.01Ni0.50Mn0.50O2, A charge / discharge cycle test was performed at 0.4 mA · cm in the same manner as in Example 2.-2Up to 30 cycles. FIG. 17 shows charge / discharge cycle characteristics. In comparison with the charge / discharge cycle characteristic diagram of FIG.
[0066]
Comparative Example 6
1.0 L of a 0.50 mol / L aqueous solution of ammonium oxalate was added to 1.0 L of an aqueous solution in which 0.50 mol of nickel nitrate and 0.50 mol of manganese nitrate were dissolved, and the mixture was stirred and mixed at 70 ° C. for 1 day. Thereafter, the precipitate was separated by filtration and dried at 60 ° C. for 1 day. Thereafter, the precipitate was calcined at 800 ° C. in an air stream for 12 hours. As a result of chemical analysis of the obtained oxide by ICP, the atomic ratio of Mn / Ni was 0.968. The X-ray diffraction pattern of the oxide showed a spinel structure.
[0067]
After mixing the oxide and lithium hydroxide monohydrate, the mixture was calcined at 1000 ° C. for 10 hours in an oxygen stream to obtain a Li—Ni—Mn composite oxide. As a result of ICP analysis, Li1.01Ni0.51Mn0.49O2The X-ray diffraction pattern showed R3m or an analogous structure thereof. However, as a result of the battery test described in Example 1, the initial discharge capacity was about 125 mAh / g.
[0068]
Comparative Example 7
1.0 L of a 0.50 mol / L aqueous solution of ammonium oxalate was added to 1.0 L of an aqueous solution in which 0.50 mol of nickel nitrate and 0.50 mol of manganese nitrate were dissolved, and the mixture was stirred and mixed at 70 ° C. for 1 day. Thereafter, the precipitate was separated by filtration and dried at 60 ° C. for 1 day. Thereafter, the precipitate was calcined at 400 ° C. in an air stream for 12 hours. As a result of chemical analysis of the obtained oxide by ICP, the atomic ratio of Mn / Ni was 0.968. The X-ray diffraction pattern of the oxide showed a spinel structure with low crystallinity.
[0069]
After mixing the oxide and lithium hydroxide monohydrate, the mixture was calcined at 1000 ° C. for 10 hours in an oxygen stream to obtain a Li—Ni—Mn composite oxide. As a result of ICP analysis, Li1.01Ni0.51Mn0.49O2The X-ray diffraction pattern showed R3m containing no impurity phase or its analogous structure. The battery test described in Example 1 showed that the initial discharge capacity was about 115 mAh / g.
[0070]
Comparative Example 8
As in Example 9, Ni having an ilmenite structure was used.0.49Mn0.51O1.5Was synthesized.
[0071]
After mixing the oxide and lithium hydroxide monohydrate so that the ratio of lithium atom / (nickel atom + manganese atom) (molar ratio) becomes 1.05, the mixture is fired in an oxygen stream at 1100 ° C. for 10 hours. Thus, a Li-Ni-Mn composite oxide was obtained. As a result of ICP analysis, Li1.02Ni0.49Mn0.51O2And the X-ray diffraction pattern showed R3m or its analogous structure. However, the battery test described in Example 1 showed a low initial discharge capacity of about 84 mAh / g.
[0072]
Comparative Example 9
As in Example 9, Ni having an ilmenite structure was used.0.49Mn0.51O1.5Was synthesized.
[0073]
After mixing the oxide with lithium hydroxide monohydrate, the mixture was calcined at 850 ° C. for 10 hours in an oxygen stream to obtain a Li—Ni—Mn composite oxide. As a result of ICP analysis, Li1.01Ni0.49Mn0.51O2Met. However, the X-ray diffraction pattern showed R3m or its analogous structure, but was relatively low crystalline. As a result of the battery test described in Example 1, the initial discharge capacity was about 99 mAh / g.
[0074]
Table 1 shows the X-ray diffraction peak intensity ratio (003) / (104) and the battery test results of Examples and Comparative Examples of the present invention. Here, when the raw material A is a Ni-Mn composite hydroxide as the raw material, the raw material B is1/2 + αMn1 / 2- α(OH)y(COO)z・ NH2The case where O was used is shown.
[0075]
Table 2 shows the average valencies of nickel and manganese in the lithium-nickel-manganese compounds of Examples of the present invention and Comparative Examples.
[0076]
[Table 1]
Figure 2004002141
[Table 2]
Figure 2004002141
【The invention's effect】
LiNi that suppresses cation mixing and improves output characteristics under high load by using the lithium-nickel-manganese composite oxide and the method for producing the same according to the present invention.0.5+ αMn0.5- αO2And a lithium ion secondary battery using the same.
[Brief description of the drawings]
FIG. 1 shows a powder X-ray diffraction diagram of a nickel-manganese composite hydroxide obtained according to Example 1 of the present invention.
FIG. 2 shows a NiMnO obtained according to the invention Example 1.31 shows a powder X-ray diffraction pattern of the sample.
FIG. 3 shows Li obtained according to Example 1 of the present invention.1.01Ni0.50Mn0.50O21 shows a powder X-ray diffraction pattern of the sample.
FIG. 4 shows Li obtained according to Example 1 of the present invention.1.01Ni0.50Mn0.50O21 shows a TEM observation photograph and a crystal structure model diagram of FIG.
FIG. 5 shows Li measured according to Example 2 of the present invention.1.02Ni0.50Mn0.50O2FIG. 3 shows a charge / discharge cycle characteristic diagram of FIG.
FIG. 6 shows NiMnO obtained according to Inventive Example 331 shows a powder X-ray diffraction pattern of the sample.
FIG. 7 shows Li obtained according to Example 4 of the present invention.1.01Ni0.50Mn0.50O21 shows a powder X-ray diffraction pattern of the sample.
FIG. 8 shows Li obtained according to Example 5 of the present invention.1.01Ni0.50Mn0.50O21 shows a powder X-ray diffraction pattern of the sample.
FIG. 9 shows Li obtained according to Example 6 of the present invention.1.00Ni0.50Mn0.50O21 shows a powder X-ray diffraction pattern of the sample.
FIG. 10 shows Li obtained according to Example 7 of the present invention.1.04Ni0.50Mn0.50O21 shows a powder X-ray diffraction pattern of the sample.
FIG. 11 shows Li obtained according to Example 8 of the present invention.1.10Ni0.50Mn0.50O21 shows a powder X-ray diffraction pattern of the sample.
FIG. 12 shows Li obtained according to Example 9 of the present invention.1.01Ni0.49Mn0.51O21 shows a powder X-ray diffraction pattern of the sample.
FIG. 13 shows Li obtained according to Comparative Example 1.1.01Ni0.50Mn0.50O21 shows a powder X-ray diffraction pattern of the sample.
FIG. 14 shows Li obtained according to Comparative Example 2.1.01Ni0.50Mn0.50O21 shows a powder X-ray diffraction pattern of the sample.
FIG. 15 shows Li obtained according to Comparative Example 3.1.00Ni0.50Mn0.50O21 shows a powder X-ray diffraction pattern of the sample.
FIG. 16 shows Li obtained according to Comparative Example 4.0.98Ni0.50Mn0.50O21 shows a powder X-ray diffraction pattern of the sample.
FIG. 17 shows Li measured according to Comparative Example 5.1.01Ni0.50Mn0.50O2FIG. 3 shows a charge / discharge cycle characteristic diagram of FIG.

Claims (13)

一般式Li1+XNi1/2+ αMn1/2− αで表される式中のX値をX≧0、α値を−0.05≦α≦0.05とするリチウム−ニッケル−マンガン複合酸化物であり、前記複合酸化物の粒子が六方晶で帰属されるミラー指数hklにおける(104)面を双晶面とする双晶粒子を含有し、Cu−Kα線を用いた粉末X線回折のミラー指数hklにおける(003)面及び(104)面での回折ピーク強度比(003)/(104)が1.15以上であり、かつ前記リチウム−ニッケル−マンガン複合酸化物0.3gとヨウ化カリウム3.0gとを6N−HCl50ccに遮光した状態で溶解させた後、1N−NaOH200cc、デンプン溶液を1cc添加した後、0.1N−Naで滴定を行うヨード滴定法により測定されたニッケルおよびマンガンの平均価数が3.0以上3.1以下であるリチウム−ニッケル−マンガン複合酸化物。In the formula represented by the general formula Li 1 + X Ni 1/2 + α Mn 1 / 2- α O 2 , lithium-nickel with the X value being X ≧ 0 and the α value being −0.05 ≦ α ≦ 0.05. A manganese composite oxide, wherein the particles of the composite oxide include twin particles having a (104) plane as a twin plane at a Miller index hkl assigned to a hexagonal crystal, and powder X using Cu-Kα radiation; The diffraction peak intensity ratio (003) / (104) on the (003) plane and the (104) plane at the mirror index hkl of the line diffraction is 1.15 or more, and 0.3 g of the lithium-nickel-manganese composite oxide And 3.0 g of potassium iodide are dissolved in 50 cc of 6 N HCl in a light-shielded state, 200 cc of 1 N NaOH and 1 cc of a starch solution are added, and titration is performed with 0.1 N Na 2 S 2 O 3. By law Lithium average valence of the measured nickel and manganese is 3.0 or more 3.1 or less - nickel - manganese composite oxide. 一般式Li1+XNi1/2+ αMn1/2− αで表される式中のX値が0.01≦X≦0.10、α値を−0.05≦α≦0.05とする請求項1記載のリチウム−ニッケル−マンガン複合酸化物。Formula Li 1 + X Ni 1/2 + α Mn 1 / X value in the formula represented by the 2-alpha O 2 is 0.01 ≦ X ≦ 0.10, the alpha value -0.05 ≦ α ≦ 0.05 The lithium-nickel-manganese composite oxide according to claim 1. イルメナイト構造型ニッケル−マンガン酸化物とリチウム化合物とを混合する工程と前記混合物を有酸素雰囲気下750℃以上の焼成温度で焼成することを特徴とする請求項1または請求項2記載のリチウム−ニッケル−マンガン複合酸化物の製造方法。The lithium-nickel according to claim 1 or 2, wherein a step of mixing the ilmenite structure-type nickel-manganese oxide and the lithium compound is performed, and the mixture is fired at a firing temperature of 750 ° C or more in an oxygen-containing atmosphere. -A method for producing a manganese composite oxide. イルメナイト構造型ニッケル−マンガン酸化物とリチウム化合物とを混合する工程と前記混合物を有酸素雰囲気下750℃以上950℃以下の焼成温度で焼成することを特徴とする請求項3記載のリチウム−ニッケル−マンガン複合酸化物の製造方法。4. The process according to claim 3, wherein the ilmenite structure type nickel-manganese oxide is mixed with a lithium compound, and the mixture is fired at a firing temperature of 750 ° C. or more and 950 ° C. or less in an oxygen-containing atmosphere. A method for producing a manganese composite oxide. イルメナイト構造型ニッケル−マンガン酸化物がニッケル−マンガン複合水酸化物を酸化することで合成されるニッケルとマンガンの平均酸化数が2.5以上のニッケル−マンガン化合物を有酸素雰囲気下300℃以上800℃未満で焼成することによって得られる酸化物である請求項4記載のリチウム−ニッケル−マンガン複合酸化物の製造方法。A nickel-manganese compound having an average oxidation number of 2.5 or more of nickel and manganese synthesized by oxidizing a nickel-manganese composite hydroxide by an ilmenite-structured nickel-manganese oxide is prepared in an aerobic atmosphere at 300 ° C or more and 800 or more. The method for producing a lithium-nickel-manganese composite oxide according to claim 4, which is an oxide obtained by calcining at a temperature lower than 0 ° C. 焼成温度が300℃以上500℃以下である請求項5記載のリチウム−ニッケル−マンガン複合酸化物の製造方法。The method for producing a lithium-nickel-manganese composite oxide according to claim 5, wherein the firing temperature is 300C or more and 500C or less. 錯化剤共存下でニッケル−マンガン複合水酸化物を合成する請求項5記載のリチウム−ニッケル−マンガン複合酸化物の製造方法。The method for producing a lithium-nickel-manganese composite oxide according to claim 5, wherein the nickel-manganese composite hydroxide is synthesized in the presence of a complexing agent. 錯化剤がアンモニアである請求項7記載のリチウム−ニッケル−マンガン複合酸化物の製造方法。The method for producing a lithium-nickel-manganese composite oxide according to claim 7, wherein the complexing agent is ammonia. イルメナイト構造型ニッケル−マンガン酸化物とリチウム化合物とを混合する工程と前記混合物を有酸素雰囲気下900℃以上1050℃以下の焼成温度で焼成することを特徴とする請求項3記載のリチウム−ニッケル−マンガン複合酸化物の製造方法。4. The lithium-nickel according to claim 3, wherein the step of mixing the ilmenite structure type nickel-manganese oxide and the lithium compound is performed, and the mixture is fired at a firing temperature of 900 ° C. or more and 1050 ° C. or less in an oxygen atmosphere. A method for producing a manganese composite oxide. 前記イルメナイト構造ニッケル−マンガン酸化物が、一般式Ni1/2+ αMn1/2− α(OH)(COO)・nHO(y+z=2、0.5≦z≦1.5、α値を−0.05≦α≦0.05、n≧0)で表されるニッケル−マンガン化合物を有酸素雰囲気下で焼成して得られたニッケル−マンガン酸化物である請求項9記載のリチウム−ニッケル−マンガン複合化合物の製造方法。The ilmenite structure nickel-manganese oxide has a general formula Ni 1/2 + α Mn 1 / 2- α (OH) y (COO) z · nH 2 O (y + z = 2, 0.5 ≦ z ≦ 1.5, The nickel-manganese oxide obtained by firing a nickel-manganese compound represented by an α value of −0.05 ≦ α ≦ 0.05, n ≧ 0) in an oxygen-containing atmosphere. A method for producing a lithium-nickel-manganese composite compound. 焼成温度が550℃以上800℃未満である請求項10記載のリチウム−ニッケル−マンガン複合酸化物の製造方法。The method for producing a lithium-nickel-manganese composite oxide according to claim 10, wherein the firing temperature is 550 ° C or higher and lower than 800 ° C. 請求項1又は請求項2記載のリチウム−ニッケル−マンガン複合酸化物を含有するリチウムイオン二次電池用正極活物質。A positive electrode active material for a lithium ion secondary battery, comprising the lithium-nickel-manganese composite oxide according to claim 1. 請求項12記載の正極活物質を使用するリチウムイオン二次電池。A lithium ion secondary battery using the positive electrode active material according to claim 12.
JP2002344480A 2002-03-07 2002-11-27 Lithium nickel manganese oxide, its manufacturing method and lithium-ion secondary cell using the same Withdrawn JP2004002141A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002344480A JP2004002141A (en) 2002-03-07 2002-11-27 Lithium nickel manganese oxide, its manufacturing method and lithium-ion secondary cell using the same

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2002062038 2002-03-07
JP2002127205 2002-04-26
JP2002344480A JP2004002141A (en) 2002-03-07 2002-11-27 Lithium nickel manganese oxide, its manufacturing method and lithium-ion secondary cell using the same

Publications (1)

Publication Number Publication Date
JP2004002141A true JP2004002141A (en) 2004-01-08

Family

ID=30449123

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002344480A Withdrawn JP2004002141A (en) 2002-03-07 2002-11-27 Lithium nickel manganese oxide, its manufacturing method and lithium-ion secondary cell using the same

Country Status (1)

Country Link
JP (1) JP2004002141A (en)

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003346798A (en) * 2002-05-24 2003-12-05 Nec Corp Secondary battery and battery pack using the same and method of use of secondary battery
JP2004087487A (en) * 2002-08-05 2004-03-18 Matsushita Electric Ind Co Ltd Positive electrode active material and non-aqueous electrolyte secondary battery containing the same
JP2005336000A (en) * 2004-05-26 2005-12-08 Toyota Motor Corp Lithium multiple oxide material and its utilization
JP2008258160A (en) * 2007-03-30 2008-10-23 Matsushita Electric Ind Co Ltd Active material for nonaqueous electrolyte secondary battery, and its manufacturing method
US7670723B2 (en) 2001-09-13 2010-03-02 Panasonic Corporation Positive electrode active material, production method thereof and non-aqueous electrolyte secondary battery
US7682747B2 (en) 2001-03-22 2010-03-23 Panasonic Corporation Positive electrode active material and non-aqueous electrolyte secondary battery containing the same
US7722989B2 (en) 2003-11-07 2010-05-25 Panasonic Corporation Non-aqueous electrolyte secondary battery with a positive active material comprising primary particles and secondary particles made of the primary particles
JP2010222234A (en) * 2009-02-27 2010-10-07 Sumitomo Chemical Co Ltd Lithium composite metal oxide and positive electrode active material
WO2011016372A1 (en) * 2009-08-04 2011-02-10 住友金属鉱山株式会社 Positive electrode active material, method for producing same, and nonaqueous electrolyte secondary battery using same
US7935443B2 (en) 2001-06-27 2011-05-03 Panasonic Corporation Lithium nickel-manganese-cobalt oxide positive electrode active material
WO2012063369A1 (en) * 2010-11-12 2012-05-18 トヨタ自動車株式会社 Secondary battery
US8241790B2 (en) 2002-08-05 2012-08-14 Panasonic Corporation Positive electrode active material and non-aqueous electrolyte secondary battery containing the same
US8349287B2 (en) 2001-10-25 2013-01-08 Panasonic Corporation Positive electrode active material and non-aqueous electrolyte secondary battery containing the same
CN103855383A (en) * 2014-03-24 2014-06-11 四川兴能新材料有限公司 Preparation method of high-quality lithium nickel manganate
KR20150068458A (en) * 2012-10-09 2015-06-19 파라디온 리미티드 Doped nickelate compounds
KR101574958B1 (en) 2007-11-12 2015-12-07 가부시키가이샤 지에스 유아사 Active material for lithium rechargeable battery, lithium rechargeable battery, and process for producing the same
CN105226266A (en) * 2014-06-27 2016-01-06 旭硝子株式会社 Lithium-contained composite oxide and its manufacture method
KR101612601B1 (en) 2013-02-28 2016-04-14 한양대학교 산학협력단 Cathod active material for lithium rechargeable battery
WO2019017344A1 (en) * 2017-07-18 2019-01-24 株式会社村田製作所 Positive electrode active material, positive electrode, battery, battery pack, electronic device, electric vehicle, power storage device, and power system
US11038159B2 (en) 2017-01-31 2021-06-15 Lg Chem, Ltd. Positive electrode active material for lithium secondary battery including lithium cobalt oxide having core-shell structure, method for producing the same, and positive electrode and secondary battery including the positive electrode active material
CN113646929A (en) * 2019-04-11 2021-11-12 杰富意矿物股份有限公司 Precursor, method for producing precursor, positive electrode material, method for producing positive electrode material, and lithium ion secondary battery
WO2023082757A1 (en) * 2021-11-11 2023-05-19 宁德新能源科技有限公司 Lithium transition metal composite oxide, electrochemical device and electronic device

Cited By (45)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7682747B2 (en) 2001-03-22 2010-03-23 Panasonic Corporation Positive electrode active material and non-aqueous electrolyte secondary battery containing the same
US7935443B2 (en) 2001-06-27 2011-05-03 Panasonic Corporation Lithium nickel-manganese-cobalt oxide positive electrode active material
US7670723B2 (en) 2001-09-13 2010-03-02 Panasonic Corporation Positive electrode active material, production method thereof and non-aqueous electrolyte secondary battery
US8349287B2 (en) 2001-10-25 2013-01-08 Panasonic Corporation Positive electrode active material and non-aqueous electrolyte secondary battery containing the same
JP2003346798A (en) * 2002-05-24 2003-12-05 Nec Corp Secondary battery and battery pack using the same and method of use of secondary battery
JP2004087487A (en) * 2002-08-05 2004-03-18 Matsushita Electric Ind Co Ltd Positive electrode active material and non-aqueous electrolyte secondary battery containing the same
US8241790B2 (en) 2002-08-05 2012-08-14 Panasonic Corporation Positive electrode active material and non-aqueous electrolyte secondary battery containing the same
JP4594605B2 (en) * 2002-08-05 2010-12-08 パナソニック株式会社 Positive electrode active material and non-aqueous electrolyte secondary battery including the same
US7722989B2 (en) 2003-11-07 2010-05-25 Panasonic Corporation Non-aqueous electrolyte secondary battery with a positive active material comprising primary particles and secondary particles made of the primary particles
US7939200B2 (en) 2003-11-07 2011-05-10 Panasonic Corporation Non-aqueous electrolyte secondary battery
JP2005336000A (en) * 2004-05-26 2005-12-08 Toyota Motor Corp Lithium multiple oxide material and its utilization
JP4608946B2 (en) * 2004-05-26 2011-01-12 トヨタ自動車株式会社 Lithium composite oxide material and use thereof
EP2071650A4 (en) * 2007-03-30 2013-04-03 Panasonic Corp Active material for non-aqueous electrolyte secondary battery and manufacturing therefor
JP2008258160A (en) * 2007-03-30 2008-10-23 Matsushita Electric Ind Co Ltd Active material for nonaqueous electrolyte secondary battery, and its manufacturing method
WO2008126370A1 (en) * 2007-03-30 2008-10-23 Panasonic Corporation Active material for non-aqueous electrolyte secondary batteries and process for production thereof
EP2071650A1 (en) 2007-03-30 2009-06-17 Panasonic Corporation Active material for non-aqueous electrolyte secondary battery and manufacturing therefor
US8137847B2 (en) 2007-03-30 2012-03-20 Panasonic Corporation Active material for non-aqueous electrolyte secondary battery and manufacturing method therefore
KR101574958B1 (en) 2007-11-12 2015-12-07 가부시키가이샤 지에스 유아사 Active material for lithium rechargeable battery, lithium rechargeable battery, and process for producing the same
KR101737133B1 (en) * 2009-02-27 2017-05-17 스미또모 가가꾸 가부시키가이샤 Lithium mixed metal oxide and positive electrode active material
JP2010222234A (en) * 2009-02-27 2010-10-07 Sumitomo Chemical Co Ltd Lithium composite metal oxide and positive electrode active material
US9023524B2 (en) 2009-02-27 2015-05-05 Sumitomo Chemical Company, Limted Lithium mixed metal oxide and positive electrode active material
US20120119167A1 (en) * 2009-08-04 2012-05-17 Panasonic Corporation Positive electrode active material, method for producing same, and non-aqueous electrolyte secondary battery using same
CN102484250A (en) * 2009-08-04 2012-05-30 住友金属矿山株式会社 Positive Electrode Active Material, Method For Producing Same, And Nonaqueous Electrolyte Secondary Battery Using Same
WO2011016372A1 (en) * 2009-08-04 2011-02-10 住友金属鉱山株式会社 Positive electrode active material, method for producing same, and nonaqueous electrolyte secondary battery using same
KR101728570B1 (en) 2009-08-04 2017-04-19 스미토모 긴조쿠 고잔 가부시키가이샤 Positive electrode active material, method for producing same, and nonaqueous electrolyte secondary battery using same
US9325005B2 (en) 2009-08-04 2016-04-26 Sumitomo Metal Mining Co., Ltd. Positive electrode active material, method for producing same, and non-aqueous electrolyte secondary battery using same
JP2011034861A (en) * 2009-08-04 2011-02-17 Sumitomo Metal Mining Co Ltd Positive electrode active material, its manufacturing method, and nonaqueous electrolyte secondary battery using the same
JPWO2012063369A1 (en) * 2010-11-12 2014-05-12 トヨタ自動車株式会社 Secondary battery
JP5854285B2 (en) * 2010-11-12 2016-02-09 トヨタ自動車株式会社 Secondary battery
WO2012063369A1 (en) * 2010-11-12 2012-05-18 トヨタ自動車株式会社 Secondary battery
JP2015536890A (en) * 2012-10-09 2015-12-24 ファラディオン リミテッド Doped nickelate compounds
KR20150068458A (en) * 2012-10-09 2015-06-19 파라디온 리미티드 Doped nickelate compounds
KR102002101B1 (en) * 2012-10-09 2019-07-19 파라디온 리미티드 Doped nickelate compounds
US9917307B2 (en) 2012-10-09 2018-03-13 Faradion Ltd Doped nickelate compounds
KR101612601B1 (en) 2013-02-28 2016-04-14 한양대학교 산학협력단 Cathod active material for lithium rechargeable battery
CN103855383A (en) * 2014-03-24 2014-06-11 四川兴能新材料有限公司 Preparation method of high-quality lithium nickel manganate
CN105226266A (en) * 2014-06-27 2016-01-06 旭硝子株式会社 Lithium-contained composite oxide and its manufacture method
US10153489B2 (en) 2014-06-27 2018-12-11 Sumitomo Chemical Co., Ltd. Lithium-containing composite oxide and process for its production
JP2016026981A (en) * 2014-06-27 2016-02-18 旭硝子株式会社 Lithium-containing composite oxide and production method of the same
US11038159B2 (en) 2017-01-31 2021-06-15 Lg Chem, Ltd. Positive electrode active material for lithium secondary battery including lithium cobalt oxide having core-shell structure, method for producing the same, and positive electrode and secondary battery including the positive electrode active material
WO2019017344A1 (en) * 2017-07-18 2019-01-24 株式会社村田製作所 Positive electrode active material, positive electrode, battery, battery pack, electronic device, electric vehicle, power storage device, and power system
CN110915039A (en) * 2017-07-18 2020-03-24 株式会社村田制作所 Positive electrode active material, positive electrode, battery pack, electronic device, electric vehicle, power storage device, and power system
CN110915039B (en) * 2017-07-18 2023-05-16 株式会社村田制作所 Positive electrode active material, positive electrode, battery pack, electronic device, electric vehicle, power storage device, and power system
CN113646929A (en) * 2019-04-11 2021-11-12 杰富意矿物股份有限公司 Precursor, method for producing precursor, positive electrode material, method for producing positive electrode material, and lithium ion secondary battery
WO2023082757A1 (en) * 2021-11-11 2023-05-19 宁德新能源科技有限公司 Lithium transition metal composite oxide, electrochemical device and electronic device

Similar Documents

Publication Publication Date Title
KR101131479B1 (en) Composite oxide containing lithium, nickel, cobalt, manganese, and fluorine, process for producing the same, and lithium secondary cell employing it
JP5081731B2 (en) The manufacturing method of the raw material for positive electrode active materials for lithium secondary batteries.
JP5716001B2 (en) Inorganic compounds
EP2693534B1 (en) Manganese-nickel composite oxide particle powder, production method therefor, positive-electrode active material particle powder for nonaqueous electrolyte secondary batteries, production method therefor, and nonaqueous electrolyte secondary battery
JP4137635B2 (en) Positive electrode active material and non-aqueous secondary battery
KR101989760B1 (en) Positive electrode active material precursor particulate powder and positive electrode active material particulate powder, and non-aqueous electrolyte secondary battery
JP2004002141A (en) Lithium nickel manganese oxide, its manufacturing method and lithium-ion secondary cell using the same
EP2833445B1 (en) Positive electrode active material particle powder and method for producing same, and non-aqueous electrolyte secondary battery
JP3680340B2 (en) Manganese composite oxide, method for producing the same, and use thereof
JP5720899B2 (en) Manganese nickel composite oxide particle powder and method for producing the same, method for producing positive electrode active material particle powder for non-aqueous electrolyte secondary battery, and non-aqueous electrolyte secondary battery
JP3974420B2 (en) Method for producing positive electrode active material for lithium secondary battery
JP3606290B2 (en) Method for producing cobalt-containing lithium nickelate for positive electrode active material of non-aqueous battery
JP2007091573A (en) Lithium-nickel-manganese-cobalt multiple oxide, method for producing the same, and application of the multiple oxide
JP2005097087A (en) New lithium-nickel-manganese multiple oxide and its manufacturing method
JP4578790B2 (en) Method for producing lithium-nickel-cobalt-manganese-aluminum-containing composite oxide
WO2005007577A1 (en) Lithium-nickel-manganese composite oxide, process for producing the same and use thereof
JP4997609B2 (en) Method for producing lithium manganese composite oxide
JP5673932B2 (en) Lithium manganese composite oxide having cubic rock salt structure and method for producing the same
JP3974396B2 (en) Method for producing positive electrode active material for lithium secondary battery
JP2015153551A (en) Positive electrode active material particle powder, manufacturing method thereof, and nonaqueous electrolyte secondary battery
JP2004323331A (en) Lithium-nickel-manganese compound oxide, its manufacturing method and its application
JP3702481B2 (en) Acicular manganese complex oxide, method for producing the same, and use thereof
JP2004059417A (en) Layered rock salt-type lithium nickelate powder and its manufacturing method
JP6155957B2 (en) Positive electrode active material particle powder, method for producing the same, and nonaqueous electrolyte secondary battery
JP2001126731A (en) Positive electrode material for lithium secondary cell, positive electrode for lithium secondary cell, and the lithium secondary cell

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050926

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20070717