JP2003344883A - Sbs reflection mirror and high-repetition-pulse laser system using the same - Google Patents

Sbs reflection mirror and high-repetition-pulse laser system using the same

Info

Publication number
JP2003344883A
JP2003344883A JP2002156735A JP2002156735A JP2003344883A JP 2003344883 A JP2003344883 A JP 2003344883A JP 2002156735 A JP2002156735 A JP 2002156735A JP 2002156735 A JP2002156735 A JP 2002156735A JP 2003344883 A JP2003344883 A JP 2003344883A
Authority
JP
Japan
Prior art keywords
sbs
cells
laser beam
main
laser
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002156735A
Other languages
Japanese (ja)
Inventor
Hiroyuki Kubomura
浩之 久保村
Yasukazu Izawa
靖和 井澤
Masahiro Nakatsuka
正大 中塚
Masanori Yamanaka
正宣 山中
Eiji Yoshida
英次 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Izawa Yasukazu
Original Assignee
NEC Corp
Izawa Yasukazu
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp, Izawa Yasukazu filed Critical NEC Corp
Priority to JP2002156735A priority Critical patent/JP2003344883A/en
Publication of JP2003344883A publication Critical patent/JP2003344883A/en
Pending legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To output a pulse laser beam which has high efficiency and high mean power with high stability. <P>SOLUTION: The pulse laser beam oscillated by an oscillation part 1 is amplified by a preamplifier part 2 into an output to have a saturation gain at a main amplification part 7, and the output is made incident on a beam shaping part 4 through an optical isolator 3. The incident laser beam is magnified by a beam magnifier 11 of the beam shaping part and shaped by an apodizer 12 into a flat beam profile. A 90° rotator 15 makes polarizing directions of the beams passing through main amplifiers 14 and 16 of the main amplification part orthogonal. A multi-SBS cell constituting a phase conjugate mirror 8 rotates a laser beam incident on a plurality of SBS (stimulated Brillouin scattering) cells by a rotary prism while synchronizing its speed with the repetition of the pulse laser beam. The polarizing directions of the main amplification parts are made orthogonal by a Faraday rotator 18 and an outgoing beam output is taken out by a polarizer 6. <P>COPYRIGHT: (C)2004,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、通常はレーザビー
ムを透過するものであって、レーザビームによるエネル
ギーがしきい値に達した際に入射するレーザビームを反
射するSBS(Stimulated Brillou
in Scattering:誘導ブリユアン散乱)セ
ルを用いたSBS反射鏡及びそれを用いた高繰返しパル
スレーザシステムに関し、特に、高い平均パワーによる
動作の際に高い安定性のある反射波面を得ることができ
るSBS反射鏡及びそれを用いた高繰返しパルスレーザ
システムに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention generally transmits a laser beam and reflects an incident laser beam when the energy of the laser beam reaches a threshold value.
in scattering (Stimulated Brillouin scattering) cell SBS reflector and high repetition pulse laser system using the same, in particular, SBS reflection capable of obtaining a highly stable reflected wavefront when operating at high average power The present invention relates to a mirror and a high repetition pulse laser system using the same.

【0002】[0002]

【従来の技術】従来、この種のSBS反射鏡を用いた高
繰返しパルスレーザシステムには、位相共役反射鏡とし
て一つのSBSセルが使用される、例えば、特開平5−
63262号公報に開示されたものがある。
2. Description of the Related Art Conventionally, one SBS cell is used as a phase conjugate reflecting mirror in a high repetition pulse laser system using this type of SBS reflecting mirror.
There is one disclosed in Japanese Patent No. 63262.

【0003】例えば、図5に示されるように、パルスレ
ーザ発振器101で発生した繰返しパルスレーザビーム
は、光増幅器102で増幅され偏光器103を透過して
4分の1波長板104に入射する。4分の1波長板10
4の出射ビームは、集光レンズ105により集光され、
SBSセルの位相共役鏡106に入射する。
For example, as shown in FIG. 5, a repetitive pulse laser beam generated by a pulse laser oscillator 101 is amplified by an optical amplifier 102, passes through a polarizer 103, and enters a quarter wavelength plate 104. Quarter-wave plate 10
The outgoing beam of 4 is condensed by the condenser lens 105,
It is incident on the phase conjugate mirror 106 of the SBS cell.

【0004】SBSとは、通常はレーザビームを透過す
るものであって、一定のしきい値に達した瞬間に、入射
するほとんどのレーザビームを内部で急激に完全に、か
つ同一偏波面をもって、反射させる現象である。SBS
セルは、このような現象を発生する物質すなわちSBS
媒体であり、例えば二硫化炭素(CS)のようにSB
S媒体が流体であればガラスなどの透明容器に収められ
ている。すなわち、SBSセルは、入射するビームが全
く同一の光路を戻るという位相共役鏡106を形成す
る。
The SBS is usually a laser beam that is transmitted, and at the moment when a certain threshold value is reached, most of the incident laser beam is rapidly and completely internally and with the same polarization plane. This is a phenomenon of reflection. SBS
The cell is a substance that causes such a phenomenon, namely SBS.
A medium, such as carbon disulfide (CS 2 ), SB
If the S medium is a fluid, it is contained in a transparent container such as glass. That is, the SBS cell forms a phase conjugate mirror 106 in which the incident beam returns in exactly the same optical path.

【0005】4分の1波長板104は、レーザビームを
往復させることにより偏光方向を90度回転させる。ま
た、偏光器103は、パルスレーザ発振器101から送
られたレーザビームの偏光方向を制限して透過する一
方、SBSセルの位相共役鏡106で反射し偏光方向が
90度回転して戻ってきたレーザビームを光軸外に反射
する。
The quarter-wave plate 104 rotates the polarization direction by 90 degrees by reciprocating the laser beam. Further, the polarizer 103 transmits while limiting the polarization direction of the laser beam sent from the pulse laser oscillator 101, while it is reflected by the phase conjugate mirror 106 of the SBS cell and the polarization direction is rotated by 90 degrees and returned. Reflect the beam off the optical axis.

【0006】偏光器103で反射したレーザビームは、
導光手段の反射鏡107で反射して光増幅器108に入
射し、光増幅器108により増幅されて外部へビーム出
力される。
The laser beam reflected by the polarizer 103 is
The light is reflected by the reflecting mirror 107 of the light guiding means, enters the optical amplifier 108, is amplified by the optical amplifier 108, and is output as a beam to the outside.

【0007】[0007]

【発明が解決しようとする課題】上述した従来のSBS
反射鏡を用いた高繰返しパルスレーザシステムでは、S
BS反射鏡として一つのSBSセルを用いている。
DISCLOSURE OF THE INVENTION The conventional SBS described above
In a high repetition pulsed laser system using a reflector, S
One SBS cell is used as a BS reflector.

【0008】SBSセルは、入射するレーザの平均パワ
ーが媒質への吸収制限で決まる値より低いほど、またパ
ルスエネルギーは反射率が高い状態にできる程度に大き
いほど、安定に動作する。したがって、レーザパルスの
繰り返しは平均出力をパルスエネルギーで除した値より
大きくすることはできず、これがレーザパルスの繰り返
しを制限している。
The SBS cell operates stably as the average power of the incident laser beam is lower than the value determined by the absorption limit to the medium and the pulse energy is large enough to make the reflectance high. Therefore, the laser pulse repetition cannot be greater than the average power divided by the pulse energy, which limits the laser pulse repetition.

【0009】この制限を回避するために、一つのSBS
セル内において集光スポット位置を回転プリズムで移動
させ熱的な制約を緩和する方法がある。しかし、セルの
断面積を大きくしない限り、回転プリズムで移動できる
集光点の円周距離、並びに集光径および媒質の熱緩和に
対応してその繰り返しは制限される。
To avoid this limitation, one SBS
There is a method of relaxing the thermal constraint by moving the focused spot position in the cell with a rotating prism. However, as long as the cross-sectional area of the cell is not increased, the repetition is limited depending on the circumferential distance of the condensing point that can be moved by the rotating prism, the condensing diameter and the thermal relaxation of the medium.

【0010】すなわち、このように一つのSBSセルを
用いた高繰返しパルスレーザシステムでは、繰返し周波
数に対応する平均パワーとSBS媒質の吸収とに制限が
あるという問題点があることである。
That is, in the high repetition pulse laser system using one SBS cell as described above, there is a problem that the average power corresponding to the repetition frequency and the absorption of the SBS medium are limited.

【0011】本発明の課題は、このような問題点を解決
し、高効率、高平均パワーを有するパルスレーザビーム
を提供することができるSBS反射鏡及びそれを用いた
高繰返しパルスレーザシステムを提供することである。
An object of the present invention is to solve the above problems and provide an SBS reflector capable of providing a pulse laser beam having high efficiency and high average power, and a high repetition pulse laser system using the SBS reflector. It is to be.

【0012】[0012]

【課題を解決するための手段】本発明によるSBS反射
鏡を用いた高繰返しパルスレーザシステムでは、SBS
反射鏡として複数のSBSセルを用いている。このた
め、プリズムがSBS反射鏡に入反射する一つの光軸を
複数の光軸に形成し、これら光軸それぞれの先に一つず
つレーザビームを入反射するSBSセルを備えることに
なる。
In the high repetition pulse laser system using the SBS reflector according to the present invention, the SBS
A plurality of SBS cells are used as the reflecting mirror. For this reason, the prism is provided with an SBS cell that forms one optical axis that is incident / reflected by the SBS reflecting mirror into a plurality of optical axes, and that receives and reflects the laser beam one by one at the tip of each of these optical axes.

【0013】この結果、一つのSBSセルの有するパワ
ー及び媒質の吸収容量を複数倍に拡大することができる
ので、高効率及び高平均パワーを有するパルスレーザシ
ステムを提供することができる。
As a result, the power of one SBS cell and the absorption capacity of the medium can be increased multiple times, so that a pulsed laser system having high efficiency and high average power can be provided.

【0014】また、複数のSBSセルは、その光軸を平
行に配置することによりその配置を容易にする。このよ
うな配置にした場合、折返しミラーをそれぞれのSBS
セルに対して備える。折返しミラーは、上記プリズムが
形成する複数のビームそれぞれをSBSセルそれぞれに
対応する平行ビームに屈折させている。
The plurality of SBS cells can be easily arranged by arranging their optical axes in parallel. In such an arrangement, the folding mirrors should be attached to each SBS.
Prepare for the cell. The folding mirror refracts each of the plurality of beams formed by the prism into parallel beams corresponding to each SBS cell.

【0015】また、複数のSBSセルは、レーザビーム
の入射面をSBS反射鏡に入射する光軸に対して円環状
に配置されることが上記折返しミラーの形成上からも望
ましい。従って、プリズムは、SBS反射鏡に入射する
光軸を円錐状表面に形成する複数の光軸に形成して各S
BSセルへ出射し反射波を受ける。
It is also desirable from the standpoint of forming the folding mirror that the plurality of SBS cells are arranged so that the incident surface of the laser beam is annular with respect to the optical axis incident on the SBS reflecting mirror. Therefore, the prism is formed by forming the optical axis of the SBS reflecting mirror into a plurality of optical axes formed on the conical surface.
The reflected wave is emitted to the BS cell.

【0016】この構成でのプリズムは、入反射する繰返
しのパルスレーザビームに同期して複数の光軸を順次各
SBSセルに接続するように回転する回転ウェッジプリ
ズムであることが望ましい。更に複数の円環状のSBS
セルが等間隔に、かつプリズムがSBSセルに対応して
光軸を円錐状表面に等間隔角度に形成することは、繰返
しパルス及び回転プリズムを用いることに対して有効で
ある。
The prism in this structure is preferably a rotating wedge prism that rotates so as to sequentially connect a plurality of optical axes to each SBS cell in synchronization with the repeating pulsed laser beam that is incident and reflected. Further multiple SBSs
Forming the cells at equal intervals and the prisms corresponding to the SBS cells forming the optical axis on the conical surface at evenly spaced angles is useful for using repetitive pulse and rotating prisms.

【0017】この結果、SBS反射鏡に入射するレーザ
ビームのエネルギーのすべてをそれぞれのSBSセルへ
供給することができる。
As a result, all the energy of the laser beam incident on the SBS reflector can be supplied to each SBS cell.

【0018】また、複数のSBSセルが複数の異なる媒
質により構成されることにより、パルス毎の波長を制御
できる多波長発振が可能なSBS反射鏡を提供すること
ができる。
Further, since the plurality of SBS cells are composed of a plurality of different media, it is possible to provide an SBS reflector capable of multiwavelength oscillation in which the wavelength of each pulse can be controlled.

【0019】また具体的な本発明によるSBS反射鏡を
用いた高繰返しパルスレーザシステムは、発振部、プリ
アンプ部、主増幅部、偏光器、及び位相共役鏡を備える
ものである。発振部は高繰返しレーザパルス列を発振し
ビームとして出射する。プリアンプ部は発振部の出射ビ
ームを受けて所定の必要とするエネルギーまでに増幅し
出射する。主増幅部は一端部でプリアンプ部の出射ビー
ムを受けて増幅し他端部から出射すると共にこの出射し
たビームの反射波をこの他端部から入射し一端部から出
射するような往復路を形成して飽和増幅レベルまで増幅
する。偏光器はプリアンプ部の出射ビームを透過して主
増幅部の一端部に入射し、一端部から出射する反射波を
反射して外部へのビーム出力とする。位相共役鏡は、上
述した複数のSBSセルを有するマルチSBSセル構造
による反射鏡であり、主増幅部の他端部から出射するビ
ームを他端部へ反射する。また、マルチSBSせる構造
による反射鏡は入反射するレーザパルス毎に複数のSB
Sセルを一つずつ順次切り替えている。
A specific high repetition pulse laser system using the SBS reflecting mirror according to the present invention comprises an oscillating section, a preamplifying section, a main amplifying section, a polarizer, and a phase conjugate mirror. The oscillator oscillates a high repetition laser pulse train and emits it as a beam. The preamplifier section receives the beam emitted from the oscillating section, amplifies it to a predetermined required energy, and emits it. The main amplification section forms a round-trip path in which the output beam of the pre-amplification section is received at one end, amplified, emitted from the other end, and the reflected wave of the emitted beam enters from the other end and exits from the one end. And amplifies to the saturation amplification level. The polarizer transmits the outgoing beam of the preamplifier section and makes it incident on one end of the main amplifying section, and reflects the reflected wave emitted from the one end to output the beam to the outside. The phase conjugate mirror is a reflecting mirror having a multi-SBS cell structure having a plurality of SBS cells described above, and reflects a beam emitted from the other end of the main amplification unit to the other end. In addition, a reflector having a multi-SBS structure has a plurality of SBs for each laser pulse that is input and reflected.
The S cells are sequentially switched one by one.

【0020】上記主増幅部は、二つの主増幅器と主増幅
器の間に挿入配備され両者同士の偏光解消を補正する9
0度ローテータとの少なくとも一組の直列配置構成と、
他端部に増幅後のビームを平行光に補正する広がり角調
整器とを備え、更にファラデーローテータを主増幅部と
位相共役鏡との間に備えて、反射されたビームの偏光方
向を入射するビームに対して90度直交させている。
The main amplifying section is inserted and arranged between the two main amplifiers and corrects depolarization between the two main amplifiers.
At least one set of serial arrangements with a 0 degree rotator,
A divergence angle adjuster that corrects the beam after amplification into parallel light is provided at the other end, and a Faraday rotator is provided between the main amplification unit and the phase conjugate mirror to make the polarization direction of the reflected beam incident. It is orthogonal to the beam by 90 degrees.

【0021】また、高繰返しパルスレーザシステムはビ
ーム整形部として、ビーム拡大器、アポタイザ、及びス
ペーシャルフィルタとを更に備えることが望ましい。ビ
ーム拡大器は、プリアンプ部の出射ビームを受けてビー
ム径を拡大する。アポタイザは、ビーム拡大器により拡
大されたビームのプロファイルを平坦に整形して出射す
る。スペーシャルフィルタは、アポタイザが出射するビ
ームプロファイルをそのまま維持して主増幅部へ転送す
る。この結果、パルスの効率を向上させ、平均パワーを
高めることができる。
Further, it is preferable that the high repetition pulse laser system further includes a beam expander, an apodizer, and a spatial filter as a beam shaping unit. The beam expander receives the outgoing beam from the preamplifier unit and expands the beam diameter. The apodizer flattens the profile of the beam expanded by the beam expander and outputs it. The spatial filter maintains the beam profile emitted from the apodizer and transfers it to the main amplification unit. As a result, pulse efficiency can be improved and average power can be increased.

【0022】[0022]

【発明の実施の形態】次に、本発明の実施の形態につい
て図面を参照して説明する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Next, embodiments of the present invention will be described with reference to the drawings.

【0023】図1は本発明の実施の一形態を示す機能ブ
ロック図である。図1に示されたSBS反射鏡を用いた
高繰返しパルスレーザシステムでは、フロントエンド発
振部(以後、発振部と略称する)1、CW励起プリアン
プ部(以後、プリアンプ部と略称する)2、光アイソレ
ータ3、ビーム整形部4、光学系5、偏光器6、主増幅
部7、及び位相共役鏡8が設けられている。
FIG. 1 is a functional block diagram showing an embodiment of the present invention. In the high repetition pulse laser system using the SBS reflector shown in FIG. 1, a front-end oscillator (hereinafter abbreviated as an oscillator) 1, a CW excitation preamplifier (hereinafter abbreviated as a preamplifier) 2, an optical An isolator 3, a beam shaping unit 4, an optical system 5, a polarizer 6, a main amplification unit 7, and a phase conjugate mirror 8 are provided.

【0024】発振部1は高品質、高繰り返しレーザパル
ス列を発振する。プリアンプ部2は、発振部1の連続波
(CW)出力を励起し、主増幅部7が十分なエネルギー
を取り出せる程度までに増幅する。光アイソレータ3は
主増幅部7からの戻りビームが発振部1まで逆行しない
ようにする目的で備える。
The oscillator 1 oscillates a high-quality, high-repetition laser pulse train. The preamplifier section 2 excites the continuous wave (CW) output of the oscillating section 1 and amplifies it so that the main amplifying section 7 can take out sufficient energy. The optical isolator 3 is provided for the purpose of preventing the return beam from the main amplification unit 7 from going back to the oscillation unit 1.

【0025】ビーム整形部4は、ビーム径を拡大するビ
ーム拡大器11、ビームプロファイルを平坦にするため
の例えばセレーテッドアパーチャを用いたアポタイザ1
2、及びアポタイザ12の位置でのビームプロファイル
を主増幅部7へ転送するスペーシャルフィルタ13を有
する。詳細は、後に図4を参照して説明する。
The beam shaping section 4 includes a beam expander 11 for expanding the beam diameter, and an apodizer 1 using, for example, a serrated aperture for flattening the beam profile.
2 and the spatial filter 13 that transfers the beam profile at the position of the apodizer 12 to the main amplification unit 7. Details will be described later with reference to FIG.

【0026】光学系5は、図示されるものは一部である
が、レーザビームを伝播させるために必要な構成要素で
あり、反射鏡、プリズムなどにより構成される。偏光器
6はプリアンプ部2で増幅されビーム整形部4で整形さ
れたビームを糖化して主増幅部7へ出射する一方、主増
幅部7から入射する位相共役鏡8での反射波を反射して
増幅されたビームを外部へ出力する。
The optical system 5, a part of which is shown in the figure, is a component necessary for propagating a laser beam, and is composed of a reflecting mirror, a prism and the like. The polarizer 6 saccharifies the beam amplified by the preamplifier unit 2 and shaped by the beam shaping unit 4 and outputs the saccharified beam to the main amplifying unit 7, while reflecting the reflected wave from the phase conjugating mirror 8 incident from the main amplifying unit 7. The amplified beam is output to the outside.

【0027】主増幅部7は、高繰り返しパルス列を飽和
増幅レベルで増幅するCW励起主増幅器(以後、主増幅
器と略称する)14,16、主増幅器14,16の間に
配備され主増幅器14,16同士の偏光解消を補正する
90度ローテータ15、及び増幅後のビームの集光性を
補正し平行光とする広がり角調整器17により構成され
る。図示される主増幅部7は、主増幅器14,16及び
90度ローテータ15が一組であるが、この複数組を直
列配置して増幅度を上げることができる。
The main amplifier 7 is provided between the CW pump main amplifiers (hereinafter abbreviated as main amplifiers) 14 and 16 and the main amplifiers 14 and 16 for amplifying a high repetition pulse train at a saturation amplification level. It is composed of a 90-degree rotator 15 for correcting depolarization between 16 and a divergence angle adjuster 17 for correcting the converging property of the beam after amplification and making it parallel light. The main amplifying section 7 shown in the figure has one set of the main amplifiers 14 and 16 and the 90-degree rotator 15, but a plurality of sets can be arranged in series to increase the amplification degree.

【0028】位相共役鏡8は、主増幅部7でダブルパス
増幅を実現するためにレーザビームを反射させるマルチ
SBSセル構造によるSBS反射鏡で構成されている。
ファラデーローテータ18はこのようなSBS反射鏡で
反射されたレーザビームの偏光方向を90度直交させて
いる。
The phase conjugating mirror 8 is composed of an SBS reflecting mirror having a multi SBS cell structure for reflecting the laser beam in order to realize double pass amplification in the main amplifying section 7.
The Faraday rotator 18 makes the polarization direction of the laser beam reflected by such an SBS reflector orthogonal to 90 degrees.

【0029】次に、図2及び図3を併せ参照して図1に
おける位相共役鏡8をマルチSBSセルにより形成する
マルチSBS反射鏡システムについて説明する。
Next, a multi-SBS reflector system in which the phase conjugate mirror 8 in FIG. 1 is formed by multi-SBS cells will be described with reference to FIGS.

【0030】図示されるマルチSBS反射鏡システム
は、回転ウェッジプリズム(以後、回転プリズムと略称
する)21、折返しミラー22、集光レンズ23、及び
SBSセル24により構成される。
The illustrated multi-SBS reflector system is composed of a rotating wedge prism (hereinafter referred to as a rotating prism) 21, a folding mirror 22, a condenser lens 23, and an SBS cell 24.

【0031】回転プリズム21は、位相共役鏡8で入反
射するレーザビームの光軸を、環状に等間隔で配置され
る複数のSBSセル24の入射面それぞれへ入射され、
かつそれぞれから反射されるレーザビームの光軸に形成
して方向変換する。折返しミラー22は、複数のSBS
セル24それぞれに対応して設けられ、回転プリズム2
1とSBSセル24との間のレーザビームを反射してこ
のレーザビームの方向を定める。複数の集光レンズ23
それぞれは、各SBSセル24に近接して設けられ、レ
ーザビームをSBSセル24に集光する。単体のSBS
セル24は、位相共役鏡として作用する例えばフッ化炭
素のようなフッ素系不活性液体等の液体媒質を充填した
円筒形状をなす。
The rotating prism 21 makes the optical axes of the laser beams incident and reflected by the phase conjugate mirror 8 incident on the respective incident surfaces of a plurality of SBS cells 24 which are annularly arranged at equal intervals.
In addition, they are formed on the optical axis of the laser beam reflected from each and the direction is changed. The folding mirror 22 includes a plurality of SBSs.
The rotating prism 2 is provided corresponding to each cell 24.
The laser beam between 1 and the SBS cell 24 is reflected to direct the laser beam. Multiple condenser lenses 23
Each is provided in the vicinity of each SBS cell 24 and focuses the laser beam on the SBS cell 24. Single SBS
The cell 24 has a cylindrical shape filled with a liquid medium such as a fluorine-based inert liquid such as fluorocarbon that acts as a phase conjugate mirror.

【0032】図示される複数のSBSセル24それぞれ
は中心軸を平行にして環状に配置され、全体の外観が円
筒形状をなす構成を有する。従って、SBSセル24と
同数の集光レンズ23は、SBSセル24の一方の端面
に近接して環状に面を形成し対応する折返しミラー22
それぞれに対して平行なレーザビームを形成する。集光
レンズ23と同数の折返しミラー22は、平行なレーザ
ビームを、回転プリズム21を透過した表面で回転プリ
ズム21の回転により一点に集光するように、円錐形状
の光軸を形成する。従って、折返しミラー22は、SB
Sセル24側に開いた漏斗の開口部分のような形状で配
備される。
Each of the plurality of SBS cells 24 shown in the drawing is arranged in an annular shape with their central axes parallel to each other, and has a configuration in which the overall appearance is cylindrical. Therefore, the same number of condenser lenses 23 as the SBS cells 24 form a ring-shaped surface in the vicinity of one end surface of the SBS cells 24, and the corresponding folding mirror 22.
A laser beam parallel to each is formed. The folding mirrors 22 of the same number as the condenser lens 23 form a conical optical axis so that the parallel laser beams are condensed at one point by the rotation of the rotating prism 21 on the surface that has passed through the rotating prism 21. Therefore, the folding mirror 22 is
It is arranged in a shape like an opening of a funnel opened to the S cell 24 side.

【0033】回転プリズム21は、パルスレーザビーム
のパルスに同期して回転することにより、円環状のマル
チSBSセルに入射するパルスレーザビームのパルス
を、SBSセル24の一つずつに順次配給する。従っ
て、回転プリズム21に入射するパルスレーザビームの
全エネルギーが単体のSBSセル24に順次配給されか
つ反射されることになる。
The rotating prism 21 rotates in synchronization with the pulse of the pulse laser beam to sequentially deliver the pulse of the pulse laser beam incident on the annular multi SBS cell to each SBS cell 24. Therefore, the total energy of the pulsed laser beam incident on the rotating prism 21 is sequentially distributed to and reflected by the single SBS cell 24.

【0034】上記実施例では、回転プリズムを用いるこ
とにより、その回転制御とマルチSBSセル及びその周
辺素子の構成との簡便化のため、SBSセルの平行配置
による環状構成及び折返しミラーの配備を図示し説明し
ているが、各SBSセルの光軸を回転プリズムが形成す
る複数光軸それぞれと一致させた場合には折返しミラー
の使用の必要性はない。
In the above embodiment, by using the rotating prism, in order to simplify the rotation control and the structure of the multi-SBS cell and its peripheral elements, the annular structure and the arrangement of the folding mirror are arranged by the parallel arrangement of the SBS cells. Although shown and described, there is no need to use a folding mirror when the optical axis of each SBS cell is aligned with each of the multiple optical axes formed by the rotating prism.

【0035】また、プリズムが位相共役鏡として入反射
するレーザビームの一つの光軸に対して複数のSBSセ
ルに入反射する光軸に対応する複数の光軸を形成できる
ものであれば、複数のSBSセルを環状に形成する必要
性はない。
Further, as long as the prism can form a plurality of optical axes corresponding to the optical axes of the laser beams that are incident / reflected as a phase conjugate mirror, the optical axes are incident / reflected on a plurality of SBS cells. It is not necessary to form the SBS cell of the above.

【0036】次に、図1から図4までを併せ参照して、
図1に示されるシステムの動作機能について説明する。
Next, referring also to FIGS. 1 to 4,
The operation function of the system shown in FIG. 1 will be described.

【0037】図1に示される発振部1が発振する高ビー
ム品質、高繰り返しレーザパルス列を有するレーザビー
ム出力は、プリアンプ部2により主増幅部7で飽和利得
となるような出力にまで増幅される。この際に、プリア
ンプ部2に使用されているレーザ媒質の上準位寿命がT
秒の場合では、増幅するパルスレーザビームの繰り返し
を「1/T」ppsより高くすれば、プリアンプ部2の
上準位に蓄えられたエネルギーを効率良く取り出すこと
ができる。
The laser beam output having a high beam quality and a high repetition laser pulse train oscillated by the oscillating unit 1 shown in FIG. 1 is amplified by the preamplifier unit 2 to an output such that the main amplifying unit 7 has a saturation gain. . At this time, the upper level life of the laser medium used in the preamplifier unit 2 is T
In the case of seconds, if the repetition of the pulsed laser beam to be amplified is set higher than “1 / T” pps, the energy stored in the upper level of the preamplifier section 2 can be efficiently extracted.

【0038】主増幅部7では、主増幅器14,16をダ
ブルパスアンプとして用いるので、増幅器同士が結合し
て寄生発振を起こす可能性、または、戻り光が発振部1
の性能を乱す可能性がある。これを防ぐため、プリアン
プ部2から出射されたレーザビームは、光アイソレータ
3を介してビーム整形部4に入射する。
Since the main amplifiers 14 and 16 are used as double-pass amplifiers in the main amplifying section 7, there is a possibility that the amplifiers may be coupled with each other to cause parasitic oscillation, or the return light may cause return oscillation.
May disturb the performance of. In order to prevent this, the laser beam emitted from the preamplifier unit 2 enters the beam shaping unit 4 via the optical isolator 3.

【0039】ビーム整形部4に入射したレーザビーム
「A」は、図4に示されるようにビーム拡大器11で拡
大されレーザビーム「B」となる。次いで、アポタイザ
12が中心部の平坦なビームプロファイルが得られるよ
うにレーザビーム「B」の空間分布を整形してレーザビ
ーム「C」を生成する。このビームプロファイルは主増
幅部7の入り口に結像されるようにスペーシャルフィル
タ13及び光学系5が配置される。高繰り返しパルスレ
ーザ列は主増幅部7の主増幅器14,16で増幅され
る。この増幅もプリアンプ部2と同様、主増幅器14,
16に使用されているレーザ媒質の上準位寿命がT秒で
ある場合、増幅するパルスレーザビームの繰返しが「1
/T」ppsより高ければ主増幅器14,16の上準位
に蓄えられたエネルギーを効率良く取り出すことができ
る。また、空間的なビームプロファイルが平坦であるの
でレーザ媒質の体積利用効率を高くすることができる。
The laser beam “A” incident on the beam shaping unit 4 is expanded by the beam expander 11 to be a laser beam “B” as shown in FIG. Then, the apodizer 12 shapes the spatial distribution of the laser beam “B” so as to obtain a flat beam profile in the central portion and generates a laser beam “C”. The spatial filter 13 and the optical system 5 are arranged so that this beam profile is imaged at the entrance of the main amplification unit 7. The high repetition pulse laser train is amplified by the main amplifiers 14 and 16 of the main amplifier 7. This amplification is similar to that of the preamplifier unit 2, and the main amplifier 14,
When the upper level life of the laser medium used in 16 is T seconds, the repetition of the pulsed laser beam for amplification is "1.
If it is higher than / T "pps, the energy stored in the upper level of the main amplifiers 14 and 16 can be efficiently extracted. Moreover, since the spatial beam profile is flat, the volume utilization efficiency of the laser medium can be increased.

【0040】レーザ媒質がYAG(Yttrium A
luminum Garnet)結晶のような熱的な偏
光解消を生じる場合、それぞれの主増幅器14,16を
通過する偏光方向を90度ローテータ15で直交させる
ことにより偏光解消をキャンセルすることができる。ま
たCW励起によるレーザ媒質の熱歪は、マルチSBSセ
ルで構成された位相共役鏡8において、入射される波面
を保存した形で反射させ、再度同一の熱歪を受けたレー
ザ媒質を逆行させることによりキャンセルさせている。
主増幅部7におけるダブルパス増幅後の偏光方向はファ
ラデーローテータ18により直交し、外部へのビーム出
力は偏光器6で取り出される。図2に示されるマルチS
BS反射鏡システムは、複数の等間隔に配備されるSB
Sセル24へ入射するレーザビームを回転プリズム21
で回転させ、その速度をパルスレーザビームの繰り返し
と同期させる。
The laser medium is YAG (Yttrium A)
When thermal depolarization such as that of a luminum garnet crystal occurs, depolarization can be canceled by making the polarization directions passing through the respective main amplifiers 14 and 16 orthogonal by the 90 ° rotator 15. Further, the thermal distortion of the laser medium due to the CW excitation is reflected by the phase conjugate mirror 8 composed of the multi-SBS cell while preserving the incident wavefront, and the laser medium that has been subjected to the same thermal distortion is caused to go backward. It is canceled by.
The polarization directions after double-pass amplification in the main amplification section 7 are made orthogonal by the Faraday rotator 18, and the beam output to the outside is taken out by the polarizer 6. Multi S shown in FIG.
The BS reflector system has SBs arranged at a plurality of equal intervals.
The rotating prism 21 receives the laser beam incident on the S cell 24.
, And the speed is synchronized with the repetition of the pulsed laser beam.

【0041】ビームの方向は、折返しミラー22で補正
され、集光レンズ23でSBSセル24内に集光され
る。SBSセル24内の媒質は位相共役鏡として作用
し、入射した波面を保存して逆方向に進行する。SBS
セル24の数をm本とするマルチSBSセルのシステム
の場合、1本あたりのSBSセル24が分担する入射レ
ーザパワーは「1/m」に軽減でき、SBSセル24が
熱的に不安定になる平均出力をm倍に伸ばすことができ
る。
The direction of the beam is corrected by the folding mirror 22 and is condensed in the SBS cell 24 by the condenser lens 23. The medium in the SBS cell 24 acts as a phase conjugate mirror, stores the incident wavefront, and travels in the opposite direction. SBS
In the case of a multi SBS cell system in which the number of cells 24 is m, the incident laser power shared by each SBS cell 24 can be reduced to “1 / m”, and the SBS cells 24 become thermally unstable. The average output can be extended m times.

【0042】上記説明では、発振部をフロントエンド発
振器としたがパルスレーザ発振器を用いてもよく、また
増幅部をCW励起アンプとしたがパルス励起アンプを用
いてもよい。また、増幅器の数及び配置箇所は上記説明
に限定されない。また、SBSセルに用いる媒体を、例
えば「C14」または「C18に5分の1の割
合でC16Oを混合」のようなフッ化炭素を想定し
てフッ素系不活性液体等の液体媒質としたが、二硫化炭
素(CS)もしくは四塩化物(例えばTiCl4,S
nCl,CCl)による液体、CH,SF等の
気体、または石英等の固体など、SBSを起こす物質で
あればその材質は問わない。
In the above description, the oscillator is the front-end oscillator, but a pulse laser oscillator may be used, and the amplifier is a CW pump amplifier, but a pulse pump amplifier may be used. The number of amplifiers and the location of the amplifiers are not limited to the above description. Further, the medium used for the SBS cell is assumed to be a fluorocarbon such as “C 6 F 14 ” or “C 8 F 18 mixed with C 8 F 16 O at a ratio of 1/5”. Although a liquid medium such as an inert liquid is used, carbon disulfide (CS 2 ) or tetrachloride (eg TiCl 4, S
Any material can be used as long as it is a substance that causes SBS, such as a liquid made of nCl 4 or CCl 4 ), a gas such as CH 4 or SF 5 , or a solid such as quartz.

【0043】上記説明では、高繰返しパルスレーザシス
テムとしてのみ説明したが、レーザシステムの全般にも
適用が可能である。
In the above description, the high repetition pulse laser system has been described, but the present invention can be applied to all laser systems.

【0044】このように、上記説明では、図示された機
能ブロックを参照しているが、機能の分離併合による配
分、機能ブロックの複数配備及びその配備個所、構成要
素の形状及びその配置などの変更は上記機能を満たす限
り自由であり、上記説明が本発明を限定するものではな
い。
As described above, in the above description, the functional blocks shown in the drawings are referred to, but the distribution by dividing and merging functions, the plurality of functional blocks and the locations where the functional blocks are disposed, the shapes of constituent elements and the arrangement thereof are changed. Is free as long as the above function is satisfied, and the above description does not limit the present invention.

【0045】[0045]

【発明の効果】以上説明したように本発明によれば、複
数のSBSセルに対してパルスレーザビームを配分して
おり、更に、パルスを順次移動させているので、次に挙
げるような効果が期待できる。
As described above, according to the present invention, the pulse laser beam is distributed to the plurality of SBS cells, and the pulses are sequentially moved. Therefore, the following effects can be obtained. Can be expected.

【0046】第一の効果は、高繰り返しパルスレーザの
平均出力をマルチSBSセルの数に比例して伸ばすこと
が可能となる。
The first effect is that the average output of the high repetition pulse laser can be extended in proportion to the number of multi SBS cells.

【0047】すなわち、SBSセルの媒質としてフッ化
炭素のようなフッ素系不活性液体等の液体媒質を用いる
場合、入射するレーザの平均パワーは媒質への吸収制限
で決まる値より低いほど、またパルスエネルギーは反射
率が高い状態にできる程度に大きい程、安定に動作す
る。したがって、繰返しは平均出力をパルスエネルギー
で除した値より大きくすることはできず、これがレーザ
の繰返しを制限している。この制限を回避するため、一
つのSBSセル内において集光スポット位置を回転プリ
ズムで移動させ熱的な制約を緩和する方法があったが、
セルの断面積を大きくしない限り回転プリズムで移動で
きる集光点の円周距離と集光径、および媒質の熱緩和で
その繰り返しは制限される。しかし、本発明によればこ
のような心配はない。従って、高効率、高平均パワーを
有するパルスレーザビームを高い安定性をもって出力す
ることできる。
That is, when a liquid medium such as a fluorine-based inactive liquid such as fluorocarbon is used as the medium of the SBS cell, the average power of the incident laser is lower than the value determined by the absorption limit of the medium, and the pulse power is higher. If the energy is large enough to make the reflectance high, the stable operation is achieved. Therefore, the repetition cannot be greater than the average power divided by the pulse energy, which limits the repetition of the laser. In order to avoid this limitation, there is a method of moving the focused spot position by a rotating prism in one SBS cell to relax the thermal constraint.
Unless the cell cross-sectional area is increased, the repetition is limited by the circumferential distance of the converging point and the condensing diameter that can be moved by the rotating prism, and the thermal relaxation of the medium. However, according to the present invention, there is no such concern. Therefore, a pulsed laser beam having high efficiency and high average power can be output with high stability.

【0048】第二の効果はSBSセルの1本あたりの負
担を軽減できることである。すなわち、媒質の劣化を抑
制でき長寿命化が期待でき、メンテナンス性も向上し、
劣化したセルのみ差し替えも可能となる。
The second effect is that the load per SBS cell can be reduced. That is, deterioration of the medium can be suppressed, long life can be expected, and maintainability is improved.
Only deteriorated cells can be replaced.

【0049】第三の効果は例えばSBSの媒質をセルご
とに変えることにより、多波長発振が可能となることで
ある。従って、パルスごとの波長を制御でき、波長可変
レーザとしても活用できる。
The third effect is that multiwavelength oscillation can be achieved by changing the medium of SBS for each cell. Therefore, the wavelength of each pulse can be controlled, and it can be utilized as a wavelength tunable laser.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施の一形態を示す機能ブロック図で
ある。
FIG. 1 is a functional block diagram showing an embodiment of the present invention.

【図2】図1における位相共役鏡の実施の一形態を示す
斜視図である。
FIG. 2 is a perspective view showing an embodiment of the phase conjugate mirror in FIG.

【図3】図2における一つの光軸に対応する構成要素対
応図である。
FIG. 3 is a component correspondence diagram corresponding to one optical axis in FIG.

【図4】図1におけるビーム整形を説明する図である。FIG. 4 is a diagram illustrating beam shaping in FIG.

【図5】従来の一例を示す機能ブロック図である。FIG. 5 is a functional block diagram showing a conventional example.

【符号の説明】[Explanation of symbols]

1 フロントエンド発振部(発振部) 2 CW励起プリアンプ部(プリアンプ部) 3 光アイソレータ 4 ビーム整形部 5 光学系 6 偏光器 7 主増幅部 8 位相共役鏡 11 ビーム拡大器 12 アポタイザ 13 スペーシャルフィルタ 14、16 CW励起主増幅器(主増幅器) 15 90度ローテータ 17 広がり角調整器 18 ファラデーローテータ 21 回転ウェッジプリズム(回転プリズム) 22 折返しミラー 23 集光レンズ 24 SBSセル 1 Front-end oscillator (oscillator) 2 CW excitation preamplifier section (preamplifier section) 3 Optical isolator 4 Beam shaping section 5 Optical system 6 Polarizer 7 Main amplification section 8 Phase conjugate mirror 11 beam expander 12 Apotizer 13 Spatial filter 14, 16 CW pump main amplifier (main amplifier) 15 90 degree rotator 17 Spread angle adjuster 18 Faraday Rotator 21 Rotating wedge prism (rotating prism) 22 folding mirror 23 Condensing lens 24 SBS cells

フロントページの続き (71)出願人 502176786 山中 正宣 大阪府箕面市石丸3丁目25−E205 (71)出願人 502194230 吉田 英次 大阪府高槻市日吉台4−20−12 (72)発明者 久保村 浩之 東京都港区芝五丁目7番1号 日本電気株 式会社内 (72)発明者 井澤 靖和 大阪府茨木市橋の内2−8−417 (72)発明者 中塚 正大 奈良県生駒市緑ケ丘1425−78 (72)発明者 山中 正宣 大阪府箕面市石丸3丁目25−E205 (72)発明者 吉田 英次 大阪府高槻市日吉台4−20−12 Fターム(参考) 2K002 AB27 AB31 AB40 CA17 HA24 5F072 HH07 JJ07 KK06 QQ06 QQ11 SS06 Continued front page    (71) Applicant 502176786             Masanori Yamanaka             25-E205, Ishimaru 3-chome, Minoh City, Osaka Prefecture (71) Applicant 502194230             Eiji Yoshida             4-20-12 Hiyoshidai, Takatsuki City, Osaka Prefecture (72) Inventor Hiroyuki Kubomura             5-7 Shiba 5-1, Minato-ku, Tokyo NEC Corporation             Inside the company (72) Inventor Yasukazu Izawa             2-8-417, Hashiuchi, Ibaraki, Osaka (72) Inventor Masahiro Nakatsuka             1425-78 Midorigaoka, Ikoma City, Nara Prefecture (72) Inventor Masanori Yamanaka             25-E205, Ishimaru 3-chome, Minoh City, Osaka Prefecture (72) Inventor Eiji Yoshida             4-20-12 Hiyoshidai, Takatsuki City, Osaka Prefecture F-term (reference) 2K002 AB27 AB31 AB40 CA17 HA24                 5F072 HH07 JJ07 KK06 QQ06 QQ11                       SS06

Claims (10)

【特許請求の範囲】[Claims] 【請求項1】 SBS(Stimulated Bri
llouin Scattering:誘導ブリユアン
散乱)セルを用いた反射鏡であって、該反射鏡に入反射
する一つの第一の光軸を複数の第二の光軸に形成するプ
リズムと、前記第二の光軸それぞれに対応して備えられ
該第二の光軸によりレーザビームを入反射する複数の前
記SBSセルとを備えるマルチSBS構成であることを
特徴とするSBS反射鏡。
1. An SBS (Simulated Bri)
a reflection mirror using a stimulated Brillouin scattering cell, the prism forming one first optical axis into a plurality of second optical axes that enter and reflect the reflection mirror, and the second light. An SBS reflecting mirror having a multi-SBS structure including a plurality of SBS cells which are provided corresponding to respective axes and which reflect and reflect a laser beam by the second optical axis.
【請求項2】 請求項1において、光軸を平行として配
置する複数の前記SBSセルと、該SBSセルそれぞれ
に対応して備えられ前記SBSセルにレーザビームを入
反射する平行な第三の光軸を形成するレーザビームを反
射させて前記第二の光軸を形成する折返しミラーとを備
えることを特徴とするSBS反射鏡。
2. The plurality of SBS cells arranged with their optical axes parallel to each other, and the third parallel light provided corresponding to each of the SBS cells and reflecting / reflecting a laser beam to / from the SBS cells. An SBS reflecting mirror, comprising: a folding mirror that reflects a laser beam that forms an axis to form the second optical axis.
【請求項3】 請求項1において、複数の前記SBSセ
ルはレーザビームの入射面を前記第一の光軸に対して円
環状に配置され、かつ、前記プリズムは、前記第二の光
軸を円錐状表面に形成し、かつ前記第一の光軸により入
反射する繰返しのパルスレーザビームに同期して複数の
第二の光軸を前記第一の光軸に順次接続するように回転
する回転ウェッジプリズムであることを特徴とするSB
S反射鏡。
3. The plurality of SBS cells according to claim 1, wherein the incident surface of the laser beam is arranged in an annular shape with respect to the first optical axis, and the prism has the second optical axis. Rotation that is formed on a conical surface and that rotates so as to sequentially connect a plurality of second optical axes to the first optical axis in synchronization with the repeated pulsed laser beam that is reflected and reflected by the first optical axis. SB characterized by being a wedge prism
S reflector.
【請求項4】 請求項3において、複数の前記SBSセ
ルは、複数の異なる媒質のSBSセルにより構成される
ことを特徴とするSBS反射鏡。
4. The SBS reflector according to claim 3, wherein the plurality of SBS cells are composed of a plurality of SBS cells of different media.
【請求項5】 請求項3において、複数の前記SBSセ
ルは等間隔に円環状に配置され、かつ前記プリズムは前
記第二の光軸を円錐状表面に等間隔角度に形成すること
を特徴とするSBS反射鏡。
5. The plurality of SBS cells according to claim 3, wherein the plurality of SBS cells are arranged in an annular shape at equal intervals, and the prism forms the second optical axis on the conical surface at equal intervals. An SBS reflector.
【請求項6】 発振された高繰返しレーザパルス列をレ
ーザビームに形成し必要とするエネルギーまでに増幅し
て偏光器を透過させた後、位相共役鏡で反射させるその
間に往復路を形成する主増幅部により飽和増幅レベルま
で増幅した反射波を前記偏光器から出力として取出すも
のであって、前記位相共役鏡は、SBS(Stimul
ated Brillouin Scatterin
g:誘導ブリユアン散乱)セルの複数個を用い、入反射
するレーザパルス毎に前記SBSセルを逐次切り替える
マルチSBSセル構造による反射鏡であることを特徴と
する高繰返しパルスレーザシステム。
6. A main amplifier which forms a oscillated high repetition laser pulse train into a laser beam, amplifies the laser beam to a required energy, transmits it through a polarizer, and then reflects it by a phase conjugate mirror to form a round trip path therebetween. A reflected wave amplified to a saturation amplification level by a section is taken out from the polarizer as an output, and the phase conjugate mirror is an SBS (Stimul).
aged Brillouin Scatterin
g: stimulated Brillouin scattering) A high-repetition pulse laser system using a plurality of cells and having a multi-SBS cell structure in which the SBS cells are sequentially switched for each incoming / reflecting laser pulse.
【請求項7】 請求項6において、前記位相共役鏡の複
数の前記SBSセルは、複数の異なる媒質を有するSB
Sセルにより構成されることを特徴とする高繰返しパル
スレーザシステム。
7. The SB according to claim 6, wherein the plurality of SBS cells of the phase conjugate mirror have a plurality of different media.
A high-repetition pulse laser system characterized by being composed of S cells.
【請求項8】 高繰返しレーザパルス列を発振しビーム
として出射する発振部と、該発振部の出射ビームを受け
て所定の必要とするエネルギーまでに増幅し出射するプ
リアンプ部と、一端部で該プリアンプ部の出射ビームを
受けて増幅し他端部から出射すると共にこの出射したビ
ームの反射波を該他端部から入射し前記一端部から出射
するという往復路を形成して飽和増幅レベルまで増幅す
る主増幅部と、前記プリアンプ部の出射ビームを透過し
て前記主増幅部の前記一端部に入射し、該一端部から出
射する前記反射波を反射して外部へのビーム出力とする
偏光器と、前記主増幅部の前記他端部から出射するビー
ムを該他端部へ反射する位相共役鏡とを備えるものであ
って、前記位相共役鏡は、SBS(Stimulate
d Brillouin Scattering:誘導
ブリユアン散乱)セルの複数個を用い、入反射するレー
ザパルス毎に前記SBSセルを逐次切り替えるマルチS
BSセル構造による反射鏡であることを特徴とする高繰
返しパルスレーザシステム。
8. An oscillating section that oscillates a high repetition laser pulse train and emits it as a beam, a preamplifier section that receives the outgoing beam of the oscillating section, amplifies and emits the energy up to a predetermined required energy, and the preamplifier at one end. And outputs the reflected wave of the emitted beam from the other end to form a reciprocal path in which the reflected wave of the emitted beam enters from the other end and exits from the one end to be amplified to a saturation amplification level. A main amplifying unit, and a polarizer that transmits the outgoing beam of the preamplifying unit, enters the one end of the main amplifying unit, and reflects the reflected wave emitted from the one end to output the beam to the outside. A phase conjugate mirror that reflects a beam emitted from the other end of the main amplification unit to the other end, wherein the phase conjugate mirror is an SBS (Stimulate).
d Brillouin Scattering (Stimulated Brillouin Scattering) using a plurality of cells, the SBS cell is sequentially switched for each laser pulse to be reflected and reflected.
A highly repetitive pulse laser system characterized by being a reflector having a BS cell structure.
【請求項9】 請求項8において、前記主増幅部は、二
つの主増幅器と該主増幅器の間に挿入配備され両者同士
の偏光解消を補正する90度ローテータとの少なくとも
一組の直列配置構成と、前記他端部に増幅後のビームを
平行光に補正する広がり角調整器とを備え、更に前記主
増幅部と前記位相共役鏡との間に備えられ反射されたビ
ームの偏光方向を入射するビームに対して90度直交さ
せるファラデーローテータを備えることを特徴とする高
繰返しパルスレーザシステム。
9. The structure according to claim 8, wherein the main amplification section is arranged in series with at least one pair of two main amplifiers and a 90-degree rotator that is provided between the main amplifiers and corrects depolarization between the two main amplifiers. And a divergence angle adjuster for correcting the beam after amplification into parallel light at the other end, and further incident the polarization direction of the reflected beam provided between the main amplification unit and the phase conjugate mirror. High-repetition-pulse laser system comprising a Faraday rotator that makes the beam 90 degrees orthogonal to each other.
【請求項10】 請求項8において、前記プリアンプ部
の出射ビームを受け、ビーム径を拡大するビーム拡大器
と、該ビーム拡大器により拡大されたビームのプロファ
イルを平坦に整形して出射するアポタイザと、該アポタ
イザが出射するビームプロファイルをそのまま維持して
前記主増幅部へ転送するスペーシャルフィルタとを更に
備えることを特徴とする高繰返しパルスレーザシステ
ム。
10. The beam expander according to claim 8, which receives the beam emitted from the preamplifier unit and expands the beam diameter, and the apodizer which shapes the profile of the beam expanded by the beam expander to be flat and emits it. And a spatial filter for maintaining the beam profile emitted from the apodizer as it is and transferring it to the main amplification unit.
JP2002156735A 2002-05-30 2002-05-30 Sbs reflection mirror and high-repetition-pulse laser system using the same Pending JP2003344883A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002156735A JP2003344883A (en) 2002-05-30 2002-05-30 Sbs reflection mirror and high-repetition-pulse laser system using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002156735A JP2003344883A (en) 2002-05-30 2002-05-30 Sbs reflection mirror and high-repetition-pulse laser system using the same

Publications (1)

Publication Number Publication Date
JP2003344883A true JP2003344883A (en) 2003-12-03

Family

ID=29772852

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002156735A Pending JP2003344883A (en) 2002-05-30 2002-05-30 Sbs reflection mirror and high-repetition-pulse laser system using the same

Country Status (1)

Country Link
JP (1) JP2003344883A (en)

Cited By (136)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005331599A (en) * 2004-05-18 2005-12-02 Kawasaki Heavy Ind Ltd Wavelength conversion laser device
CN1295824C (en) * 2004-10-29 2007-01-17 华中科技大学 Approximate outer fluid generator for pulsed laser Q modulation
CN100385331C (en) * 2006-05-31 2008-04-30 哈尔滨工业大学 Laser pulse shaping device and method based on two-cell stimulated Brillouin scattering system
US7436866B2 (en) * 2005-11-30 2008-10-14 Raydiance, Inc. Combination optical isolator and pulse compressor
US8125704B2 (en) 2008-08-18 2012-02-28 Raydiance, Inc. Systems and methods for controlling a pulsed laser by combining laser signals
US8135050B1 (en) 2005-07-19 2012-03-13 Raydiance, Inc. Automated polarization correction
US8139910B2 (en) 2006-01-23 2012-03-20 Raydiance, Inc. Systems and methods for control of ultra short pulse amplification
US8150271B1 (en) 2006-03-28 2012-04-03 Raydiance, Inc. Active tuning of temporal dispersion in an ultrashort pulse laser system
US8173929B1 (en) 2003-08-11 2012-05-08 Raydiance, Inc. Methods and systems for trimming circuits
US8189971B1 (en) 2006-01-23 2012-05-29 Raydiance, Inc. Dispersion compensation in a chirped pulse amplification system
US8232687B2 (en) 2006-04-26 2012-07-31 Raydiance, Inc. Intelligent laser interlock system
US8398622B2 (en) 2003-05-20 2013-03-19 Raydiance, Inc. Portable optical ablation system
US8498538B2 (en) 2008-11-14 2013-07-30 Raydiance, Inc. Compact monolithic dispersion compensator
US8554037B2 (en) 2010-09-30 2013-10-08 Raydiance, Inc. Hybrid waveguide device in powerful laser systems
US8619357B2 (en) 2007-11-30 2013-12-31 Raydiance, Inc. Static phase mask for high-order spectral phase control in a hybrid chirped pulse amplifier system
US8884184B2 (en) 2010-08-12 2014-11-11 Raydiance, Inc. Polymer tubing laser micromachining
US8921733B2 (en) 2003-08-11 2014-12-30 Raydiance, Inc. Methods and systems for trimming circuits
US9022037B2 (en) 2003-08-11 2015-05-05 Raydiance, Inc. Laser ablation method and apparatus having a feedback loop and control unit
US9114482B2 (en) 2010-09-16 2015-08-25 Raydiance, Inc. Laser based processing of layered materials
US9130344B2 (en) 2006-01-23 2015-09-08 Raydiance, Inc. Automated laser tuning
US9674711B2 (en) 2013-11-06 2017-06-06 At&T Intellectual Property I, L.P. Surface-wave communications and methods thereof
US9685992B2 (en) 2014-10-03 2017-06-20 At&T Intellectual Property I, L.P. Circuit panel network and methods thereof
US9705561B2 (en) 2015-04-24 2017-07-11 At&T Intellectual Property I, L.P. Directional coupling device and methods for use therewith
US9705610B2 (en) 2014-10-21 2017-07-11 At&T Intellectual Property I, L.P. Transmission device with impairment compensation and methods for use therewith
US9729197B2 (en) 2015-10-01 2017-08-08 At&T Intellectual Property I, L.P. Method and apparatus for communicating network management traffic over a network
US9735833B2 (en) 2015-07-31 2017-08-15 At&T Intellectual Property I, L.P. Method and apparatus for communications management in a neighborhood network
US9742462B2 (en) 2014-12-04 2017-08-22 At&T Intellectual Property I, L.P. Transmission medium and communication interfaces and methods for use therewith
US9742521B2 (en) 2014-11-20 2017-08-22 At&T Intellectual Property I, L.P. Transmission device with mode division multiplexing and methods for use therewith
US9749053B2 (en) 2015-07-23 2017-08-29 At&T Intellectual Property I, L.P. Node device, repeater and methods for use therewith
US9748626B2 (en) 2015-05-14 2017-08-29 At&T Intellectual Property I, L.P. Plurality of cables having different cross-sectional shapes which are bundled together to form a transmission medium
US9749013B2 (en) 2015-03-17 2017-08-29 At&T Intellectual Property I, L.P. Method and apparatus for reducing attenuation of electromagnetic waves guided by a transmission medium
US9769020B2 (en) 2014-10-21 2017-09-19 At&T Intellectual Property I, L.P. Method and apparatus for responding to events affecting communications in a communication network
US9769128B2 (en) 2015-09-28 2017-09-19 At&T Intellectual Property I, L.P. Method and apparatus for encryption of communications over a network
US9768833B2 (en) 2014-09-15 2017-09-19 At&T Intellectual Property I, L.P. Method and apparatus for sensing a condition in a transmission medium of electromagnetic waves
US9780834B2 (en) 2014-10-21 2017-10-03 At&T Intellectual Property I, L.P. Method and apparatus for transmitting electromagnetic waves
US9787412B2 (en) 2015-06-25 2017-10-10 At&T Intellectual Property I, L.P. Methods and apparatus for inducing a fundamental wave mode on a transmission medium
US9793955B2 (en) 2015-04-24 2017-10-17 At&T Intellectual Property I, Lp Passive electrical coupling device and methods for use therewith
US9793954B2 (en) 2015-04-28 2017-10-17 At&T Intellectual Property I, L.P. Magnetic coupling device and methods for use therewith
US9800327B2 (en) 2014-11-20 2017-10-24 At&T Intellectual Property I, L.P. Apparatus for controlling operations of a communication device and methods thereof
US9820146B2 (en) 2015-06-12 2017-11-14 At&T Intellectual Property I, L.P. Method and apparatus for authentication and identity management of communicating devices
US9838896B1 (en) 2016-12-09 2017-12-05 At&T Intellectual Property I, L.P. Method and apparatus for assessing network coverage
US9838078B2 (en) 2015-07-31 2017-12-05 At&T Intellectual Property I, L.P. Method and apparatus for exchanging communication signals
US9847566B2 (en) 2015-07-14 2017-12-19 At&T Intellectual Property I, L.P. Method and apparatus for adjusting a field of a signal to mitigate interference
US9847850B2 (en) 2014-10-14 2017-12-19 At&T Intellectual Property I, L.P. Method and apparatus for adjusting a mode of communication in a communication network
US9853342B2 (en) 2015-07-14 2017-12-26 At&T Intellectual Property I, L.P. Dielectric transmission medium connector and methods for use therewith
US9860075B1 (en) 2016-08-26 2018-01-02 At&T Intellectual Property I, L.P. Method and communication node for broadband distribution
US9865911B2 (en) 2015-06-25 2018-01-09 At&T Intellectual Property I, L.P. Waveguide system for slot radiating first electromagnetic waves that are combined into a non-fundamental wave mode second electromagnetic wave on a transmission medium
US9866309B2 (en) 2015-06-03 2018-01-09 At&T Intellectual Property I, Lp Host node device and methods for use therewith
US9866276B2 (en) 2014-10-10 2018-01-09 At&T Intellectual Property I, L.P. Method and apparatus for arranging communication sessions in a communication system
US9871282B2 (en) 2015-05-14 2018-01-16 At&T Intellectual Property I, L.P. At least one transmission medium having a dielectric surface that is covered at least in part by a second dielectric
US9871558B2 (en) 2014-10-21 2018-01-16 At&T Intellectual Property I, L.P. Guided-wave transmission device and methods for use therewith
US9871283B2 (en) 2015-07-23 2018-01-16 At&T Intellectual Property I, Lp Transmission medium having a dielectric core comprised of plural members connected by a ball and socket configuration
US9876264B2 (en) 2015-10-02 2018-01-23 At&T Intellectual Property I, Lp Communication system, guided wave switch and methods for use therewith
US9876571B2 (en) 2015-02-20 2018-01-23 At&T Intellectual Property I, Lp Guided-wave transmission device with non-fundamental mode propagation and methods for use therewith
US9882257B2 (en) 2015-07-14 2018-01-30 At&T Intellectual Property I, L.P. Method and apparatus for launching a wave mode that mitigates interference
US9887447B2 (en) 2015-05-14 2018-02-06 At&T Intellectual Property I, L.P. Transmission medium having multiple cores and methods for use therewith
US9893795B1 (en) 2016-12-07 2018-02-13 At&T Intellectual Property I, Lp Method and repeater for broadband distribution
US9904535B2 (en) 2015-09-14 2018-02-27 At&T Intellectual Property I, L.P. Method and apparatus for distributing software
US9906269B2 (en) 2014-09-17 2018-02-27 At&T Intellectual Property I, L.P. Monitoring and mitigating conditions in a communication network
US9912027B2 (en) 2015-07-23 2018-03-06 At&T Intellectual Property I, L.P. Method and apparatus for exchanging communication signals
US9912033B2 (en) 2014-10-21 2018-03-06 At&T Intellectual Property I, Lp Guided wave coupler, coupling module and methods for use therewith
US9912381B2 (en) 2015-06-03 2018-03-06 At&T Intellectual Property I, Lp Network termination and methods for use therewith
US9911020B1 (en) 2016-12-08 2018-03-06 At&T Intellectual Property I, L.P. Method and apparatus for tracking via a radio frequency identification device
US9913139B2 (en) 2015-06-09 2018-03-06 At&T Intellectual Property I, L.P. Signal fingerprinting for authentication of communicating devices
US9917341B2 (en) 2015-05-27 2018-03-13 At&T Intellectual Property I, L.P. Apparatus and method for launching electromagnetic waves and for modifying radial dimensions of the propagating electromagnetic waves
US9929755B2 (en) 2015-07-14 2018-03-27 At&T Intellectual Property I, L.P. Method and apparatus for coupling an antenna to a device
US9927517B1 (en) 2016-12-06 2018-03-27 At&T Intellectual Property I, L.P. Apparatus and methods for sensing rainfall
US9948333B2 (en) 2015-07-23 2018-04-17 At&T Intellectual Property I, L.P. Method and apparatus for wireless communications to mitigate interference
US9954287B2 (en) 2014-11-20 2018-04-24 At&T Intellectual Property I, L.P. Apparatus for converting wireless signals and electromagnetic waves and methods thereof
US9954286B2 (en) 2014-10-21 2018-04-24 At&T Intellectual Property I, L.P. Guided-wave transmission device with non-fundamental mode propagation and methods for use therewith
US9967173B2 (en) 2015-07-31 2018-05-08 At&T Intellectual Property I, L.P. Method and apparatus for authentication and identity management of communicating devices
US9973940B1 (en) 2017-02-27 2018-05-15 At&T Intellectual Property I, L.P. Apparatus and methods for dynamic impedance matching of a guided wave launcher
US9973416B2 (en) 2014-10-02 2018-05-15 At&T Intellectual Property I, L.P. Method and apparatus that provides fault tolerance in a communication network
US9999038B2 (en) 2013-05-31 2018-06-12 At&T Intellectual Property I, L.P. Remote distributed antenna system
US9998870B1 (en) 2016-12-08 2018-06-12 At&T Intellectual Property I, L.P. Method and apparatus for proximity sensing
US9997819B2 (en) 2015-06-09 2018-06-12 At&T Intellectual Property I, L.P. Transmission medium and method for facilitating propagation of electromagnetic waves via a core
US10009067B2 (en) 2014-12-04 2018-06-26 At&T Intellectual Property I, L.P. Method and apparatus for configuring a communication interface
US10020844B2 (en) 2016-12-06 2018-07-10 T&T Intellectual Property I, L.P. Method and apparatus for broadcast communication via guided waves
US10027397B2 (en) 2016-12-07 2018-07-17 At&T Intellectual Property I, L.P. Distributed antenna system and methods for use therewith
US10044409B2 (en) 2015-07-14 2018-08-07 At&T Intellectual Property I, L.P. Transmission medium and methods for use therewith
US10051630B2 (en) 2013-05-31 2018-08-14 At&T Intellectual Property I, L.P. Remote distributed antenna system
US10069185B2 (en) 2015-06-25 2018-09-04 At&T Intellectual Property I, L.P. Methods and apparatus for inducing a non-fundamental wave mode on a transmission medium
US10069535B2 (en) 2016-12-08 2018-09-04 At&T Intellectual Property I, L.P. Apparatus and methods for launching electromagnetic waves having a certain electric field structure
US10090594B2 (en) 2016-11-23 2018-10-02 At&T Intellectual Property I, L.P. Antenna system having structural configurations for assembly
US10090606B2 (en) 2015-07-15 2018-10-02 At&T Intellectual Property I, L.P. Antenna system with dielectric array and methods for use therewith
US10103422B2 (en) 2016-12-08 2018-10-16 At&T Intellectual Property I, L.P. Method and apparatus for mounting network devices
US10135145B2 (en) 2016-12-06 2018-11-20 At&T Intellectual Property I, L.P. Apparatus and methods for generating an electromagnetic wave along a transmission medium
US10139820B2 (en) 2016-12-07 2018-11-27 At&T Intellectual Property I, L.P. Method and apparatus for deploying equipment of a communication system
US10148016B2 (en) 2015-07-14 2018-12-04 At&T Intellectual Property I, L.P. Apparatus and methods for communicating utilizing an antenna array
US10168695B2 (en) 2016-12-07 2019-01-01 At&T Intellectual Property I, L.P. Method and apparatus for controlling an unmanned aircraft
US10178445B2 (en) 2016-11-23 2019-01-08 At&T Intellectual Property I, L.P. Methods, devices, and systems for load balancing between a plurality of waveguides
US10205655B2 (en) 2015-07-14 2019-02-12 At&T Intellectual Property I, L.P. Apparatus and methods for communicating utilizing an antenna array and multiple communication paths
US10224634B2 (en) 2016-11-03 2019-03-05 At&T Intellectual Property I, L.P. Methods and apparatus for adjusting an operational characteristic of an antenna
US10225025B2 (en) 2016-11-03 2019-03-05 At&T Intellectual Property I, L.P. Method and apparatus for detecting a fault in a communication system
US10243784B2 (en) 2014-11-20 2019-03-26 At&T Intellectual Property I, L.P. System for generating topology information and methods thereof
US10243270B2 (en) 2016-12-07 2019-03-26 At&T Intellectual Property I, L.P. Beam adaptive multi-feed dielectric antenna system and methods for use therewith
US10239160B2 (en) 2011-09-21 2019-03-26 Coherent, Inc. Systems and processes that singulate materials
US10264586B2 (en) 2016-12-09 2019-04-16 At&T Mobility Ii Llc Cloud-based packet controller and methods for use therewith
US10291334B2 (en) 2016-11-03 2019-05-14 At&T Intellectual Property I, L.P. System for detecting a fault in a communication system
US10298293B2 (en) 2017-03-13 2019-05-21 At&T Intellectual Property I, L.P. Apparatus of communication utilizing wireless network devices
US10305190B2 (en) 2016-12-01 2019-05-28 At&T Intellectual Property I, L.P. Reflecting dielectric antenna system and methods for use therewith
US10312567B2 (en) 2016-10-26 2019-06-04 At&T Intellectual Property I, L.P. Launcher with planar strip antenna and methods for use therewith
US10326494B2 (en) 2016-12-06 2019-06-18 At&T Intellectual Property I, L.P. Apparatus for measurement de-embedding and methods for use therewith
US10326689B2 (en) 2016-12-08 2019-06-18 At&T Intellectual Property I, L.P. Method and system for providing alternative communication paths
US10340601B2 (en) 2016-11-23 2019-07-02 At&T Intellectual Property I, L.P. Multi-antenna system and methods for use therewith
US10340983B2 (en) 2016-12-09 2019-07-02 At&T Intellectual Property I, L.P. Method and apparatus for surveying remote sites via guided wave communications
US10340603B2 (en) 2016-11-23 2019-07-02 At&T Intellectual Property I, L.P. Antenna system having shielded structural configurations for assembly
US10340573B2 (en) 2016-10-26 2019-07-02 At&T Intellectual Property I, L.P. Launcher with cylindrical coupling device and methods for use therewith
US10355367B2 (en) 2015-10-16 2019-07-16 At&T Intellectual Property I, L.P. Antenna structure for exchanging wireless signals
US10361489B2 (en) 2016-12-01 2019-07-23 At&T Intellectual Property I, L.P. Dielectric dish antenna system and methods for use therewith
US10359749B2 (en) 2016-12-07 2019-07-23 At&T Intellectual Property I, L.P. Method and apparatus for utilities management via guided wave communication
US10382976B2 (en) 2016-12-06 2019-08-13 At&T Intellectual Property I, L.P. Method and apparatus for managing wireless communications based on communication paths and network device positions
US10389029B2 (en) 2016-12-07 2019-08-20 At&T Intellectual Property I, L.P. Multi-feed dielectric antenna system with core selection and methods for use therewith
US10389037B2 (en) 2016-12-08 2019-08-20 At&T Intellectual Property I, L.P. Apparatus and methods for selecting sections of an antenna array and use therewith
US10411356B2 (en) 2016-12-08 2019-09-10 At&T Intellectual Property I, L.P. Apparatus and methods for selectively targeting communication devices with an antenna array
US10439675B2 (en) 2016-12-06 2019-10-08 At&T Intellectual Property I, L.P. Method and apparatus for repeating guided wave communication signals
US10446936B2 (en) 2016-12-07 2019-10-15 At&T Intellectual Property I, L.P. Multi-feed dielectric antenna system and methods for use therewith
US10498044B2 (en) 2016-11-03 2019-12-03 At&T Intellectual Property I, L.P. Apparatus for configuring a surface of an antenna
US10530505B2 (en) 2016-12-08 2020-01-07 At&T Intellectual Property I, L.P. Apparatus and methods for launching electromagnetic waves along a transmission medium
US10535928B2 (en) 2016-11-23 2020-01-14 At&T Intellectual Property I, L.P. Antenna system and methods for use therewith
US10547348B2 (en) 2016-12-07 2020-01-28 At&T Intellectual Property I, L.P. Method and apparatus for switching transmission mediums in a communication system
US10601494B2 (en) 2016-12-08 2020-03-24 At&T Intellectual Property I, L.P. Dual-band communication device and method for use therewith
US10637149B2 (en) 2016-12-06 2020-04-28 At&T Intellectual Property I, L.P. Injection molded dielectric antenna and methods for use therewith
US10650940B2 (en) 2015-05-15 2020-05-12 At&T Intellectual Property I, L.P. Transmission medium having a conductive material and methods for use therewith
US10694379B2 (en) 2016-12-06 2020-06-23 At&T Intellectual Property I, L.P. Waveguide system with device-based authentication and methods for use therewith
US10727599B2 (en) 2016-12-06 2020-07-28 At&T Intellectual Property I, L.P. Launcher with slot antenna and methods for use therewith
US10755542B2 (en) 2016-12-06 2020-08-25 At&T Intellectual Property I, L.P. Method and apparatus for surveillance via guided wave communication
US10777873B2 (en) 2016-12-08 2020-09-15 At&T Intellectual Property I, L.P. Method and apparatus for mounting network devices
US10797781B2 (en) 2015-06-03 2020-10-06 At&T Intellectual Property I, L.P. Client node device and methods for use therewith
US10811767B2 (en) 2016-10-21 2020-10-20 At&T Intellectual Property I, L.P. System and dielectric antenna with convex dielectric radome
US10819035B2 (en) 2016-12-06 2020-10-27 At&T Intellectual Property I, L.P. Launcher with helical antenna and methods for use therewith
US10916969B2 (en) 2016-12-08 2021-02-09 At&T Intellectual Property I, L.P. Method and apparatus for providing power using an inductive coupling
US10938108B2 (en) 2016-12-08 2021-03-02 At&T Intellectual Property I, L.P. Frequency selective multi-feed dielectric antenna system and methods for use therewith
US11070250B2 (en) 2019-12-03 2021-07-20 At&T Intellectual Property I, L.P. Method and apparatus for calibrating waveguide systems to manage propagation delays of electromagnetic waves
US11277159B2 (en) 2019-12-03 2022-03-15 At&T Intellectual Property I, L.P. Method and apparatus for managing propagation delays of electromagnetic waves
US11502724B2 (en) 2019-12-03 2022-11-15 At&T Intellectual Property I, L.P. Method and apparatus for transitioning between electromagnetic wave modes

Cited By (152)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8398622B2 (en) 2003-05-20 2013-03-19 Raydiance, Inc. Portable optical ablation system
US8921733B2 (en) 2003-08-11 2014-12-30 Raydiance, Inc. Methods and systems for trimming circuits
US9022037B2 (en) 2003-08-11 2015-05-05 Raydiance, Inc. Laser ablation method and apparatus having a feedback loop and control unit
US8173929B1 (en) 2003-08-11 2012-05-08 Raydiance, Inc. Methods and systems for trimming circuits
JP4721654B2 (en) * 2004-05-18 2011-07-13 川崎重工業株式会社 Wavelength conversion laser device
JP2005331599A (en) * 2004-05-18 2005-12-02 Kawasaki Heavy Ind Ltd Wavelength conversion laser device
CN1295824C (en) * 2004-10-29 2007-01-17 华中科技大学 Approximate outer fluid generator for pulsed laser Q modulation
US8135050B1 (en) 2005-07-19 2012-03-13 Raydiance, Inc. Automated polarization correction
US7436866B2 (en) * 2005-11-30 2008-10-14 Raydiance, Inc. Combination optical isolator and pulse compressor
US8139910B2 (en) 2006-01-23 2012-03-20 Raydiance, Inc. Systems and methods for control of ultra short pulse amplification
US8189971B1 (en) 2006-01-23 2012-05-29 Raydiance, Inc. Dispersion compensation in a chirped pulse amplification system
US9130344B2 (en) 2006-01-23 2015-09-08 Raydiance, Inc. Automated laser tuning
US8150271B1 (en) 2006-03-28 2012-04-03 Raydiance, Inc. Active tuning of temporal dispersion in an ultrashort pulse laser system
US9281653B2 (en) 2006-04-26 2016-03-08 Coherent, Inc. Intelligent laser interlock system
US8232687B2 (en) 2006-04-26 2012-07-31 Raydiance, Inc. Intelligent laser interlock system
CN100385331C (en) * 2006-05-31 2008-04-30 哈尔滨工业大学 Laser pulse shaping device and method based on two-cell stimulated Brillouin scattering system
US8619357B2 (en) 2007-11-30 2013-12-31 Raydiance, Inc. Static phase mask for high-order spectral phase control in a hybrid chirped pulse amplifier system
US8125704B2 (en) 2008-08-18 2012-02-28 Raydiance, Inc. Systems and methods for controlling a pulsed laser by combining laser signals
US8498538B2 (en) 2008-11-14 2013-07-30 Raydiance, Inc. Compact monolithic dispersion compensator
US8884184B2 (en) 2010-08-12 2014-11-11 Raydiance, Inc. Polymer tubing laser micromachining
US9120181B2 (en) 2010-09-16 2015-09-01 Coherent, Inc. Singulation of layered materials using selectively variable laser output
US9114482B2 (en) 2010-09-16 2015-08-25 Raydiance, Inc. Laser based processing of layered materials
US8554037B2 (en) 2010-09-30 2013-10-08 Raydiance, Inc. Hybrid waveguide device in powerful laser systems
US10239160B2 (en) 2011-09-21 2019-03-26 Coherent, Inc. Systems and processes that singulate materials
US9999038B2 (en) 2013-05-31 2018-06-12 At&T Intellectual Property I, L.P. Remote distributed antenna system
US10051630B2 (en) 2013-05-31 2018-08-14 At&T Intellectual Property I, L.P. Remote distributed antenna system
US9674711B2 (en) 2013-11-06 2017-06-06 At&T Intellectual Property I, L.P. Surface-wave communications and methods thereof
US9768833B2 (en) 2014-09-15 2017-09-19 At&T Intellectual Property I, L.P. Method and apparatus for sensing a condition in a transmission medium of electromagnetic waves
US9906269B2 (en) 2014-09-17 2018-02-27 At&T Intellectual Property I, L.P. Monitoring and mitigating conditions in a communication network
US10063280B2 (en) 2014-09-17 2018-08-28 At&T Intellectual Property I, L.P. Monitoring and mitigating conditions in a communication network
US9973416B2 (en) 2014-10-02 2018-05-15 At&T Intellectual Property I, L.P. Method and apparatus that provides fault tolerance in a communication network
US9685992B2 (en) 2014-10-03 2017-06-20 At&T Intellectual Property I, L.P. Circuit panel network and methods thereof
US9866276B2 (en) 2014-10-10 2018-01-09 At&T Intellectual Property I, L.P. Method and apparatus for arranging communication sessions in a communication system
US9847850B2 (en) 2014-10-14 2017-12-19 At&T Intellectual Property I, L.P. Method and apparatus for adjusting a mode of communication in a communication network
US9769020B2 (en) 2014-10-21 2017-09-19 At&T Intellectual Property I, L.P. Method and apparatus for responding to events affecting communications in a communication network
US9954286B2 (en) 2014-10-21 2018-04-24 At&T Intellectual Property I, L.P. Guided-wave transmission device with non-fundamental mode propagation and methods for use therewith
US9705610B2 (en) 2014-10-21 2017-07-11 At&T Intellectual Property I, L.P. Transmission device with impairment compensation and methods for use therewith
US9876587B2 (en) 2014-10-21 2018-01-23 At&T Intellectual Property I, L.P. Transmission device with impairment compensation and methods for use therewith
US9780834B2 (en) 2014-10-21 2017-10-03 At&T Intellectual Property I, L.P. Method and apparatus for transmitting electromagnetic waves
US9871558B2 (en) 2014-10-21 2018-01-16 At&T Intellectual Property I, L.P. Guided-wave transmission device and methods for use therewith
US9960808B2 (en) 2014-10-21 2018-05-01 At&T Intellectual Property I, L.P. Guided-wave transmission device and methods for use therewith
US9912033B2 (en) 2014-10-21 2018-03-06 At&T Intellectual Property I, Lp Guided wave coupler, coupling module and methods for use therewith
US10243784B2 (en) 2014-11-20 2019-03-26 At&T Intellectual Property I, L.P. System for generating topology information and methods thereof
US9800327B2 (en) 2014-11-20 2017-10-24 At&T Intellectual Property I, L.P. Apparatus for controlling operations of a communication device and methods thereof
US9749083B2 (en) 2014-11-20 2017-08-29 At&T Intellectual Property I, L.P. Transmission device with mode division multiplexing and methods for use therewith
US9742521B2 (en) 2014-11-20 2017-08-22 At&T Intellectual Property I, L.P. Transmission device with mode division multiplexing and methods for use therewith
US9954287B2 (en) 2014-11-20 2018-04-24 At&T Intellectual Property I, L.P. Apparatus for converting wireless signals and electromagnetic waves and methods thereof
US9742462B2 (en) 2014-12-04 2017-08-22 At&T Intellectual Property I, L.P. Transmission medium and communication interfaces and methods for use therewith
US10009067B2 (en) 2014-12-04 2018-06-26 At&T Intellectual Property I, L.P. Method and apparatus for configuring a communication interface
US9876571B2 (en) 2015-02-20 2018-01-23 At&T Intellectual Property I, Lp Guided-wave transmission device with non-fundamental mode propagation and methods for use therewith
US9876570B2 (en) 2015-02-20 2018-01-23 At&T Intellectual Property I, Lp Guided-wave transmission device with non-fundamental mode propagation and methods for use therewith
US9749013B2 (en) 2015-03-17 2017-08-29 At&T Intellectual Property I, L.P. Method and apparatus for reducing attenuation of electromagnetic waves guided by a transmission medium
US9705561B2 (en) 2015-04-24 2017-07-11 At&T Intellectual Property I, L.P. Directional coupling device and methods for use therewith
US9793955B2 (en) 2015-04-24 2017-10-17 At&T Intellectual Property I, Lp Passive electrical coupling device and methods for use therewith
US10224981B2 (en) 2015-04-24 2019-03-05 At&T Intellectual Property I, Lp Passive electrical coupling device and methods for use therewith
US9831912B2 (en) 2015-04-24 2017-11-28 At&T Intellectual Property I, Lp Directional coupling device and methods for use therewith
US9793954B2 (en) 2015-04-28 2017-10-17 At&T Intellectual Property I, L.P. Magnetic coupling device and methods for use therewith
US9871282B2 (en) 2015-05-14 2018-01-16 At&T Intellectual Property I, L.P. At least one transmission medium having a dielectric surface that is covered at least in part by a second dielectric
US9748626B2 (en) 2015-05-14 2017-08-29 At&T Intellectual Property I, L.P. Plurality of cables having different cross-sectional shapes which are bundled together to form a transmission medium
US9887447B2 (en) 2015-05-14 2018-02-06 At&T Intellectual Property I, L.P. Transmission medium having multiple cores and methods for use therewith
US10650940B2 (en) 2015-05-15 2020-05-12 At&T Intellectual Property I, L.P. Transmission medium having a conductive material and methods for use therewith
US9917341B2 (en) 2015-05-27 2018-03-13 At&T Intellectual Property I, L.P. Apparatus and method for launching electromagnetic waves and for modifying radial dimensions of the propagating electromagnetic waves
US9912382B2 (en) 2015-06-03 2018-03-06 At&T Intellectual Property I, Lp Network termination and methods for use therewith
US9967002B2 (en) 2015-06-03 2018-05-08 At&T Intellectual I, Lp Network termination and methods for use therewith
US10812174B2 (en) 2015-06-03 2020-10-20 At&T Intellectual Property I, L.P. Client node device and methods for use therewith
US10797781B2 (en) 2015-06-03 2020-10-06 At&T Intellectual Property I, L.P. Client node device and methods for use therewith
US9866309B2 (en) 2015-06-03 2018-01-09 At&T Intellectual Property I, Lp Host node device and methods for use therewith
US10050697B2 (en) 2015-06-03 2018-08-14 At&T Intellectual Property I, L.P. Host node device and methods for use therewith
US9935703B2 (en) 2015-06-03 2018-04-03 At&T Intellectual Property I, L.P. Host node device and methods for use therewith
US9912381B2 (en) 2015-06-03 2018-03-06 At&T Intellectual Property I, Lp Network termination and methods for use therewith
US9913139B2 (en) 2015-06-09 2018-03-06 At&T Intellectual Property I, L.P. Signal fingerprinting for authentication of communicating devices
US9997819B2 (en) 2015-06-09 2018-06-12 At&T Intellectual Property I, L.P. Transmission medium and method for facilitating propagation of electromagnetic waves via a core
US9820146B2 (en) 2015-06-12 2017-11-14 At&T Intellectual Property I, L.P. Method and apparatus for authentication and identity management of communicating devices
US9865911B2 (en) 2015-06-25 2018-01-09 At&T Intellectual Property I, L.P. Waveguide system for slot radiating first electromagnetic waves that are combined into a non-fundamental wave mode second electromagnetic wave on a transmission medium
US10069185B2 (en) 2015-06-25 2018-09-04 At&T Intellectual Property I, L.P. Methods and apparatus for inducing a non-fundamental wave mode on a transmission medium
US9787412B2 (en) 2015-06-25 2017-10-10 At&T Intellectual Property I, L.P. Methods and apparatus for inducing a fundamental wave mode on a transmission medium
US9847566B2 (en) 2015-07-14 2017-12-19 At&T Intellectual Property I, L.P. Method and apparatus for adjusting a field of a signal to mitigate interference
US10044409B2 (en) 2015-07-14 2018-08-07 At&T Intellectual Property I, L.P. Transmission medium and methods for use therewith
US10205655B2 (en) 2015-07-14 2019-02-12 At&T Intellectual Property I, L.P. Apparatus and methods for communicating utilizing an antenna array and multiple communication paths
US9853342B2 (en) 2015-07-14 2017-12-26 At&T Intellectual Property I, L.P. Dielectric transmission medium connector and methods for use therewith
US9929755B2 (en) 2015-07-14 2018-03-27 At&T Intellectual Property I, L.P. Method and apparatus for coupling an antenna to a device
US10148016B2 (en) 2015-07-14 2018-12-04 At&T Intellectual Property I, L.P. Apparatus and methods for communicating utilizing an antenna array
US9882257B2 (en) 2015-07-14 2018-01-30 At&T Intellectual Property I, L.P. Method and apparatus for launching a wave mode that mitigates interference
US10090606B2 (en) 2015-07-15 2018-10-02 At&T Intellectual Property I, L.P. Antenna system with dielectric array and methods for use therewith
US9948333B2 (en) 2015-07-23 2018-04-17 At&T Intellectual Property I, L.P. Method and apparatus for wireless communications to mitigate interference
US9871283B2 (en) 2015-07-23 2018-01-16 At&T Intellectual Property I, Lp Transmission medium having a dielectric core comprised of plural members connected by a ball and socket configuration
US9749053B2 (en) 2015-07-23 2017-08-29 At&T Intellectual Property I, L.P. Node device, repeater and methods for use therewith
US9912027B2 (en) 2015-07-23 2018-03-06 At&T Intellectual Property I, L.P. Method and apparatus for exchanging communication signals
US9806818B2 (en) 2015-07-23 2017-10-31 At&T Intellectual Property I, Lp Node device, repeater and methods for use therewith
US9838078B2 (en) 2015-07-31 2017-12-05 At&T Intellectual Property I, L.P. Method and apparatus for exchanging communication signals
US9967173B2 (en) 2015-07-31 2018-05-08 At&T Intellectual Property I, L.P. Method and apparatus for authentication and identity management of communicating devices
US9735833B2 (en) 2015-07-31 2017-08-15 At&T Intellectual Property I, L.P. Method and apparatus for communications management in a neighborhood network
US9904535B2 (en) 2015-09-14 2018-02-27 At&T Intellectual Property I, L.P. Method and apparatus for distributing software
US9769128B2 (en) 2015-09-28 2017-09-19 At&T Intellectual Property I, L.P. Method and apparatus for encryption of communications over a network
US9729197B2 (en) 2015-10-01 2017-08-08 At&T Intellectual Property I, L.P. Method and apparatus for communicating network management traffic over a network
US9876264B2 (en) 2015-10-02 2018-01-23 At&T Intellectual Property I, Lp Communication system, guided wave switch and methods for use therewith
US10355367B2 (en) 2015-10-16 2019-07-16 At&T Intellectual Property I, L.P. Antenna structure for exchanging wireless signals
US9860075B1 (en) 2016-08-26 2018-01-02 At&T Intellectual Property I, L.P. Method and communication node for broadband distribution
US10811767B2 (en) 2016-10-21 2020-10-20 At&T Intellectual Property I, L.P. System and dielectric antenna with convex dielectric radome
US10340573B2 (en) 2016-10-26 2019-07-02 At&T Intellectual Property I, L.P. Launcher with cylindrical coupling device and methods for use therewith
US10312567B2 (en) 2016-10-26 2019-06-04 At&T Intellectual Property I, L.P. Launcher with planar strip antenna and methods for use therewith
US10498044B2 (en) 2016-11-03 2019-12-03 At&T Intellectual Property I, L.P. Apparatus for configuring a surface of an antenna
US10291334B2 (en) 2016-11-03 2019-05-14 At&T Intellectual Property I, L.P. System for detecting a fault in a communication system
US10225025B2 (en) 2016-11-03 2019-03-05 At&T Intellectual Property I, L.P. Method and apparatus for detecting a fault in a communication system
US10224634B2 (en) 2016-11-03 2019-03-05 At&T Intellectual Property I, L.P. Methods and apparatus for adjusting an operational characteristic of an antenna
US10090594B2 (en) 2016-11-23 2018-10-02 At&T Intellectual Property I, L.P. Antenna system having structural configurations for assembly
US10178445B2 (en) 2016-11-23 2019-01-08 At&T Intellectual Property I, L.P. Methods, devices, and systems for load balancing between a plurality of waveguides
US10340601B2 (en) 2016-11-23 2019-07-02 At&T Intellectual Property I, L.P. Multi-antenna system and methods for use therewith
US10340603B2 (en) 2016-11-23 2019-07-02 At&T Intellectual Property I, L.P. Antenna system having shielded structural configurations for assembly
US10535928B2 (en) 2016-11-23 2020-01-14 At&T Intellectual Property I, L.P. Antenna system and methods for use therewith
US10361489B2 (en) 2016-12-01 2019-07-23 At&T Intellectual Property I, L.P. Dielectric dish antenna system and methods for use therewith
US10305190B2 (en) 2016-12-01 2019-05-28 At&T Intellectual Property I, L.P. Reflecting dielectric antenna system and methods for use therewith
US10135145B2 (en) 2016-12-06 2018-11-20 At&T Intellectual Property I, L.P. Apparatus and methods for generating an electromagnetic wave along a transmission medium
US10382976B2 (en) 2016-12-06 2019-08-13 At&T Intellectual Property I, L.P. Method and apparatus for managing wireless communications based on communication paths and network device positions
US10819035B2 (en) 2016-12-06 2020-10-27 At&T Intellectual Property I, L.P. Launcher with helical antenna and methods for use therewith
US9927517B1 (en) 2016-12-06 2018-03-27 At&T Intellectual Property I, L.P. Apparatus and methods for sensing rainfall
US10020844B2 (en) 2016-12-06 2018-07-10 T&T Intellectual Property I, L.P. Method and apparatus for broadcast communication via guided waves
US10326494B2 (en) 2016-12-06 2019-06-18 At&T Intellectual Property I, L.P. Apparatus for measurement de-embedding and methods for use therewith
US10755542B2 (en) 2016-12-06 2020-08-25 At&T Intellectual Property I, L.P. Method and apparatus for surveillance via guided wave communication
US10727599B2 (en) 2016-12-06 2020-07-28 At&T Intellectual Property I, L.P. Launcher with slot antenna and methods for use therewith
US10694379B2 (en) 2016-12-06 2020-06-23 At&T Intellectual Property I, L.P. Waveguide system with device-based authentication and methods for use therewith
US10637149B2 (en) 2016-12-06 2020-04-28 At&T Intellectual Property I, L.P. Injection molded dielectric antenna and methods for use therewith
US10439675B2 (en) 2016-12-06 2019-10-08 At&T Intellectual Property I, L.P. Method and apparatus for repeating guided wave communication signals
US10446936B2 (en) 2016-12-07 2019-10-15 At&T Intellectual Property I, L.P. Multi-feed dielectric antenna system and methods for use therewith
US9893795B1 (en) 2016-12-07 2018-02-13 At&T Intellectual Property I, Lp Method and repeater for broadband distribution
US10359749B2 (en) 2016-12-07 2019-07-23 At&T Intellectual Property I, L.P. Method and apparatus for utilities management via guided wave communication
US10243270B2 (en) 2016-12-07 2019-03-26 At&T Intellectual Property I, L.P. Beam adaptive multi-feed dielectric antenna system and methods for use therewith
US10389029B2 (en) 2016-12-07 2019-08-20 At&T Intellectual Property I, L.P. Multi-feed dielectric antenna system with core selection and methods for use therewith
US10168695B2 (en) 2016-12-07 2019-01-01 At&T Intellectual Property I, L.P. Method and apparatus for controlling an unmanned aircraft
US10027397B2 (en) 2016-12-07 2018-07-17 At&T Intellectual Property I, L.P. Distributed antenna system and methods for use therewith
US10139820B2 (en) 2016-12-07 2018-11-27 At&T Intellectual Property I, L.P. Method and apparatus for deploying equipment of a communication system
US10547348B2 (en) 2016-12-07 2020-01-28 At&T Intellectual Property I, L.P. Method and apparatus for switching transmission mediums in a communication system
US9998870B1 (en) 2016-12-08 2018-06-12 At&T Intellectual Property I, L.P. Method and apparatus for proximity sensing
US10069535B2 (en) 2016-12-08 2018-09-04 At&T Intellectual Property I, L.P. Apparatus and methods for launching electromagnetic waves having a certain electric field structure
US9911020B1 (en) 2016-12-08 2018-03-06 At&T Intellectual Property I, L.P. Method and apparatus for tracking via a radio frequency identification device
US10938108B2 (en) 2016-12-08 2021-03-02 At&T Intellectual Property I, L.P. Frequency selective multi-feed dielectric antenna system and methods for use therewith
US10601494B2 (en) 2016-12-08 2020-03-24 At&T Intellectual Property I, L.P. Dual-band communication device and method for use therewith
US10916969B2 (en) 2016-12-08 2021-02-09 At&T Intellectual Property I, L.P. Method and apparatus for providing power using an inductive coupling
US10411356B2 (en) 2016-12-08 2019-09-10 At&T Intellectual Property I, L.P. Apparatus and methods for selectively targeting communication devices with an antenna array
US10530505B2 (en) 2016-12-08 2020-01-07 At&T Intellectual Property I, L.P. Apparatus and methods for launching electromagnetic waves along a transmission medium
US10389037B2 (en) 2016-12-08 2019-08-20 At&T Intellectual Property I, L.P. Apparatus and methods for selecting sections of an antenna array and use therewith
US10326689B2 (en) 2016-12-08 2019-06-18 At&T Intellectual Property I, L.P. Method and system for providing alternative communication paths
US10777873B2 (en) 2016-12-08 2020-09-15 At&T Intellectual Property I, L.P. Method and apparatus for mounting network devices
US10103422B2 (en) 2016-12-08 2018-10-16 At&T Intellectual Property I, L.P. Method and apparatus for mounting network devices
US9838896B1 (en) 2016-12-09 2017-12-05 At&T Intellectual Property I, L.P. Method and apparatus for assessing network coverage
US10340983B2 (en) 2016-12-09 2019-07-02 At&T Intellectual Property I, L.P. Method and apparatus for surveying remote sites via guided wave communications
US10264586B2 (en) 2016-12-09 2019-04-16 At&T Mobility Ii Llc Cloud-based packet controller and methods for use therewith
US9973940B1 (en) 2017-02-27 2018-05-15 At&T Intellectual Property I, L.P. Apparatus and methods for dynamic impedance matching of a guided wave launcher
US10298293B2 (en) 2017-03-13 2019-05-21 At&T Intellectual Property I, L.P. Apparatus of communication utilizing wireless network devices
US11070250B2 (en) 2019-12-03 2021-07-20 At&T Intellectual Property I, L.P. Method and apparatus for calibrating waveguide systems to manage propagation delays of electromagnetic waves
US11277159B2 (en) 2019-12-03 2022-03-15 At&T Intellectual Property I, L.P. Method and apparatus for managing propagation delays of electromagnetic waves
US11502724B2 (en) 2019-12-03 2022-11-15 At&T Intellectual Property I, L.P. Method and apparatus for transitioning between electromagnetic wave modes

Similar Documents

Publication Publication Date Title
JP2003344883A (en) Sbs reflection mirror and high-repetition-pulse laser system using the same
US5644424A (en) Laser amplifier and method
US5689363A (en) Long-pulse-width narrow-bandwidth solid state laser
TWI586058B (en) High power femtosecond laser with variable repetition rate
EP0745282B1 (en) System for minimizing the depolarization of a laser beam due to thermally induced birefringence
JP3265173B2 (en) Solid state laser device
US5926494A (en) Laser systems with improved performance and reduced parasitics and method
US8130800B2 (en) Mode-locked solid state lasers using diode laser excitation
RU2475908C2 (en) Optical amplification device (versions)
JPH10506233A (en) Passive stabilized cavity doubled laser
JPH07193307A (en) Solid laser source, method of removing influence of multiplerefraction and zigzag amplifier
JPH1041565A (en) Solid laser amplifier
EP0259439A1 (en) Efficient phase conjugate laser.
US20170093111A1 (en) High power laser with chirped pulse amplification
US5910857A (en) Laser amplifier
US6873633B2 (en) Solid-state laser
US5832020A (en) Solid-state laser forming highly-repetitive, high-energy and high-power laser beam
US7457328B2 (en) Polarization methods for diode laser excitation of solid state lasers
JP2013135075A (en) Solid-state laser amplifier, laser light amplifier, solid-state laer device, and laser device
JP2002535696A (en) Optical isolator using Brillouin scattering phase conjugate mirror and its application to optical amplifier system
US9306366B2 (en) Optical amplifier arrangement
JP3596068B2 (en) Laser amplifier and laser oscillator
CN115224580A (en) Short pulse laser system with switchable polarization
JPH10215018A (en) Laser amplification apparatus
CN113258425A (en) Laser amplification system and device

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20040507

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20041201

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050201

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20050914