JP2003317752A - Fuel cell system and control method - Google Patents

Fuel cell system and control method

Info

Publication number
JP2003317752A
JP2003317752A JP2002118038A JP2002118038A JP2003317752A JP 2003317752 A JP2003317752 A JP 2003317752A JP 2002118038 A JP2002118038 A JP 2002118038A JP 2002118038 A JP2002118038 A JP 2002118038A JP 2003317752 A JP2003317752 A JP 2003317752A
Authority
JP
Japan
Prior art keywords
hydrogen
concentration
flow rate
gas
fuel cell
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002118038A
Other languages
Japanese (ja)
Other versions
JP3882667B2 (en
Inventor
Masanobu Sakai
政信 酒井
Shuji Torii
修司 鳥居
Tetsuya Uehara
哲也 上原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP2002118038A priority Critical patent/JP3882667B2/en
Publication of JP2003317752A publication Critical patent/JP2003317752A/en
Application granted granted Critical
Publication of JP3882667B2 publication Critical patent/JP3882667B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To improve energy efficiency of a fuel cell system by reducing the undesired loss of fuel gas by purging in the fuel cell system. <P>SOLUTION: Volume flow rate is calculated based on a propagating time of ultrasonic wave in mixed gas measured by an ultrasonic flowmeter, and an average density of the mixed gas is determined. Hydrogen gas concentration and impurity gas concentration are calculated based on the average density, the mass flow rate of hydrogen gas is calculated based on the hydrogen gas concentration and the volume flow rate, and an existing amount of the impurity gas is calculated based on the impurity gas concentration, pressure, and temperature. Here, when the mass flow rate of hydrogen is at a threshold or lower and the existing amount of the impurity gas is at a threshold or higher, the purge is performed. <P>COPYRIGHT: (C)2004,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、燃料電池システム
及び制御方法に関し、詳しくは、燃料ガスを循環して燃
料電池に還流させて再利用するタイプの燃料電池システ
ムにおいて、還流系からのパージを制御する技術に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a fuel cell system and a control method, and more particularly, to a fuel cell system of a type in which a fuel gas is circulated and recirculated to a fuel cell for reuse so that purging from a recirculation system is performed. Control technology.

【0002】[0002]

【従来の技術】従来から、燃料電池システムにおいて、
燃料電池で消費されなかった水素を、燃料電池に還流し
て再利用を図ることが行われている(特開平10−05
5814号公報及び特開2000−58092号公報参
照)。また、上記のように燃料ガスを還流させて再利用
するシステムの場合、燃料ガスを循環し続けるにしたが
って循環ライン内に不純物ガス(例えば燃料電池の発電
作用には不必要な窒素ガス)が徐々に蓄積・増加してい
くことが知られている。
2. Description of the Related Art Conventionally, in a fuel cell system,
Hydrogen not consumed in the fuel cell is returned to the fuel cell for reuse (Japanese Patent Laid-Open No. 10-05).
5814 and JP 2000-58092 A). Further, in the case of the system in which the fuel gas is recirculated and reused as described above, as the fuel gas is continuously circulated, impurity gas (for example, nitrogen gas which is unnecessary for the power generation operation of the fuel cell) is gradually circulated in the circulation line. It is known that it accumulates and increases.

【0003】このような不必要なガスを循環させ続ける
ことは循環動力を無駄に使うばかりでなく、燃料電池に
供給される燃料中に占める不純物ガスの割合が増加する
ことで燃料電池の出力低下を招くことになる。そこで、
前記特開2000−058092号に開示される構成で
は、燃料ガスの循環ラインから不純物ガスを含む燃料ガ
スをパージさせるパージ弁を備え、循環ライン中の不純
物ガス濃度が一定値を超えたときに前記パージ弁を開放
させるようになっていた。
Continuing to circulate such an unnecessary gas not only wastes the circulating power, but also increases the proportion of the impurity gas in the fuel supplied to the fuel cell, thereby lowering the output of the fuel cell. Will be invited. Therefore,
In the configuration disclosed in JP 2000-058092 A, a purge valve for purging the fuel gas containing the impurity gas from the fuel gas circulation line is provided, and when the impurity gas concentration in the circulation line exceeds a certain value, It was supposed to open the purge valve.

【0004】[0004]

【発明が解決しようとする課題】ところで、燃料ガスを
還流させて再利用する燃料電池システムにおいては、燃
料ガス供給源からの水素供給流量をQ(L/min)と
すると、このQ(L/min)に対してある比率αの流
量αQ(L/min)がエジェクタによって吸込まれて
還流され、燃料電池には合計流量である(1+α)Q
(L/min)が流入する。
In a fuel cell system in which fuel gas is recirculated and reused, if the hydrogen supply flow rate from the fuel gas supply source is Q (L / min), this Q (L / min) flow rate αQ (L / min) of a certain ratio α with respect to (min) is sucked and recirculated by the ejector, and the total flow rate is (1 + α) Q to the fuel cell
(L / min) flows in.

【0005】そして、燃料電池にてQ(L/min)の
水素が消費され、消費されずに残ったαQ(L/mi
n)が未利用ガスとして燃料電池から排出されて循環す
るという関係にある。すなわち、燃料ガス供給源から流
入する水素流量Q(L/min)が燃料電池で消費さ
れ、この流量Q(L/min)に依存した量αQ(L/
min)が循環している。
Then, Q (L / min) of hydrogen is consumed in the fuel cell, and αQ (L / mi) remaining without being consumed.
n) is discharged from the fuel cell as an unused gas and circulates. That is, the hydrogen flow rate Q (L / min) flowing from the fuel gas supply source is consumed in the fuel cell, and the amount αQ (L / min) depending on this flow rate Q (L / min) is consumed.
min) is circulating.

【0006】一方、特開2000−012059号公報
に開示されるように、燃料電池に流入する水素質量流量
が燃料電池の発電効率に関係しており、燃料電池で消費
される水素質量流量以上の量を燃料電池に流入させるこ
とが求められ、また、燃料電池の急激な負荷増大に対応
するための余裕分も必要なことから、循環される水素質
量流量が所定以上であることが要求される。
On the other hand, as disclosed in Japanese Patent Laid-Open No. 2000-012059, the mass flow rate of hydrogen flowing into the fuel cell is related to the power generation efficiency of the fuel cell, and is greater than the mass flow rate of hydrogen consumed in the fuel cell. It is required that the amount of hydrogen flow into the fuel cell, and that there is a margin for coping with a sudden increase in load of the fuel cell. .

【0007】換言すれば、循環される水素質量流量(余
裕分)が所定以上であれば、燃料電池の発電に影響がな
いため、循環ラインからのパージは必要ないことになる
が、従来のように、不純物ガス濃度に基づいてパージを
制御する構成では、不純物ガス濃度が同じでも燃料電池
における消費量によって循環ラインにおける水素質量流
量が変化することに対応できないため、適切なタイミン
グでパージを行わせることができないという問題があっ
た。
In other words, if the mass flow rate of hydrogen (margin) to be circulated is more than a predetermined value, there is no influence on the power generation of the fuel cell, so that the purging from the circulation line is not necessary. In addition, in the configuration in which the purge is controlled based on the impurity gas concentration, it is not possible to cope with the change in the hydrogen mass flow rate in the circulation line due to the consumption amount in the fuel cell even if the impurity gas concentration is the same, so the purge is performed at an appropriate timing. There was a problem that I could not.

【0008】また、従来のように不純物ガス濃度に基づ
いてパージを制御する構成では、過渡的な不純物ガス濃
度の変化に影響されてパージが行われ、無用な燃料ガス
の損失を増大させる可能性があった。例えば、循環ライ
ンの不純物ガスがある量蓄積されている状態で、燃料電
池の負荷の増大変化があると、一時的に循環ラインの水
素質量が低下し、それによって相対的に不純物ガス濃度
が増大するため、従来制御では、係る一時的な不純物ガ
ス濃度の増大に基づいて、パージが行われる可能性があ
る。
Further, in the conventional structure in which the purge is controlled on the basis of the impurity gas concentration, the purge is performed under the influence of the transient change in the impurity gas concentration, which may increase the loss of unnecessary fuel gas. was there. For example, if a certain amount of impurity gas is accumulated in the circulation line and the load on the fuel cell increases, the hydrogen mass in the circulation line temporarily decreases, which causes the impurity gas concentration to increase relatively. Therefore, in the conventional control, purging may be performed based on the temporary increase in the impurity gas concentration.

【0009】しかし、有効なパージを実行するという観
点からすると、不純物ガスの蓄積存在量が所定量以下の
場合はパージを控えることが望まれるため、従来制御で
は、頻繁なパージ制御によって無用な燃料ガスの損失を
増大させる可能性があった。本発明は上記問題点に鑑み
なされたものであり、燃料ガスの無用な損失を低減させ
て燃料電池システムのエネルギ効率を高めることが可能
な燃料電池システム及び制御方法を提供することを目的
とする。
However, from the viewpoint of performing effective purging, it is desirable to refrain from purging when the amount of accumulated impurity gas is less than a predetermined amount. Therefore, in conventional control, frequent purging control causes unnecessary fuel consumption. It could increase gas loss. The present invention has been made in view of the above problems, and an object of the present invention is to provide a fuel cell system and a control method capable of reducing unnecessary loss of fuel gas and increasing energy efficiency of the fuel cell system. .

【0010】[0010]

【課題を解決するための手段】上記目的を達成するた
め、請求項1,12記載の発明では、水素還流経路を含
む水素循環系内における水素質量流量を推定し、前記水
素質量流量が閾値以下になったときに、水素還流経路か
ら混合ガスをパージさせる構成とした。上記構成による
と、水素循環系内の混合ガス(水素ガス,不純物ガス,
水蒸気)の流量変化に応じて変化する水素質量流量が閾
値以下となり、発電効率を維持できなくなると、パージ
を行って燃料ガスと共に不純物ガスをパージさせる。
In order to achieve the above object, in the invention according to claims 1 and 12, the hydrogen mass flow rate in the hydrogen circulation system including the hydrogen reflux path is estimated, and the hydrogen mass flow rate is below a threshold value. When it becomes, the mixed gas is purged from the hydrogen reflux path. According to the above configuration, the mixed gas (hydrogen gas, impurity gas,
When the hydrogen mass flow rate that changes according to the change in the flow rate of water vapor) becomes less than the threshold value and the power generation efficiency cannot be maintained, purging is performed to purge the impurity gas together with the fuel gas.

【0011】請求項2,13記載の発明では、水素循環
系内における水素質量流量及び不純物ガス存在量をそれ
ぞれ推定し、前記水素質量流量が閾値以下で、かつ、前
記不純物ガス存在量が閾値以上になったときに、水素還
流経路から混合ガスをパージさせる構成とした。上記構
成によると、たとえ燃料電池の負荷変化等によって水素
質量流量が閾値以下になっても、不純物ガス存在量が閾
値を下回るときには、パージが行われない。
According to the inventions of claims 2 and 13, the hydrogen mass flow rate and the impurity gas existing amount in the hydrogen circulation system are respectively estimated, and the hydrogen mass flow rate is equal to or less than a threshold value and the impurity gas existing amount is equal to or more than the threshold value. When it becomes, the mixed gas is purged from the hydrogen reflux path. According to the above configuration, even if the hydrogen mass flow rate becomes equal to or lower than the threshold value due to the load change of the fuel cell or the like, the purging is not performed when the impurity gas existing amount is lower than the threshold value.

【0012】請求項3記載の発明では、前記水素質量流
量の閾値を、前記燃料電池の運転条件に応じて設定する
構成とした。上記構成によると、必要とされる水素質量
流量が、燃料電池の運転条件に応じて変化することに対
応させるべく、パージを行わせる水素質量流量の閾値を
変化させる。
According to the third aspect of the present invention, the hydrogen mass flow rate threshold value is set according to the operating conditions of the fuel cell. According to the above configuration, the threshold value of the hydrogen mass flow rate for purging is changed in order to correspond to the change of the required hydrogen mass flow rate according to the operating conditions of the fuel cell.

【0013】請求項4,14記載の発明では、燃料電池
の発電電流に応じて前記水素質量流量の閾値を設定する
構成とした。上記構成によると、発電電流に応じて発電
効率の維持のために必要とされる水素質量流量が変化す
ることに対応して、水素質量流量の閾値が変更される。
請求項5,15記載の発明では、水素質量流量及び/又
は不純物ガス存在量の推定に用いる水素濃度及び/又は
不純物ガス濃度を、水素循環系内の混合ガス中の音速に
基づいて求められる混合ガスの平均密度に基づいて推定
させる構成とした。
According to the present invention, the threshold value of the hydrogen mass flow rate is set according to the generated current of the fuel cell. According to the above configuration, the threshold value of the hydrogen mass flow rate is changed in response to the change of the hydrogen mass flow rate required for maintaining the power generation efficiency according to the generated current.
In the invention according to claims 5 and 15, the hydrogen concentration and / or the impurity gas concentration used for estimating the hydrogen mass flow rate and / or the impurity gas existing amount are mixed based on the speed of sound in the mixed gas in the hydrogen circulation system. The configuration is such that it is estimated based on the average density of the gas.

【0014】上記構成によると、混合ガス中における音
速から混合ガスの平均密度が分かり、例えば、混合ガス
が水素と不純物ガスとからなる場合には、水素濃度と不
純物ガス濃度との合計が1で、各ガスの濃度と密度との
乗算値を加算した結果が平均密度となるから、これらの
式に基づいて水素濃度及び不純物ガス濃度を求めること
が可能である。
According to the above structure, the average density of the mixed gas is known from the speed of sound in the mixed gas. For example, when the mixed gas is composed of hydrogen and impurity gas, the total of hydrogen concentration and impurity gas concentration is 1. Since the result of adding the multiplication values of the concentration and the density of each gas is the average density, it is possible to obtain the hydrogen concentration and the impurity gas concentration based on these equations.

【0015】請求項6記載の発明では、水素質量流量の
推定に、水素循環系内の混合ガス中における超音波の伝
播時間に基づいて体積流量を検出する手段を用いる構成
とし、濃度推定に前記体積流量の検出のための伝播時間
の計測結果を用いる構成とした。上記構成によると、体
積流量の検出のために計測される伝播時間に基づいて、
同時に、水素濃度及び/又は不純物ガス濃度の推定が行
われる。
In the sixth aspect of the present invention, the hydrogen mass flow rate is estimated by using a means for detecting the volume flow rate based on the propagation time of ultrasonic waves in the mixed gas in the hydrogen circulation system, and the concentration is estimated by the above-mentioned means. It is configured to use the measurement result of the propagation time for detecting the volume flow rate. According to the above configuration, based on the propagation time measured for detecting the volume flow rate,
At the same time, the hydrogen concentration and / or the impurity gas concentration is estimated.

【0016】請求項7記載の発明では、超音波の伝播時
間に基づいて体積流量を検出する手段と、混合ガスの圧
力を検出する手段と、混合ガスの温度を検出する手段
と、を備え、前記伝播時間に基づいて混合ガス中の音速
を求め、該音速に基づいて求められる平均密度に基づい
て水素ガス濃度及び不純物ガス濃度を推定し、前記体積
流量,圧力,温度及び水素ガス濃度に基づいて水素質量
流量を推定すると共に、前記圧力,温度及び不純物ガス
濃度に基づいて不純物ガス存在量を推定する構成とし
た。
According to a seventh aspect of the present invention, there are provided means for detecting the volumetric flow rate based on the propagation time of ultrasonic waves, means for detecting the pressure of the mixed gas, and means for detecting the temperature of the mixed gas. Obtaining the sound velocity in the mixed gas based on the propagation time, estimating the hydrogen gas concentration and the impurity gas concentration based on the average density obtained based on the sound velocity, based on the volume flow rate, pressure, temperature and hydrogen gas concentration In addition to estimating the hydrogen mass flow rate, the amount of existing impurity gas is estimated based on the pressure, temperature and impurity gas concentration.

【0017】上記構成によると、体積流量の検出に伴っ
て濃度推定が行われ、また、圧力,温度の変化に対応し
て、水素質量流量及び不純物ガス存在量が推定される。
請求項8記載の発明では、除湿手段の下流側での伝播時
間に基づいて、水素濃度及び/又は不純物ガス濃度を推
定させる構成とした。上記構成によると、水素循環系の
混合ガスが、水素,不純物ガス,水蒸気からなる場合
に、伝播時間の計測部位の上流側で除湿されることで、
混合ガスが水素と不純物ガスとの2成分から構成される
ことになり、伝播時間から水素の密度と不純物ガスの密
度との平均が求められることになる。従って、未知数が
水素濃度及び不純物ガス濃度のみとなり、濃度の方程式
と密度の方程式とから、水素濃度及び不純物ガス濃度が
求められることになる。
According to the above configuration, the concentration is estimated in accordance with the detection of the volume flow rate, and the hydrogen mass flow rate and the impurity gas existing amount are estimated in accordance with the changes in pressure and temperature.
According to the eighth aspect of the present invention, the hydrogen concentration and / or the impurity gas concentration is estimated based on the propagation time on the downstream side of the dehumidifying means. According to the above configuration, when the mixed gas of the hydrogen circulation system is composed of hydrogen, impurity gas, and water vapor, it is dehumidified on the upstream side of the propagation time measurement portion,
Since the mixed gas is composed of two components, hydrogen and impurity gas, the average of the density of hydrogen and the density of impurity gas can be obtained from the propagation time. Therefore, the unknowns are only the hydrogen concentration and the impurity gas concentration, and the hydrogen concentration and the impurity gas concentration can be calculated from the concentration equation and the density equation.

【0018】請求項9記載の発明では、伝播時間の計測
部位近傍で湿度を検出し、該湿度に基づいて求められる
水蒸気濃度と伝播時間から求めれる平均密度とに基づい
て、水素ガス濃度及び/又は不純物ガス濃度を推定する
構成とした。上記構成によると、平均密度が、水素,不
純物ガス,水蒸気の平均密度として求められる構成であ
っても、水蒸気の濃度を既知とすることで、水素濃度及
び不純物ガス濃度が求められることになる。
According to the ninth aspect of the present invention, the humidity is detected in the vicinity of the propagation time measurement portion, and the hydrogen gas concentration and / or the hydrogen gas concentration are calculated based on the water vapor concentration obtained based on the humidity and the average density obtained from the propagation time. Alternatively, the impurity gas concentration is estimated. According to the above configuration, even if the average density is obtained as the average density of hydrogen, the impurity gas, and the water vapor, the hydrogen concentration and the impurity gas concentration can be obtained by making the water vapor concentration known.

【0019】請求項10記載の発明では、伝播時間の計
測部位近傍で、圧力及び温度を検出し、飽和水蒸気状態
での水蒸気濃度を前記圧力及び温度から求め、該水蒸気
濃度と伝播時間から求められる平均密度とに基づいて、
水素ガス濃度及び/又は不純物ガス濃度を推定する構成
とした。上記構成によると、水素循環系内が略飽和水蒸
気状態であれば、圧力及び温度から水蒸気濃度が求めら
れ、水蒸気の濃度を既知とすることで、水素濃度及び不
純物ガス濃度が求められることになる。
According to the tenth aspect of the invention, the pressure and temperature are detected in the vicinity of the propagation time measurement portion, the water vapor concentration in the saturated water vapor state is obtained from the pressure and temperature, and is obtained from the water vapor concentration and the propagation time. Based on the average density and
The configuration is such that the hydrogen gas concentration and / or the impurity gas concentration are estimated. According to the above configuration, if the hydrogen circulation system is in a substantially saturated water vapor state, the water vapor concentration can be obtained from the pressure and temperature, and by making the water vapor concentration known, the hydrogen concentration and the impurity gas concentration can be obtained. .

【0020】請求項11記載の発明では、混合ガスの水
蒸気濃度を予め定められた一定値とし、該水蒸気濃度と
伝播時間から求められる平均密度とに基づいて、水素ガ
ス濃度及び/又は不純物ガス濃度を推定する構成とし
た。上記構成によると、水蒸気の濃度を一定値と仮定す
ることで、水素濃度及び不純物ガス濃度が求められる。
According to the eleventh aspect of the present invention, the water vapor concentration of the mixed gas is set to a predetermined constant value, and the hydrogen gas concentration and / or the impurity gas concentration is determined based on the water vapor concentration and the average density obtained from the propagation time. Was estimated. According to the above configuration, the hydrogen concentration and the impurity gas concentration are obtained by assuming the concentration of water vapor to be a constant value.

【0021】[0021]

【発明の効果】請求項1,12記載の発明によると、水
素循環系における水素質量流量に基づいてパージを制御
するので、発電効率を維持できる水素質量流量が確保さ
れている状態でパージが行われることを回避でき、以っ
て、無用なパージによる水素ガスの損失を低減させるこ
とができるという効果がある。
According to the invention described in claims 1 and 12, the purge is controlled based on the hydrogen mass flow rate in the hydrogen circulation system. Therefore, the purge is performed in a state where the hydrogen mass flow rate capable of maintaining the power generation efficiency is secured. There is an effect that it is possible to avoid this, and thus reduce the loss of hydrogen gas due to unnecessary purging.

【0022】請求項2,13記載の発明によると、水素
質量流量が低下しても、不純物ガス存在量が少ない場合
にはパージが行われないので、過渡的に水素質量流量が
低下したときに、パージすべき不純物ガス存在量が少な
いのにパージが行われてしまうことを回避でき、有効な
パージのみを行わせて、より一層無用なパージによる水
素ガスの損失を低減させることができるという効果があ
る。
According to the present invention as set forth in claims 2 and 13, even if the hydrogen mass flow rate is reduced, purging is not carried out if the amount of impurity gas present is small. Therefore, when the hydrogen mass flow rate is transiently reduced. The effect that it is possible to avoid performing the purge even if the amount of the impurity gas to be purged is small, and to perform only the effective purge to further reduce the loss of the hydrogen gas due to the unnecessary purge. There is.

【0023】請求項3,4,14記載の発明によると、
発電効率を維持でき、また、負荷変動に対応できるだけ
の余裕分を確保できる水素質量流量になっているか否か
に基づいて、パージを行わせるので、燃料電池の運転条
件(負荷)の変化に応じて常に最適なタイミングでパー
ジを行わせることができるという効果がある。請求項
5,15記載の発明によると、混合ガス中の音速から水
素濃度及び/又は不純物ガス濃度を推定するので、水素
質量流量・不純物ガス存在量の推定に必要な濃度情報を
音速に基づき得ることができるという効果がある。
According to the inventions of claims 3, 4, and 14,
Purging is performed based on whether or not the hydrogen mass flow rate is sufficient to maintain power generation efficiency and to ensure a sufficient margin to cope with load fluctuations, so it can be adjusted according to changes in fuel cell operating conditions (load). Therefore, there is an effect that the purge can be always performed at the optimum timing. According to the inventions of claims 5 and 15, since the hydrogen concentration and / or the impurity gas concentration are estimated from the sound velocity in the mixed gas, the concentration information necessary for estimating the hydrogen mass flow rate / impurity gas existing amount can be obtained based on the sound velocity. The effect is that you can.

【0024】請求項6記載の発明によると、水素質量流
量を推定するための体積流量の検出に伴って同時に濃度
情報を得ることができ、簡便な構成で水素質量流量・不
純物ガス存在量の推定を行わせることができるという効
果がある。請求項7記載の発明によると、水素質量流量
を推定するための体積流量の検出に伴って同時に濃度情
報を得ることができ、かつ、水素循環系内の圧力,温度
の変化に対応して水素質量流量及び不純物ガス存在量を
高精度に推定することができるという効果がある。
According to the sixth aspect of the present invention, the concentration information can be obtained simultaneously with the detection of the volume flow rate for estimating the hydrogen mass flow rate, and the hydrogen mass flow rate / impurity gas existing amount can be estimated with a simple structure. There is an effect that can be performed. According to the invention described in claim 7, the concentration information can be obtained at the same time as the volume flow rate for estimating the hydrogen mass flow rate is obtained, and the hydrogen information can be obtained in response to changes in the pressure and temperature in the hydrogen circulation system. There is an effect that the mass flow rate and the amount of impurity gas present can be estimated with high accuracy.

【0025】請求項8記載の発明によると、混合ガス中
の超音波の伝播時間に基づき水素濃度及び/又は不純物
ガス濃度を推定させる構成において、除湿後の混合ガス
における伝播時間を計測させるので、水蒸気ガスの濃度
測定を行うことなく、水素濃度及び不純物ガス濃度を推
定することができるという効果がある。請求項9記載の
発明によると、湿度の検出結果から水蒸気濃度を求める
ことで、水蒸気を含む混合ガス中における超音波の伝播
時間から水素濃度・不純物ガス濃度を推定させることが
できるという効果がある。
According to the invention as set forth in claim 8, in the structure for estimating the hydrogen concentration and / or the impurity gas concentration based on the propagation time of the ultrasonic waves in the mixed gas, the propagation time in the mixed gas after dehumidification is measured. There is an effect that the hydrogen concentration and the impurity gas concentration can be estimated without measuring the concentration of the steam gas. According to the invention described in claim 9, there is an effect that the hydrogen concentration and the impurity gas concentration can be estimated from the propagation time of the ultrasonic wave in the mixed gas containing water vapor by obtaining the water vapor concentration from the humidity detection result. .

【0026】請求項10記載の発明によると、水素循環
系内が飽和水蒸気状態であるときに、圧力,温度から簡
便に水蒸気濃度を求めて、水蒸気を含む混合ガス中にお
ける超音波の伝播時間から水素濃度・不純物ガス濃度を
推定させることができるという効果がある。請求項11
記載の発明によると、水素循環系内の湿度,圧力,温度
が略一定と見なせる条件下であるときに、水蒸気を含む
混合ガス中における超音波の伝播時間から水素濃度・不
純物ガス濃度を簡便に推定させることができるという効
果がある。
According to the tenth aspect of the present invention, when the hydrogen circulation system is in a saturated steam state, the steam concentration is simply determined from the pressure and temperature, and the ultrasonic wave propagation time in the mixed gas containing steam is used. The effect is that the hydrogen concentration / impurity gas concentration can be estimated. Claim 11
According to the described invention, when the humidity, pressure, and temperature in the hydrogen circulation system can be regarded as substantially constant, the hydrogen concentration and the impurity gas concentration can be easily determined from the propagation time of ultrasonic waves in a mixed gas containing water vapor. There is an effect that it can be estimated.

【0027】[0027]

【発明の実施の形態】以下に本発明の実施の形態を図に
基づいて説明する。図1は、実施形態における燃料電池
システムを示す図である。この図1において、水素ガス
供給源1からの水素ガスは、供給調圧バルブ2,水素ガ
ス供給ライン3,エジェクタ4,水素ガス供給ライン5
を介して、燃料電池スタック20の燃料極(図示省略)
に導入され、燃料電池スタック20にて消費されなかっ
た燃料ガスは、水素ガス還流路7,9,10(水素還流
経路)を介し、前記エジェクタ4によって水素ガス供給
ライン5に還流される。
BEST MODE FOR CARRYING OUT THE INVENTION Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 is a diagram showing a fuel cell system according to an embodiment. In FIG. 1, the hydrogen gas from the hydrogen gas supply source 1 is supplied with a pressure regulating valve 2, a hydrogen gas supply line 3, an ejector 4, and a hydrogen gas supply line 5.
Through the fuel electrode of the fuel cell stack 20 (not shown)
The fuel gas introduced into the fuel cell stack 20 and not consumed in the fuel cell stack 20 is recirculated to the hydrogen gas supply line 5 by the ejector 4 through the hydrogen gas recirculation paths 7, 9, 10 (hydrogen recirculation path).

【0028】上記構成によって、燃料電池スタック20
において発電に使用されなかった水素は、再び燃料電池
20に還流され、水素の循環系が水素ガス還流路7,
9,10及び水素ガス供給ライン5によって構成され
る。前記水素ガス還流路7から分岐延設される排出ライ
ン12には、パージ弁11が介装されている。
With the above structure, the fuel cell stack 20
Hydrogen not used for power generation in the fuel cell 20 is recirculated to the fuel cell 20 again, and the hydrogen circulation system causes the hydrogen gas recirculation passage 7,
9 and 10 and the hydrogen gas supply line 5. A purge valve 11 is provided in a discharge line 12 branched and extended from the hydrogen gas recirculation path 7.

【0029】前記排出ライン12の分岐部よりも下流側
の水素ガス還流路9には、上流側から順に、除湿器8
(除湿手段),温度計37(温度検出手段),流量計3
0(体積流量検出手段),圧力計36(圧力検出手段)
が介装されている。また、前記水素ガス供給ライン5に
は、加湿器6が介装されている。信号演算処理部40
は、前記温度計37,流量計30,圧力計36からの検
出信号を入力し、後述する演算処理に基づいて前記パー
ジ弁11の開放を制御する。
In the hydrogen gas recirculation path 9 downstream of the branch portion of the discharge line 12, the dehumidifier 8 is arranged in order from the upstream side.
(Dehumidifying means), Thermometer 37 (Temperature detecting means), Flowmeter 3
0 (volume flow detection means), pressure gauge 36 (pressure detection means)
Is installed. Further, a humidifier 6 is provided in the hydrogen gas supply line 5. Signal calculation processing unit 40
Inputs the detection signals from the thermometer 37, the flow meter 30, and the pressure gauge 36, and controls the opening of the purge valve 11 based on the arithmetic processing described later.

【0030】図2は、前記流量計30の詳細を示す。前
記流量計30は、本実施形態において超音波式流量計で
あり、超音波受発信器31,32を備え、上流側の超音
波受発信器31から下流側に向けて斜めに発した音波
が、超音波反射部33で反射して下流側の超音波受発信
器32に受信され、下流側の超音波受発信器32から上
流側に向けて斜めに発した音波が、超音波反射部33で
反射して上流側の超音波受発信器31に受信されるよう
になっており、下流側に向かう超音波の伝播時間t1
と、上流側に向かう超音波の伝播時間t2とが計測され
るようになっている。
FIG. 2 shows details of the flow meter 30. The flowmeter 30 is an ultrasonic flowmeter in the present embodiment, is provided with ultrasonic wave transmitters / receivers 31, 32, and a sound wave obliquely emitted from the ultrasonic wave transmitter / receiver 31 on the upstream side toward the downstream side is generated. The ultrasonic wave reflected by the ultrasonic wave reflection unit 33 is received by the ultrasonic wave transmitter / receiver 32 on the downstream side and is obliquely emitted from the ultrasonic wave transmitter / receiver 32 on the downstream side toward the upstream side. The ultrasonic wave is reflected by the ultrasonic wave transmitter 31 and is received by the ultrasonic wave transmitter / receiver 31 on the upstream side.
And the propagation time t2 of the ultrasonic wave traveling toward the upstream side is measured.

【0031】ここで、水素ガス還流路9の軸線と超音波
との角度をθ、ガスの音速をC、超音波の伝播経路34
の長さをL、水素ガス還流路9での平均流速をVとする
と、前記伝播時間t1,t2(sec)は、 t1=L/(C+Vcosθ) ……(1) t2=L/(C−Vcosθ) ……(2) で表され、上記の2式から、平均流速V(m/s),音
速C(m/s)を求めると、 V=L/(2cosθ)*(1/t1−1/t2) ……(3) C=L/2*(1/t1+1/t2) ……(4) となる。
Here, the angle between the axis of the hydrogen gas recirculation passage 9 and the ultrasonic wave is θ, the sound velocity of the gas is C, and the ultrasonic wave propagation path 34 is used.
Is L and the average flow velocity in the hydrogen gas reflux passage 9 is V, the propagation times t1, t2 (sec) are: t1 = L / (C + Vcosθ) (1) t2 = L / (C- Vcosθ) (2), and when the average flow velocity V (m / s) and sound velocity C (m / s) are calculated from the above two equations, V = L / (2cosθ) * (1 / t1- 1 / t2) (3) C = L / 2 * (1 / t1 + 1 / t2) (4)

【0032】従って、水素ガス還流路9内における平均
体積流量Q(m3/s)は、管路断面積をS、流量補正係
数をKとすると、 Q=V・S・K ……(5) で求められるが、前記平均体積流量Qは、基準温度及び
基準圧力状態での体積流量であるため、そのときの圧力
p及び温度Tに応じた補正を施して、Q’(ノルマル立
方メートル/秒)を算出する。
Therefore, the average volumetric flow rate Q (m 3 / s) in the hydrogen gas recirculation channel 9 is Q = V · S · K (5), where S is the cross-sectional area of the conduit and K is the flow rate correction coefficient. ) Is obtained, the average volumetric flow rate Q is a volumetric flow rate at a reference temperature and a reference pressure state. Therefore, correction is made according to the pressure p and the temperature T at that time, and Q ′ (normal cubic meter / second). ) Is calculated.

【0033】 Q’(Nm3/s)=Q×(p/p0)×(T0/T) ……(6) 尚、上式で、p0は基準圧力を,T0は基準温度を示
す。本実施形態では、水素質量流量dmH2/dtに基づいて
パージを制御する構成となっており、水素ガス濃度を
x,水素密度をρxとすると、水素質量流量dmH2/dt(k
g/s)は、 dmH2/dt=x・ρx・Q’ ……(7) として算出される(水素質量流量推定手段)。
Q ′ (Nm 3 / s) = Q × (p / p0) × (T0 / T) (6) In the above equation, p0 is the reference pressure and T0 is the reference temperature. In the present embodiment, the purge is controlled based on the hydrogen mass flow rate dmH2 / dt, and the hydrogen mass flow rate dmH2 / dt (k
g / s) is calculated as dmH2 / dt = x.rho.x.Q '... (7) (hydrogen mass flow rate estimating means).

【0034】ここで、循環系には、水素,水蒸気,不純
物ガス(窒素)からなる混合ガスが流れるが、前記超音
波式の流量計30は除湿器8の下流側に配設されるか
ら、前記音速Cは、水蒸気を除く水素と不純物ガス(窒
素)との2成分からなる混合ガス中における音速Cとな
る。また、音速Cを求めた混合ガスの成分が既知である
場合には、音速Cは、各成分の混合比(濃度)の関数で
表され(特開2000−304732号参照)、水素と
不純物ガス(窒素)の2成分の場合、係る混合ガスの平
均密度ρavと音速Cとは、図3に示すような相関にな
る。
Here, a mixed gas of hydrogen, water vapor, and an impurity gas (nitrogen) flows through the circulation system, but since the ultrasonic type flow meter 30 is arranged on the downstream side of the dehumidifier 8, The sonic velocity C is the sonic velocity C in a mixed gas composed of two components, hydrogen except for water vapor, and an impurity gas (nitrogen). Further, when the component of the mixed gas for which the sound velocity C is obtained is known, the sound velocity C is represented by a function of the mixing ratio (concentration) of each component (see Japanese Patent Laid-Open No. 2000-304732). In the case of two components of (nitrogen), the average density ρav of the mixed gas and the sound velocity C have a correlation as shown in FIG.

【0035】従って、混合ガスでの音速Cが分かれば、
図3に従って混合ガスの平均密度ρavが求まり、平均密
度ρavから各成分の濃度を求めることができる。即ち、
水素ガスの濃度をx,水素ガスの密度をρxとし、不純
物ガスの濃度をy,不純物ガスの密度をρyとすると、
混合ガスは水素ガスと不純物ガスとの2成分からなるか
ら、 x+y=1 ……(8) x・ρx+y・ρy=ρav ……(9) であるから、 x=(ρy−ρav)/(ρy−ρx) ……(10) y=(ρav−ρx)/(ρy−ρx) ……(11) となり、水素ガスの密度ρx及び不純物ガスの密度ρy
と、音速Cから求められる平均密度ρavとから、水素ガ
ス濃度x及び不純物ガス濃度yを算出することができる
(濃度推定手段)。
Therefore, if the sound velocity C of the mixed gas is known,
The average density ρav of the mixed gas is obtained according to FIG. 3, and the concentration of each component can be obtained from the average density ρav. That is,
If the concentration of hydrogen gas is x, the density of hydrogen gas is ρx, the concentration of impurity gas is y, and the density of impurity gas is ρy,
Since the mixed gas is composed of two components, hydrogen gas and impurity gas, x + y = 1 (8) x.ρx + y.ρy = ρav (9) Therefore, x = (ρy−ρav) / (ρy) −ρx) (10) y = (ρav−ρx) / (ρy−ρx) (11), and the hydrogen gas density ρx and the impurity gas density ρy.
And the average density ρav obtained from the sound velocity C, the hydrogen gas concentration x and the impurity gas concentration y can be calculated (concentration estimating means).

【0036】尚、上記水素ガスの濃度x及び不純物ガス
濃度yを求めるときに用いる水素ガスの密度ρx及び不
純物ガスの密度ρyは、そのときの圧力・温度から設定
される。上記のようにして水素ガス濃度x及び不純物ガ
ス濃度yが求められると、係る濃度x,yに前記体積流
量Q’を乗算することで、水素ガス体積流量Qx’及び
不純物ガス体積流量Qy’が求められ、該体積流量Q
x’,Qy’にガス密度ρx,ρyを乗算することで、
水素質量流量と不純物ガス質量流量が求められる。
Incidentally, the density ρx of hydrogen gas and the density ρy of impurity gas used when obtaining the concentration x of hydrogen gas and the concentration y of impurity gas are set from the pressure and temperature at that time. When the hydrogen gas concentration x and the impurity gas concentration y are obtained as described above, the hydrogen gas volume flow rate Qx ′ and the impurity gas volume flow rate Qy ′ are calculated by multiplying the concentrations x and y by the volume flow rate Q ′. Calculated, the volumetric flow rate Q
By multiplying x ′ and Qy ′ by gas densities ρx and ρy,
The hydrogen mass flow rate and the impurity gas mass flow rate are obtained.

【0037】燃料電池に供給する水素質量流量は燃料電
池の発電効率に影響を与えるため、燃料電池で消費され
る水素質量流量以上の量を燃料電池に流入させることが
求められ、また、燃料電池の急激な負荷増大に対応する
ための余裕分も必要なことから、循環ラインにおける水
素質量流量、即ち、消費量分に付加される余裕分が所定
以上であることが要求される。
Since the mass flow rate of hydrogen supplied to the fuel cell affects the power generation efficiency of the fuel cell, it is required to flow into the fuel cell an amount equal to or larger than the mass flow rate of hydrogen consumed in the fuel cell. Since a margin for responding to a sudden increase in load is also required, it is required that the hydrogen mass flow rate in the circulation line, that is, the margin added to the consumption amount, be equal to or greater than a predetermined value.

【0038】一方、還流ガス流量は、エジェクタ4によ
ってある比率の流量が自動的に還流されるようになって
いるため、還流ガスの中の水素質量流量が上記要求に見
合った量よりも少ないと、燃料電池では、必要な水素ガ
ス量が不足し、逆に、不必要なガス成分(不純物ガス)
が充満することになる。そこで、前記信号演算処理部4
0では、上記のようにして算出した水素質量流量と閾値
とを比較し、水素質量流量が閾値以下になると、燃料電
池で必要な水素量が確保できる状態となるまで(例えば
一定時間)、パージ弁11を開いて循環系内に溜まった
不純物ガスをパージする(パージ制御手段)。
On the other hand, since the flow rate of the recirculation gas is automatically recirculated at a certain ratio by the ejector 4, if the mass flow rate of hydrogen in the recirculation gas is smaller than the above requirement. In a fuel cell, the required amount of hydrogen gas is insufficient, and conversely, unnecessary gas components (impurity gas)
Will be full. Therefore, the signal calculation processing unit 4
At 0, the hydrogen mass flow rate calculated as described above is compared with the threshold value, and when the hydrogen mass flow rate becomes equal to or lower than the threshold value, the fuel cell is purged until the necessary hydrogen amount can be secured (for example, for a certain time). The valve 11 is opened to purge the impurity gas accumulated in the circulation system (purge control means).

【0039】ここで、燃料電池にとって必要な水素ガス
質量流量とは、燃料電池の運転状態に依存しており、燃
料電池を変換器と見なすと、その出力である発電電流値
に対応した量に設定するのが合理的であり、前記閾値を
発電電流に応じて変更すると良い(閾値設定手段)。図
4に示すように、前記水素ガス濃度xと体積流量Q’と
を変数とすると、水素質量流量一定の状態は双曲線群で
表され、ある発電電流値に対応した水素質量流量aで定
常運転する場合を想定すると、図5に示すように、その
双曲線以下の領域(斜線領域)は水素質量流量が不足し
た状態を表すことになり、係る領域に入るとパージ弁1
1を開くようにする。
Here, the mass flow rate of hydrogen gas required for the fuel cell depends on the operating state of the fuel cell. When the fuel cell is regarded as a converter, the amount corresponding to the power generation current value which is the output of the fuel cell is obtained. It is rational to set, and the threshold value may be changed according to the generated current (threshold value setting means). As shown in FIG. 4, when the hydrogen gas concentration x and the volume flow rate Q ′ are variables, the state in which the hydrogen mass flow rate is constant is represented by a hyperbolic curve group, and the steady operation is performed at the hydrogen mass flow rate a corresponding to a certain generated current value. Assuming that the case is assumed, as shown in FIG. 5, the area below the hyperbola (hatched area) represents a state where the hydrogen mass flow rate is insufficient, and when the area enters the area, the purge valve 1
Try to open 1.

【0040】図6のフローチャートは、上記パージ制御
の流れを示すものであり、まず、ステップS1では、超
音波の伝播時間t1,t2の計測を行う。そして、ステ
ップS2,3では、前記伝播時間t1,t2に基づき体
積流量Qの演算を行い、同時並行で、ステップS4〜6
では、水素ガス濃度xの演算を行う。
The flow chart of FIG. 6 shows the flow of the purge control. First, in step S1, the ultrasonic wave propagation times t1 and t2 are measured. Then, in steps S2 and S3, the volume flow rate Q is calculated based on the propagation times t1 and t2, and in parallel, steps S4 to S6.
Then, the hydrogen gas concentration x is calculated.

【0041】ステップS2では、前記伝播時間t1,t
2に基づき平均流速Vを演算し(式(3))、該平均流
速Vに基づいて体積流量Qを演算する(式(5))。ス
テップS3では、前記体積流量Qに圧力,温度に応じた
補正を施して、体積流量Q’を求める。ステップS4で
は、前記伝播時間t1,t2に基づき音速Cを演算する
(式(4))。
In step S2, the propagation times t1, t
The average flow velocity V is calculated based on 2 (equation (3)), and the volume flow rate Q is calculated based on the average flow velocity V (equation (5)). In step S3, the volumetric flow rate Q is corrected according to the pressure and temperature to obtain the volumetric flow rate Q '. In step S4, the sound velocity C is calculated based on the propagation times t1 and t2 (equation (4)).

【0042】ステップS5では、前記音速Cを平均密度
ρavに変換する(図3参照)。ステップS6(濃度推定
手段)では、前記平均密度ρavに基づいて水素ガス濃度
x(及び不純物ガス濃度y)を演算する(式(1
0))。ステップS7(水素質量流量推定手段)では、
前記体積流量Q’,水素ガス濃度x及び水素ガス密度ρ
xに基づいて水素ガス質量流量を演算する。
In step S5, the sound velocity C is converted into the average density ρav (see FIG. 3). In step S6 (concentration estimating means), the hydrogen gas concentration x (and the impurity gas concentration y) is calculated based on the average density ρav (equation (1
0)). In step S7 (hydrogen mass flow rate estimating means),
The volume flow rate Q ′, the hydrogen gas concentration x, and the hydrogen gas density ρ
Calculate the hydrogen gas mass flow rate based on x.

【0043】ステップS8(閾値設定手段)では、その
ときの発電電流に応じて前記水素ガス質量流量の閾値を
設定する。ステップS9では、ステップS7で求めた水
素ガス質量流量が、ステップS8で設定した閾値以下で
あるか否かを判別し、水素ガス質量流量が閾値以下であ
れば、ステップS10(パージ制御手段)へ進んで、パ
ージ弁11を開放してパージを行わせる。
In step S8 (threshold value setting means), the threshold value of the hydrogen gas mass flow rate is set according to the generated current at that time. In step S9, it is determined whether or not the hydrogen gas mass flow rate obtained in step S7 is less than or equal to the threshold value set in step S8. If the hydrogen gas mass flow rate is less than or equal to the threshold value, the process proceeds to step S10 (purge control means). Then, the purge valve 11 is opened to perform the purge.

【0044】ところで、定常運転状態では、上記のよう
に、水素ガス質量流量が閾値以下になったときにパージ
を行わせることで、無用なパージを回避することができ
るが、特に車両用燃料電池システムでは、燃料電池の負
荷変動が大きく、かつ、変動頻度が多い。そして、負荷
変動時には、燃料電池の発電電流に対応して設定される
閾値の値にもよるが、水素質量流量が不足した状態に入
り込みやすくなり、負荷に連動して頻繁にパージ弁11
を開放されると、パージ弁開放で排出される水素燃料ガ
スも無用に増加することになってしまう。
By the way, in the steady operation state, useless purging can be avoided by performing purging when the hydrogen gas mass flow rate becomes equal to or less than the threshold value as described above. In the system, the load fluctuation of the fuel cell is large and the fluctuation frequency is high. Then, when the load changes, depending on the threshold value set corresponding to the power generation current of the fuel cell, it is easy to enter the state where the hydrogen mass flow rate is insufficient, and the purge valve 11 is frequently linked with the load.
When the valve is opened, the hydrogen fuel gas discharged by opening the purge valve will increase unnecessarily.

【0045】上記のような過渡的な水素質量流量の不足
に対しては、循環系における不純物ガス存在量が少ない
状態では、たとえ上記の水素質量流量不足領域に一時的
に在ったとしても、パージ弁を開放しないようにすると
よい。前記不純物ガス存在量は、還流系の管路等で構成
される容積Vを一定と見なせば、式(11)で示される
不純物ガス濃度yと、圧力pと、温度Tとから不純物ガ
ス存在量に対応した量を推定することができる(不純物
ガス存在量推定手段)。
For the transient hydrogen mass flow rate shortage as described above, even if the hydrogen gas flow rate insufficient area is temporarily present in a state where the amount of impurity gas present in the circulation system is small, It is advisable not to open the purge valve. Assuming that the volume V formed by a reflux pipe or the like is constant, the amount of impurity gas present is determined from the impurity gas concentration y, the pressure p, and the temperature T expressed by the equation (11). An amount corresponding to the amount can be estimated (impurity gas existing amount estimation means).

【0046】ここで、上記不純物ガス存在量は、流量
(L/min)ではなく、また、不純物ガス濃度yその
ものと対応しているのではなくて、不純物ガス濃度yを
圧力pと温度Tで補正した値が存在量に対応することに
なる。
Here, the amount of the impurity gas present is not the flow rate (L / min) and does not correspond to the impurity gas concentration y itself, but the impurity gas concentration y is expressed by the pressure p and the temperature T. The corrected value corresponds to the existing amount.

【0047】[0047]

【数1】 [Equation 1]

【0048】水素質量流量が閾値以下になったときに、
上記のようにして求められる不純物ガス存在量に対応す
る値が閾値以上であるときに、パージを実行させるよう
にすれば、負荷変動時に無用にパージが行われることが
回避される。尚、水素質量流量のみに基づくパージ制御
での図5に示されるパージ領域に対して、圧力、温度を
一定と仮定すると、不純物ガス濃度y=1−水素ガス濃
度であるから、上記の水素質量流量及び不純物ガス存在
量に基づくパージでは、図7のように不純物ガス濃度の
閾値に相当するbによっても囲まれる斜線領域に示され
るより限定した領域でパージが行われることになる。
When the hydrogen mass flow rate is below the threshold value,
If the purge is executed when the value corresponding to the existing amount of the impurity gas obtained as described above is equal to or more than the threshold value, it is possible to avoid performing the purge unnecessarily when the load changes. Assuming that the pressure and the temperature are constant in the purge region shown in FIG. 5 in the purge control based only on the hydrogen mass flow rate, the impurity gas concentration y = 1−the hydrogen gas concentration, and therefore the above hydrogen mass is obtained. In the purging based on the flow rate and the amount of the impurity gas present, the purging is performed in a more limited region shown by the hatched region surrounded by b corresponding to the threshold value of the impurity gas concentration as shown in FIG.

【0049】図8のフローチャートは、上記の水素質量
流量及び不純物ガス存在量に応じたパージ制御を示すも
のであり、ステップS21〜S29の処理は、前記図6
のフローチャートのステップS1〜S9と同様に行われ
る。ステップS29(不純物ガス存在量推定手段)で、
水素質量流量が閾値以下であると判別されると、ステッ
プS30へ進んで、不純物ガス存在量を演算する。
The flow chart of FIG. 8 shows the purge control according to the hydrogen mass flow rate and the amount of impurity gas present, and the processing of steps S21 to S29 is the same as that shown in FIG.
It is performed in the same manner as steps S1 to S9 in the flowchart of FIG. In step S29 (impurity gas existence amount estimation means),
When it is determined that the hydrogen mass flow rate is less than or equal to the threshold value, the process proceeds to step S30, and the impurity gas existing amount is calculated.

【0050】ステップS31では、前記不純物ガス存在
量が予め記憶された閾値以上であるか否かを判別し、前
記不純物ガス存在量が閾値以上であれば、ステップS3
2へ進んで、パージを行わせる。ところで、図1に示さ
れるシステム構成では、除湿器8の下流側で、水素及び
不純物ガスの混合ガスの流量を計測させる構成とした
が、循環系の混合ガスが除湿されず、水素,水蒸気,不
純物ガスの3成分になっている場合、或いは、図9又は
図10に示すように、除湿器8の上流側位置でガス流量
を検知する場合でも、水蒸気濃度zを既知とすること
で、前記伝播時間t1,t2に基づき求められる平均密
度ρavから水素ガス濃度x及び不純物ガス濃度yを求め
ることができる。
In step S31, it is determined whether or not the impurity gas existing amount is equal to or more than a threshold value stored in advance. If the impurity gas existing amount is equal to or more than the threshold value, step S3 is performed.
Proceed to 2 to perform purging. By the way, in the system configuration shown in FIG. 1, the flow rate of the mixed gas of hydrogen and the impurity gas is measured on the downstream side of the dehumidifier 8. However, the mixed gas in the circulation system is not dehumidified and hydrogen, water vapor, Even when the impurity gas has three components, or even when the gas flow rate is detected at a position upstream of the dehumidifier 8 as shown in FIG. 9 or 10, by making the water vapor concentration z known, The hydrogen gas concentration x and the impurity gas concentration y can be obtained from the average density ρav obtained based on the propagation times t1 and t2.

【0051】図9に示す実施形態では、流量計30の上
流側近傍に湿度計35を介装させてあり、該湿度計35
(湿度検出手段)を備える場合には、該湿度の検出結果
と圧力pとから、水蒸気濃度zを求めることができる。
また、図10に示す実施形態では、湿度計35を備えな
いが、循環系内が飽和水蒸気状態である場合には、圧力
pと温度Tとに基づいて温度Tでの飽和水蒸気圧を求め
て、水蒸気分圧(濃度)を推定することができる。
In the embodiment shown in FIG. 9, a hygrometer 35 is provided near the upstream side of the flowmeter 30.
When the (humidity detecting means) is provided, the water vapor concentration z can be obtained from the detection result of the humidity and the pressure p.
In the embodiment shown in FIG. 10, the hygrometer 35 is not provided, but when the circulation system is in a saturated steam state, the saturated steam pressure at the temperature T is calculated based on the pressure p and the temperature T. , The water vapor partial pressure (concentration) can be estimated.

【0052】ここで、流量計30は、水素,不純物ガ
ス,水蒸気の混合ガスにおける超音波の伝播時間を計測
することになるから、伝播時間t1,t2に基づく平均
密度ρavは、3成分混合ガスの平均密度ρavであり、前
記式(8),(9)は、水蒸気の密度をρzとすると、
下記のように変更される。 x+y+z=1 ……(13) x・ρx+y・ρy+z・ρz=ρav ……(14) ここで、上式を変形して、 x+y=1−z ……(15) x・ρx+y・ρy=ρav−z・ρz ……(16) として、これを未知数x,yについて解くと、 x=[(1−z)ρy+z・ρz−ρav]/(ρy−ρx)……(17) y=[ρav−z・ρz−(1−z)ρy]/(ρy−ρx)……(18) となり、水蒸気濃度zが既知であれば、上式から水素ガ
ス濃度x及び不純物ガス濃度yが求められることにな
る。
Here, since the flow meter 30 measures the propagation time of ultrasonic waves in the mixed gas of hydrogen, impurity gas and water vapor, the average density ρav based on the propagation times t1 and t2 is three component mixed gas. Is an average density ρav of the above equations (8) and (9), where ρz is the density of water vapor,
It is changed as follows. x + y + z = 1 (13) x · ρx + y · ρy + z · ρz = ρav (14) Here, the above equation is modified to x + y = 1−z (15) x · ρx + y · ρy = ρav- If z · ρz (16) is solved for unknowns x and y, x = [(1-z) ρy + z · ρz−ρav] / (ρy−ρx) (17) y = [ρav− z · ρz− (1−z) ρy] / (ρy−ρx) (18), and if the water vapor concentration z is known, the hydrogen gas concentration x and the impurity gas concentration y can be obtained from the above equations. Become.

【0053】図11は、超音波流量計30が水素,不純
物ガス,水蒸気の混合ガスにおける伝播時間を計測する
構成において、水蒸気濃度zを既知として、該水蒸気濃
度zから水素濃度xを演算するパージ制御を示す。図1
1に示すフローチャートは、ステップS25で平均密度
ρavを演算すると、次のステップS26A(濃度推定手
段)では、湿度計35に基づき、或いは、循環系内が飽
和水蒸気状態である場合に圧力・温度から、水蒸気濃度
zを演算する。
FIG. 11 shows a purge in which the ultrasonic flow meter 30 measures the propagation time in a mixed gas of hydrogen, an impurity gas and water vapor, and the water vapor concentration z is known, and the hydrogen concentration x is calculated from the water vapor concentration z. Show control. Figure 1
In the flowchart shown in FIG. 1, when the average density ρav is calculated in step S25, in the next step S26A (concentration estimating means), based on the hygrometer 35, or from the pressure / temperature when the circulation system is in the saturated steam state. , Calculate the water vapor concentration z.

【0054】そして、ステップS26Bでは、前記水蒸
気濃度zを用いて水素ガス濃度xを演算する。上記ステ
ップS26A,ステップS26B以外の各ステップで
は、図8と同様な処理が行われる。尚、循環系内におけ
る湿度,圧力,温度が略一定である場合には、湿度計3
5,圧力計36,温度計37を設けなくても、水蒸気濃
度zを予め一定値と見なして、水素ガス濃度x及び不純
物ガス濃度yを求めることが可能である。
Then, in step S26B, the hydrogen gas concentration x is calculated using the water vapor concentration z. In steps other than step S26A and step S26B, the same processing as that in FIG. 8 is performed. If the humidity, pressure, and temperature in the circulation system are substantially constant, the hygrometer 3
5. Even if the pressure gauge 36 and the thermometer 37 are not provided, the hydrogen gas concentration z and the impurity gas concentration y can be obtained by considering the water vapor concentration z as a constant value in advance.

【0055】また、流量計30を図12に示すように、
水素ガス循環系を構成する供給ライン5に介装させる構
成としても良い。この場合、計測される水素質量流量
は、エジェクタ4によって還流される分と、燃料電池ス
タック20における消費分に対応する供給ライン3から
の供給分との合計になるから、発電電流に応じて設定す
る水素質量流量の閾値を、供給ライン3からの供給分だ
け嵩上げすれば、前記実施形態と同様にしてパージ制御
を行わせることができる。
In addition, as shown in FIG.
The hydrogen gas circulation system may be installed in the supply line 5. In this case, the measured hydrogen mass flow rate is the sum of the amount recirculated by the ejector 4 and the supply amount from the supply line 3 corresponding to the consumption amount in the fuel cell stack 20, and therefore is set according to the generated current. By increasing the threshold value of the hydrogen mass flow rate to be supplied by the amount supplied from the supply line 3, the purge control can be performed in the same manner as in the above embodiment.

【図面の簡単な説明】[Brief description of drawings]

【図1】除湿器の下流側に流量計を備える実施形態のシ
ステム構成図。
FIG. 1 is a system configuration diagram of an embodiment in which a flow meter is provided on the downstream side of a dehumidifier.

【図2】超音波流量計の伝播時間と諸物理量の関係を説
明するための模式図。
FIG. 2 is a schematic diagram for explaining the relationship between the propagation time of an ultrasonic flow meter and various physical quantities.

【図3】音速演算値と混合ガスの平均密度との関係を示
す線図。
FIG. 3 is a diagram showing a relationship between a sound velocity calculated value and an average density of a mixed gas.

【図4】水素質量流量と濃度と混合ガス流量の関係を表
す線図。
FIG. 4 is a diagram showing a relationship between a hydrogen mass flow rate, a concentration, and a mixed gas flow rate.

【図5】定常運転状態での水素質量流量不足領域を表す
線図。
FIG. 5 is a diagram showing a hydrogen mass flow rate insufficient region in a steady operation state.

【図6】水素質量流量に基づくパージ制御を示すフロー
チャート。
FIG. 6 is a flowchart showing purge control based on a hydrogen mass flow rate.

【図7】水素質量流量と不純物ガス存在量とに基づくパ
ージ領域を表す線図。
FIG. 7 is a diagram showing a purge region based on a hydrogen mass flow rate and an impurity gas existing amount.

【図8】水素質量流量と不純物ガス存在量とに基づくパ
ージ制御を示すフローチャート。
FIG. 8 is a flowchart showing purge control based on a hydrogen mass flow rate and an impurity gas existing amount.

【図9】湿度計を備える実施形態のシステム構成図。FIG. 9 is a system configuration diagram of an embodiment including a hygrometer.

【図10】湿度計を備えない実施形態のシステム構成
図。
FIG. 10 is a system configuration diagram of an embodiment not including a hygrometer.

【図11】水蒸気濃度から水素ガス濃度を求めるパージ
制御を示すフローチャート。
FIG. 11 is a flowchart showing purge control for obtaining hydrogen gas concentration from water vapor concentration.

【図12】流量計を燃料ガス供給系に配置した実施形態
を示すシステム構成図。
FIG. 12 is a system configuration diagram showing an embodiment in which a flow meter is arranged in a fuel gas supply system.

【符号の説明】[Explanation of symbols]

1…水素ガス供給源 2…供給調圧バルブ 3…水素ガス供給ライン 4…エジェクタ 5…水素ガス供給ライン 6…加湿器 7,9,10…水素ガス還流路 8…除湿器 11…パージ弁 12…排出ライン 30…流量計 35…湿度計 36…圧力計 37…温度計 40…信号演算処理部 1 ... Hydrogen gas supply source 2 ... Supply pressure regulating valve 3 ... Hydrogen gas supply line 4 ... Ejector 5 ... Hydrogen gas supply line 6 ... Humidifier 7, 9, 10 ... Hydrogen gas recirculation path 8 ... Dehumidifier 11 ... Purge valve 12 ... Discharge line 30 ... Flowmeter 35 ... Hygrometer 36 ... Pressure gauge 37 ... Thermometer 40 ... Signal calculation processing section

フロントページの続き (72)発明者 上原 哲也 神奈川県横浜市神奈川区宝町2番地 日産 自動車株式会社内 Fターム(参考) 5H027 AA02 BA16 BA19 KK05 KK25 KK31 KK44 KK56 MM08 Continued front page    (72) Inventor Tetsuya Uehara             Nissan, Takaracho, Kanagawa-ku, Yokohama-shi, Kanagawa Nissan             Inside the automobile corporation F-term (reference) 5H027 AA02 BA16 BA19 KK05 KK25                       KK31 KK44 KK56 MM08

Claims (15)

【特許請求の範囲】[Claims] 【請求項1】燃料電池において発電に使用されなかった
水素を、前記燃料電池へ水素を供給する通路に還流させ
る水素還流経路を備えた燃料電池システムであって、 前記水素還流経路に設けられるガスパージ弁と、 前記水素還流経路を含む水素循環系内における水素質量
流量を推定する水素質量流量推定手段と、 前記水素質量流量が閾値以下になったときに、前記ガス
パージ弁を開放するパージ制御手段と、 を含んで構成されたことを特徴とする燃料電池システ
ム。
1. A fuel cell system comprising a hydrogen recirculation path for recirculating hydrogen, which has not been used for power generation in a fuel cell, to a passage for supplying hydrogen to the fuel cell, the gas purging being provided in the hydrogen recirculation path. A valve, a hydrogen mass flow rate estimating means for estimating a hydrogen mass flow rate in the hydrogen circulation system including the hydrogen reflux path, and a purge control means for opening the gas purge valve when the hydrogen mass flow rate becomes equal to or less than a threshold value. A fuel cell system comprising:
【請求項2】前記水素循環系内の混合ガス中の不純物ガ
ス存在量を推定する不純物ガス存在量推定手段を備え、 前記パージ制御手段が、前記水素質量流量が閾値以下
で、かつ、前記不純物ガス存在量が閾値以上になったと
き、前記ガスパージ弁を開放することを特徴とする請求
項1記載の燃料電池システム。
2. An impurity gas abundance estimation means for estimating an impurity gas abundance in the mixed gas in the hydrogen circulation system, wherein the purge control means has the hydrogen mass flow rate equal to or less than a threshold value and the impurities. The fuel cell system according to claim 1, wherein the gas purge valve is opened when the amount of gas present exceeds a threshold value.
【請求項3】前記水素質量流量の閾値を、前記燃料電池
の運転条件に応じて設定する閾値設定手段を設けたこと
を特徴とする請求項1又は2記載の燃料電池システム。
3. The fuel cell system according to claim 1, further comprising threshold setting means for setting the threshold value of the hydrogen mass flow rate in accordance with the operating condition of the fuel cell.
【請求項4】前記閾値設定手段が、前記運転条件として
の発電電流に応じて前記水素質量流量の閾値を設定する
ことを特徴とする請求項3記載の燃料電池システム。
4. The fuel cell system according to claim 3, wherein the threshold value setting means sets the threshold value of the hydrogen mass flow rate according to the generated current as the operating condition.
【請求項5】前記水素質量流量推定手段及び/又は不純
物ガス存在量推定手段が、 前記水素循環系内の混合ガス中の音速を求めると共に、
該音速に基づいて前記混合ガスの平均密度を求め、該平
均密度に基づいて前記混合ガス中の水素濃度及び/又は
不純物ガス濃度を推定する濃度推定手段を含んで構成さ
れ、 該濃度推定手段によって求められる濃度に基づいて水素
質量流量及び/又は不純物ガス存在量を推定することを
特徴とする請求項1〜4のいずれか1つに記載の燃料電
池システム。
5. The hydrogen mass flow rate estimating means and / or the impurity gas abundance estimating means determines the sound velocity in the mixed gas in the hydrogen circulation system, and
It is configured to include a concentration estimating unit that obtains an average density of the mixed gas based on the sound velocity and estimates a hydrogen concentration and / or an impurity gas concentration in the mixed gas based on the average density. The fuel cell system according to any one of claims 1 to 4, wherein the hydrogen mass flow rate and / or the impurity gas existing amount is estimated based on the obtained concentration.
【請求項6】前記水素質量流量推定手段が、前記水素循
環系内の混合ガス中における超音波の伝播時間に基づい
て前記混合ガスの体積流量を検出する体積流量検出手段
を含んで構成され、 前記濃度推定手段が、前記体積流量検出手段による伝播
時間の計測結果に基づいて音速を求めて、前記水素濃度
及び/又は不純物ガス濃度を推定することを特徴とする
請求項5記載の燃料電池システム。
6. The hydrogen mass flow rate estimation means includes volume flow rate detection means for detecting the volume flow rate of the mixed gas based on the propagation time of ultrasonic waves in the mixed gas in the hydrogen circulation system, The fuel cell system according to claim 5, wherein the concentration estimating unit estimates the hydrogen concentration and / or the impurity gas concentration by obtaining a sound velocity based on the measurement result of the propagation time by the volume flow detecting unit. .
【請求項7】前記水素循環系内の混合ガス中における超
音波の伝播時間に基づいて前記混合ガスの体積流量を検
出する体積流量検出手段と、 前記混合ガスの圧力を検出する圧力検出手段と、 前記混合ガスの温度を検出する温度検出手段と、 前記超音波の伝播時間に基づいて前記混合ガス中の音速
を求めると共に、該音速に基づいて前記混合ガスの平均
密度を求め、該平均密度に基づいて前記混合ガス中の水
素ガス濃度及び不純物ガス濃度を推定する濃度推定手段
と、 を備え、 前記水素質量流量推定手段が、前記体積流量,圧力,温
度及び水素ガス濃度に基づいて水素質量流量を推定し、 前記不純物ガス存在量推定手段が、前記圧力,温度及び
不純物ガス濃度に基づいて前記不純物ガス存在量を推定
することを特徴とする請求項2記載の燃料電池システ
ム。
7. A volume flow rate detecting means for detecting a volume flow rate of the mixed gas based on a propagation time of ultrasonic waves in the mixed gas in the hydrogen circulation system, and a pressure detecting means for detecting a pressure of the mixed gas. A temperature detecting means for detecting the temperature of the mixed gas, and a sound velocity in the mixed gas based on the propagation time of the ultrasonic waves, and an average density of the mixed gas based on the sound velocity, the average density Concentration estimating means for estimating the hydrogen gas concentration and the impurity gas concentration in the mixed gas on the basis of the hydrogen mass flow rate estimating means, the hydrogen mass flow rate estimating means for measuring the hydrogen gas concentration based on the volume flow rate, the pressure, the temperature and the hydrogen gas concentration. 3. The fuel according to claim 2, wherein the flow rate is estimated, and the impurity gas abundance estimation means estimates the impurity gas abundance based on the pressure, temperature and impurity gas concentration. Battery system.
【請求項8】前記水素還流経路に除湿手段を介装し、 前記濃度推定手段が、前記除湿手段の下流側における超
音波の伝播時間に基づいて水素濃度及び/又は不純物ガ
ス濃度を推定することを特徴とする請求項5〜7のいず
れか1つに記載の燃料電池システム。
8. A dehumidifying means is provided in the hydrogen recirculation path, and the concentration estimating means estimates the hydrogen concentration and / or the impurity gas concentration based on the propagation time of ultrasonic waves on the downstream side of the dehumidifying means. The fuel cell system according to any one of claims 5 to 7.
【請求項9】前記超音波の伝播時間の計測部位近傍に、
前記混合ガスの湿度を検出する湿度検出手段を設け、 前記濃度推定手段が、前記湿度に基づいて求められる水
蒸気濃度と前記平均密度とに基づいて、前記水素ガス濃
度及び/又は不純物ガス濃度を推定することを特徴とす
る請求項5〜7のいずれか1つに記載の燃料電池システ
ム。
9. An ultrasonic wave propagating apparatus according to claim 1, wherein:
Humidity detecting means for detecting the humidity of the mixed gas is provided, and the concentration estimating means estimates the hydrogen gas concentration and / or the impurity gas concentration based on the water vapor concentration obtained based on the humidity and the average density. The fuel cell system according to claim 5, wherein:
【請求項10】前記超音波の伝播時間の計測部位近傍
に、前記混合ガスの圧力を検出する圧力検出手段及び混
合ガスの温度を検出する温度検出手段を設け、 前記濃度推定手段が、飽和水蒸気状態での水蒸気濃度を
前記圧力及び温度から求め、該水蒸気濃度と前記平均密
度とに基づいて、前記水素ガス濃度及び/又は不純物ガ
ス濃度を推定することを特徴とする請求項5〜7のいず
れか1つに記載の燃料電池システム。
10. A pressure detecting means for detecting the pressure of the mixed gas and a temperature detecting means for detecting the temperature of the mixed gas are provided in the vicinity of a portion for measuring the propagation time of the ultrasonic wave, and the concentration estimating means is a saturated water vapor. The water vapor concentration in a state is obtained from the pressure and the temperature, and the hydrogen gas concentration and / or the impurity gas concentration is estimated based on the water vapor concentration and the average density. 2. The fuel cell system according to item 1.
【請求項11】前記濃度推定手段が、前記混合ガスの水
蒸気濃度を予め定められた一定値とし、該水蒸気濃度と
前記平均密度とに基づいて、前記水素ガス濃度及び/又
は不純物ガス濃度を推定することを特徴とする請求項5
〜7のいずれか1つに記載の燃料電池システム。
11. The concentration estimating means sets the water vapor concentration of the mixed gas to a predetermined constant value, and estimates the hydrogen gas concentration and / or the impurity gas concentration based on the water vapor concentration and the average density. 6. The method according to claim 5, wherein
The fuel cell system according to claim 1.
【請求項12】燃料電池において発電に使用されなかっ
た水素を、前記燃料電池へ水素を供給する通路に還流さ
せる水素還流経路を備えた燃料電池システムにおいて、 前記水素還流経路を含む水素循環系内における水素質量
流量を推定し、 前記水素質量流量が閾値以下になったときに、前記水素
還流経路から混合ガスをパージさせることを特徴とする
燃料電池システムの制御方法。
12. A fuel cell system having a hydrogen recirculation path for returning hydrogen not used for power generation in a fuel cell to a passage for supplying hydrogen to the fuel cell, in a hydrogen circulation system including the hydrogen recirculation path. The method for controlling a fuel cell system is characterized in that the hydrogen mass flow rate is estimated, and when the hydrogen mass flow rate becomes equal to or less than a threshold value, the mixed gas is purged from the hydrogen reflux path.
【請求項13】燃料電池において発電に使用されなかっ
た水素を、前記燃料電池へ水素を供給する通路に還流さ
せる水素還流経路を備えた燃料電池システムにおいて、 前記水素還流経路を含む水素循環系内における水素質量
流量を推定し、 前記水素循環系内の混合ガス中の不純物ガス存在量を推
定し、 前記水素質量流量が閾値以下で、かつ、前記不純物ガス
存在量が閾値以上になったとき、前記水素還流経路から
混合ガスをパージさせることを特徴とする燃料電池シス
テムの制御方法。
13. A fuel cell system including a hydrogen recirculation path for recirculating hydrogen, which has not been used for power generation in a fuel cell, to a passage for supplying hydrogen to the fuel cell, in a hydrogen circulation system including the hydrogen recirculation path. Estimate the hydrogen mass flow rate in, to estimate the impurity gas abundance in the mixed gas in the hydrogen circulation system, the hydrogen mass flow rate is below a threshold, and, when the impurity gas abundance is greater than or equal to a threshold, A method of controlling a fuel cell system, comprising: purging a mixed gas from the hydrogen recirculation path.
【請求項14】前記水素質量流量の閾値を、前記燃料電
池の発電電流に応じて設定することを特徴とする請求項
12又は13記載の燃料電池システムの制御方法。
14. The method for controlling a fuel cell system according to claim 12, wherein the threshold value of the hydrogen mass flow rate is set according to the power generation current of the fuel cell.
【請求項15】前記水素循環系内の混合ガス中における
超音波の伝播時間に基づいて、前記混合ガス中の音速を
求め、 該音速に基づいて前記混合ガスの平均密度を求め、 該平均密度に基づいて前記混合ガス中の水素濃度及び/
又は不純物ガス濃度を推定し、 前記濃度に基づいて水素質量流量及び/又は不純物ガス
存在量を推定することを特徴とする請求項12〜14の
いずれか1つに記載の燃料電池システムの制御方法。
15. The sound velocity in the mixed gas is obtained based on the propagation time of ultrasonic waves in the mixed gas in the hydrogen circulation system, and the average density of the mixed gas is obtained based on the sound velocity. Based on the hydrogen concentration in the mixed gas and /
Alternatively, the impurity gas concentration is estimated, and the hydrogen mass flow rate and / or the impurity gas existing amount is estimated based on the concentration, and the method for controlling the fuel cell system according to any one of claims 12 to 14. .
JP2002118038A 2002-04-19 2002-04-19 Fuel cell system and control method Expired - Fee Related JP3882667B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002118038A JP3882667B2 (en) 2002-04-19 2002-04-19 Fuel cell system and control method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002118038A JP3882667B2 (en) 2002-04-19 2002-04-19 Fuel cell system and control method

Publications (2)

Publication Number Publication Date
JP2003317752A true JP2003317752A (en) 2003-11-07
JP3882667B2 JP3882667B2 (en) 2007-02-21

Family

ID=29535061

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002118038A Expired - Fee Related JP3882667B2 (en) 2002-04-19 2002-04-19 Fuel cell system and control method

Country Status (1)

Country Link
JP (1) JP3882667B2 (en)

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004105165A2 (en) * 2003-05-21 2004-12-02 Nissan Motor Co., Ltd. Fuel cell arrangement
JP2004349215A (en) * 2003-05-26 2004-12-09 Nissan Motor Co Ltd Fuel cell system
JP2005149799A (en) * 2003-11-12 2005-06-09 Honda Motor Co Ltd Exhaust apparatus of fuel cell
WO2005069417A2 (en) * 2004-01-13 2005-07-28 Toyota Jidosha Kabushiki Kaisha Fuel cell system and fuel gas control method
JP2005302555A (en) * 2004-04-13 2005-10-27 Toyota Motor Corp Control unit of fuel cell
JP2005327597A (en) * 2004-05-14 2005-11-24 Toyota Motor Corp Fuel cell system
JP2005327596A (en) * 2004-05-14 2005-11-24 Toyota Motor Corp Fuel cell system
JP2006086117A (en) * 2004-08-20 2006-03-30 Toyota Motor Corp Fuel cell system
JP2006134806A (en) * 2004-11-09 2006-05-25 Nissan Motor Co Ltd Fuel cell system
JP2006269281A (en) * 2005-03-24 2006-10-05 Nissan Motor Co Ltd Fuel cell system
WO2007018106A1 (en) * 2005-08-09 2007-02-15 Toyota Jidosha Kabushiki Kaisha Fuel cell system, and method for estimating fuel pole nitrogen concentration in fuel cell
JP2008052928A (en) * 2006-08-22 2008-03-06 Toyota Motor Corp Fuel cell system
WO2009016985A1 (en) * 2007-07-27 2009-02-05 Toyota Jidosha Kabushiki Kaisha Fuel cell system and its control method
DE112008000595T5 (en) 2007-03-01 2009-12-31 Toyota Jidosha Kabushiki Kaisha, Toyota-shi Concentration distribution determining apparatus for anode side contamination and fuel cell system using this apparatus
US8298712B2 (en) 2007-07-18 2012-10-30 Toyota Jidosha Kabushiki Kaisha Fuel cell system, and control method for fuel cell
EP2618416A4 (en) * 2010-09-17 2017-01-18 Nissan Motor Co., Ltd Fuel cell system
WO2018192734A1 (en) * 2017-04-20 2018-10-25 Robert Bosch Gmbh Measuring device for a fuel cell system
JP2018172246A (en) * 2017-03-31 2018-11-08 三菱マテリアル株式会社 Production method of hydrogen mixed gas
US10211471B2 (en) 2013-12-30 2019-02-19 Hyundai Motor Company Apparatus for controlling purging in a hydrogen storage system and method for the same
WO2020097654A1 (en) * 2018-11-12 2020-05-22 Avl List Gmbh Determining the mass flow of an exhaust gas constituent of a fuel cell

Cited By (39)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004105165A2 (en) * 2003-05-21 2004-12-02 Nissan Motor Co., Ltd. Fuel cell arrangement
WO2004105165A3 (en) * 2003-05-21 2005-02-24 Nissan Motor Fuel cell arrangement
JP2004349215A (en) * 2003-05-26 2004-12-09 Nissan Motor Co Ltd Fuel cell system
JP4506102B2 (en) * 2003-05-26 2010-07-21 日産自動車株式会社 Fuel cell system
US7862937B2 (en) 2003-05-26 2011-01-04 Nissan Motor Co., Ltd. Anode effluent control in fuel cell power plant
JP2005149799A (en) * 2003-11-12 2005-06-09 Honda Motor Co Ltd Exhaust apparatus of fuel cell
JP4526800B2 (en) * 2003-11-12 2010-08-18 本田技研工業株式会社 Fuel cell discharge device
US7531258B2 (en) 2003-11-12 2009-05-12 Honda Motor Co., Ltd. Fuel cell system and method for discharging reaction gas from fuel cell
DE112005000362B4 (en) * 2004-01-13 2013-03-14 Toyota Jidosha K.K. Fuel cell system and fuel discharge gas control method
JP2005203143A (en) * 2004-01-13 2005-07-28 Toyota Motor Corp Fuel cell system
JP4617675B2 (en) * 2004-01-13 2011-01-26 トヨタ自動車株式会社 Fuel cell system
WO2005069417A2 (en) * 2004-01-13 2005-07-28 Toyota Jidosha Kabushiki Kaisha Fuel cell system and fuel gas control method
WO2005069417A3 (en) * 2004-01-13 2006-04-06 Toyota Motor Co Ltd Fuel cell system and fuel gas control method
CN100454640C (en) * 2004-01-13 2009-01-21 丰田自动车株式会社 Fuel cell system and fuel gas control method
US7754392B2 (en) 2004-01-13 2010-07-13 Toyota Jidosha Kabushiki Kaisha Fuel cell system and fuel gas control method
JP4682527B2 (en) * 2004-04-13 2011-05-11 トヨタ自動車株式会社 Fuel cell control device
JP2005302555A (en) * 2004-04-13 2005-10-27 Toyota Motor Corp Control unit of fuel cell
JP2005327596A (en) * 2004-05-14 2005-11-24 Toyota Motor Corp Fuel cell system
JP4710246B2 (en) * 2004-05-14 2011-06-29 トヨタ自動車株式会社 Fuel cell system
US7943265B2 (en) 2004-05-14 2011-05-17 Toyota Jidosha Kabushiki Kaisha Fuel cell system
JP2005327597A (en) * 2004-05-14 2005-11-24 Toyota Motor Corp Fuel cell system
WO2005112159A1 (en) * 2004-05-14 2005-11-24 Toyota Jidosha Kabushiki Kaisha Fuel cell system
JP2006086117A (en) * 2004-08-20 2006-03-30 Toyota Motor Corp Fuel cell system
JP2006134806A (en) * 2004-11-09 2006-05-25 Nissan Motor Co Ltd Fuel cell system
JP2006269281A (en) * 2005-03-24 2006-10-05 Nissan Motor Co Ltd Fuel cell system
WO2007018106A1 (en) * 2005-08-09 2007-02-15 Toyota Jidosha Kabushiki Kaisha Fuel cell system, and method for estimating fuel pole nitrogen concentration in fuel cell
US7736814B2 (en) 2005-08-09 2010-06-15 Toyota Jidosha Kabushiki Kaihsa Fuel-cell system and method of estimating nitrogen concentration on fuel electrode of fuel cell
KR100987715B1 (en) 2005-08-09 2010-10-13 도요타 지도샤(주) Fuel cell system, and method for estimating fuel pole nitrogen concentration in fuel cell
JP2008052928A (en) * 2006-08-22 2008-03-06 Toyota Motor Corp Fuel cell system
US8383277B2 (en) 2007-03-01 2013-02-26 Toyota Jidosha Kabushiki Kaisha Concentration distribution estimation device for impurity in anode side, and fuel cell system using the device
DE112008000595T5 (en) 2007-03-01 2009-12-31 Toyota Jidosha Kabushiki Kaisha, Toyota-shi Concentration distribution determining apparatus for anode side contamination and fuel cell system using this apparatus
US8298712B2 (en) 2007-07-18 2012-10-30 Toyota Jidosha Kabushiki Kaisha Fuel cell system, and control method for fuel cell
WO2009016985A1 (en) * 2007-07-27 2009-02-05 Toyota Jidosha Kabushiki Kaisha Fuel cell system and its control method
US9450257B2 (en) 2007-07-27 2016-09-20 Toyota Jidosha Kabushiki Kaisha Fuel cell system and its control method
EP2618416A4 (en) * 2010-09-17 2017-01-18 Nissan Motor Co., Ltd Fuel cell system
US10211471B2 (en) 2013-12-30 2019-02-19 Hyundai Motor Company Apparatus for controlling purging in a hydrogen storage system and method for the same
JP2018172246A (en) * 2017-03-31 2018-11-08 三菱マテリアル株式会社 Production method of hydrogen mixed gas
WO2018192734A1 (en) * 2017-04-20 2018-10-25 Robert Bosch Gmbh Measuring device for a fuel cell system
WO2020097654A1 (en) * 2018-11-12 2020-05-22 Avl List Gmbh Determining the mass flow of an exhaust gas constituent of a fuel cell

Also Published As

Publication number Publication date
JP3882667B2 (en) 2007-02-21

Similar Documents

Publication Publication Date Title
JP3882667B2 (en) Fuel cell system and control method
JP4730064B2 (en) Gas leak detection device and fuel cell system
CN103098279B (en) Fuel cell system and control method for fuel cell system
US8129056B2 (en) System and method for controlling an anode side recirculation pump in a fuel cell system
US11201340B2 (en) Hydrogen supply control system and control method for fuel cell
JP4577313B2 (en) Fuel cell system and fuel cell operating method
CN109888336A (en) Control method, computer equipment and the storage medium of fuel cell water content
JP2004179000A (en) Fuel cell system
US20070028632A1 (en) Chiller control system and method
JPH0218868A (en) Method and apparatus for controlling oxygen supply of fuel cell
US8603688B2 (en) Anode gas composition utilizing H2 injection pressure wave propagation rates
JP2004185974A (en) Fuel cell system
CN113903955B (en) Construction method of hydrogen concentration calculation model, detection device and fuel cell system
JP2007157414A (en) Fuel cell system, and moisture content measurement method of fuel cell
JP3595541B2 (en) NH3 injection amount control method and control device for denitration device
US8828615B2 (en) Acoustic speed of sound measurement using bandpass filtering of automotive pressure sensors
JP2006216478A (en) Fuel cell system
JP2007128758A (en) Fuel cell system and gas constituent state detection method in fuel cell
JP2002216811A (en) Fuel cell system
JP2004281237A (en) Exhaust gas processing device of fuel cell
CN107293770A (en) Fuel battery inside system for controlling moister content and method
JP2020198208A (en) Fuel cell system
JP7452396B2 (en) battery system
JP2005276546A (en) Fault detection system
JP2004039398A (en) Fuel cell system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050328

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060724

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060801

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060927

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20061024

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20061106

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 3882667

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101124

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111124

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121124

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121124

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131124

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees