JP2003344316A - Reconstitution method of inclined three-dimensional x- ray ct image - Google Patents

Reconstitution method of inclined three-dimensional x- ray ct image

Info

Publication number
JP2003344316A
JP2003344316A JP2002153183A JP2002153183A JP2003344316A JP 2003344316 A JP2003344316 A JP 2003344316A JP 2002153183 A JP2002153183 A JP 2002153183A JP 2002153183 A JP2002153183 A JP 2002153183A JP 2003344316 A JP2003344316 A JP 2003344316A
Authority
JP
Japan
Prior art keywords
image
dimensional
ray
projection data
distance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002153183A
Other languages
Japanese (ja)
Other versions
JP4129572B2 (en
Inventor
Masaki Misawa
雅樹 三澤
Teiseanu Ion
ティセアヌ イオン
Ryusuke Hirashima
龍介 平嶋
Naohiro Wakabayashi
直浩 若林
Kazuto Koizumi
和人 小泉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Uni Hite System Corp
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Uni Hite System Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST, Uni Hite System Corp filed Critical National Institute of Advanced Industrial Science and Technology AIST
Priority to JP2002153183A priority Critical patent/JP4129572B2/en
Publication of JP2003344316A publication Critical patent/JP2003344316A/en
Application granted granted Critical
Publication of JP4129572B2 publication Critical patent/JP4129572B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Analysing Materials By The Use Of Radiation (AREA)
  • Image Processing (AREA)
  • Image Analysis (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method of reconstituting an image in inclined three- dimensional X-ray CT (computer tomography) for arbitrarily selecting an irradiation angle of X-rays. <P>SOLUTION: An object to be measure is irradiated with X-rays at an angle smaller than 90° with respect to a rotational-axis direction of the object so as to be three-dimensionally reconstituted on the basis of detected image data. Its reconstitution algorithm includes a step in which an X-ray focal point, a distance up to the rotation center of the measuring object, and a distance up to a detection face are expressed as a function of the rotation angle of an X-ray source, in which an obtained image is turned by a tomographic angle so as to be converted into a vertical-surface image, and in which also an intensity of the image is converted according to a distance; a step in which projection data is multipled by a weighting factor so as to create weighted projection data; a filtering step in which a filter function and the weighted projection data are Fourier-transformed so as to perform a convolution computing operation; and a step in which the filtered weighted projection data is back-projected on a three-dimensional reconstitution space. <P>COPYRIGHT: (C)2004,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、産業用X線CT
(コンピュータ・トモグラフィ)装置等において、半導
体部品、プリント基板、ICチップ、半田接合部や、機
械部品、複合材料、プラスチックの検査等を行うのに有
効な傾斜三次元X線CT画像の再構成方法に関するもの
であり、特にそのアルゴリズムに特徴のある傾斜三次元
X線CT画像の再構成方法に関するものである。
TECHNICAL FIELD The present invention relates to an industrial X-ray CT.
Reconstruction of tilted three-dimensional X-ray CT images effective for inspecting semiconductor parts, printed circuit boards, IC chips, solder joints, mechanical parts, composite materials, plastics, etc. in (computer tomography) devices, etc. The present invention relates to a method, and more particularly to a method for reconstructing a tilted three-dimensional X-ray CT image, which is characterized by the algorithm.

【0002】[0002]

【従来の技術】従来から知られている三次元X線CTで
は、図4に示すように、回転軸の周りに回転する測定物
Aに対して、その回転軸に垂直な方向からX線を投射
し、投影データを収集しており、X線焦点と二次元検出
器中心は、回転軸に直交する同じ水平面上に配置されて
いた。
2. Description of the Related Art In a conventionally known three-dimensional X-ray CT, as shown in FIG. 4, an X-ray is emitted from a direction perpendicular to a rotation axis of a measuring object A rotating around the rotation axis. Projecting and collecting projection data, the X-ray focal point and the center of the two-dimensional detector were arranged on the same horizontal plane orthogonal to the rotation axis.

【0003】また、現在の三次元画像再構成方法では、
Feldcampによって導出された三次元画像再構成アルゴリ
ズムが主流となっている。このアルゴリズムでは、図4
に示すように、再構成空間の座標系を(x,y,z)とし、
投影角度β、二次元検出器平面の座標系をp,qとする
と、物理空間内のある点(t,s,z)における吸収係数分
布f(t,s,z)は、
Further, in the current three-dimensional image reconstruction method,
The 3D image reconstruction algorithm derived by Feldcamp is the mainstream. In this algorithm,
As shown in, the coordinate system of the reconstruction space is (x, y, z),
If the projection angle β and the coordinate system of the two-dimensional detector plane are p and q, the absorption coefficient distribution f (t, s, z) at a point (t, s, z) in physical space is

【数1】 と表される。[Equation 1] Is expressed as

【0004】ここで、DsoはX線焦点と測定物中心まで
の距離、sはDsoから検出面までの距離、
Here, Dso is the distance from the X-ray focal point to the center of the object to be measured, s is the distance from Dso to the detection surface,

【数2】 である。また、(p,q)座標系は検出面に固定された座
標系であるが、便宜的に再構成空間(測定物の物理座標
系)のz軸とp軸を重ねて考える。
[Equation 2] Is. Although the (p, q) coordinate system is a coordinate system fixed to the detection surface, the z axis and p axis of the reconstruction space (physical coordinate system of the object to be measured) are considered for convenience.

【0005】そして、三次元画像再構成アルゴリズムは
下記のステップで実行される。 1) 重み付き投影データ作成 投影データPβ(p,q)にDso/(Dso2+p2+q2)1/2
かけて、重み付き投影データを作成。 2) 投影データのフィルタリング フィルター関数hと重み付き投影データをp座標に関し
てフーリエ変換し、畳み込み演算を行う。 3) 逆投影 フィルター処理した重み付き投影データを、三次元再構
成空間に逆投影する。
Then, the three-dimensional image reconstruction algorithm is executed in the following steps. 1) Weighted projection data creation Multiply projection data Pβ (p, q) by Dso / (Dso 2 + p 2 + q 2 ) 1/2 to create weighted projection data. 2) Filtering projection data The filter function h and the weighted projection data are Fourier-transformed with respect to the p-coordinate, and a convolution operation is performed. 3) Backprojecting the weighted projection data that has been subjected to the backprojection filter processing to the three-dimensional reconstruction space.

【0006】しかしながら、上記のように、測定物Aの
回転軸に直交する平面内にX線焦点と検出器中心を配置
して撮影を行う方法では、プリントボードのように平た
い測定物を撮影する場合に、測定物の一部を拡大撮影し
たくても、測定物の回転半径が大きいために、回転させ
るときにX線発生器と干渉するので、透視の拡大率を挙
げることができず、また、減衰の大きな部分が平面内で
重なってビームハードニングが起こり、画像のコントラ
ストが低下する、などの問題があった。
However, as described above, in the method of photographing by arranging the X-ray focus and the center of the detector in the plane orthogonal to the rotation axis of the measuring object A, a flat measuring object such as a printed board is photographed. In this case, even if it is desired to magnify a part of the object to be measured, since the radius of rotation of the object to be measured is large, it interferes with the X-ray generator when the object is rotated. In addition, there is a problem that a portion with large attenuation is overlapped in a plane to cause beam hardening, which lowers image contrast.

【0007】一方、測定物の回転軸に対して斜めの方向
から撮影する方法にラミノグラフィがあるが、出力され
るのは二次元画像データであり、三次元ではないため、
高さ方向の分解能が低いものである。
On the other hand, there is laminography as a method of photographing from a direction oblique to the rotation axis of the object to be measured, but since the output is two-dimensional image data, not three-dimensional image data,
The resolution in the height direction is low.

【0008】[0008]

【発明が解決しようとする課題】本発明の技術的課題
は、X線焦点と二次元検出面中心を結ぶ線が、測定物の
回転中心軸と任意の角度で交わるようにし、即ち照射角
度を任意に選択できるようにした傾斜三次元X線CTに
おける画像の再構成を行うための方法を提供することに
あり、特にその再構成のためのアルゴリズムに特徴を有
する画像再構成方法を提供することにある。本発明の他
の技術的課題は、平たい測定物の一部についての高拡大
率三次元画像をも再構成できるようにした傾斜三次元X
線CT画像の再構成方法を提供することにある。
The technical problem of the present invention is that the line connecting the X-ray focal point and the center of the two-dimensional detection surface intersects with the rotation center axis of the object to be measured, that is, the irradiation angle. To provide a method for performing image reconstruction in tilted three-dimensional X-ray CT that can be arbitrarily selected, and particularly to provide an image reconstruction method having a characteristic algorithm for the reconstruction. It is in. Another technical problem of the present invention is to provide a tilted three-dimensional X which is capable of reconstructing a high magnification three-dimensional image of a part of a flat object.
It is to provide a method for reconstructing a line CT image.

【0009】[0009]

【課題を解決するための手段】上記課題を解決するため
の本発明の傾斜三次元X線CT画像の再構成方法は、測
定物の回転軸方向に対して、90度よりも小さい角度で
X線を照射し、検出した画像データに基づいて内部構造
を三次元再構成する方法であって、X線焦点と測定物の
回転中心までの距離および検出面までの距離を、X線源
の回転角の関数として表現し、得られた画像を測定物の
回転軸に平行となるようにトモグラフィ角度だけ回転さ
せて、垂直面画像に変換し、このとき、幾何学的な配置
の変換と共に、画像の強度も距離に応じて変換するステ
ップ、投影データに重み係数を掛けて重み付き投影デー
タを作成するステップ、フィルター関数と重み付き投影
データをフーリエ変換し、畳み込み演算を行う投影デー
タのフィルタリングのステップ、フィルター処理した重
み付き投影データを、三次元再構成空間に逆投影するス
テップを有するアルゴリズムで上記投影像を処理するこ
とを特徴とするものである。
A method for reconstructing a tilted three-dimensional X-ray CT image according to the present invention for solving the above-mentioned problems is an X-ray at an angle smaller than 90 degrees with respect to the rotation axis direction of a measured object. It is a method of irradiating X-rays and three-dimensionally reconstructing the internal structure based on the detected image data. The distance between the X-ray focal point and the rotation center of the measured object and the distance to the detection surface Expressed as a function of angle, the obtained image is rotated by a tomography angle so as to be parallel to the rotation axis of the object to be converted into a vertical plane image, and at this time, along with the conversion of the geometrical arrangement, The image intensity is also converted according to the distance, the projection data is multiplied by a weighting coefficient to create the weighted projection data, the filter function and the weighted projection data are Fourier transformed, and the convolution calculation is performed on the projection data filter ring. Step, the weighted projection data filtering, the algorithm having a step of back projection to the three-dimensional reconstruction space is characterized in that processing the projected image.

【0010】上記傾斜三次元X線CT画像の再構成方法
においては、デジタルラミノグラフィデータを、その二
次元検出面の法線が測定サンプルの回転軸に垂直になる
ように画像変換し、それを傾斜三次元X線CT画像デー
タとして使用することができる。また、上記傾斜三次元
X線CT画像の再構成方法は、面積が大きく平たい測定
物の一部を拡大して画像を再構成する場合に極めて有効
に適用できるものである。
In the method of reconstructing the tilted three-dimensional X-ray CT image, the digital laminography data is image-converted so that the normal line of the two-dimensional detection surface is perpendicular to the rotation axis of the measurement sample, Can be used as tilted three-dimensional X-ray CT image data. Further, the method of reconstructing a tilted three-dimensional X-ray CT image can be very effectively applied when reconstructing an image by enlarging a part of a flat object having a large area.

【0011】上記構成を有する本発明の画像再構成方法
は、従来の三次元画像再構成アルゴリズムを一般化した
もので、傾斜角度を任意に設定でき、それにより、電子
ボードなどのように厚さの薄く平たい測定物に対して
も、その一部を拡大透視して、内部構造を拡大三次元再
構成することができ、また、サンプルの高さ方向に対し
ても平面方向と同じ空間分解能を達成し、三次元的な構
造を高精度に再現することができる。
The image reconstructing method of the present invention having the above-mentioned configuration is a generalization of the conventional three-dimensional image reconstructing algorithm, and the inclination angle can be arbitrarily set, so that the thickness of the electronic board can be increased. Even for thin and flat objects, the internal structure can be enlarged and three-dimensionally reconstructed by partially magnifying and seeing, and the same spatial resolution as the plane direction can be obtained in the height direction of the sample. Achieved and can reproduce the three-dimensional structure with high accuracy.

【0012】[0012]

【発明の実施の形態】図1は、本発明に係る傾斜三次元
X線CT画像の再構成方法のアルゴリズムにおける座標
系について説明するためのもので、基本的には、測定物
にその回転軸方向に対して90°よりも小さい角度θで
X線を照射し、検出した画像データに基づいて内部構造
を三次元再構成するようにしている。この傾斜三次元X
線CT画像再構成のアルゴリズムでは、X線焦点と測定
物の回転中心までの距離および検出面までの距離を、X
線焦点が任意の軌道で走査する場合を想定して、X線源
の回転角の関数として表現し、すなわち、X線がサンプ
ル周りを回転する軌道を一般化し、Dsoおよびsを平面
内の投影角度βの関数として表すことにより、傾斜配置
を考慮している。傾斜配置でのDsoおよびsをそれぞ
れ、ρ(β) とσ(β)とおくと、吸収係数分布f(t,s,z)
は以下のようになる。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG. 1 is for explaining a coordinate system in an algorithm of a method for reconstructing a tilted three-dimensional X-ray CT image according to the present invention. X-rays are emitted at an angle θ smaller than 90 ° with respect to the direction, and the internal structure is three-dimensionally reconstructed based on the detected image data. This inclined three-dimensional X
In the algorithm of line CT image reconstruction, the distance between the X-ray focal point and the center of rotation of the measurement object and the distance to the detection surface are calculated as
Assuming that the line focus scans in an arbitrary trajectory, it is expressed as a function of the rotation angle of the X-ray source, that is, the trajectory in which the X-ray rotates around the sample is generalized, and Dso and s are projected in the plane. The tilted arrangement is taken into account by expressing it as a function of the angle β. If Dso and s in the inclined arrangement are ρ (β) and σ (β), respectively, the absorption coefficient distribution f (t, s, z)
Is as follows.

【0013】[0013]

【数3】 [Equation 3]

【0014】このアルゴリズムを用いた傾斜三次元画像
再構成アルゴリズムは、以下のステップで実行される。 1) 垂直面画像への変換 通常、二次元検出器の周辺部分は画像の歪みが大きいの
で、これを緩和するために検出面中心の法線をX線焦点
に向けて配置する。しかし、Feldcampのアルゴリズムに
基づいているので、得られた画像をサンプル回転軸に平
行となるようにp軸周りにトモグラフィ角度θだけ回転
させて、Dpq’座標系の画像に変換する(図2参照)。
このとき、幾何学的な配置の変換と共に、画像の強度も
距離に応じて変換する。
The gradient three-dimensional image reconstruction algorithm using this algorithm is executed in the following steps. 1) Conversion to a vertical plane image Usually, the image distortion is large in the peripheral portion of the two-dimensional detector. Therefore, in order to alleviate this, the normal line to the center of the detection plane is arranged so as to face the X-ray focus. However, since it is based on the Feldcamp algorithm, the obtained image is rotated by the tomography angle θ around the p-axis so as to be parallel to the sample rotation axis and converted into an image in the Dpq 'coordinate system (Fig. 2 reference).
At this time, along with the conversion of the geometrical arrangement, the intensity of the image is also converted according to the distance.

【0015】2) 重み付き投影データ作成 投影データPβ(p,q)にρ(β)/(ρ(β)2+p2+q2)
1/2を掛けて、重み付き投影データを作成する。 3) 投影データのフィルタリング フィルター関数hと重み付き投影データをp座標に関し
てフーリエ変換し、畳み込み演算を行う。 4) 逆投影 フィルター処理した重み付き投影データを、三次元再構
成空間に逆投影する。
2) Creation of weighted projection data ρ (β) / (ρ (β) 2 + p 2 + q 2 ) in the projection data Pβ (p, q)
Multiply by 1/2 to create weighted projection data. 3) Filtering projection data The filter function h and the weighted projection data are Fourier-transformed with respect to the p-coordinate, and a convolution operation is performed. 4) Backprojecting the weighted projection data that has been subjected to the backprojection filtering, onto the three-dimensional reconstruction space.

【0016】上記アルゴリズムの流れを示すフローチャ
ートを、図2に示す。
A flow chart showing the flow of the above algorithm is shown in FIG.

【0017】上述した傾斜三次元X線CT画像の再構成
方法では、トモグラフィ角度を任意に設定し、必要に応
じてトモグラフィ角度を小さく取れるようにしたので、
回転動作する測定物と干渉せずに、X線焦点を拡大した
い領域の近くに設定することができ、このため、X線透
視画像の幾何学的な拡大率が高い状態で、すべての方向
からデータ収集できるようになり、高倍率の画像再構成
が可能になる。更に、三次元再構成グリッドが測定サン
プルの座標系に等方的に配置されるので、高さ方向に対
しても、平面と同じ空間分解能を達成することができ
る。
In the method of reconstructing a tilted three-dimensional X-ray CT image described above, the tomography angle is arbitrarily set, and the tomography angle can be made small as necessary.
The X-ray focus can be set close to the area to be magnified without interfering with the rotating object to be measured, so that the X-ray fluoroscopic image can be viewed from all directions with a high geometric magnification. Data can be collected, and high-magnification image reconstruction becomes possible. Furthermore, since the three-dimensional reconstruction grid is isotropically arranged in the coordinate system of the measurement sample, it is possible to achieve the same spatial resolution in the height direction as in the plane.

【0018】また、上述した傾斜三次元X線CT画像の
再構成アルゴリズムは、計算の並列化による高速化と、
ショートスキャン(180°+X線コーンビームの広が
り角の半分のデータ)で計測時間を短縮することができ
る。更に、従来のラミノグラフィのデータと三次元CT
のデータは別の物と考えられており、そのため、ラミノ
グラフィと三次元CTの画像データは互換性がないもの
としてそれぞれ別個にデータ収集されてきたが、ラミノ
グラフィのデジタルデータを、二次元検出面の法線が測
定サンプルの回転軸に垂直になるように画像変換する
と、上記アルゴリズムにより三次元画像再構成が可能で
あり、したがって、蓄積されたラミノグラフィデータベ
ースを有効活用することができる。
In addition, the above-mentioned reconstruction algorithm for the inclined three-dimensional X-ray CT image is speeded up by parallel calculation, and
The measurement time can be shortened by the short scan (180 ° + half the data of the spread angle of the X-ray cone beam). Furthermore, conventional laminography data and 3D CT
The data of laminography and 3D CT image data have been separately collected because they are not compatible with each other. When the image is converted so that the normal line is perpendicular to the rotation axis of the measurement sample, three-dimensional image reconstruction can be performed by the above algorithm, and thus the accumulated laminography database can be effectively used.

【0019】次に、本発明に基づいて再構成した傾斜三
次元X線CT画像と、ラミノグラフィによる再構成画像
との比較を、図3を参照して説明する。同図(a)に
は、トモグラフィ角度が65度の場合に収集された投影
データに対して本発明に係るアルゴリズムを適用し、三
次元画像を再構成した例を示している。この像は、十円
硬貨の表面の再構成画像で、通常の三次元X線CTのよ
うに側面からのX線投影ではX線が全く透過しないの
で、画像再構成は困難であったが、本発明による斜めか
らのX線透過像をもとに画像再構成をすると、X線の透
過距離が約1/10となり、そのため、20〜30ミク
ロンの凹凸がある表面の模様を精度よく再現できた。同
図(b)は、同様のサンプルをラミノグラフィで撮影し
た画像であるが、高さ方向の分解能が低く、コントラス
トも低いので、細かな表面形状が識別しにくくなってい
る。
Next, a comparison between a tilted three-dimensional X-ray CT image reconstructed according to the present invention and a reconstructed image by laminography will be described with reference to FIG. FIG. 10A shows an example in which the algorithm according to the present invention is applied to the projection data collected when the tomography angle is 65 degrees to reconstruct a three-dimensional image. This image is a reconstructed image of the surface of a ten-yen coin, and since X-rays do not penetrate at all by X-ray projection from the side like ordinary three-dimensional X-ray CT, image reconstruction was difficult, When the image is reconstructed based on the oblique X-ray transmission image according to the present invention, the X-ray transmission distance becomes about 1/10. Therefore, it is possible to accurately reproduce the surface pattern having irregularities of 20 to 30 microns. It was FIG. 2B is an image of a similar sample taken by laminography, but the resolution in the height direction is low and the contrast is low, so that it is difficult to identify fine surface shapes.

【0020】[0020]

【発明の効果】以上に詳述した本発明の傾斜三次元X線
CT画像の再構成方法によれば、測定物の回転軸に対し
て任意の方向から収集した透過画像をもとにした三次元
画像再構成が可能となったので、平らな測定物の部分拡
大撮影が可能となり、ビームハードニングが大幅に低下
し、X線減衰の大きな部分が含まれる測定サンプルで
も、その一部を拡大して良好な画像を得ることができ
る。また、これまで用いられてきたラミノグラフィで
は、二次元面は良好に見えるが高さ方向の分解能が悪い
ので、全体像がつかみにくいのに対し、本発明によれ
ば、微細な構造を三次元的に可視化することができる。
According to the method of reconstructing a tilted three-dimensional X-ray CT image of the present invention described in detail above, a cubic image based on a transmission image acquired from an arbitrary direction with respect to the rotation axis of the measurement object is used. Since the original image can be reconstructed, it is possible to take a partial magnified image of a flat measurement object, significantly reduce beam hardening, and magnify a part of the measurement sample containing a large X-ray attenuation. And a good image can be obtained. Further, in the laminography that has been used so far, the two-dimensional surface looks good, but the resolution in the height direction is poor, so that the whole image is difficult to grasp, while the present invention makes it possible to obtain a fine structure in three-dimensional form. Can be visualized.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に係る傾斜三次元X線CT画像の再構成
アルゴリズムにおける座標系についての説明図である。
FIG. 1 is an explanatory diagram of a coordinate system in a reconstruction algorithm of a tilted three-dimensional X-ray CT image according to the present invention.

【図2】本発明に基づいて傾斜三次元X線CT画像を再
構成する場合のアルゴリズムの流れを示すフローチャー
トである。
FIG. 2 is a flowchart showing a flow of an algorithm when reconstructing a tilted three-dimensional X-ray CT image according to the present invention.

【図3】(a)は本発明に基づいて再構成した傾斜三次
元X線CT画像(図面代用写真)、(b)はラミノグラ
フィによる再構成画像(図面代用写真)である。
FIG. 3A is a tilted three-dimensional X-ray CT image reconstructed based on the present invention (drawing substitute photograph), and FIG. 3B is a reconstructed image by laminography (drawing substitute photograph).

【図4】通常の三次元X線CT画像の再構成アルゴリズ
ムにおける座標系についての説明図である。
FIG. 4 is an explanatory diagram of a coordinate system in a normal three-dimensional X-ray CT image reconstruction algorithm.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 イオン ティセアヌ 茨城県つくば市東1−1−1 独立行政法 人産業技術総合研究所つくばセンター内 (72)発明者 平嶋 龍介 神奈川県大和市下鶴間505−1 株式会社 ユニハイトシステム内 (72)発明者 若林 直浩 神奈川県大和市下鶴間505−1 株式会社 ユニハイトシステム内 (72)発明者 小泉 和人 神奈川県大和市下鶴間505−1 株式会社 ユニハイトシステム内 Fターム(参考) 2G001 AA01 BA11 CA01 DA09 GA06 GA08 GA13 HA01 HA07 HA08 HA13 HA14 JA08 JA11 JA13 KA03 PA12 5B057 AA03 BA03 BA17 CA02 CA08 CA12 CA16 CB02 CB08 CB13 CB16 CD11 CD14 CE06 CE08 CG05 DA07 DA08 DB03 DB09 DC02    ─────────────────────────────────────────────────── ─── Continued front page    (72) Inventor Aeon Ticeane             1-1-1 Higashi 1-1-1 Tsukuba City, Ibaraki Prefecture             Inside the Tsukuba center (72) Inventor Ryusuke Hirashima             505-1 Shimotsuruma, Yamato City, Kanagawa Prefecture             Within Uniheight system (72) Inventor Naohiro Wakabayashi             505-1 Shimotsuruma, Yamato City, Kanagawa Prefecture             Within Uniheight system (72) Inventor Kazuto Koizumi             505-1 Shimotsuruma, Yamato City, Kanagawa Prefecture             Within Uniheight system F-term (reference) 2G001 AA01 BA11 CA01 DA09 GA06                       GA08 GA13 HA01 HA07 HA08                       HA13 HA14 JA08 JA11 JA13                       KA03 PA12                 5B057 AA03 BA03 BA17 CA02 CA08                       CA12 CA16 CB02 CB08 CB13                       CB16 CD11 CD14 CE06 CE08                       CG05 DA07 DA08 DB03 DB09                       DC02

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】測定物の回転軸方向に対して、90度より
も小さい角度でX線を照射し、検出した画像データに基
づいて内部構造を三次元再構成する方法であって、 X線焦点と測定物の回転中心までの距離および検出面ま
での距離を、X線源の回転角の関数として表現し、得ら
れた画像を測定物の回転軸に平行となるようにトモグラ
フィ角度だけ回転させて、垂直面画像に変換し、このと
き、幾何学的な配置の変換と共に、画像の強度も距離に
応じて変換するステップ、 投影データに重み係数を掛けて重み付き投影データを作
成するステップ、 フィルター関数と重み付き投影データをフーリエ変換
し、畳み込み演算を行う投影データのフィルタリングの
ステップ、 フィルター処理した重み付き投影データを、三次元再構
成空間に逆投影するステップ、を有するアルゴリズムで
上記投影像を処理する、ことを特徴とする傾斜三次元X
線CT画像の再構成方法。
1. A method for irradiating an X-ray at an angle smaller than 90 degrees with respect to a rotation axis direction of an object to be measured, and three-dimensionally reconstructing an internal structure based on the detected image data. The distance from the focus to the center of rotation of the object to be measured and the distance to the detection surface are expressed as a function of the rotation angle of the X-ray source, and only the tomography angle is used so that the obtained image is parallel to the axis of rotation of the object. Rotate and convert to a vertical plane image. At this time, along with the conversion of the geometrical arrangement, the step of converting the image intensity according to the distance, multiplying the projection data by a weighting factor to create weighted projection data Step, Fourier transform of the filter function and the weighted projection data to perform a convolution operation on the projection data filtering step, and a step of backprojecting the filtered weighted projection data onto the three-dimensional reconstruction space. A gradient three-dimensional X, characterized in that the projection image is processed with an algorithm having
Reconstruction method of line CT image.
【請求項2】デジタルラミノグラフィデータを、その二
次元検出面の法線が測定サンプルの回転軸に垂直になる
ように画像変換し、それを傾斜三次元X線CT画像デー
タとして使用する、ことを特徴とする請求項1に記載の
傾斜三次元X線CT画像の再構成方法。
2. Digital laminography data is image-converted so that the normal line of its two-dimensional detection surface is perpendicular to the rotation axis of the measurement sample, and it is used as tilted three-dimensional X-ray CT image data. The method for reconstructing a tilted three-dimensional X-ray CT image according to claim 1, wherein.
【請求項3】面積が大きく平たい測定物の一部を拡大し
て画像を再構成する、ことを特徴とする請求項1に記載
の傾斜三次元X線CT画像の再構成方法。
3. The method for reconstructing a tilted three-dimensional X-ray CT image according to claim 1, wherein a part of a flat object having a large area is enlarged to reconstruct the image.
JP2002153183A 2002-05-27 2002-05-27 Reconstruction method of tilted three-dimensional X-ray CT image Expired - Lifetime JP4129572B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002153183A JP4129572B2 (en) 2002-05-27 2002-05-27 Reconstruction method of tilted three-dimensional X-ray CT image

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002153183A JP4129572B2 (en) 2002-05-27 2002-05-27 Reconstruction method of tilted three-dimensional X-ray CT image

Publications (2)

Publication Number Publication Date
JP2003344316A true JP2003344316A (en) 2003-12-03
JP4129572B2 JP4129572B2 (en) 2008-08-06

Family

ID=29770276

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002153183A Expired - Lifetime JP4129572B2 (en) 2002-05-27 2002-05-27 Reconstruction method of tilted three-dimensional X-ray CT image

Country Status (1)

Country Link
JP (1) JP4129572B2 (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005331428A (en) * 2004-05-21 2005-12-02 Sony Corp Image information processing apparatus, image information processing method, and program
WO2007145109A1 (en) * 2006-06-13 2007-12-21 Uni-Hite System Corporation Ct apparatus having x-ray irradiating direction and detector orientation set in arbitrary directions, and three-dimensional image reconstituting method and program for the apparatus
JP2008122337A (en) * 2006-11-15 2008-05-29 Comscantecno Co Ltd Multifunctional x-ray inspecting apparatus
EP1970701A2 (en) 2007-03-13 2008-09-17 Omron Corporation X-Ray examination method and X-ray examination apparatus
WO2009078415A1 (en) * 2007-12-17 2009-06-25 Uni-Hite System Corporation X-ray examining apparatus and method
WO2009084581A1 (en) 2007-12-27 2009-07-09 Omron Corporation X-ray examining apparatus and x-ray examining method
WO2010074030A1 (en) 2008-12-22 2010-07-01 オムロン株式会社 X-ray inspection method and x-ray inspection apparatus
JP2010160070A (en) * 2009-01-08 2010-07-22 Omron Corp Examination method, examination apparatus and examination program
US8254519B2 (en) 2008-09-10 2012-08-28 Omron Corporation X-ray inspection apparatus and X-ray inspection method
US20140177792A1 (en) * 2012-12-21 2014-06-26 Advanced Micro Devices, Inc. 3d imaging with multiple irradiation frequencies
JP2018194491A (en) * 2017-05-19 2018-12-06 富士通株式会社 X-ray analysis method and x-ray analyzer

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017210500A1 (en) * 2016-06-03 2017-12-07 Covidien Lp Robotic surgical system with an embedded imager

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1598782A3 (en) * 2004-05-21 2010-11-10 Sony Corporation Image information processing apparatus, image information processing method, and program
US7529402B2 (en) 2004-05-21 2009-05-05 Sony Corporation Image information processing apparatus, image information processing method, and program
JP2005331428A (en) * 2004-05-21 2005-12-02 Sony Corp Image information processing apparatus, image information processing method, and program
WO2007145109A1 (en) * 2006-06-13 2007-12-21 Uni-Hite System Corporation Ct apparatus having x-ray irradiating direction and detector orientation set in arbitrary directions, and three-dimensional image reconstituting method and program for the apparatus
JP2008122337A (en) * 2006-11-15 2008-05-29 Comscantecno Co Ltd Multifunctional x-ray inspecting apparatus
EP1970701A2 (en) 2007-03-13 2008-09-17 Omron Corporation X-Ray examination method and X-ray examination apparatus
US7680242B2 (en) 2007-03-13 2010-03-16 Omron Corporation X-ray examination method and X-ray examination apparatus
WO2009078415A1 (en) * 2007-12-17 2009-06-25 Uni-Hite System Corporation X-ray examining apparatus and method
US8391581B2 (en) 2007-12-27 2013-03-05 Omron Corporation X-ray inspecting apparatus and X-ray inspecting method
WO2009084581A1 (en) 2007-12-27 2009-07-09 Omron Corporation X-ray examining apparatus and x-ray examining method
US8254519B2 (en) 2008-09-10 2012-08-28 Omron Corporation X-ray inspection apparatus and X-ray inspection method
WO2010074030A1 (en) 2008-12-22 2010-07-01 オムロン株式会社 X-ray inspection method and x-ray inspection apparatus
JP2010160070A (en) * 2009-01-08 2010-07-22 Omron Corp Examination method, examination apparatus and examination program
US8509512B2 (en) 2009-01-08 2013-08-13 Omron Corporation Examination method, examination apparatus and examination program
US20140177792A1 (en) * 2012-12-21 2014-06-26 Advanced Micro Devices, Inc. 3d imaging with multiple irradiation frequencies
US9354185B2 (en) * 2012-12-21 2016-05-31 Advanced Micro Devices, Inc. 3D imaging with multiple irradiation frequencies
JP2018194491A (en) * 2017-05-19 2018-12-06 富士通株式会社 X-ray analysis method and x-ray analyzer

Also Published As

Publication number Publication date
JP4129572B2 (en) 2008-08-06

Similar Documents

Publication Publication Date Title
KR100667014B1 (en) The drawing method of the radiographic and three-dimensional image
JP5221394B2 (en) How to reconstruct image functions from radon data
JP4598880B1 (en) CT apparatus and imaging method of CT apparatus
US20050078861A1 (en) Tomographic system and method for iteratively processing two-dimensional image data for reconstructing three-dimensional image data
US20100266181A1 (en) Device and method for producing a ct reconstruction of an object comprising a high-resolution object region of interest
WO2006078085A1 (en) Method for reconstructing a local high resolution x-ray ct image and apparatus for reconstructing a local high resolution x-ray ct image
JP2005021675A (en) Tomograph apparatus
CN107192726B (en) The quick high-resolution 3 D cone-beam computer tomography method of plate shell object and device
AU2016200833B2 (en) A computed tomography imaging process and system
JPH11306335A (en) Method and device for executing three-dimensional computer tomography imaging
GB2387306A (en) Oblique irradiation angle CT system
JPH0793924B2 (en) Reconstruction method of tomographic image using radiation crossing plane
JP2003344316A (en) Reconstitution method of inclined three-dimensional x- ray ct image
US7602879B2 (en) Method for increasing the resolution of a CT image during image reconstruction
CN108271412A (en) Image capturing device, image acquisition method and image correction program
CN110057847A (en) TR computed tomography scanning projections rearrangement method and device
JP2589613B2 (en) X-ray CT imaging method and X-ray CT apparatus
JP3694833B2 (en) Eucentric tilted 3D X-ray CT and 3D image imaging method using the same
JP3518520B2 (en) Tomography equipment
JP3926574B2 (en) Tomography equipment
JPH06181918A (en) Transmission type three-dimenisonal tomograph
CN102062740B (en) Cone-beam CT (Computed Tomography) scanning imaging method and system
JP2007198866A (en) General saddle cone beam ct system, and three-dimensional reconstitution method
JP7187131B2 (en) Image generation device, X-ray computed tomography device and image generation method
JP2021003240A (en) X-ray tomosynthesis device, image processing device and program

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20040205

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050223

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080108

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080310

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080408

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080502

R150 Certificate of patent or registration of utility model

Ref document number: 4129572

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110530

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110530

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120530

Year of fee payment: 4

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120530

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130530

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term