JP2003322225A - Three shaft gear device and method for arranging three shaft gear - Google Patents

Three shaft gear device and method for arranging three shaft gear

Info

Publication number
JP2003322225A
JP2003322225A JP2002127895A JP2002127895A JP2003322225A JP 2003322225 A JP2003322225 A JP 2003322225A JP 2002127895 A JP2002127895 A JP 2002127895A JP 2002127895 A JP2002127895 A JP 2002127895A JP 2003322225 A JP2003322225 A JP 2003322225A
Authority
JP
Japan
Prior art keywords
shaft
gear
input
meshing
output
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002127895A
Other languages
Japanese (ja)
Inventor
Kunihiko Morikawa
邦彦 森川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP2002127895A priority Critical patent/JP2003322225A/en
Publication of JP2003322225A publication Critical patent/JP2003322225A/en
Pending legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a three shaft gear device which restrains the generation of vibration noise without increasing the number of components and size, and also to provide a method for arranging three shaft gears. <P>SOLUTION: In the three shaft gear device having an input gear 1, which is provided on an input shaft 4, an output gear 3, which is provided on an output shaft 6, and an intermediate gear 2, which is provided on an intermediate shaft 5 and engages with both of the input/output gears 1 and 3, the input shaft 4, the output shaft 6 and the intermediate shaft 5 are arranged so that angle γ between the center line L1 between the shaft center point 7 of the input shaft 4 and the shaft center point 8 of the intermediate shaft 5 and the center line L2 between the shaft center point 8 of the intermediate shaft 5 and the shaft center point 9 of the output shaft 6 becomes an integral multiple of the value obtained by dividing 360° by the number of the teeth of the intermediate gear 2. <P>COPYRIGHT: (C)2004,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、例えば、自動車の
トランスファ装置や、工作機械や、各種製造機器等にお
いて、平行配置で離れた入出力軸間の駆動伝達手段とし
て適用される3軸歯車装置及び3軸歯車の配置方法の技
術分野に属する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention is applied to, for example, a transfer device for automobiles, a machine tool, various manufacturing equipment, and the like as a triaxial gear device applied as a drive transmission means between input and output shafts that are separated by a parallel arrangement. And belongs to the technical field of the method for arranging a triaxial gear.

【0002】[0002]

【従来の技術】従来、3軸歯車装置としては、例えば、
特開2001−65646号公報に記載のものが知られ
ている。
2. Description of the Related Art Conventionally, as a triaxial gear device, for example,
The thing described in Unexamined-Japanese-Patent No. 2001-65646 is known.

【0003】この従来公報には、中間軸上に入力歯車と
出力歯車にそれぞれ噛み合う第1中間歯車と第2中間歯
車を設け、両中間歯車のそれぞれの噛み合い位相が、1
/2ピッチの位相差にて進行するように配置したものが
記載されている。
In this prior art publication, a first intermediate gear and a second intermediate gear that mesh with an input gear and an output gear are provided on an intermediate shaft, and the meshing phase of both intermediate gears is 1
It is described as being arranged so as to proceed with a phase difference of / 2 pitch.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、従来の
3軸歯車装置にあっては、中間歯車と中間軸とを一体に
形成する場合には、中間軸上の2つの歯車に1/2ピッ
チの位相差を持たせて歯切りする必要がある。また、中
間軸の2つの中間歯車を固定する場合は、2つの中間歯
車を歯切りした後、中間軸上にそれぞれの噛み合い位相
が1/2ピッチの位相差となるように固定する必要があ
る。
However, in the conventional three-axis gear device, when the intermediate gear and the intermediate shaft are integrally formed, the two gears on the intermediate shaft have a 1/2 pitch. It is necessary to cut the gears with a phase difference. Further, when fixing the two intermediate gears of the intermediate shaft, it is necessary to gear the two intermediate gears and then fix them so that the meshing phases on the intermediate shaft have a phase difference of 1/2 pitch. .

【0005】よって、何れの場合でも3軸歯車装置の製
造コストが上昇するし、また、中間軸上に2つの中間歯
車を配置するため、軸方向寸法が長くなり、装置の大型
化を招くという問題があった。
Therefore, in any case, the manufacturing cost of the three-axis gear device increases, and since the two intermediate gears are arranged on the intermediate shaft, the axial dimension becomes long and the device becomes large. There was a problem.

【0006】本発明は、上記問題に着目してなされたも
ので、構成部品を増やしたりサイズを増大することなく
振動騒音の発生を抑制し得る3軸歯車装置及び3軸歯車
の配置方法を提供することを目的とする。
The present invention has been made in view of the above problems, and provides a triaxial gear device and a triaxial gear arranging method capable of suppressing the generation of vibration noise without increasing the number of constituent parts or the size. The purpose is to do.

【0007】[0007]

【課題を解決するための手段】上記目的を達成するた
め、本発明では、入力軸に設けられた入力歯車と、出力
軸に設けられた出力歯車と、中間軸に設けられ、前記入
出力歯車の両方に噛み合う1個の中間歯車と、を有する
3軸歯車装置において、前記入力軸の軸心点と中間軸の
軸心点とを結ぶ中心線と、中間軸の軸心点と出力軸の軸
心点とを結ぶ中心線と、のなす角度が、360°を中間歯
車歯数で除した値の整数倍となるように、入力軸と出力
軸と中間軸とを配置した。
In order to achieve the above object, according to the present invention, an input gear provided on an input shaft, an output gear provided on an output shaft, and an input gear provided on an intermediate shaft are provided. In a triaxial gear device having one intermediate gear that meshes with both of the above, a center line connecting the axial center point of the input shaft and the axial center point of the intermediate shaft, and the axial center point of the intermediate shaft and the output shaft. The input shaft, the output shaft, and the intermediate shaft are arranged so that the angle formed by the center line connecting the shaft center point and the center line is an integral multiple of a value obtained by dividing 360 ° by the number of intermediate gear teeth.

【0008】ここで、「軸と歯車」の関係は、軸に歯車
を固定しても良いし、歯車と軸とを一体に形成しても良
い。
Here, regarding the relationship between the "shaft and the gear", the gear may be fixed to the shaft, or the gear and the shaft may be integrally formed.

【0009】「360°を中間歯車歯数で除した値」と
は、中間歯車の1つの歯について、中間歯車の歯車中心
に対する円周方向ピッチ(円ピッチ)がなす角度をい
う。
"A value obtained by dividing 360 ° by the number of teeth of the intermediate gear" means an angle formed by a circumferential pitch (circular pitch) of one tooth of the intermediate gear with respect to the gear center of the intermediate gear.

【0010】[0010]

【発明の効果】本発明は、2つの中心線がなす角度を、
360°を中間歯車歯数で除した値の整数倍となるように
設定したため、入力歯車と中間歯車の噛み合いと、中間
歯車と出力歯車の噛み合いは、作用線方向に正面法線ピ
ッチの略1/2の位相差を持って進行することになり、
各噛み合い部に発生する噛み合い伝達誤差は、互いに位
相が反転した周期関数となって相殺され、振動騒音の発
生を抑制することができる。
According to the present invention, the angle formed by the two center lines is
Since it is set to be an integer multiple of the value obtained by dividing 360 ° by the number of teeth of the intermediate gear, the meshing of the input gear and the intermediate gear and the meshing of the intermediate gear and the output gear are approximately 1 of the front normal pitch in the direction of the working line. It will proceed with a phase difference of / 2,
The meshing transmission error generated in each meshing portion is canceled out as a periodic function in which the phases are mutually inverted, and the generation of vibration noise can be suppressed.

【0011】よって、本発明にあっては、中間歯車を1
個としたため、構成部品を増やしたりサイズを増大する
ことなく、振動騒音の発生を抑制することができる。
Therefore, in the present invention, the intermediate gear is 1
Since the individual pieces are used, it is possible to suppress the generation of vibration noise without increasing the number of constituent parts or the size.

【0012】[0012]

【発明の実施の形態】以下、本発明の3軸歯車装置及び
3軸歯車の配置方法を実現する実施の形態を、請求項
1,4に係る発明に対応する第1実施例と、請求項2に
係る発明に対応する第2実施例と、請求項3に係る発明
に対応する第3実施例と、に基づいて説明する。
BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, an embodiment for realizing a triaxial gear device and a method for arranging a triaxial gear according to the present invention will be described as a first embodiment corresponding to the invention according to claims 1 and 4, and A description will be given based on a second embodiment corresponding to the invention according to 2 and a third embodiment corresponding to the invention according to claim 3.

【0013】(第1実施例)まず、構成を説明する。図
1は第1実施例の3軸歯車装置を示す図である。図1に
おいて、1は入力歯車、2は中間歯車、3は出力歯車、
4は入力軸、5は中間軸、6は出力軸、7は入力軸4の
軸心点、8は中間軸5の軸心点、9は出力軸6の軸心
点、L1は軸心点7,8を結ぶ中心線、L2は軸心点8,9
を結ぶ中心線である。
(First Embodiment) First, the structure will be described. FIG. 1 is a diagram showing a triaxial gear device of the first embodiment. In FIG. 1, 1 is an input gear, 2 is an intermediate gear, 3 is an output gear,
4 is an input shaft, 5 is an intermediate shaft, 6 is an output shaft, 7 is an axial center point of the input shaft 4, 8 is an axial center point of the intermediate shaft 5, 9 is an axial center point of the output shaft 6, and L1 is an axial center point. The center line connecting 7 and 8, L2 is the axial center point 8 and 9.
It is the center line connecting the.

【0014】第1実施例の3軸歯車装置は、前記入力軸
4に設けられた入力歯車1と、出力軸6に設けられた出
力歯車3と、中間軸5に設けられ、前記入出力歯車1,
3の両方に噛み合う1個の中間歯車2と、を有する。な
お、入力軸4と中間軸5と出力軸6は、図外のケースに
対しベアリング等を介して回転可能に支持される。
The triaxial gear device of the first embodiment is provided with the input gear 1 provided on the input shaft 4, the output gear 3 provided on the output shaft 6, and the intermediate shaft 5, and the input / output gears. 1,
3 and one intermediate gear 2 that meshes with both. The input shaft 4, the intermediate shaft 5, and the output shaft 6 are rotatably supported by a case (not shown) via bearings or the like.

【0015】そして、入力軸4の軸心点7と中間軸5の
軸心点8とを結ぶ中心線L1と、中間軸5の軸心点8と出
力軸6の軸心点9とを結ぶ中心線L2と、のなす角度γ
が、360°を中間歯車2の歯数で除した値の整数倍とな
るように、入力軸4と出力軸6と中間軸5とを配置して
いる。
Then, a center line L1 connecting the axial center point 7 of the input shaft 4 and the axial center point 8 of the intermediate shaft 5, and the axial center point 8 of the intermediate shaft 5 and the axial center point 9 of the output shaft 6 are connected. Angle γ between the center line L2 and
However, the input shaft 4, the output shaft 6, and the intermediate shaft 5 are arranged so as to be an integral multiple of a value obtained by dividing 360 ° by the number of teeth of the intermediate gear 2.

【0016】次に、作用を説明する。Next, the operation will be described.

【0017】[噛み合い位相差に設定]まず、中心線L1
と中心線L2とのなす角度γを、図2に示すように、360
°を中間歯車2の歯数で除した値の整数倍(n倍:n=
1,2,3,...)、言い換えると、中間歯車2の1正
面円ピッチ(1歯当たりの正面円ピッチ)のなす角度の
整数倍となる設定としている。つまり、角度γにはn個
の中間歯車2の歯が存在することになり、この設定は、
入力歯車1と中間歯車2の噛み合い部分Aと、中間歯車
2と出力歯車3の噛み合い部分Bと、の噛み合い歯形の
相対関係が同じ関係であることを意味する。
[Set to meshing phase difference] First, the center line L1
The angle γ between the center line L2 and the center line L2 is 360
An integer multiple of the value obtained by dividing ° by the number of teeth of the intermediate gear 2 (n times: n =
1, 2, 3, ...) In other words, it is set to be an integral multiple of the angle formed by one front circle pitch (front circle pitch per tooth) of the intermediate gear 2. In other words, there are n teeth of the intermediate gear 2 at the angle γ, and this setting is
This means that the meshing portion A of the input gear 1 and the intermediate gear 2 and the meshing portion B of the intermediate gear 2 and the output gear 3 have the same relative meshing tooth profile.

【0018】そして、入力歯車1と中間歯車2の噛み合
い部分Aにおいては、図2に示すように、回転動力を中
間歯車2に受け渡す入力歯車1が反時計回りの回転であ
ることで、入力歯車1と中間歯車2の左右歯面のうち左
側歯面同士が接触して動力を伝達する。
At the meshing portion A between the input gear 1 and the intermediate gear 2, as shown in FIG. 2, the input gear 1 which transfers the rotational power to the intermediate gear 2 is rotated counterclockwise, so that the input The left flanks of the left and right flanks of the gear 1 and the intermediate gear 2 contact each other to transmit power.

【0019】一方、中間歯車2と出力歯車3の噛み合い
部分Bにおいては、図2に示すように、回転動力を出力
歯車3に受け渡す中間歯車2が時計回りの回転であるこ
とで、中間歯車2と出力歯車3の左右歯面のうち右側歯
面同士が接触して動力を伝達する。
On the other hand, in the meshing portion B between the intermediate gear 2 and the output gear 3, as shown in FIG. 2, the intermediate gear 2 that transfers the rotational power to the output gear 3 is rotated clockwise, so that the intermediate gear 2 is rotated. The right flank of the left and right flanks of 2 and the output gear 3 come into contact with each other to transmit power.

【0020】ここで、入力歯車1と中間歯車2の噛み合
い部Aにおける噛み合い点をaとし、この噛み合い点a
が、図2に示すように、中心線L1上に存在する状態であ
る場合、中間歯車2と出力歯車3の噛み合い部Bにおけ
る噛み合い点b1,b2は、両点b1,b2を結ぶ作用
線の略中間位置を横切るように中心線L2が配置される状
態となる。なお、作用線とは、両歯車2,3の基礎円に
斜めに引いた共通接線をいい、この作用線上で歯面は接
触する。
Here, the meshing point at the meshing portion A between the input gear 1 and the intermediate gear 2 is defined as a, and this meshing point a
However, as shown in FIG. 2, when it is on the center line L1, the meshing points b1 and b2 in the meshing portion B of the intermediate gear 2 and the output gear 3 are the action lines connecting both points b1 and b2. The center line L2 is arranged so as to cross the substantially middle position. The line of action is a common tangent line drawn obliquely to the basic circles of both gears 2 and 3, and the tooth flanks contact on this line of action.

【0021】よって、噛み合い点b1と中心線L2との正
面法線ピッチと、噛み合い点b2と中心線L2との正面法
線ピッチは、噛み合い点b1,b2を結ぶ作用線の長さ
である1正面法線ピッチの略1/2となる。この結果、
入力歯車1と中間歯車2の噛み合いと、中間歯車2と出
力歯車3の噛み合いは、作用線方向に正面法線ピッチの
略1/2の位相差をもって進行することになる。
Therefore, the front normal pitch between the meshing point b1 and the center line L2 and the front normal pitch between the meshing point b2 and the center line L2 are the lengths of the action lines connecting the meshing points b1 and b2. It is approximately half the front normal pitch. As a result,
The meshing between the input gear 1 and the intermediate gear 2 and the meshing between the intermediate gear 2 and the output gear 3 proceed with a phase difference of approximately 1/2 of the front normal pitch in the direction of the working line.

【0022】[振動騒音の抑制作用]まず、入力歯車と
中間歯車の噛み合いと、中間歯車と出力歯車の噛み合い
が、作用線方向に位相差が殆ど無く、略同位相をもって
進行する場合について説明する。
[Vibration Noise Suppression Action] First, a case will be described in which the meshing of the input gear and the intermediate gear and the meshing of the intermediate gear and the output gear progress with substantially the same phase with almost no phase difference in the action line direction. .

【0023】入力歯車−中間歯車の噛み合いによる伝達
誤差特性(A)と、中間歯車−出力歯車の噛み合いによ
る伝達誤差特性(B)とは、図3の下部に示すように、
伝達誤差特性(A),(B)は共に、1正面法線ピッチ
を移動する間において、略1/2正面法線ピッチの位置
にて伝達誤差が最大値となり、1正面法線ピッチの両端
位置にて伝達誤差が最小値となる特性を示す。
The transmission error characteristic (A) due to the meshing of the input gear and the intermediate gear and the transmission error characteristic (B) due to the meshing of the intermediate gear and the output gear are as shown in the lower part of FIG.
In both transmission error characteristics (A) and (B), the transmission error has a maximum value at a position of approximately 1/2 front normal pitch while moving one front normal pitch, and both ends of one front normal pitch. It shows the characteristic that the transmission error becomes the minimum value at the position.

【0024】よって、伝達誤差特性(A)と伝達誤差特
性(B)とを合算したトータル伝達誤差特性は、図3の
上部に示すように、伝達誤差特性(A)の最大値と最小
値との差と、伝達誤差特性(B)の最大値と最小値との
差とを加算した大きな変動幅による特性となる。この2
つの噛み合い伝達誤差を累積する相乗作用により、高い
歯車の噛み合い振動騒音が発生することになる。
Therefore, the total transmission error characteristic obtained by adding the transmission error characteristic (A) and the transmission error characteristic (B) is the maximum value and the minimum value of the transmission error characteristic (A) as shown in the upper part of FIG. And a difference between the maximum value and the minimum value of the transmission error characteristic (B) are added to obtain a characteristic having a large fluctuation range. This 2
Due to the synergistic effect of accumulating three meshing transmission errors, a high gear meshing vibration noise is generated.

【0025】これに対し、第1実施例の3軸歯車装置
は、入力軸4の軸心点7と中間軸5の軸心点8とを結ぶ
中心線L1と、中間軸5の軸心点8と出力軸6の軸心点9
とを結ぶ中心線L2と、のなす角度γが、360°を中間歯
車2の歯数で除した値の整数倍となるように、入力軸4
と出力軸6と中間軸5とを配置したため、上記のよう
に、入力歯車1と中間歯車2の噛み合いと、中間歯車2
と出力歯車3の噛み合いは、作用線方向に正面法線ピッ
チの略1/2の位相差をもって進行する。
On the other hand, in the triaxial gear device of the first embodiment, the center line L1 connecting the shaft center point 7 of the input shaft 4 and the shaft center point 8 of the intermediate shaft 5 and the shaft center point of the intermediate shaft 5 are connected. 8 and the shaft center point 9 of the output shaft 6
The input shaft 4 is arranged so that the angle γ formed by the center line L2 connecting between and is 360 ° divided by the number of teeth of the intermediate gear 2.
Since the output shaft 6 and the intermediate shaft 5 are arranged, as described above, the meshing between the input gear 1 and the intermediate gear 2 and the intermediate gear 2
The meshing between the output gear 3 and the output gear 3 progresses with a phase difference of approximately 1/2 of the front normal pitch in the direction of the action line.

【0026】入力歯車−中間歯車の噛み合いによる伝達
誤差特性(A)は、図4の下部に示すように、1正面法
線ピッチを移動する間において、taの位置にて伝達誤差
が最大値となる特性を示す。一方、中間歯車−出力歯車
の噛み合いによる伝達誤差特性(B)は、図4の下部に
示すように、1正面法線ピッチを移動する間において、
taの位置にて伝達誤差が最小値となる特性を示す。
As shown in the lower part of FIG. 4, the transmission error characteristic (A) due to the meshing of the input gear and the intermediate gear shows that the transmission error has the maximum value at the position of ta while moving one front normal pitch. Shows the following characteristics. On the other hand, the transmission error characteristic (B) due to the meshing of the intermediate gear and the output gear is as shown in the lower part of FIG.
It shows the characteristic that the transmission error becomes the minimum value at the position of ta.

【0027】よって、伝達誤差特性(A)と伝達誤差特
性(B)とを合算したトータル伝達誤差特性は、図4の
上部に示すように、例えば、伝達誤差特性(A)の最大
値の変動が伝達誤差特性(B)の最小値の変動によりそ
の変動幅が相殺されるというように、互いに位相が反転
した周期関数となって相殺され、各位相位置において伝
達誤差が平均化され、全体として小さい変動幅による特
性となる。この2つの噛み合い伝達誤差を互いに平均化
する伝達誤差相殺作用により、歯車1,2,3の噛み合
い振動騒音が抑制される。
Therefore, the total transmission error characteristic obtained by adding the transmission error characteristic (A) and the transmission error characteristic (B) is, for example, as shown in the upper part of FIG. 4, the fluctuation of the maximum value of the transmission error characteristic (A). Is canceled by the fluctuation of the minimum value of the transmission error characteristic (B) as a periodic function in which the phases are mutually inverted, and the transmission errors are averaged at each phase position. It is a characteristic with a small fluctuation range. The meshing vibration noise of the gears 1, 2 and 3 is suppressed by the transmission error canceling effect of averaging the two meshing transmission errors.

【0028】次に、効果を説明する。Next, the effect will be described.

【0029】(1) 第1実施例の3軸歯車装置にあって
は、入力軸4に設けられた入力歯車1と、出力軸6に設
けられた出力歯車3と、中間軸5に設けられ、前記入出
力歯車1,3の両方に噛み合う1個の中間歯車2と、を
有する3軸歯車装置において、入力軸4の軸心点7と中
間軸5の軸心点8とを結ぶ中心線L1と、中間軸5の軸心
点8と出力軸6の軸心点9とを結ぶ中心線L2と、のなす
角度γが、360°を中間歯車2の歯数で除した値の整数
倍となるように、入力軸4と出力軸6と中間軸5とを配
置したため、構成部品を増やしたりサイズを増大するこ
となく振動騒音の発生を抑制し得る3軸歯車装置を提供
することができる。
(1) In the three-shaft gear device of the first embodiment, the input gear 1 provided on the input shaft 4, the output gear 3 provided on the output shaft 6, and the intermediate shaft 5 are provided. , A single intermediate gear 2 meshing with both the input / output gears 1 and 3, a center line connecting an axial center point 7 of the input shaft 4 and an axial center point 8 of the intermediate shaft 5. The angle γ formed by L1 and the center line L2 connecting the axial center point 8 of the intermediate shaft 5 and the axial center point 9 of the output shaft 6 is an integral multiple of the value obtained by dividing 360 ° by the number of teeth of the intermediate gear 2. Since the input shaft 4, the output shaft 6, and the intermediate shaft 5 are arranged so as to achieve the above, it is possible to provide a three-axis gear device capable of suppressing the generation of vibration noise without increasing the number of components or the size thereof. .

【0030】(2) 第1実施例の3軸歯車の配置方法にあ
っては、入力軸4に設けられた入力歯車1と、出力軸6
に設けられた出力歯車3と、中間軸5に設けられ、前記
入出力歯車1,3の両方に噛み合う1個の中間歯車2
と、を有する3軸歯車の配置方法において、入力軸4の
軸心点7と中間軸5の軸心点8とを結ぶ中心線L1と、中
間軸5の軸心点8と出力軸6の軸心点9とを結ぶ中心線
L2と、のなす角度γが、360°を中間歯車2の歯数で除
した値の整数倍となるように、入力軸4と出力軸6と中
間軸5とを配置する方法としたため、構成部品を増やし
たりサイズを増大することなく振動騒音の発生を抑制し
得る3軸歯車の配置方法を提供することができる。
(2) In the method of arranging the three-axis gear of the first embodiment, the input gear 1 provided on the input shaft 4 and the output shaft 6 are provided.
And an output gear 3 provided on the intermediate shaft 5, and an intermediate gear 2 provided on the intermediate shaft 5 and meshed with both the input / output gears 1 and 3.
In the method of arranging the three-axis gear having the following, a center line L1 connecting the shaft center point 7 of the input shaft 4 and the shaft center point 8 of the intermediate shaft 5, and the shaft center point 8 of the intermediate shaft 5 and the output shaft 6 A center line connecting with the axial center point 9
Since the angle γ formed by L2 and the input shaft 4, the output shaft 6, and the intermediate shaft 5 are arranged such that the angle γ formed by L2 is an integral multiple of a value obtained by dividing 360 ° by the number of teeth of the intermediate gear 2, It is possible to provide a method for arranging a triaxial gear that can suppress the generation of vibration noise without increasing the number of parts or the size.

【0031】(第2実施例)第2実施例は、入力歯車1
と中間歯車2の噛み合い部Aの相対歯面形状と、中間歯
車2と出力歯車3の噛み合い部Bの相対歯面形状を同等
とした例である。
(Second Embodiment) In the second embodiment, the input gear 1 is used.
And the relative tooth surface shape of the meshing portion A of the intermediate gear 2 and the relative tooth surface shape of the meshing portion B of the intermediate gear 2 and the output gear 3 are the same.

【0032】なお、他の構成は図1に示す第1実施例と
同様であるので、図示並びに説明を省略する。
Since the other structure is the same as that of the first embodiment shown in FIG. 1, its illustration and description are omitted.

【0033】次に、作用を説明する。Next, the operation will be described.

【0034】入力歯車1と中間歯車2の噛み合い部Aで
の噛み合い伝達誤差と、中間歯車2と出力歯車3の噛み
合い部Bでの噛み合い伝達誤差とは、相対歯面形状によ
って変化する。
The meshing transmission error at the meshing portion A between the input gear 1 and the intermediate gear 2 and the meshing transmission error at the meshing portion B between the intermediate gear 2 and the output gear 3 vary depending on the relative tooth surface shape.

【0035】したがって、両噛み合い部A,Bの相対歯
面形状を同等とすることで、両噛み合い部A,Bに発生
する噛み合い伝達誤差を同等とすることができる。
Therefore, by making the relative tooth surface shapes of both meshing portions A and B equal to each other, the meshing transmission error occurring in both meshing portions A and B can be equalized.

【0036】このため、入力歯車−中間歯車の噛み合い
による伝達誤差特性(A)は、図5の下部に示すよう
に、1正面法線ピッチを移動する間において、例えば、
tb〜tcの間にて伝達誤差の最大値が維持され、td〜teの
間にて伝達誤差の最小値が維持される特性を示す。一
方、中間歯車−出力歯車の噛み合いによる伝達誤差特性
(B)は、図5の下部に示すように、1正面法線ピッチ
を移動する間において、例えば、td〜teの間にて伝達誤
差の最大値が維持され、tb〜tcの間にて伝達誤差の最小
値が維持される特性を示す。
Therefore, the transmission error characteristic (A) due to the meshing of the input gear and the intermediate gear is, for example, as shown in the lower part of FIG.
The characteristic shows that the maximum value of the transmission error is maintained between tb and tc and the minimum value of the transmission error is maintained between td and te. On the other hand, as shown in the lower part of FIG. 5, the transmission error characteristic (B) due to the meshing of the intermediate gear and the output gear shows that the transmission error of the transmission error is, for example, between td and te while moving one front normal pitch. The characteristic is such that the maximum value is maintained and the minimum value of the transmission error is maintained between tb and tc.

【0037】よって、伝達誤差特性(A)と伝達誤差特
性(B)とを合算したトータル伝達誤差特性は、図5の
上部に示すように、例えば、伝達誤差特性(A)の最大
値領域が伝達誤差特性(B)の最小値領域によりその変
動が相殺されて中間値によるフラット特性となるという
ように、互いに位相が反転した周期関数となって相殺さ
れ、各位相位置において伝達誤差が平均化され、全体と
して第1実施例よりさらに小さい変動幅による特性とな
る。
Accordingly, the total transmission error characteristic obtained by adding the transmission error characteristic (A) and the transmission error characteristic (B) is, for example, as shown in the upper part of FIG. The fluctuation is canceled out by the minimum value region of the transfer error characteristic (B) and becomes a flat property by the intermediate value, so that they are canceled by the periodic functions in which the phases are mutually inverted, and the transfer error is averaged at each phase position. As a result, the characteristic becomes a fluctuation range smaller than that of the first embodiment as a whole.

【0038】次に、効果を説明する。この第2実施例の
3軸歯車装置にあっては、第1実施例の(1)の効果に加
え、下記の効果を得ることができる。
Next, the effect will be described. In addition to the effect (1) of the first embodiment, the triaxial gear device of the second embodiment can obtain the following effect.

【0039】(3) 入力歯車1と中間歯車2の噛み合い部
Aの相対歯面形状と、中間歯車2と出力歯車3の噛み合
い部Bの相対歯面形状を同等としたため、第1実施例と
比べた場合、さらに歯車1,2,3の噛み合いによる振
動騒音の発生を抑制することができる。
(3) Since the relative tooth surface shape of the meshing portion A of the input gear 1 and the intermediate gear 2 and the relative tooth surface shape of the meshing portion B of the intermediate gear 2 and the output gear 3 are made equal to each other, it is the same as the first embodiment. In comparison, the generation of vibration noise due to meshing of the gears 1, 2, 3 can be further suppressed.

【0040】(第3実施例)第3実施例は、入力歯車1
と中間歯車2の噛み合い部Aの噛み合い率と、中間歯車
2と出力歯車3の噛み合い部Bの噛み合い率を同等とし
た例である。
(Third Embodiment) In the third embodiment, the input gear 1 is used.
Is an example in which the meshing ratio of the meshing portion A of the intermediate gear 2 and the meshing ratio of the meshing portion B of the intermediate gear 2 and the output gear 3 are equal.

【0041】ここで、噛み合い率とは、同時に噛み合う
歯の数を表すものであり、例えば、平歯車である場合に
は、同時接触線が歯車回転軸に平行であるため、噛み合
い率は正面噛み合い率となるが、はすば歯車である場
合、同時接触線が歯車回転軸に対し傾いているため、噛
み合い率は、正面噛み合い率と重なり噛み合い率との和
により求められる。
Here, the meshing ratio represents the number of teeth meshing at the same time. For example, in the case of a spur gear, since the simultaneous contact line is parallel to the gear rotation axis, the meshing ratio is the front meshing. In the case of a helical gear, since the simultaneous contact line is inclined with respect to the gear rotation axis, the meshing ratio is calculated by the sum of the front meshing ratio and the overlapping meshing ratio.

【0042】なお、他の構成は図1に示す第1実施例と
同様であるので、図示並びに説明を省略する。
Since the other structure is the same as that of the first embodiment shown in FIG. 1, its illustration and description are omitted.

【0043】次に、作用を説明する。Next, the operation will be described.

【0044】入力歯車1と中間歯車2の噛み合い部Aで
の噛み合い伝達誤差と、中間歯車2と出力歯車3の噛み
合い部Bでの噛み合い伝達誤差とは、噛み合い率によっ
て変化する。
The mesh transmission error at the mesh portion A between the input gear 1 and the intermediate gear 2 and the mesh transmission error at the mesh portion B between the intermediate gear 2 and the output gear 3 vary depending on the mesh ratio.

【0045】したがって、両噛み合い部A,Bの噛み合
い率を同等とすることで、両噛み合い部A,Bに発生す
る噛み合い伝達誤差を同等とすることができる。
Therefore, by setting the meshing ratios of the meshing portions A and B to be equal, the meshing transmission errors occurring in the meshing portions A and B can be equalized.

【0046】このため、入力歯車−中間歯車の噛み合い
による伝達誤差特性(A)と、中間歯車−出力歯車の噛
み合いによる伝達誤差特性(B)と、伝達誤差特性
(A)と伝達誤差特性(B)とを合算したトータル伝達
誤差特性は、第2実施例の場合と同様に、図5に示すよ
うに、全体として第1実施例よりさらに小さい変動幅に
よる特性となる。
Therefore, the transmission error characteristic (A) due to the mesh between the input gear and the intermediate gear, the transmission error characteristic (B) due to the mesh between the intermediate gear and the output gear, the transmission error characteristic (A) and the transmission error characteristic (B). As in the case of the second embodiment, the total transmission error characteristic obtained by summing the above and) is a characteristic with a fluctuation range smaller than that of the first embodiment as a whole, as shown in FIG.

【0047】次に、効果を説明する。この第3実施例の
3軸歯車装置にあっては、第1実施例の(1)の効果に加
え、下記の効果を得ることができる。
Next, the effect will be described. In addition to the effect (1) of the first embodiment, the triaxial gear device of the third embodiment can obtain the following effect.

【0048】(4) 入力歯車1と中間歯車2の噛み合い部
Aの噛み合い率と、中間歯車2と出力歯車3の噛み合い
部Bの噛み合い率を同等としたため、第1実施例と比べ
た場合、さらに歯車1,2,3の噛み合いによる振動騒
音の発生を抑制することができる。
(4) Since the meshing ratio of the meshing portion A between the input gear 1 and the intermediate gear 2 and the meshing ratio of the meshing portion B between the intermediate gear 2 and the output gear 3 are made equal to each other, when compared with the first embodiment, Further, generation of vibration noise due to meshing of the gears 1, 2, 3 can be suppressed.

【0049】以上、本発明の3軸歯車装置及び3軸歯車
の配置方法を第1実施例〜第3実施例に基づき説明して
きたが、具体的な構成については、これらの実施例に限
られるものではなく、特許請求の範囲の各請求項に係る
発明の要旨を逸脱しない限り、設計の変更や追加等は許
容される。
The triaxial gear device and the method for arranging the triaxial gear of the present invention have been described above based on the first to third embodiments, but the specific structure is limited to these embodiments. It is not intended that modifications and additions of the design are allowed without departing from the gist of the invention according to each claim of the claims.

【0050】例えば、第1〜第3実施例では、軸と歯車
の関係は、軸に歯車を固定した例を示したが、歯車と軸
とを一体に形成しても良い。
For example, in the first to third embodiments, the relationship between the shaft and the gear has been shown by fixing the gear to the shaft, but the gear and the shaft may be integrally formed.

【図面の簡単な説明】[Brief description of drawings]

【図1】第1実施例の3軸歯車装置を示す全体図であ
る。
FIG. 1 is an overall view showing a triaxial gear device of a first embodiment.

【図2】第1実施例の3軸歯車装置を示す作用説明図で
ある。
FIG. 2 is an operation explanatory view showing the triaxial gear device of the first embodiment.

【図3】位相差が略0の3軸歯車装置における入力歯車
−中間歯車の噛み合いによる伝達誤差特性(A)と、中
間歯車−出力歯車の噛み合いによる伝達誤差特性(B)
と、伝達誤差特性(A)と伝達誤差特性(B)とを合算
したトータル伝達誤差特性を示す図である。
FIG. 3 is a transmission error characteristic (A) due to meshing between an input gear and an intermediate gear and a transmission error characteristic (B) due to meshing between an intermediate gear and an output gear in a triaxial gear device having a phase difference of substantially zero.
FIG. 6 is a diagram showing a total transmission error characteristic obtained by adding the transmission error characteristic (A) and the transmission error characteristic (B).

【図4】第1実施例の3軸歯車装置における入力歯車−
中間歯車の噛み合いによる伝達誤差特性(A)と、中間
歯車−出力歯車の噛み合いによる伝達誤差特性(B)
と、伝達誤差特性(A)と伝達誤差特性(B)とを合算
したトータル伝達誤差特性を示す図である。
FIG. 4 is an input gear in the three-axis gear device of the first embodiment.
Transmission error characteristics due to meshing of intermediate gears (A) and transmission error characteristics due to meshing of intermediate gears and output gears (B)
FIG. 6 is a diagram showing a total transmission error characteristic obtained by adding the transmission error characteristic (A) and the transmission error characteristic (B).

【図5】第2実施例及び第3実施例の3軸歯車装置にお
ける入力歯車−中間歯車の噛み合いによる伝達誤差特性
(A)と、中間歯車−出力歯車の噛み合いによる伝達誤
差特性(B)と、伝達誤差特性(A)と伝達誤差特性
(B)とを合算したトータル伝達誤差特性を示す図であ
る。
FIG. 5 shows a transmission error characteristic (A) due to meshing between an input gear and an intermediate gear and a transmission error characteristic (B) due to meshing between an intermediate gear and an output gear in the three-axis gear device of the second and third embodiments. FIG. 6 is a diagram showing a total transmission error characteristic obtained by adding the transmission error characteristic (A) and the transmission error characteristic (B).

【符号の説明】[Explanation of symbols]

1 入力歯車 2 中間歯車 3 出力歯車 4 入力軸 5 中間軸 6 出力軸 7 入力軸4の軸心点 8 中間軸5の軸心点 9 出力軸6の軸心点 L1 軸心点7,8を結ぶ中心線 L2 軸心点8,9を結ぶ中心線 γ 中心線L1と中心線L2とのなす角度 1 input gear 2 Intermediate gear 3 output gears 4 input axes 5 Middle axis 6 Output shaft 7 Input shaft 4 axis center point 8 Center point of intermediate shaft 5 9 Output shaft 6 center point Center line connecting L1 axis center points 7 and 8 Center line connecting L2 axis center points 8 and 9 γ Angle between center line L1 and center line L2

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 入力軸に設けられた入力歯車と、出力軸
に設けられた出力歯車と、中間軸に設けられ、前記入出
力歯車の両方に噛み合う1個の中間歯車と、を有する3
軸歯車装置において、 前記入力軸の軸心点と中間軸の軸心点とを結ぶ中心線
と、中間軸の軸心点と出力軸の軸心点とを結ぶ中心線
と、のなす角度が、360°を中間歯車歯数で除した値の
整数倍となるように、入力軸と出力軸と中間軸とを配置
したことを特徴とする3軸歯車装置。
1. An input gear provided on an input shaft, an output gear provided on an output shaft, and one intermediate gear provided on an intermediate shaft and meshing with both the input and output gears.
In the shaft gear device, an angle formed by a center line connecting the shaft center point of the input shaft and the shaft center point of the intermediate shaft and a center line connecting the shaft center point of the intermediate shaft and the shaft center point of the output shaft is , 360 ° divided by the number of intermediate gear teeth, an input shaft, an output shaft, and an intermediate shaft are arranged so as to be an integral multiple.
【請求項2】 請求項1に記載された3軸歯車装置にお
いて、 前記入力歯車と中間歯車の噛み合い部の相対歯面形状
と、前記中間歯車と出力歯車の噛み合い部の相対歯面形
状を同等としたことを特徴とする3軸歯車装置。
2. The triaxial gear device according to claim 1, wherein a relative tooth surface shape of a meshing portion of the input gear and the intermediate gear is equal to a relative tooth surface shape of a meshing portion of the intermediate gear and the output gear. A three-axis gear device characterized in that
【請求項3】 請求項1または2の何れかに記載された
3軸歯車装置において、 前記入力歯車と中間歯車の噛み合い部の噛み合い率と、
前記中間歯車と出力歯車の噛み合い部の噛み合い率を同
等としたことを特徴とする3軸歯車装置。
3. The triaxial gear device according to claim 1, wherein a meshing ratio of a meshing portion between the input gear and the intermediate gear,
A triaxial gear device, wherein the meshing ratios of the meshing portions of the intermediate gear and the output gear are made equal.
【請求項4】 入力軸に設けられた入力歯車と、出力軸
に設けられた出力歯車と、中間軸に設けられ、前記入出
力歯車の両方に噛み合う1個の中間歯車と、を有する3
軸歯車装置の配置方法において、 前記入力軸の軸心点と中間軸の軸心点とを結ぶ中心線
と、中間軸の軸心点と出力軸の軸心点とを結ぶ中心線
と、のなす角度が、360°を中間歯車歯数で除した値の
整数倍となるように、入力軸と出力軸と中間軸とを配置
したことを特徴とする3軸歯車の配置方法。
4. An input gear provided on an input shaft, an output gear provided on an output shaft, and one intermediate gear provided on an intermediate shaft and meshing with both the input and output gears.
In the arrangement method of the shaft gear device, a center line connecting the shaft center point of the input shaft and the shaft center point of the intermediate shaft, and a center line connecting the shaft center point of the intermediate shaft and the shaft center point of the output shaft, A method for arranging a triaxial gear, wherein the input shaft, the output shaft, and the intermediate shaft are arranged such that the angle formed is an integer multiple of a value obtained by dividing 360 ° by the number of intermediate gear teeth.
JP2002127895A 2002-04-30 2002-04-30 Three shaft gear device and method for arranging three shaft gear Pending JP2003322225A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002127895A JP2003322225A (en) 2002-04-30 2002-04-30 Three shaft gear device and method for arranging three shaft gear

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002127895A JP2003322225A (en) 2002-04-30 2002-04-30 Three shaft gear device and method for arranging three shaft gear

Publications (1)

Publication Number Publication Date
JP2003322225A true JP2003322225A (en) 2003-11-14

Family

ID=29541821

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002127895A Pending JP2003322225A (en) 2002-04-30 2002-04-30 Three shaft gear device and method for arranging three shaft gear

Country Status (1)

Country Link
JP (1) JP2003322225A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8225690B2 (en) 2007-02-19 2012-07-24 Toyota Jidosha Kabushiki Kaisha Power transmission device
CN106763642A (en) * 2017-02-22 2017-05-31 北京新能源汽车股份有限公司 Electric vehicle speed reducer noise-reduction method and electric vehicle speed reducer

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8225690B2 (en) 2007-02-19 2012-07-24 Toyota Jidosha Kabushiki Kaisha Power transmission device
DE102008000337B4 (en) * 2007-02-19 2021-06-24 Toyota Jidosha Kabushiki Kaisha Power transmission device
CN106763642A (en) * 2017-02-22 2017-05-31 北京新能源汽车股份有限公司 Electric vehicle speed reducer noise-reduction method and electric vehicle speed reducer
CN106763642B (en) * 2017-02-22 2020-09-04 北京新能源汽车股份有限公司 Noise reduction method for electric automobile speed reducer and electric automobile speed reducer

Similar Documents

Publication Publication Date Title
JP2575435B2 (en) Differential planetary gear set
JP4948479B2 (en) Compound wave gear reducer
JP3481335B2 (en) Inner mesh planetary gear
WO2007017935A1 (en) Planetary gear device
WO2017213151A1 (en) Planetary gear device and program for designing planetary gear device
JP2014066280A5 (en)
WO2018135552A1 (en) Planetary gear device
WO2007013373A1 (en) Method of designing gear using cad system, and gear
JP2003322225A (en) Three shaft gear device and method for arranging three shaft gear
CN202690900U (en) Novel tooth-shaped gear eccentric drive mechanism
US10975946B1 (en) Differential reducer with high ratio
Parker et al. Mesh phasing relationships in planetary and epicyclic gears
JPH02238171A (en) Starter device
JP6205600B2 (en) Involute spur gear with a curved tooth profile
JP4010129B2 (en) Planetary gear device, manufacturing method thereof, and planetary gear tooth surface shape setting method
JP4388677B2 (en) Series of swinging intermeshing planetary gear units
JP3854345B2 (en) Transmission series
JPH0650394A (en) Inscribed meshing type planetary gear structure
US20220056987A1 (en) Balanced speed reducer of dual-ring gear variable-line-speed planetary row
KR101361548B1 (en) Roller track gear system
TWI683968B (en) Series of planetary gear devices
JP7262087B2 (en) Equal reduction gear by variable linear velocity planetary gear mechanism with two sun gears
WO2021152830A1 (en) Gear mechanism and planetary gear mechanism having teeth arranged at uneven pitches
JPH05332404A (en) Flexure mesh type gear meshing structure
JP2771415B2 (en) Flexible mesh gear meshing structure