JP2003342752A - Heat resistant and corrosion resistant member for vacuum use, vacuum apparatus having parts obtained by using the same member and coating method therefor - Google Patents

Heat resistant and corrosion resistant member for vacuum use, vacuum apparatus having parts obtained by using the same member and coating method therefor

Info

Publication number
JP2003342752A
JP2003342752A JP2002145611A JP2002145611A JP2003342752A JP 2003342752 A JP2003342752 A JP 2003342752A JP 2002145611 A JP2002145611 A JP 2002145611A JP 2002145611 A JP2002145611 A JP 2002145611A JP 2003342752 A JP2003342752 A JP 2003342752A
Authority
JP
Japan
Prior art keywords
resistant
corrosion
heat
vacuum
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2002145611A
Other languages
Japanese (ja)
Inventor
Mitsuhiro Yoshida
光宏 吉田
Yuji Asahara
裕司 浅原
Toru Funada
徹 舟田
Takeshi Tanaka
武 田中
Toshinori Takagi
俊宜 高木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Tsuru Gakuen
Original Assignee
Mitsubishi Heavy Industries Ltd
Tsuru Gakuen
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd, Tsuru Gakuen filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP2002145611A priority Critical patent/JP2003342752A/en
Publication of JP2003342752A publication Critical patent/JP2003342752A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/04Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings of inorganic non-metallic material
    • C23C28/046Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings of inorganic non-metallic material with at least one amorphous inorganic material layer, e.g. DLC, a-C:H, a-C:Me, the layer being doped or not
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/04Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings of inorganic non-metallic material
    • C23C28/048Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings of inorganic non-metallic material with layers graded in composition or physical properties

Landscapes

  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physical Vapour Deposition (AREA)
  • Chemical Vapour Deposition (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a heat resistant and corrosion resistant coating member which is simultaneously provided with heat resistance, heat radiability and corrosion resistance, and is suitable for vacuum use, and to provide a coating method therefor. <P>SOLUTION: In the heat resistant and corrosion resistant coating member for vacuum use, the surface of a metallic base material is provided with plural coating layers, the outermost layer of the coating layers consists of a heat resistant and corrosion resistant material layer, and the intermediate layer in contact with the outermost layer consists of a mixing layer. The heat resistant and corrosion resistant material layer comprises amorphous carbon or nickel or nickel oxide. <P>COPYRIGHT: (C)2004,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術の分野】本発明はハロゲン、活性酸
素など強酸化性物質の腐蝕性に対して良好な耐性を有
し、同時に良好な熱放射特性を有する真空用耐熱耐蝕コ
ーティング部材および同コーティング方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a heat-resistant and corrosion-resistant coating member for vacuum, which has good resistance to corrosiveness of strongly oxidizing substances such as halogen and active oxygen, and at the same time has good heat radiation characteristics, and the coating. Regarding the method.

【0002】[0002]

【従来の技術】CVD技術、蒸着技術、スパッタリング
技術、イオンプレーティング技術、プラズマ応用技術、
各種エッチング技術、各種蒸留分離技術など真空下、減
圧下で行う物理化学処理技術ではハロゲン系ガス、酸素
系ガスなどの強酸化性の腐食性物質を用いたり、これら
の物質が副生したりするプロセスであることが多い。従
って、これらプロセスの真空下、減圧下で使用する機材
表面、例えば配管、ポンプインペラ・ロータ、バルブ
類、プロセスチャンバなどの接液・接ガス部の表面はプ
ロセス中のこれら腐食性物質のため、およびプロセスの
中断若しくは終了時における大気開放時の空気中の水分
による腐食促進効果にも助長されて、著しい腐食雰囲気
下に曝される。
2. Description of the Related Art CVD technology, vapor deposition technology, sputtering technology, ion plating technology, plasma application technology,
Physicochemical treatment technologies such as various etching techniques and various distillation separation techniques performed under vacuum or reduced pressure use strong oxidizing corrosive substances such as halogen-based gas and oxygen-based gas, or these substances are by-produced. Often a process. Therefore, the surface of equipment used under vacuum or reduced pressure in these processes, for example, the surfaces of wetted parts and gas contacted parts such as pipes, pump impellers, rotors, valves, process chambers, etc. due to these corrosive substances during the process, Further, it is exposed to a remarkably corrosive atmosphere by being promoted by the corrosion promoting effect by the moisture in the air when the process is interrupted or terminated and the atmosphere is released.

【0003】そのため、これら機材は耐腐蝕性の材料で
製作するか、表面を耐耐腐蝕性の材料でコーティングす
る必要がある。機材全体を耐腐蝕性の材料とすることは
当然コストがかかるので、従来、表面をメッキ、塗布、
蒸着などの方法でコーティングする方法が行われてい
た。
Therefore, it is necessary to manufacture these materials with a corrosion resistant material or to coat the surface with a corrosion resistant material. Since it is costly to make the entire equipment a corrosion resistant material, plating, coating,
A coating method such as vapor deposition has been used.

【0004】一方、これら機材の内、ポンプその他の可
動部分を有し、摩擦熱を発生する部品を擁する機材、又
は反応熱その他放熱を必用とする熱源を擁する機材で
は、熱による機材の劣化を避けるために、真空下若しく
は減圧下で熱を良く放射して温度を低く維持可能な特性
を備えていることも望まれる。そのため、これら機材の
表面は耐腐蝕性と同時に、高い熱放射率(理想的な黒体
を1として、0.5以上、もしくは可能な限り0.7〜
0.9)を有していることも必要である。
On the other hand, among these equipments, in equipments having a pump or other movable parts and having parts for generating frictional heat, or equipments having reaction heat or other heat sources requiring heat radiation, deterioration of the equipment due to heat is caused. In order to avoid it, it is also desirable to have a property capable of radiating heat well under vacuum or reduced pressure and keeping the temperature low. Therefore, the surface of these equipments is not only resistant to corrosion, but also has a high thermal emissivity (0.5 or more with an ideal black body being 1 or 0.7 to as much as possible).
It is also necessary to have 0.9).

【0005】図8は従来のニッケル系耐熱コーティング
の一例であるが、基材1の上に、耐高温腐蝕性の材料で
あるNiPコーティングもしくはNiコーティングを施
し、その上に3”の耐食性の無機材料SiO、熱放射
率の高いAl、若しくは有機高分子材料などを蒸
着、塗布することが行われていた。
FIG. 8 shows an example of a conventional nickel-based heat-resistant coating. A NiP coating or a Ni coating, which is a high-temperature corrosion resistant material, is applied on a base material 1, and a 3 "corrosion-resistant inorganic material is formed on the NiP coating or Ni coating. Materials such as SiO 2 , Al 2 O 3 having a high thermal emissivity, or organic polymer materials have been deposited and applied.

【0006】しかし、Niは熱放射性に欠けているこ
と、Ni−Pは耐腐蝕性が低いことなどがあり、前記用
途には必ずしも満足のおける対策ではなかった。加えて
SiO やAl層は蒸着によって皮膜を形成させ
るが、例えばターボ分子ポンプの翼のような複雑な形状
の部品では、細部まで均一にピンホールなしで成膜する
ことは困難であった。特にAlは腐食性薬液に弱
く、高分子の皮膜では耐熱性に限度がある上に、塩化水
素、フッ化水素などハロゲン化水素系の腐食物質がコー
ティング材(高分子)/母材(金属)界面に高分子膜面
から高温時に拡散浸透して腐食剥離を起こした。
However, Ni lacks heat radiation.
, Ni-P has low corrosion resistance, etc.
By the way, it was not always a satisfactory measure. in addition
SiO TwoAnd AlTwoOThreeThe layers are deposited by vapor deposition
However, it has a complicated shape, such as a turbo molecular pump blade.
In the parts of the above, even the smallest details can be formed uniformly without pinholes.
It was difficult. Especially AlTwoOThreeIs weak to corrosive chemicals
In addition, the polymer film has a limited heat resistance,
Corrosive substances based on hydrogen halides such as hydrogen and hydrogen fluoride
Polymer film surface at the interface between the coating material (polymer) and the base material (metal)
At high temperatures, it diffused and permeated, causing corrosion and peeling.

【0007】[0007]

【発明が解決しようとする課題】本発明はかかる従来の
問題点に鑑みてなされたもので、耐熱性と熱放射性と耐
腐食性を同時に備えた、真空用途に適した耐熱耐蝕コー
ティング部材及びコーティング方法を提供することを目
的とする。
SUMMARY OF THE INVENTION The present invention has been made in view of the above conventional problems, and is a heat-resistant and corrosion-resistant coating member and coating suitable for vacuum use, which has heat resistance, thermal radiation and corrosion resistance at the same time. The purpose is to provide a method.

【0008】[0008]

【課題を解決するための手段】本発明の真空用耐熱耐蝕
コーティング部材は、金属系基材上に複数のコーティン
グ層を有し、前記コーティング層の最外層は耐熱耐蝕材
層よりなり、最外層に接する中間層はミキシング層より
なる真空用耐熱耐蝕コーティング部材であって、前記最
外層の耐熱耐蝕材層がアモルファスカーボンもしくはニ
ッケル或いはニッケル酸化物よりなることを特徴とす
る。
A vacuum heat-resistant and corrosion-resistant coating member according to the present invention has a plurality of coating layers on a metal-based substrate, and the outermost layer of the coating layers is a heat-resistant and corrosion-resistant material layer. The intermediate layer in contact with is a vacuum heat-resistant and corrosion-resistant coating member made of a mixing layer, and the outermost heat-resistant and corrosion-resistant material layer is made of amorphous carbon, nickel or nickel oxide.

【0009】本発明は複数のコーティングによって本発
明の目的効果を実現するようにしているので金属系基材
は特に規定しないが、前記真空用途機器の部品を構成す
る材質に適切な物理特性を有する金属若しくは合金が選
ぶことができる。そして、最外層のコーティング層に耐
熱と同時に耐蝕の機能を担わせるために、本発明のアモ
ルファスカーボンもしくはニッケル或いはニッケル酸化
物を選んだ。そして、最外層と基材金属間の膨張係数の
差異による、熱応力の発生や最外層皮膜自体が有する内
部応力を緩和して、最外層と基材面間の剥離を避ける目
的でミキシング層を導入したところに特徴がある。
Since the present invention is intended to achieve the intended effect of the present invention by a plurality of coatings, the metallic base material is not particularly specified, but it has physical properties suitable for the material constituting the parts of the vacuum equipment. A metal or alloy can be selected. Then, the amorphous carbon, nickel or nickel oxide of the present invention was selected so that the outermost coating layer has both heat resistance and corrosion resistance. Then, due to the difference in the expansion coefficient between the outermost layer and the base metal, the mixing layer is formed for the purpose of relaxing the occurrence of thermal stress and the internal stress of the outermost layer coating itself, and avoiding the separation between the outermost layer and the base material surface. The feature is that it was introduced.

【0010】ここで言うミキシング層とは、母材表面層
付近にコーティング材を打ち込むようにして設けること
ができる中間の層であって、母材とコーティング材の混
入割合分布に傾斜を持たせるような構造を有し、従って
母材とコーティング層の密着性を高めるような効果をも
っている。
The mixing layer mentioned here is an intermediate layer which can be provided by driving the coating material near the surface layer of the base material, and has a gradient in the mixing ratio distribution of the base material and the coating material. Therefore, it has the effect of increasing the adhesion between the base material and the coating layer.

【0011】前記アモルファスカーボン膜はダイヤモン
ド結晶構造及びグラファイト結晶構造が混在した結晶構
造を呈し、炭素水素結合を含んだ緻密な皮膜であり、該
皮膜は腐食性物質に対する耐性が高く、しかも高温に耐
える性質を有する。その硬度は水素含有量で調節可能で
あり、熱放射率もこれら結晶構造と水素量の調整で調節
が可能である。
The amorphous carbon film is a dense film having a crystal structure in which a diamond crystal structure and a graphite crystal structure are mixed and containing carbon-hydrogen bonds. The film has a high resistance to corrosive substances and can withstand high temperatures. It has the property. The hardness can be adjusted by the hydrogen content, and the thermal emissivity can also be adjusted by adjusting the crystal structure and the hydrogen content.

【0012】前記もう一つの最外層であるニッケルある
いはニッケル酸化物層は、特に説明の必要のない周知の
材質であるが、本発明の目的である耐熱耐蝕を同時に適
えられる最外層成分として重要な選択である。しかし、
熱放射性については、更に後述するような対策をすれ
ば、高度な特性が得られるので本発明の構成の要素の一
つである。
The other outermost layer, nickel or nickel oxide layer, is a well-known material that does not require any special explanation, but is important as an outermost layer component that can simultaneously satisfy the heat and corrosion resistance, which is the object of the present invention. It is a good choice. But,
The heat radiation property is one of the elements of the constitution of the present invention, because a high degree of characteristics can be obtained by further taking the measures described later.

【0013】更に、本発明の真空用耐熱耐蝕コーティン
グ部材は、前記ミキシング層と基材面の間に更に第2の
中間層を有し、該第2の中間層が半導体系、セラミック
系もしくは金属Ni又はNi−Pの皮膜よりなることを
特徴とする。
Further, the vacuum heat-resistant and corrosion-resistant coating member of the present invention further has a second intermediate layer between the mixing layer and the surface of the substrate, and the second intermediate layer is a semiconductor-based, ceramic-based or metal-based material. It is characterized by comprising a Ni or Ni-P film.

【0014】半導体系とはTiO、Feなどの
ように熱、電気伝導率が金属より小さく、絶縁体より大
きい中間的な物質を言い、セラミック系とはAl
、SiOなどのように熱、電気伝導率が比較的
小さい誘導体である物質を言う。
The semiconductor type means an intermediate substance such as TiO 2 and Fe 2 O 3 which has a heat and electric conductivity smaller than that of metal and larger than an insulator, and the ceramic type means Al.
It refers to a substance such as 2 O 3 or SiO 2 which is a derivative having a relatively small heat and electric conductivity.

【0015】当該半導体系若しくは単独で熱放射特性が
良好なセラミック系層の存在によって、コーティング材
と母材が熱的に絶縁されるため、熱が母材に拡散する効
果を抑制し、本発明部材の熱放射特性を高めることが可
能となる。
Since the coating material and the base material are thermally insulated by the presence of the semiconductor-based or ceramic-based layer having a good heat radiation property by itself, the effect of diffusing heat into the base material is suppressed, and the present invention is realized. It is possible to improve the heat radiation characteristics of the member.

【0016】更に、本発明の真空用耐熱耐蝕コーティン
グ部材は、前記真空用耐熱耐蝕コーティング部材の表面
が少なくともコーティング面の表面においてほぼ規定範
囲の凹凸の高さと周期を持つ粗面をなし、該粗面の凹凸
の高さと該凹凸の周期の1/2の大きさが0.1〜10
00μmの範囲であることを特徴とする。
Furthermore, in the heat-resistant and corrosion-resistant coating member for vacuum of the present invention, the surface of the heat-resistant and corrosion-resistant coating member for vacuum has a rough surface having a height and period of unevenness in a substantially defined range at least on the surface of the coating surface. The height of the unevenness of the surface and the half of the period of the unevenness are 0.1 to 10
It is characterized in that it is in the range of 00 μm.

【0017】放射率は完全な鏡面反射体ではゼロである
から、面の粗さが放射率に影響する。ウィーンの変位則
によれば黒体の放射する光(熱放射光)はその黒体の絶
対温度に反比例する波長λmax=2897/T μm
を最大強度としたエネルギ分布を有し、その分布はプラ
ンクの分布式で現されるので、本発明の問題にする温度
に相当する波長分布に含まれる波長と熱放射面の荒さの
凹凸のサイズがほぼ一致するようにすることによって、
放射率を高めることができる。
Since emissivity is zero for a perfect specular reflector, surface roughness affects emissivity. According to the Wien's displacement law, the light emitted by a black body (thermal radiation) has a wavelength λmax = 2897 / T μm which is inversely proportional to the absolute temperature of the black body.
Has a maximum intensity, and the distribution is expressed by Planck's distribution formula. Therefore, the wavelength included in the wavelength distribution corresponding to the temperature of the present invention and the size of the unevenness of the roughness of the heat radiation surface are included. By making sure that
Emissivity can be increased.

【0018】また更に、本発明は前記の真空用耐熱耐蝕
コーティング部材を用いた部品を有することを特徴とす
る真空装置でもある。
Furthermore, the present invention is also a vacuum apparatus characterized by having a component using the above-mentioned heat-resistant and corrosion-resistant coating member for vacuum.

【0019】前記したように、例えば腐食性ガスを利用
するエッチングシステムなど半導体分野では、減圧下で
当該ガスを流しながら工程を進行させるので、使用装置
材料の腐蝕が当該工程で製造される製品の品質に大きな
影響を与える。同時に腐蝕による使用装置(部品、部
材)の寿命短縮が設備コスト及び設備稼働率に反映し、
製品コストプッシュ要因となる。特に真空機器中での腐
蝕性の物質と接触し、且つ高温に曝され、熱的機械的応
力を受ける部位として劣化し易い条件下にある部品、例
えばポンプ、特にターボ分子ポンプなどのインペラ、ロ
ータなど、その他スクロール、バルブ部品など回転・摺
動する可動部品は高い耐腐蝕性と放熱性が必要となる。
更に、過酷な条件で使用される場合、真空下のダクト内
壁、容器内壁のような非可動の部位にも使用して装置の
寿命を延ばすことが可能である。
As described above, in the semiconductor field such as an etching system utilizing a corrosive gas, the process is carried out while flowing the gas under a reduced pressure, so that the corrosion of the material of the apparatus used causes the corrosion of the product manufactured in the process. It has a great impact on quality. At the same time, shortening the life of the used equipment (parts, members) due to corrosion is reflected in the equipment cost and equipment operation rate,
It becomes a factor of product cost push. In particular, parts that are in contact with corrosive substances in vacuum equipment and that are exposed to high temperatures and subject to thermal mechanical stress are subject to deterioration, such as impellers and rotors for pumps, especially turbo molecular pumps. In addition, other movable parts that rotate and slide such as scrolls and valve parts require high corrosion resistance and heat dissipation.
Further, when used under severe conditions, it can be used for non-movable parts such as the inner wall of the duct and the inner wall of the container under vacuum to extend the life of the device.

【0020】このような場合、本発明によって、化学的
・熱的に保護されて、著しく信頼性の高い、長寿命の真
空機器を提供することが可能になる。
In such a case, the present invention makes it possible to provide a vacuum device which is chemically and thermally protected and is extremely reliable and has a long life.

【0021】本発明の真空用耐熱耐蝕コーティング方法
は、金属系基材上に複数のコーティング層を施し、前記
コーティング層の最外層には耐熱耐蝕材層を形成せし
め、最外層に接する中間層はミキシング層を形成せしめ
る真空用耐熱耐蝕コーティング方法であって、前記最外
層の耐熱耐蝕材層をアモルファスカーボンもしくはニッ
ケル或いはニッケル酸化物によって形成することを特徴
とする。
In the vacuum heat-resistant and corrosion-resistant coating method of the present invention, a plurality of coating layers are formed on a metallic base material, a heat-resistant and corrosion-resistant material layer is formed on the outermost layer of the coating layer, and an intermediate layer in contact with the outermost layer is formed. A heat resistant and corrosion resistant coating method for vacuum for forming a mixing layer, characterized in that the outermost heat resistant and corrosion resistant material layer is formed of amorphous carbon, nickel or nickel oxide.

【0022】更に本発明の真空用耐熱耐蝕コーティング
方法は、前記ミキシング層と基材面の間に更に第2の中
間層を形成せしめ、該第2の中間層に半導体系、セラミ
ック系もしくは金属Ni又はNi−Pの皮膜を施すこと
を特徴とする。
Further, in the vacuum heat-resistant and corrosion-resistant coating method of the present invention, a second intermediate layer is further formed between the mixing layer and the surface of the base material, and the second intermediate layer is made of semiconductor, ceramic or metallic Ni. Alternatively, it is characterized in that a Ni-P film is applied.

【0023】更に本発明の真空用耐熱耐蝕コーティング
方法は、前記真空用耐熱耐蝕コーティング部材の表面を
少なくともコーティング面の表面においてほぼ規定範囲
の周期及び振幅の粗面とし、該粗面の凹凸の高さと該凹
凸の周期の1/2の大きさを0.1〜1000μmの範
囲となるようにすることを特徴とする。
Further, in the heat-resistant and corrosion-resistant coating method for vacuum of the present invention, the surface of the heat-resistant and corrosion-resistant coating member for vacuum is roughened at least on the surface of the coating surface with a cycle and amplitude in a substantially defined range, and the roughness of the roughened surface is high. And the half of the period of the unevenness is set in the range of 0.1 to 1000 μm.

【発明の実施の形態】以下に本発明の実施の形態につい
て図面を参照して詳しく説明する。但し本実施の形態に
記載される製品の寸法、形状、材質、その相対配置等は
特に特定的な記載がない限りは本発明の範囲をそれのみ
に限定する趣旨ではなく、単なる説明例に過ぎない。
BEST MODE FOR CARRYING OUT THE INVENTION Embodiments of the present invention will be described in detail below with reference to the drawings. However, the dimensions, shapes, materials, relative positions, etc. of the products described in the present embodiment are not intended to limit the scope of the present invention thereto unless otherwise specified, and are merely illustrative examples. Absent.

【0024】(実施例1)図1は本発明の実施例1にお
ける真空用耐熱耐蝕コーティング部材の断面図である。
金属系基材1上にイオン注入法、もしくはプラズマイオ
ン注入法によって、基材成分元素と最外層成分元素の混
在するミキシング層2を形成させる。薄膜3は水素結合
を含んだアモルファスカーボンであって、後述するプラ
ズマイオン注入法で成膜する。薄膜3の硬度は、水素量
により調製ができる。薄膜3を構成するアモルファスカ
ーボンはダイヤモンド結晶構造及びグラファイト結晶構
造が混在した結晶構造を呈し、炭素水素結合を含んだ皮
膜である。該薄膜3はハロゲン系物質による腐食に強
く、膜が緻密で侵食も少ない。グラファイトダイヤモン
ド構造の比、水素量を調節することで放射率も高めるこ
とが可能である。
(Embodiment 1) FIG. 1 is a sectional view of a vacuum heat-resistant and corrosion-resistant coating member according to Embodiment 1 of the present invention.
The mixing layer 2 in which the base material component element and the outermost layer component element are mixed is formed on the metal-based material 1 by the ion implantation method or the plasma ion implantation method. The thin film 3 is amorphous carbon containing hydrogen bonds and is formed by the plasma ion implantation method described later. The hardness of the thin film 3 can be adjusted by the amount of hydrogen. Amorphous carbon that constitutes the thin film 3 is a film that has a crystal structure in which a diamond crystal structure and a graphite crystal structure are mixed and that contains carbon-hydrogen bonds. The thin film 3 is resistant to corrosion by a halogen-based substance, has a dense film, and has little erosion. The emissivity can be increased by adjusting the ratio of the graphite diamond structure and the amount of hydrogen.

【0025】(実施例2)図2は本発明の実施例2にお
ける真空用耐熱耐蝕コーティング部材の断面図である。
本例では基材1の表面に予め0.1〜1000μmの凹
凸を付けておき、該凹凸面にミキシング層2を実施例1
と同様な方法で形成し、更にその外側に薄膜3としてア
モルファスカーボン膜を成膜する。基材面の凹凸付与
は、サンドブラスト、エッチング、蒸着、レーザーアブ
レーション、熱処理、酸化など、通常の方法で行うこと
ができる。本例によりカーボン膜の放射率をより高める
ことが可能である。
(Embodiment 2) FIG. 2 is a sectional view of a vacuum heat-resistant and corrosion-resistant coating member according to Embodiment 2 of the present invention.
In this example, the surface of the substrate 1 is provided with irregularities of 0.1 to 1000 μm in advance, and the mixing layer 2 is provided on the irregular surface of Example 1.
Then, an amorphous carbon film is formed as a thin film 3 on the outer side of the film. The unevenness can be imparted to the surface of the base material by a usual method such as sandblasting, etching, vapor deposition, laser ablation, heat treatment, and oxidation. According to this example, it is possible to further increase the emissivity of the carbon film.

【0026】アモルファスカーボンは、基材1表面もし
くはミキシング層2表面に直接プラズマイオン注入法に
より、プラズマCVD、イオン注入を併用して複雑な形
状でも均一に成膜することができる。図7に本発明のア
モルファスカーボンの皮膜を基材上に形成させるための
装置の概念図を示す。真空容器8内に設置した基材1
に、高周波電源11、及びパルス電源10又は10’に
より高周波とパルス電圧を印加する。ガスgは真空容器
8に外部から導入される。この電圧により、基材1、及
びそれに設置された対象の周囲でプラズマが発生すると
同時に、イオンが負パルス電場で印加される。パルス電
源は、バイポーラータイプ10と負パルスタイプ10’
いずれでも可。また、高周波電源11は省略できる。
Amorphous carbon can be uniformly deposited on the surface of the base material 1 or the surface of the mixing layer 2 by a plasma ion implantation method in combination with plasma CVD and ion implantation even in a complicated shape. FIG. 7 shows a conceptual diagram of an apparatus for forming the amorphous carbon film of the present invention on a substrate. Substrate 1 installed in vacuum container 8
Then, a high frequency and a pulse voltage are applied by the high frequency power supply 11 and the pulse power supply 10 or 10 '. The gas g is introduced into the vacuum container 8 from the outside. Due to this voltage, plasma is generated around the substrate 1 and the target placed on the substrate 1, and at the same time, ions are applied by a negative pulse electric field. Pulse power supply is bipolar type 10 and negative pulse type 10 '
Either is acceptable. Further, the high frequency power supply 11 can be omitted.

【0027】(実施例3)図3は本発明の実施例3にお
ける真空用耐熱耐蝕コーティング部材の断面図である。
本例ではアモルファスカーボン膜(薄膜3)の表面にの
み凹凸を形成した膜の例を示す。凹凸はその高さと周期
の半波長のサイズでほぼ0.1〜1000μmの範囲の
ものとし、アイランド状の瘤を形成するか、窪みを形成
するなどして作成する。瘤は1Pa以上の炭化水素系ガ
スのCVDによりカーボンを堆積させて形成できる。ま
た、窪みは酸素、水素或いは希ガスなどによるエッチン
グで削り取ることにより形成できる。
(Embodiment 3) FIG. 3 is a sectional view of a vacuum heat-resistant and corrosion-resistant coating member according to Embodiment 3 of the present invention.
In this example, an example of a film in which unevenness is formed only on the surface of the amorphous carbon film (thin film 3) is shown. The unevenness has a height and a half-wavelength size in the range of approximately 0.1 to 1000 μm, and is formed by forming island-shaped bumps or forming depressions. The bump can be formed by depositing carbon by CVD of a hydrocarbon-based gas of 1 Pa or more. Further, the depression can be formed by shaving by etching with oxygen, hydrogen, a rare gas, or the like.

【0028】(実施例4)図4は本発明の実施例4にお
ける真空用耐熱耐蝕コーティング部材の断面図である。
図4においては、薄膜3のアモルファスカーボン膜の放
射率を高めるために、基材1にあらかじめ第2の中間層
5としてセラミックスAl又はSiO、もしく
は半導体TiO又はFe、もしくは耐熱耐蝕金
属Ni又はNi−pを成膜しておき、そこにミキシング
層2を介してカーボンの薄膜3を形成させて保護する。
この多層構造により、高放射率で同時に高い耐腐蝕性を
保証するものである。基材1がAlの場合、前記図7の
装置を用いて基材1表面に酸素イオンを注入することに
よりAlを得ることができる。尚、ニッケル或い
はニッケル酸化物は、メッキ法以外に真空中スパッター
法による成膜も可能である。アモルファスカーボン膜
は、プラズマイオン注入法により均一に成膜することが
できる。
(Embodiment 4) FIG. 4 is a sectional view of a vacuum heat-resistant and corrosion-resistant coating member according to Embodiment 4 of the present invention.
In FIG. 4, in order to increase the emissivity of the amorphous carbon film of the thin film 3, ceramics Al 2 O 3 or SiO 2 , or semiconductor TiO 2 or Fe 2 O 3 , is previously formed as the second intermediate layer 5 on the substrate 1. Alternatively, a heat-resistant and corrosion-resistant metal Ni or Ni-p is formed in advance, and a carbon thin film 3 is formed therethrough for protection through the mixing layer 2.
This multilayer structure ensures high emissivity and at the same time high corrosion resistance. When the base material 1 is Al, Al 2 O 3 can be obtained by implanting oxygen ions into the surface of the base material 1 using the apparatus shown in FIG. Incidentally, nickel or nickel oxide may be formed by a sputtering method in vacuum other than the plating method. The amorphous carbon film can be uniformly formed by the plasma ion implantation method.

【0029】(実施例5)図5は本発明の実施例5にお
ける真空用耐熱耐蝕コーティング部材の断面図である。
図5では図4に示す多層膜中のカーボンの薄膜3に、他
の複数の元素6、7(P、B、Nなど)をドーピングし
て、放射率を高める構造とした。この場合第2の中間層
5は省略することも可能である。
(Embodiment 5) FIG. 5 is a sectional view of a vacuum heat-resistant and corrosion-resistant coating member according to Embodiment 5 of the present invention.
In FIG. 5, the carbon thin film 3 in the multilayer film shown in FIG. 4 is doped with a plurality of other elements 6 and 7 (P, B, N, etc.) to increase the emissivity. In this case, the second intermediate layer 5 can be omitted.

【0030】(実施例6)図6は本発明の実施例5にお
ける真空用耐熱耐蝕コーティング部材の断面図である。
図6では最外層の薄膜にNi若しくはNi酸化物を用い
た例である。即ち、基材1に第2の中間層5を成膜後、
ミキシング層2とともに薄膜3’を成膜する。最外層に
NiOxとして成膜し、その後水素などで還元処理をし
て金属ニッケルとすることにより凹凸を形成することも
可能である。この場合も中間層5は省略可能である。
(Embodiment 6) FIG. 6 is a sectional view of a vacuum heat-resistant and corrosion-resistant coating member according to Embodiment 5 of the present invention.
FIG. 6 shows an example in which Ni or Ni oxide is used for the outermost thin film. That is, after forming the second intermediate layer 5 on the substrate 1,
A thin film 3'is formed together with the mixing layer 2. It is also possible to form unevenness by forming NiOx on the outermost layer and then reducing it with hydrogen or the like to obtain metallic nickel. Also in this case, the intermediate layer 5 can be omitted.

【0031】(比較試験)前記各実施例における部材を
従来の部材と対比して次のような試験により効果を比較
した。腐食試験は、潮解した塩化アルミニウムに処理面
を長時間接触させる方法を用いた。また、熱放射特性
は、常温下で一定時間電磁波を照射した後の温度変化
を、同じ条件下における黒体の特性と比較して求める。
従来法では、腐食試験にて、接触開始後24時間〜20
0時間内でピンホールが発生し、また、熱放射特性も放
射率0.5以下である場合がほとんどであるが、本発明
による方法では、腐食試験にて、200時間以上表面状
態の変化なく、放射率は0.5〜0.9を実現できる。
(Comparative Test) The effects of the members in each of the above-mentioned examples were compared by the following tests in comparison with the conventional members. For the corrosion test, a method of bringing the treated surface into contact with deliquescent aluminum chloride for a long time was used. Further, the heat radiation characteristic is obtained by comparing the temperature change after the electromagnetic wave is radiated for a certain time at room temperature with the characteristic of the black body under the same condition.
In the conventional method, in a corrosion test, 24 hours to 20 hours after the start of contact
In most cases, pinholes are generated within 0 hours, and the thermal radiation characteristics are also emissivity of 0.5 or less. In the method according to the present invention, the surface condition does not change in the corrosion test for 200 hours or more. The emissivity can be 0.5 to 0.9.

【0032】[0032]

【発明の効果】以上説明したように本発明により耐熱性
と熱放射性と耐腐食性を同時に備えた、真空用途に適し
た耐熱耐蝕コーティング部材及びコーティング方法を提
供することを可能とした。
As described above, according to the present invention, it is possible to provide a heat-resistant and corrosion-resistant coating member and a coating method having heat resistance, heat radiation and corrosion resistance, which are suitable for vacuum applications.

【図面の簡単な説明】[Brief description of drawings]

【図1】 本発明の実施例1における真空用耐熱耐蝕コ
ーティング部材の断面図である。
FIG. 1 is a cross-sectional view of a heat resistant and corrosion resistant coating member for vacuum according to a first embodiment of the present invention.

【図2】 本発明の実施例2における真空用耐熱耐蝕コ
ーティング部材の断面図である。
FIG. 2 is a cross-sectional view of a heat resistant and corrosion resistant coating member for vacuum according to a second embodiment of the present invention.

【図3】 本発明の実施例3における真空用耐熱耐蝕コ
ーティング部材の断面図である。
FIG. 3 is a sectional view of a vacuum heat-resistant and corrosion-resistant coating member according to Example 3 of the present invention.

【図4】 本発明の実施例4における真空用耐熱耐蝕コ
ーティング部材の断面図である。
FIG. 4 is a cross-sectional view of a heat resistant and corrosion resistant coating member for vacuum according to a fourth embodiment of the present invention.

【図5】 本発明の実施例5における真空用耐熱耐蝕コ
ーティング部材の断面図である。
FIG. 5 is a cross-sectional view of a heat resistant and corrosion resistant coating member for vacuum according to a fifth embodiment of the present invention.

【図6】 本発明の実施例6における真空用耐熱耐蝕コ
ーティング部材の断面図である。
FIG. 6 is a cross-sectional view of a vacuum heat-resistant and corrosion-resistant coating member according to Example 6 of the present invention.

【図7】 本発明のアモルファスカーボンの皮膜を基材
上に形成させるための装置の概念図である。
FIG. 7 is a conceptual diagram of an apparatus for forming a film of amorphous carbon of the present invention on a substrate.

【図8】 従来型技術における真空用耐熱耐蝕コーティ
ング部材の断面図である。
FIG. 8 is a cross-sectional view of a heat-resistant and corrosion-resistant coating member for vacuum according to a conventional technique.

【符号の説明】[Explanation of symbols]

1 基板 2 ミキシング層 3 薄膜 3’ 薄膜(Ni系) 5 第2の中間層 6 複数元素の一つ 7 複数元素の一つ 8 真空容器 10 パルス電源その1 10’パルス電源その2 11 高周波電源 W 凹凸の周期の半波長 H 凹凸の高さ P 真空ポンプ g ガス 1 substrate 2 mixing layers 3 thin film 3'thin film (Ni type) 5 Second middle layer 6 One of multiple elements 7 One of multiple elements 8 vacuum vessels 10 pulse power supply 1 10 'pulse power supply 2 11 High frequency power supply Half wave length of W unevenness H height of unevenness P vacuum pump g gas

───────────────────────────────────────────────────── フロントページの続き (72)発明者 浅原 裕司 広島市西区観音新町四丁目6番22号 三菱 重工業株式会社広島研究所内 (72)発明者 舟田 徹 広島市西区観音新町四丁目6番22号 三菱 重工業株式会社広島研究所内 (72)発明者 田中 武 広島県広島市佐伯区三宅二丁目1−1 広 島工業大学内 (72)発明者 高木 俊宜 広島県広島市佐伯区三宅二丁目1−1 広 島工業大学内 Fターム(参考) 4K029 DA01 4K030 KA46 KA47 4K044 AA01 BA06 BA12 BA18 BB03 BB04 BB14 BC02 BC11 CA13 CA14 5F045 EC05 EM09    ─────────────────────────────────────────────────── ─── Continued front page    (72) Inventor Yuji Asahara             4-6-22 Kannon Shinmachi, Nishi-ku, Hiroshima Mitsubishi             Heavy Industry Co., Ltd. Hiroshima Laboratory (72) Inventor Toru Funada             4-6-22 Kannon Shinmachi, Nishi-ku, Hiroshima Mitsubishi             Heavy Industry Co., Ltd. Hiroshima Laboratory (72) Inventor Takeshi Tanaka             Hiro, 2-1-1, Miyake, Saiki-ku, Hiroshima-shi, Hiroshima             Shima Institute of Technology (72) Inventor Toshinori Takagi             Hiro, 2-1-1, Miyake, Saiki-ku, Hiroshima-shi, Hiroshima             Shima Institute of Technology F term (reference) 4K029 DA01                 4K030 KA46 KA47                 4K044 AA01 BA06 BA12 BA18 BB03                       BB04 BB14 BC02 BC11 CA13                       CA14                 5F045 EC05 EM09

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 金属系基材上に複数のコーティング層を
有し、前記コーティング層の最外層は耐熱耐蝕材層より
なり、最外層に接する中間層はミキシング層よりなる真
空用耐熱耐蝕コーティング部材であって、前記最外層の
耐熱耐蝕材層がアモルファスカーボンもしくはニッケル
或いはニッケル酸化物よりなることを特徴とする真空用
耐熱耐蝕コーティング部材。
1. A heat-resistant and corrosion-resistant coating member for vacuum having a plurality of coating layers on a metal-based substrate, the outermost layer of the coating layer being a heat-resistant and corrosion-resistant material layer, and an intermediate layer in contact with the outermost layer being a mixing layer. The heat-resistant and corrosion-resistant coating member for vacuum, wherein the outermost heat-resistant and corrosion-resistant material layer is made of amorphous carbon, nickel, or nickel oxide.
【請求項2】 前記ミキシング層と基材面の間に更に第
2の中間層を有し、該第2の中間層が半導体系、セラミ
ック系もしくは金属Ni又はNi−Pの皮膜よりなるこ
とを特徴とする請求項1記載の真空用耐熱耐蝕コーティ
ング部材。
2. A second intermediate layer is further provided between the mixing layer and the surface of the base material, and the second intermediate layer comprises a semiconductor-based, ceramic-based or metallic Ni or Ni-P coating. The heat-resistant and corrosion-resistant coating member for vacuum according to claim 1, which is characterized in that.
【請求項3】 前記真空用耐熱耐蝕コーティング部材の
表面が少なくともコーティング面の表面においてほぼ規
定範囲の凹凸の高さと周期を持つ粗面をなし、該粗面の
凹凸の高さと該凹凸の周期の1/2の大きさが0.1〜
1000μmの範囲であることを特徴とする請求項1若
しくは2記載の真空用耐熱耐蝕コーティング部材。
3. The surface of the heat-resistant and corrosion-resistant coating member for vacuum forms a rough surface having a height and period of unevenness in a substantially specified range at least on the surface of the coating surface, and the height of the unevenness of the rough surface and the period of the unevenness are 1/2 size is 0.1
The heat-resistant and corrosion-resistant coating member for vacuum according to claim 1 or 2, wherein the thickness is in the range of 1000 µm.
【請求項4】 請求項1乃至3いずれかの項記載の真
空用耐熱耐蝕コーティング部材を用いた部品を有するこ
とを特徴とする真空装置。
4. A vacuum device comprising a component using the vacuum heat-resistant and corrosion-resistant coating member according to claim 1. Description:
【請求項5】 金属系基材上に複数のコーティング層を
施し、前記コーティング層の最外層には耐熱耐蝕材層を
形成せしめ、最外層に接する中間層はミキシング層を形
成せしめる真空用耐熱耐蝕コーティング方法であって、
前記最外層の耐熱耐蝕材層をアモルファスカーボンもし
くはニッケル或いはニッケル酸化物によって形成するこ
とを特徴とする真空用耐熱耐蝕コーティング方法。
5. A heat-resistant corrosion-resistant material for vacuum, wherein a plurality of coating layers are formed on a metal-based substrate, a heat-resistant corrosion-resistant material layer is formed on the outermost layer of the coating layer, and an intermediate layer in contact with the outermost layer forms a mixing layer. A coating method,
A heat-resistant and corrosion-resistant coating method for vacuum, characterized in that the outermost heat-resistant and corrosion-resistant material layer is formed of amorphous carbon, nickel or nickel oxide.
【請求項6】 前記ミキシング層と基材面の間に更に第
2の中間層を形成せしめ、該第2の中間層に半導体系、
セラミック系もしくは金属Ni又はNi−Pの皮膜を施
すことを特徴とする請求項5記載の真空用耐熱耐蝕コー
ティング方法。
6. A second intermediate layer is further formed between the mixing layer and the surface of the base material, and a semiconductor system is formed on the second intermediate layer.
The heat-resistant and corrosion-resistant coating method for vacuum according to claim 5, wherein a ceramic-based or metallic Ni or Ni-P coating is applied.
【請求項7】 前記真空用耐熱耐蝕コーティング部材の
表面を少なくともコーティング面の表面においてほぼ規
定範囲の凹凸の高さと周期を持つ粗面とし、該粗面の凹
凸の高さと該凹凸の周期の1/2の大きさを0.1〜1
000μmの範囲となるようにすることを特徴とする請
求項5若しくは6記載の真空用耐熱耐蝕コーティング方
法。
7. The surface of the heat-resistant and corrosion-resistant coating member for vacuum is a rough surface having a height and a period of unevenness in a substantially specified range at least on the surface of the coating surface, and the height of the unevenness of the rough surface and the period of the unevenness are 1 The size of / 2 is 0.1-1
The heat-resistant and corrosion-resistant coating method for vacuum according to claim 5 or 6, characterized in that the thickness is in the range of 000 µm.
JP2002145611A 2002-05-21 2002-05-21 Heat resistant and corrosion resistant member for vacuum use, vacuum apparatus having parts obtained by using the same member and coating method therefor Withdrawn JP2003342752A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002145611A JP2003342752A (en) 2002-05-21 2002-05-21 Heat resistant and corrosion resistant member for vacuum use, vacuum apparatus having parts obtained by using the same member and coating method therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002145611A JP2003342752A (en) 2002-05-21 2002-05-21 Heat resistant and corrosion resistant member for vacuum use, vacuum apparatus having parts obtained by using the same member and coating method therefor

Publications (1)

Publication Number Publication Date
JP2003342752A true JP2003342752A (en) 2003-12-03

Family

ID=29766338

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002145611A Withdrawn JP2003342752A (en) 2002-05-21 2002-05-21 Heat resistant and corrosion resistant member for vacuum use, vacuum apparatus having parts obtained by using the same member and coating method therefor

Country Status (1)

Country Link
JP (1) JP2003342752A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006086389A (en) * 2004-09-17 2006-03-30 Taiheiyo Cement Corp Jig for vacuum suction
JP2007041472A (en) * 2005-08-05 2007-02-15 Matsushita Electric Ind Co Ltd Method for manufacturing electrophotographic photoreceptor and electrophotographic photoreceptor
JP2007270275A (en) * 2006-03-31 2007-10-18 Shimano Inc Parts for outdoor use
JP2015525157A (en) * 2012-06-18 2015-09-03 ロックツール Method and apparatus for preheating a mold for injection molding in particular
US20230103643A1 (en) * 2021-10-04 2023-04-06 Applied Materials, Inc. ADVANCED BARRIER NICKEL OXIDE (BNiO) COATING DEVELOPMENT FOR THE PROCESS CHAMBER COMPONENTS
WO2023172362A1 (en) * 2022-03-11 2023-09-14 Applied Materials, Inc. Advanced barrier nickel oxide (bnio) coating development for process chamber components via ozone treatment

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006086389A (en) * 2004-09-17 2006-03-30 Taiheiyo Cement Corp Jig for vacuum suction
JP4545536B2 (en) * 2004-09-17 2010-09-15 太平洋セメント株式会社 Vacuum suction jig
JP2007041472A (en) * 2005-08-05 2007-02-15 Matsushita Electric Ind Co Ltd Method for manufacturing electrophotographic photoreceptor and electrophotographic photoreceptor
JP4534898B2 (en) * 2005-08-05 2010-09-01 パナソニック株式会社 Method for producing electrophotographic photoreceptor
JP2007270275A (en) * 2006-03-31 2007-10-18 Shimano Inc Parts for outdoor use
JP2015525157A (en) * 2012-06-18 2015-09-03 ロックツール Method and apparatus for preheating a mold for injection molding in particular
US20230103643A1 (en) * 2021-10-04 2023-04-06 Applied Materials, Inc. ADVANCED BARRIER NICKEL OXIDE (BNiO) COATING DEVELOPMENT FOR THE PROCESS CHAMBER COMPONENTS
WO2023059502A1 (en) * 2021-10-04 2023-04-13 Applied Materials, Inc. Advanced barrier nickel oxide (bnio) coating development for the process chamber components
WO2023172362A1 (en) * 2022-03-11 2023-09-14 Applied Materials, Inc. Advanced barrier nickel oxide (bnio) coating development for process chamber components via ozone treatment

Similar Documents

Publication Publication Date Title
JP2004241203A (en) Treatment method of plasma treatment chamber wall
US8877002B2 (en) Internal member of a plasma processing vessel
TWI734119B (en) Plasma erosion resistant rare-earth oxide based thin film coatings
TWI751269B (en) Ion assisted deposition for rare-earth oxide based coatings on lids and nozzles
EP2071610B1 (en) Corrosion-resistant multilayer ceramic member
US20050252454A1 (en) Contaminant reducing substrate transport and support system
TWI607532B (en) Thermal radiation barrier for substrate processing chamber components
US10612121B2 (en) Plasma resistant coating with tailorable coefficient of thermal expansion
JP2007214540A (en) Etch-resistant heater and assembly thereof
US20220267887A1 (en) Coating for the surface of an article and process for forming the coating
JP2003342752A (en) Heat resistant and corrosion resistant member for vacuum use, vacuum apparatus having parts obtained by using the same member and coating method therefor
JP4712836B2 (en) Corrosion-resistant laminated ceramic members
US20070274021A1 (en) Electrostatic chuck apparatus
JPH11191500A (en) Glow discharge electrode and treatment method by glow discharge plasma
JP2019143188A (en) Anticorrosive film, and vacuum article
TW202235653A (en) Articles coated with crack-resistant fluoro-annealed films and methods of making
JPS61251021A (en) Filming apparatus
JP2008007343A (en) Alumina coated material and method of manufacturing the same
Park et al. Pt heating electrode for microheater based on electrochemically prepared anodic porous alumina
JPH06306591A (en) Production of water-repellent hard-coated coating film
KR20190032719A (en) High efficiency heater block for semiconductor wafer and method for manufacturing the same
JPH11130473A (en) Quartz glass member for semiconductor production device
US20050112289A1 (en) Method for coating internal surface of plasma processing chamber
JP2003313665A (en) Surface-treatment process for metal or alloy material and component installed in vacuum processing apparatus
JPH0878145A (en) Heater unit for vacuum film formation

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20050802