JP2003337251A - Polarization maintaining optical fiber coupler and manufacturing method thereof - Google Patents

Polarization maintaining optical fiber coupler and manufacturing method thereof

Info

Publication number
JP2003337251A
JP2003337251A JP2002143638A JP2002143638A JP2003337251A JP 2003337251 A JP2003337251 A JP 2003337251A JP 2002143638 A JP2002143638 A JP 2002143638A JP 2002143638 A JP2002143638 A JP 2002143638A JP 2003337251 A JP2003337251 A JP 2003337251A
Authority
JP
Japan
Prior art keywords
adhesive
polarization
optical fiber
maintaining optical
fiber coupler
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002143638A
Other languages
Japanese (ja)
Inventor
Daisuke Saito
大輔 斉藤
Shigeru Hirai
茂 平井
Maki Ikechi
麻紀 池知
Masayuki Kitani
昌幸 木谷
Minoru Nakayama
中山  実
Yoshiaki Shimazaki
善昭 島崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Toyokuni Electric Cable Co Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Toyokuni Electric Cable Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd, Toyokuni Electric Cable Co Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP2002143638A priority Critical patent/JP2003337251A/en
Publication of JP2003337251A publication Critical patent/JP2003337251A/en
Pending legal-status Critical Current

Links

Landscapes

  • Optical Couplings Of Light Guides (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a polarization maintaining optical fiber coupler that prevents a polarization extinction ratio from lowering even if an adhesive is used having a comparatively large Young's modulus in fixing to a mounting member, and also to provide a manufacturing method thereof. <P>SOLUTION: This coupler is a polarization maintaining optical fiber coupler in which a pair of polarization maintaining optical fibers 11 is melted, drawn and fixedly stuck to a mounting member 5 with an adhesive 7. For the adhesive 7, an ultraviolet ray setting resin is used which has a cold Young's modulus of 1,800-5,000 MPa after hardening. While heated above 30°C but below the glass-transition temperature, the adhesive 7 is hardened by being irradiated with ultraviolet rays. <P>COPYRIGHT: (C)2004,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、光通信分野で光信
号の分岐・結合または分波・合波等に用いられる光ファ
イバカプラに関し、特に偏波保持光ファイバを用いた偏
波保持光ファイバカプラとその製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an optical fiber coupler used for branching / coupling or demultiplexing / combining optical signals in the field of optical communication, and more particularly to a polarization maintaining optical fiber using a polarization maintaining optical fiber. The present invention relates to a coupler and a manufacturing method thereof.

【0002】[0002]

【従来の技術】従来、光信号装置において、光増幅器の
励起合波や光信号のモニタ光の取り出し等に、光ファイ
バカプラが多用されている。この光ファイバカプラは、
単一波長の光信号を複数に分岐または一つに結合した
り、波長の異なる複数の信号を波長毎に分波または一つ
に合波するのに用いられている。
2. Description of the Related Art Conventionally, in an optical signal device, an optical fiber coupler has been frequently used for pumping and combining an optical amplifier and extracting a monitor light of an optical signal. This fiber optic coupler
It is used to split an optical signal having a single wavelength into a plurality of signals or combine them into one, or to demultiplex a plurality of signals having different wavelengths into wavelengths or combine them into one.

【0003】図4は、一般的な光ファイバカプラの製造
方法の一例を示す図で、図4(A)は加熱融着工程を示
す図、図4(B)は延伸工程を示す図、図4(C)は実
装工程を示す図、図4(D)はアニール工程を示す図で
ある。図中、1は光ファイバ、2はガラスファイバ部、
3は融着延伸部、4は非延伸部、5は実装部材、6は蓋
部材、7は接着剤、8は恒温槽を示す。
FIG. 4 is a diagram showing an example of a method for manufacturing a general optical fiber coupler. FIG. 4 (A) is a diagram showing a heat fusion process, and FIG. 4 (B) is a diagram showing a drawing process. 4C is a diagram showing a mounting process, and FIG. 4D is a diagram showing an annealing process. In the figure, 1 is an optical fiber, 2 is a glass fiber part,
Reference numeral 3 is a fusion-bonded stretched portion, 4 is a non-stretched portion, 5 is a mounting member, 6 is a lid member, 7 is an adhesive, and 8 is a constant temperature bath.

【0004】光ファイバカプラの製造に際して、先ず、
図4(A)に示すように、例えば、2本の光ファイバ1
を準備し、光ファイバ途中の保護被覆を所定長さだけ除
去し、ガラスファイバ部2を露出させる。この後、露出
したガラスファイバ部2の中央部分を互いに平行に密接
させ加熱により融着させる。この加熱にはバーナ、マイ
クロトーチ等(図示せず)が用いられる。
In manufacturing an optical fiber coupler, first,
As shown in FIG. 4A, for example, two optical fibers 1
Is prepared, the protective coating in the middle of the optical fiber is removed by a predetermined length, and the glass fiber portion 2 is exposed. After that, the exposed central portions of the glass fiber portions 2 are closely contacted in parallel with each other and fused by heating. A burner, a micro torch, or the like (not shown) is used for this heating.

【0005】図4(B)は、融着された部分を延伸させ
る状態を示し、加熱融着時でガラスが軟化状態にある間
に延伸させるか、または、光ファイバを再度加熱軟化さ
せて延伸させる。延伸後の融着延伸部3は、例えば、長
さが15mm程度で、ガラス径は平均直径で0.15m
m程度(円形ではない)とされる。なお、延伸量により
光ファイバ間の結合度が変わるので、光パワーメータ等
を用いて結合度をモニタしながら延伸してもよい。
FIG. 4B shows a state in which the fused portion is stretched, and is stretched while the glass is in a softened state at the time of heat fusion, or the optical fiber is heat-softened again and stretched. Let The fused and stretched portion 3 after stretching has, for example, a length of about 15 mm and a glass diameter of 0.15 m in average diameter.
It is about m (not circular). Since the degree of coupling between optical fibers changes depending on the amount of stretching, stretching may be performed while monitoring the degree of coupling using an optical power meter or the like.

【0006】融着延伸された光ファイバは、図4(C)
に示すように、機械的保護のため実装部材5に収納さ
れ、接着剤7により接着固定される。実装部材5は断面
U字状に形成され、開口の中央部に蓋部材6を接着して
閉鎖する。実装部材5および蓋部材6は、一般に熱膨張
係数が光ファイバに近い石英ガラス、セラミックで形成
されている。
The fusion-stretched optical fiber is shown in FIG.
As shown in FIG. 5, the mechanical component is housed in the mounting member 5 and is fixed by adhesion with an adhesive 7. The mounting member 5 is formed in a U-shape in cross section, and a lid member 6 is adhered to the center of the opening to close it. The mounting member 5 and the lid member 6 are generally formed of quartz glass or ceramics having a thermal expansion coefficient close to that of an optical fiber.

【0007】接着剤7は、光カプラとして機能する融着
延伸部3の両側の非延伸部4に塗布して、実装部材5に
接着固定される。例えば、実装部材5の両側で塗布長2
6mm、すなわち実装部材5の端部から融着延伸部3の
股部分まで塗布する。接着剤7の塗布量としては、片側
で0.013cm3程度である。接着剤7は、紫外線硬化
性のエポキシ系樹脂等が用いられる。次に、接着剤の硬
化度を上げるために、図4(D)で示すように恒温槽8
で加熱する。加熱温度は、光ファイバの保護被覆の耐熱
性を考慮して、120℃位で1時間程度加熱する。
The adhesive 7 is applied to the non-stretched portions 4 on both sides of the fusion-bonded stretched portion 3 functioning as an optical coupler, and is adhesively fixed to the mounting member 5. For example, the coating length 2 on both sides of the mounting member 5
6 mm, that is, from the end portion of the mounting member 5 to the crotch portion of the fusion extending portion 3. The application amount of the adhesive 7 is about 0.013 cm 3 on one side. As the adhesive 7, an ultraviolet curable epoxy resin or the like is used. Next, in order to increase the degree of hardening of the adhesive, as shown in FIG.
Heat with. The heating temperature is about 120 ° C. for about 1 hour in consideration of the heat resistance of the protective coating of the optical fiber.

【0008】上述した光ファイバカプラを、偏波保持光
ファイバで構成し、偏波保持光ファイバカプラとするこ
とも知られている。偏波保持光ファイバは、コア部に直
交する2方向から異なる応力を与えることにより、等価
的に複屈折性を持たせたものである。この偏波保持光フ
ァイバの代表的なものとしては、クラッド部とは熱膨張
係数の異なるボロン等を含んだ応力付与部をコア部の両
側に配置した構造で、パンダ型ファイバ、ボータイ型フ
ァイバ等が知られている。これらの偏波保持光ファイバ
は、側圧や曲げ等の外乱に対する偏波変動を抑制するこ
とができる。
It is also known that the above-mentioned optical fiber coupler is constituted by a polarization maintaining optical fiber to form a polarization maintaining optical fiber coupler. The polarization-maintaining optical fiber is equivalently birefringent by applying different stresses from two directions orthogonal to the core. A typical example of this polarization-maintaining optical fiber is a structure in which stress-applying parts containing boron and the like having different thermal expansion coefficients from the clad part are arranged on both sides of the core part. It has been known. These polarization-maintaining optical fibers can suppress polarization fluctuations due to disturbances such as lateral pressure and bending.

【0009】偏波保持光ファイバカプラは、例えば、カ
プラの入射側に直線偏波のX偏波のみを入力したとき
は、出射側にX偏波のみが出力され、カプラを通過して
も光の偏波状態が変わらないようにすることができる。
この偏波保持光ファイバカプラは、高精度の単一偏波を
用いた光ファイバシステムを構成するのに必要とされ
る。
In the polarization-maintaining optical fiber coupler, for example, when only the X polarization of the linearly polarized wave is input to the incident side of the coupler, only the X polarization is output to the exit side, and even if it passes through the coupler, the optical polarization is maintained. The polarization state of can be prevented from changing.
This polarization-maintaining optical fiber coupler is required to construct an optical fiber system using highly accurate single polarization.

【0010】図5は、偏波保持光ファイバを用いたカプ
ラ素子の概略図である。11は偏波保持光ファイバ、1
2は非延伸部、13は融着延伸部、14はコア部、15
はクラッド部、16は応力付与部、17は偏波主軸面を
示す。偏波保持光ファイバカプラは、図4の場合と同様
に被覆が除去されたガラスファイバ部の中央部分を互い
に平行に密接させ加熱により融着させ、延伸して形成さ
れる。偏波保持光ファイバ11は、クラッド部15で囲
われるコア部14の両側に応力付与部16を有し、コア
部と応力付与部の中心を通る偏波主軸面17を有してい
る。
FIG. 5 is a schematic view of a coupler element using a polarization maintaining optical fiber. 11 is a polarization maintaining optical fiber, 1
2 is a non-stretched portion, 13 is a fusion stretched portion, 14 is a core portion, 15
Indicates a clad portion, 16 indicates a stress applying portion, and 17 indicates a polarization principal axis plane. As in the case of FIG. 4, the polarization-maintaining optical fiber coupler is formed by closely contacting the central portions of the glass fiber portions, from which the coating has been removed, in parallel with each other, fusing by heating, and stretching. The polarization-maintaining optical fiber 11 has stress applying parts 16 on both sides of the core part 14 surrounded by the cladding part 15, and has a polarization main axis surface 17 passing through the centers of the core part and the stress applying part.

【0011】[0011]

【発明が解決しようとする課題】偏波保持光ファイバを
用いたカプラ素子の作製では、偏波主軸面を平行にした
状態で融着・延伸が行なわれる。この偏波主軸面17の
ずれがあると、損失の増加、結合率の低下、偏波消光比
の低下が生じる。なお、実装部材への接着剤による実装
は、図4の場合と同様に紫外線硬化型樹脂が用いられ、
歪除去または接着剤の硬化度アップのためアニールが行
なわれる。
In the production of a coupler element using a polarization-maintaining optical fiber, fusion and drawing are carried out with the planes of polarization main axes parallel to each other. The deviation of the polarization principal axis plane 17 causes an increase in loss, a decrease in coupling rate, and a decrease in polarization extinction ratio. Incidentally, the mounting on the mounting member with the adhesive uses the ultraviolet curable resin as in the case of FIG.
Annealing is performed to remove strain or increase the degree of hardening of the adhesive.

【0012】実装部材にカプラ素子を接着固定させる接
着剤7には、光ファイバカプラへの応力緩和の観点か
ら、従来、種々の接着材料が提案されている。光ファイ
バカプラを実装部材に保持固定するためには、接着剤
は、ある程度の硬さを有していることが必要である。こ
のため、接着剤にはヤング率の大きいものを用いるのが
望ましい。
Various adhesive materials have been conventionally proposed for the adhesive 7 for bonding and fixing the coupler element to the mounting member from the viewpoint of stress relaxation to the optical fiber coupler. In order to hold and fix the optical fiber coupler on the mounting member, the adhesive must have a certain degree of hardness. Therefore, it is desirable to use an adhesive having a large Young's modulus.

【0013】しかし、偏波保持光ファイバカプラの作製
においては、実装部材への固定に、ヤング率の大きい紫
外線硬化型接着剤を用いると、接着剤の硬化後に偏波消
光比が低下するという問題がある。この原因として、接
着剤の硬化収縮時にファイバに不均一な応力がかかり、
特にヤング率の大きい接着剤の場合、その応力が大き
く、偏波消光比が低下するものと考えられる。
However, in the production of the polarization-maintaining optical fiber coupler, when a UV curable adhesive having a large Young's modulus is used for fixing to the mounting member, the polarization extinction ratio is lowered after the adhesive is cured. There is. The reason for this is that uneven stress is applied to the fiber when the adhesive cures and shrinks,
Particularly, in the case of an adhesive having a large Young's modulus, it is considered that the stress is large and the polarization extinction ratio is lowered.

【0014】本発明は、上述した事情に鑑みてなされた
もので、実装部材への固定に比較的ヤング率の大きい接
着剤を用いても偏波消光比を低下させない偏波光ファイ
バカプラとその製造方法の提供を課題とする。
The present invention has been made in view of the above-mentioned circumstances, and a polarization optical fiber coupler which does not reduce the polarization extinction ratio even when an adhesive having a relatively large Young's modulus is used for fixing to a mounting member, and its manufacture. The challenge is to provide a method.

【0015】[0015]

【課題を解決するための手段】本発明の偏波保持光ファ
イバカプラは、1対の偏波保持光ファイバを融着延伸
し、実装部材に接着剤にて接着固定してなる偏波保持光
ファイバカプラであって、接着剤に硬化後の常温ヤング
率が1800MPa〜5000MPaで、紫外線硬化型
樹脂が用いられ、接着剤を30℃以上、ガラス転移温度
未満で加温しながら紫外線を照射して硬化されているこ
とを特徴とする。
A polarization-maintaining optical fiber coupler of the present invention is a polarization-maintaining optical fiber in which a pair of polarization-maintaining optical fibers are fusion-stretched and stretched and fixed to a mounting member with an adhesive. A fiber coupler, wherein the room temperature Young's modulus of the cured adhesive is 1800 MPa to 5000 MPa, an ultraviolet curable resin is used, and the adhesive is irradiated with ultraviolet rays while being heated at 30 ° C. or higher and below the glass transition temperature. It is characterized by being cured.

【0016】また本発明の偏波保持光ファイバカプラの
製造方法は、1対の偏波保持光ファイバを融着延伸し、
実装部材に接着剤にて接着固定してなる偏波保持光ファ
イバカプラの製造方法であって、接着剤に硬化後の常温
ヤング率が1800MPa〜5000MPaで、紫外線
硬化型樹脂を用い、接着剤を30℃以上、ガラス転移温
度未満で加温しながら紫外線を照射して硬化することを
特徴とする。
A method of manufacturing a polarization maintaining optical fiber coupler according to the present invention is characterized in that a pair of polarization maintaining optical fibers are fused and drawn,
A method of manufacturing a polarization-maintaining optical fiber coupler, which comprises bonding and fixing to a mounting member with an adhesive, wherein the adhesive has a normal temperature Young's modulus after curing of 1800 MPa to 5000 MPa, and an ultraviolet curable resin is used. It is characterized in that it is cured by being irradiated with ultraviolet rays while being heated at 30 ° C. or higher and below the glass transition temperature.

【0017】[0017]

【発明の実施の形態】図1および図2により、本発明の
実施の形態を説明する。図1は偏波保持光ファイバカプ
ラの斜視図、図2は接着剤の硬化状態を説明するであ
る。図中の符号は、図4に用いたのと同じ符号を用いる
ことにより説明を省略する。本発明による偏波保持光フ
ァイバカプラは、図5で説明したのと同様な偏波保持光
ファイバの偏波主軸面を互いに平行にした状態で融着・
延伸が行なわれたカプラ素子が使用される。
BEST MODE FOR CARRYING OUT THE INVENTION An embodiment of the present invention will be described with reference to FIGS. FIG. 1 is a perspective view of a polarization-maintaining optical fiber coupler, and FIG. 2 is a diagram for explaining a cured state of an adhesive. The reference numerals in the figure are the same as those used in FIG. 4, and the description thereof will be omitted. The polarization-maintaining optical fiber coupler according to the present invention is the same as that described with reference to FIG.
A stretched coupler element is used.

【0018】また、本発明による偏波保持光ファイバカ
プラは、図1に示すように機械的保護のために石英ガラ
ス等で形成された実装部材5に収納され、融着延伸部の
両側の股部分から非延伸部を接着剤7により接着固定す
る。実装部材5は、例えば、断面U字状に形成し、開口
の中央部に蓋部材6を接着して構成する。接着剤7には
紫外線硬化型樹脂を用い、好ましくはエポキシ系樹脂を
用いる。以上の偏波保持光ファイバカプラの外観的な構
造自体は、図4(C)で説明したのと同様なものであ
る。
The polarization-maintaining optical fiber coupler according to the present invention is housed in a mounting member 5 made of quartz glass or the like for mechanical protection as shown in FIG. The non-stretched portion is bonded and fixed by the adhesive 7 from the portion. The mounting member 5 is formed to have, for example, a U-shaped cross section, and the lid member 6 is bonded to the center of the opening. An ultraviolet curable resin is used for the adhesive 7, and preferably an epoxy resin is used. The external appearance of the polarization maintaining optical fiber coupler is the same as that described with reference to FIG.

【0019】本発明では、特に、図2に示すように接着
剤7に紫外線を照射して硬化させる際に、接着剤7を常
温以上に加温しながら硬化させる。接着剤7を加温する
ことで、紫外線照射による硬化を促進させ、紫外線照射
終了時の未硬化分を減らすことができる。未硬化分は、
その後の高温アニールにより硬化させることができる
が、このアニールにより硬化した分は、アニール終了か
ら常温に戻す際に収縮して応力を増やす原因となる。
In the present invention, in particular, when the adhesive 7 is irradiated with ultraviolet rays to be cured as shown in FIG. 2, the adhesive 7 is cured while being heated to room temperature or higher. By heating the adhesive 7, it is possible to accelerate the curing by ultraviolet irradiation and reduce the uncured portion at the end of ultraviolet irradiation. The uncured part is
Although it can be hardened by subsequent high temperature annealing, the amount hardened by this annealing causes contraction when the temperature is returned to normal temperature after the end of annealing, which causes an increase in stress.

【0020】加温しながら紫外線照射を行なうと、紫外
線照射で硬化する割合が増え、アニールで硬化する割合
が減るので、アニール後の応力の増加を減らすことがで
き、偏波消光比の低下を抑制することができる。
When UV irradiation is performed while heating, the rate of curing by UV irradiation increases and the rate of curing by annealing decreases, so that the increase in stress after annealing can be reduced and the polarization extinction ratio can be reduced. Can be suppressed.

【0021】なお、接着剤7の硬化後の常温でのヤング
率は、1800MPa〜5000MPaの範囲のものが
望ましい。ヤング率が1800MPa未満では、光ファ
イバの接着固定が不充分であり、また、上述した加温に
よる接着剤硬化の影響が小さくあまり意味がない。紫外
線照射時の加温には、ヒータ等を用いて簡単に実施する
ことができ、加温温度は、常温以上であればよいが、3
0℃以上で行なうのが望ましい。また、接着剤のガラス
転移温度以上に加温すると、接着剤が軟化された状態と
なってカプラ素子の位置固定ができず安定しないので、
接着剤のガラス転移温度未満で実施するのが望ましい。
The Young's modulus of the adhesive 7 at room temperature after curing is preferably in the range of 1800 MPa to 5000 MPa. If the Young's modulus is less than 1800 MPa, the adhesive fixation of the optical fiber is insufficient, and the effect of curing the adhesive due to the above-mentioned heating is small, so that it is meaningless. The heating at the time of irradiation with ultraviolet rays can be easily performed by using a heater or the like, and the heating temperature may be room temperature or higher.
It is desirable to carry out at 0 ° C or higher. Also, if heated above the glass transition temperature of the adhesive, the adhesive becomes softened and the position of the coupler element cannot be fixed, so it is not stable.
It is desirable to work below the glass transition temperature of the adhesive.

【0022】次に、本発明の実施例と比較例について説
明する。実装部材5および蓋部材6は、種々の材料で形
成することができるが、熱膨張係数が光ファイバに近い
石英ガラス、セラミックで形成するのがよい。実装部材
5は、石英ガラスにより、光ファイバの収納凹部の溝断
面を0.7×0.7mmで、長さ67mmとした細長の方
形ケースで形成した。また、蓋部材6は、同じく石英ガ
ラスにより、厚さ0.8mm、幅2mm、長さ17mm
の板状に形成した。
Next, examples of the present invention and comparative examples will be described. The mounting member 5 and the lid member 6 can be formed of various materials, but it is preferable that the mounting member 5 and the lid member 6 are formed of quartz glass or ceramics having a thermal expansion coefficient close to that of the optical fiber. The mounting member 5 was made of quartz glass in an elongated rectangular case having a groove cross section of the optical fiber accommodating recess of 0.7 × 0.7 mm and a length of 67 mm. The lid member 6 is also made of quartz glass and has a thickness of 0.8 mm, a width of 2 mm, and a length of 17 mm.
It was formed into a plate shape.

【0023】接着剤7は、実装部材5内で、光カプラと
して機能する融着延伸部3の両側の非延伸部4に塗布し
た。具体的は、実装部材5の両側で塗布長26mm、す
なわち実装部材5の端部から融着延伸部13の股部分ま
で塗布し、接着剤7の塗布量としては、片側で0.01
3cm3とした。接着剤7には、紫外線硬化性のエポキ
シ系樹脂を用い、硬化後の常温ヤング率が、A(100
MPa)、B(1020MPa)、C(1910MP
a)、D(3040MPa)、E(4810MPa)、
F(5910MPa)の6種類のサンプルを用いた。
The adhesive 7 was applied to the non-stretched portions 4 on both sides of the fused stretched portion 3 functioning as an optical coupler in the mounting member 5. Specifically, the coating length is 26 mm on both sides of the mounting member 5, that is, from the end portion of the mounting member 5 to the crotch portion of the fusion extending portion 13, and the coating amount of the adhesive 7 is 0.01 on one side.
It was 3 cm 3 . An ultraviolet curable epoxy resin is used for the adhesive 7, and the room temperature Young's modulus after curing is A (100
MPa), B (1020 MPa), C (1910MP)
a), D (3040 MPa), E (4810 MPa),
Six types of samples of F (5910 MPa) were used.

【0024】接着剤を硬化するため紫外線量は200m
W/cm2で10分間照射した。接着剤7に紫外線を照
射する際に、実装部材5の温度を25℃、45℃、70
℃、150℃にして接着剤を加温した。この後、紫外線
照射から1時間以内に、恒温槽でアニールを行なった。
このアニールでは、光ファイバの保護被覆の耐熱性を考
慮して、120℃位で1時間程度加熱した。
The amount of ultraviolet rays is 200 m to cure the adhesive.
Irradiation was performed at W / cm 2 for 10 minutes. When the adhesive 7 is irradiated with ultraviolet rays, the temperature of the mounting member 5 is set to 25 ° C., 45 ° C., 70 ° C.
The adhesive was heated to ℃, 150 ℃. After that, annealing was performed in a constant temperature bath within 1 hour after the irradiation of ultraviolet rays.
In this annealing, heating was performed at about 120 ° C. for about 1 hour in consideration of the heat resistance of the protective coating of the optical fiber.

【0025】以上の製造方法で作製した偏波保持光ファ
イバカプラについて、表1および表2に示すように偏波
消光比を測定して評価を行なった。なお、偏波消光比
は、入射側の一つのポートより偏波光を入射し、出射側
のポート(2つのうちの何れか)で、光パワーメータで
光パワーの最大値と最小値の差を測定した。
The polarization-maintaining optical fiber coupler manufactured by the above manufacturing method was evaluated by measuring the polarization extinction ratio as shown in Tables 1 and 2. Note that the polarization extinction ratio is such that the polarized light is incident from one port on the incident side and the difference between the maximum value and the minimum value of the optical power is measured by the optical power meter at the port on the exit side (either of the two). It was measured.

【0026】[0026]

【表1】 [Table 1]

【0027】[0027]

【表2】 [Table 2]

【0028】以上の測定結果を、グラフで示すと図3の
ようになる。この結果から、接着剤を加温しながら、紫
外線を照射し硬化することにより偏波消光比が良くな
り、また、加温温度が高いほど偏波消光比が良くなる傾
向がある。これは、接着剤中の硬化成分が加温により活
性化し、紫外線を照射した際に硬化度が上がったため、
その後のアニールによる硬化分が減りファイバにかかる
応力が少なくなったためと考えられる。ただ、ヤング率
が比較的小さいサンプルA,Bは、常温(25℃)で紫
外線照射しても、偏波消光比はかなり高いため、加温に
よる効果は少ない。また、ヤング率が小さい場合は、フ
ァイバの固着力が弱く温度変化により固定が緩み変位が
生じるなどして特性変動が生じやすい。
The above measurement results are shown in a graph in FIG. From this result, the polarization extinction ratio tends to be improved by irradiating and curing the adhesive while heating the adhesive, and the polarization extinction ratio tends to improve as the heating temperature increases. This is because the curing component in the adhesive was activated by heating and the degree of curing increased when it was irradiated with ultraviolet rays.
It is considered that the amount of hardening due to the subsequent annealing was reduced and the stress applied to the fiber was reduced. However, the samples A and B, which have a relatively small Young's modulus, have a considerably high polarization extinction ratio even when they are irradiated with ultraviolet light at room temperature (25 ° C.), and therefore the effect of heating is small. Further, when the Young's modulus is small, the fixing force of the fiber is weak and the fixing is loosened due to the temperature change, so that the displacement is likely to occur and the characteristic variation is likely to occur.

【0029】一方、ヤング率が大きいサンプルFでは、
70℃の加温で偏波消光比の向上はあるものの、その値
は合格レベル(18dB以上)に達していない。したが
って、表1、表2の評価結果からは、サンプルC,D,
Eが適切で、加温による偏波消光比の向上も顕著であ
る。すなわち、接着剤の硬化後の常温ヤング率は、18
00MPa〜5000MPa程度のものが好ましい。
On the other hand, in sample F having a large Young's modulus,
Although the polarization extinction ratio was improved by heating at 70 ° C., the value did not reach the pass level (18 dB or more). Therefore, from the evaluation results of Tables 1 and 2, samples C, D,
E is appropriate, and the polarization extinction ratio is significantly improved by heating. That is, the Young's modulus at room temperature after curing the adhesive is 18
It is preferably about 00 MPa to 5000 MPa.

【0030】また、加温温度を高くするほど偏波消光比
はよくなるが、接着剤の転移温度Tg以上の150℃位
になると、紫外線照射で硬化されたにもかかわらず、非
常に軟らかな状態となり、ファイバを実装部材に接着固
定するという本来の目的を達し得なくなる。したがっ
て、上記の加温温度は、室温(25℃)を超え、好まし
くは30℃以上で接着剤のガラス転移温度未満とするの
が望ましい。
Further, the polarization extinction ratio becomes better as the heating temperature becomes higher, but when it reaches about 150 ° C., which is higher than the transition temperature Tg of the adhesive, it is in a very soft state even though it is cured by ultraviolet irradiation. Therefore, the original purpose of adhesively fixing the fiber to the mounting member cannot be achieved. Therefore, it is desirable that the above heating temperature is higher than room temperature (25 ° C.), preferably 30 ° C. or higher and lower than the glass transition temperature of the adhesive.

【0031】[0031]

【発明の効果】以上の説明から明らかなように、本発明
によれば、実装部材への固定に比較的ヤング率の大きい
接着剤を用いても、接着剤を加温させながら紫外線照射
で硬化させることにより、偏波消光比の低下を抑制した
偏波保持光ファイバカプラを作製することができる。
As is apparent from the above description, according to the present invention, even if an adhesive having a relatively large Young's modulus is used for fixing to a mounting member, the adhesive is cured by being irradiated with ultraviolet rays while being heated. By doing so, it is possible to manufacture a polarization maintaining optical fiber coupler that suppresses a decrease in polarization extinction ratio.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明による偏波保持光ファイバカプラの概略
を示す図である。
FIG. 1 is a diagram schematically showing a polarization maintaining optical fiber coupler according to the present invention.

【図2】本発明による接着剤の硬化状態を説明する図で
ある。
FIG. 2 is a diagram illustrating a cured state of the adhesive according to the present invention.

【図3】本発明の評価結果をグラフ化した図である。FIG. 3 is a graph showing evaluation results of the present invention.

【図4】従来の光ファイバカプラの製造方法を説明する
図である。
FIG. 4 is a diagram illustrating a conventional method for manufacturing an optical fiber coupler.

【図5】一般的な偏波保持光ファイバカプラの概略を説
明する図である。
FIG. 5 is a diagram illustrating an outline of a general polarization maintaining optical fiber coupler.

【符号の説明】[Explanation of symbols]

1…光ファイバ、2…ガラスファイバ部、3…融着延伸
部、4…非延伸部、5…実装部材、6…蓋部材、7…接
着剤、8…恒温槽、11…偏波保持光ファイバ、12…
非延伸部、13…融着延伸部、14…コア部、15…ク
ラッド部、16…応力付与部、17…偏波主軸面。
DESCRIPTION OF SYMBOLS 1 ... Optical fiber, 2 ... Glass fiber part, 3 ... Fusion extension part, 4 ... Non-expansion part, 5 ... Mounting member, 6 ... Lid member, 7 ... Adhesive agent, 8 ... Constant temperature bath, 11 ... Polarization maintaining light Fiber, 12 ...
Non-stretched portion, 13 ... Fusion stretched portion, 14 ... Core portion, 15 ... Clad portion, 16 ... Stress imparting portion, 17 ... Polarization principal axis plane.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 平井 茂 神奈川県横浜市栄区田谷町1番地 住友電 気工業株式会社横浜製作所内 (72)発明者 池知 麻紀 神奈川県横浜市栄区田谷町1番地 住友電 気工業株式会社横浜製作所内 (72)発明者 木谷 昌幸 神奈川県横浜市栄区田谷町1番地 住友電 気工業株式会社横浜製作所内 (72)発明者 中山 実 埼玉県行田市埼玉4125 トヨクニ電線株式 会社埼玉工場内 (72)発明者 島崎 善昭 埼玉県行田市埼玉4125 トヨクニ電線株式 会社埼玉工場内   ─────────────────────────────────────────────────── ─── Continued front page    (72) Inventor Shigeru Hirai             Sumitomoden 1 Taya-cho, Sakae-ku, Yokohama-shi, Kanagawa             Ki Industry Co., Ltd. Yokohama Works (72) Inventor Maki Ike             Sumitomoden 1 Taya-cho, Sakae-ku, Yokohama-shi, Kanagawa             Ki Industry Co., Ltd. Yokohama Works (72) Inventor Masayuki Kitani             Sumitomoden 1 Taya-cho, Sakae-ku, Yokohama-shi, Kanagawa             Ki Industry Co., Ltd. Yokohama Works (72) Inventor Minoru Nakayama             4125 Toyokuni Electric Wire Co., Ltd.             Company Saitama factory (72) Inventor Yoshiaki Shimazaki             4125 Toyokuni Electric Wire Co., Ltd.             Company Saitama factory

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 1対の偏波保持光ファイバを融着延伸
し、実装部材に接着剤にて接着固定してなる偏波保持光
ファイバカプラであって、前記接着剤に硬化後の常温ヤ
ング率が1800MPa〜5000MPaの紫外線硬化
型樹脂が用いられ、前記接着剤を30℃以上ガラス転移
温度未満で加温しながら紫外線を照射して硬化されてい
ることを特徴とする偏波保持光ファイバカプラ。
1. A polarization-maintaining optical fiber coupler comprising a pair of polarization-maintaining optical fibers fused and drawn and fixed to a mounting member with an adhesive, wherein the adhesive has a room temperature Young after curing. A polarization-maintaining optical fiber coupler, characterized in that an ultraviolet curable resin having a rate of 1800 MPa to 5000 MPa is used, and the adhesive is cured by being irradiated with ultraviolet rays while being heated at 30 ° C. or higher and lower than the glass transition temperature. .
【請求項2】 前記接着剤は紫外線硬化型エポキシ樹脂
であることを特徴とする請求項1に記載の偏波保持光フ
ァイバカプラ。
2. The polarization maintaining optical fiber coupler according to claim 1, wherein the adhesive is an ultraviolet curable epoxy resin.
【請求項3】 1対の偏波保持光ファイバを融着延伸
し、実装部材に接着剤にて接着固定してなる偏波保持光
ファイバカプラの製造方法であって、前記接着剤に硬化
後の常温ヤング率が1800MPa〜5000MPaの
紫外線硬化型樹脂を用い、前記接着剤を30℃以上ガラ
ス転移温度未満で加温しながら紫外線を照射して硬化す
ることを特徴とする偏波保持光ファイバカプラの製造方
法。
3. A method of manufacturing a polarization-maintaining optical fiber coupler comprising a pair of polarization-maintaining optical fibers fused together and stretched, and adhered and fixed to a mounting member with an adhesive, after curing with the adhesive. A polarization-maintaining optical fiber coupler, characterized in that an ultraviolet curable resin having a normal temperature Young's modulus of 1800 MPa to 5000 MPa is used, and the adhesive is cured by being irradiated with ultraviolet rays while being heated at a temperature of 30 ° C. or higher and lower than the glass transition temperature. Manufacturing method.
JP2002143638A 2002-05-17 2002-05-17 Polarization maintaining optical fiber coupler and manufacturing method thereof Pending JP2003337251A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002143638A JP2003337251A (en) 2002-05-17 2002-05-17 Polarization maintaining optical fiber coupler and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002143638A JP2003337251A (en) 2002-05-17 2002-05-17 Polarization maintaining optical fiber coupler and manufacturing method thereof

Publications (1)

Publication Number Publication Date
JP2003337251A true JP2003337251A (en) 2003-11-28

Family

ID=29703584

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002143638A Pending JP2003337251A (en) 2002-05-17 2002-05-17 Polarization maintaining optical fiber coupler and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP2003337251A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018225554A1 (en) * 2017-06-06 2018-12-13 タツタ電線株式会社 Optical fiber coupler
JP2020021088A (en) * 2017-06-06 2020-02-06 タツタ電線株式会社 Optical fiber coupler

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018225554A1 (en) * 2017-06-06 2018-12-13 タツタ電線株式会社 Optical fiber coupler
JP2018205569A (en) * 2017-06-06 2018-12-27 タツタ電線株式会社 Optical fiber coupler
CN110720066A (en) * 2017-06-06 2020-01-21 拓自达电线株式会社 Optical fiber coupler
JP2020021088A (en) * 2017-06-06 2020-02-06 タツタ電線株式会社 Optical fiber coupler
US11275216B2 (en) 2017-06-06 2022-03-15 Tatsuta Electric Wire & Cable Co., Ltd. Optical fiber coupler

Similar Documents

Publication Publication Date Title
CA2074860C (en) Method of reinforcing optical fiber coupler
JPH11326641A (en) Optical fiber wavelength filter and its production
US5148508A (en) Optical coupler housing
JP7372578B2 (en) optical module
US5263104A (en) Optical fiber directional coupler housing
JP2003337251A (en) Polarization maintaining optical fiber coupler and manufacturing method thereof
JPS5924816A (en) Connecting method of optical waveguides
JPH0534543A (en) Waveguide type optical parts
JPH08146245A (en) Optical fiber coupler
Beasley et al. Evanescent wave fiber optic couplers: three methods
JP3279438B2 (en) Coupling structure between optical fiber and optical waveguide
JPH0651155A (en) Method for connecting optical fiber and optical waveguide
JP2002169053A (en) Optical fiber type coupler and method for producing the same
JP3161866B2 (en) Manufacturing method of optical fiber coupler
JP3430501B2 (en) Optical waveguide device and method of manufacturing the same
JP2957321B2 (en) Optical fiber coupler reinforcement method
JPS59216112A (en) Optical fiber connecting method
JPH1010360A (en) Optical fiber coupler and its production
JPH0815561A (en) Fiber array for optical waveguide
JP3454894B2 (en) Reinforcing structure of optical fiber coupler
JP2002107564A (en) Optical waveguide module
JPH04281407A (en) Reinforced structure of optical fiber type coupler
JPH08122555A (en) Production of multi-core optical fiber coupler
JPH07128543A (en) Juncture structure for optical fiber and optical waveguide
JP2007233265A (en) Method for manufacturing optical module