JP2003308868A - Gas fuel supply device - Google Patents

Gas fuel supply device

Info

Publication number
JP2003308868A
JP2003308868A JP2002115900A JP2002115900A JP2003308868A JP 2003308868 A JP2003308868 A JP 2003308868A JP 2002115900 A JP2002115900 A JP 2002115900A JP 2002115900 A JP2002115900 A JP 2002115900A JP 2003308868 A JP2003308868 A JP 2003308868A
Authority
JP
Japan
Prior art keywords
fuel
fuel supply
shutoff valve
fuel consumption
failure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002115900A
Other languages
Japanese (ja)
Other versions
JP3783650B2 (en
Inventor
Takashi Ino
崇 猪野
Itsuro Muramoto
逸朗 村本
Toru Fuse
徹 布施
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP2002115900A priority Critical patent/JP3783650B2/en
Publication of JP2003308868A publication Critical patent/JP2003308868A/en
Application granted granted Critical
Publication of JP3783650B2 publication Critical patent/JP3783650B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a gas fuel supply device allowing failure diagnosis of a shut-off valve in a short time. <P>SOLUTION: A fuel is supplied from a fuel tank 2 to a fuel cell 1 via fuel supply line 4 having the shut-off valve 3 and a pressure sensor 5 in sequence, the shut-off valve 3 is opened in accordance with a failure diagnosis signal and a percentage of pressure drop is calculated in accordance with pressure information from the pressure sensor 5 and the passage of time to determine the condition of a failure of the shut-off valve 3. In this case, an electric power consuming part 11 consumes electric power generated by the fuel cell 1 to increase a target percentage of fuel consumption C1, thus permitting determination of the condition of the failure in a short time. <P>COPYRIGHT: (C)2004,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、遮断弁の故障状態
を診断可能なガス燃料供給装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a gas fuel supply system capable of diagnosing a failure state of a shutoff valve.

【0002】[0002]

【従来の技術】従来から遮断弁の故障状態を診断するた
め、燃料タンクとエンジン等の燃料消費装置との間の配
管に遮断弁と圧力センサをこの順に配置し、遮断弁を閉
弁して所定時間後の圧力により遮断弁の故障診断を行う
ものが知られており、例えば、特開2000−2743
11号公報に記載されている。
2. Description of the Related Art Conventionally, in order to diagnose a failure state of a shutoff valve, a shutoff valve and a pressure sensor are arranged in this order in a pipe between a fuel tank and a fuel consuming device such as an engine, and the shutoff valve is closed. It is known that the failure diagnosis of the shutoff valve is performed by the pressure after a predetermined time, for example, Japanese Patent Laid-Open No. 2000-2743.
No. 11 publication.

【0003】これは、車両の停止もしくは運転中に、遮
断弁を閉弁し、所定時間後の圧力低下量、あるいは圧力
が所定の圧力まで低下するまでの経過時間を計測し、圧
力低下率を算出し、圧力低下率しきい値と比較して遮断
弁の故障診断を行うものである。
This is because the shut-off valve is closed while the vehicle is stopped or operating, and the amount of pressure decrease after a predetermined time or the elapsed time until the pressure decreases to a predetermined pressure is measured to determine the pressure decrease rate. It is calculated and compared with the threshold value of the pressure drop rate to diagnose the failure of the shutoff valve.

【0004】[0004]

【発明が解決しようとする課題】ところで、遮断弁下流
の圧力の低下速度は、車両の運転状態、即ち、燃料消費
装置の燃料消費率によって変化する。
By the way, the rate of decrease in pressure downstream of the shutoff valve changes depending on the operating state of the vehicle, that is, the fuel consumption rate of the fuel consuming device.

【0005】しかしながら、上記従来例では、遮断弁を
閉弁し、所定時間後の圧力低下量、若しくは、圧力が所
定圧力まで低下するのに経過する時間を計測して遮断弁
の故障診断を行っている。このため、車両の運転状態に
よって燃料消費率が低い場合には、圧力の低下に時間が
かかるものであった。
However, in the above-mentioned conventional example, the shutoff valve is closed, and the pressure drop amount after a predetermined time or the time elapsed until the pressure drops to the predetermined pressure is measured to perform the failure diagnosis of the shutoff valve. ing. Therefore, when the fuel consumption rate is low depending on the operating state of the vehicle, it takes time to reduce the pressure.

【0006】所定時間後の圧力低下量によって診断を行
う場合、圧力センサの検出精度や分解能より下限圧力低
下量が決定され、設定する所定時間はその下限圧力低下
量だけ圧力が低下する時間以上にしなくてはならないた
め、故障診断を行うのに時間がかかってしまうという問
題点がある。
When the diagnosis is made by the pressure decrease amount after a predetermined time, the lower limit pressure decrease amount is determined from the detection accuracy and resolution of the pressure sensor, and the set predetermined time is set to be equal to or longer than the time when the pressure decreases by the lower limit pressure decrease amount. Since it is indispensable, there is a problem that it takes time to perform a failure diagnosis.

【0007】また、所定圧力まで低下するのに経過する
時間を計測する場合、所定圧力は燃料タンク圧力から前
述の下限圧力低下量を引いた値以下にしなければならな
いため、燃料消費率が低い場合は所定圧力まで圧力が低
下するのに時間がかかり故障診断を行うのに時間がかか
ってしまうという問題点がある。
Further, when the time elapsed until the pressure drops to the predetermined pressure is measured, the predetermined pressure must be equal to or less than the value obtained by subtracting the lower limit pressure decrease amount from the fuel tank pressure, so that the fuel consumption rate is low. However, there is a problem that it takes time to reduce the pressure to a predetermined pressure and it takes time to perform a failure diagnosis.

【0008】そこで本発明は、上記問題点に鑑みてなさ
れたもので、遮断弁の故障診断を短時間に実施可能なガ
ス燃料供給装置を提供することを目的とする。
Therefore, the present invention has been made in view of the above problems, and an object of the present invention is to provide a gas fuel supply apparatus capable of performing failure diagnosis of a shutoff valve in a short time.

【0009】[0009]

【課題を解決するための手段】第1の発明は、燃料供給
手段から燃料を燃料消費手段に供給し、遮断弁と圧力セ
ンサを有する燃料供給ラインと、故障診断信号に基づい
て前記遮断弁を閉弁し、少なくとも前記圧力センサから
の圧力情報と経過時間とに基づいて圧力低下率を算出
し、前記圧力低下率が予め定めた圧力低下率しきい値よ
り小さいときに、前記遮断弁が故障状態であると判断す
る故障検出手段を有するガス燃料供給装置において、前
記故障診断信号に基づいて前記故障検出手段が作動する
条件下では、前記燃料消費手段が消費する目標燃料消費
率を増大化して制御する燃料消費量制御手段を備えるこ
とを特徴とする。
According to a first aspect of the present invention, fuel is supplied from a fuel supply means to a fuel consuming means, a fuel supply line having a shutoff valve and a pressure sensor, and the shutoff valve based on a failure diagnosis signal. The valve is closed, the pressure decrease rate is calculated based on at least the pressure information from the pressure sensor and the elapsed time, and when the pressure decrease rate is smaller than a predetermined pressure decrease rate threshold value, the shutoff valve fails. In a gas fuel supply device having a failure detection means for judging that the state is a state, under the condition that the failure detection means operates based on the failure diagnosis signal, the target fuel consumption rate consumed by the fuel consumption means is increased. It is characterized by comprising a fuel consumption control means for controlling.

【0010】前記燃料消費手段は、燃料電池自動車では
燃料ガスを消費する燃料電池や燃料ガスを燃焼する燃焼
器であり、前記燃料消費量制御手段は、これらの燃料電
池や燃焼器の目標燃料消費率を故障検出手段が作動する
条件下では増大化して制御する。
In the fuel cell vehicle, the fuel consuming means is a fuel cell that consumes fuel gas or a combustor that burns the fuel gas. The fuel consumption control means is the target fuel consumption of these fuel cells and combustor. The rate is increased and controlled under the condition that the fault detection means operates.

【0011】第2の発明は、第1の発明において、前記
燃料消費手段に加え、遮断弁の故障診断の実行時に消費
した燃料によって得られるエネルギーを蓄えるエネルギ
ー保存手段を備えることを特徴とする。
A second invention is characterized in that, in the first invention, in addition to the fuel consuming means, an energy storage means for storing energy obtained by the fuel consumed at the time of executing the failure diagnosis of the shutoff valve is provided.

【0012】第3の発明は、第2の発明において、前記
エネルギー保存手段は、遮断弁の故障診断前にエネルギ
ー保存量を調節することを特徴とする。
A third invention is characterized in that, in the second invention, the energy storage means adjusts the energy storage amount before a failure diagnosis of the shutoff valve.

【0013】第4の発明は、第1ないし第3の発明にお
いて、前記燃料供給手段は、水素リッチなガス燃料を貯
留する水素タンクであり、前記燃料消費手段は、燃料電
池であり、前記エネルギー保存手段は、電力貯蔵手段で
あることを特徴とする。
In a fourth aspect based on the first to third aspects, the fuel supply means is a hydrogen tank for storing hydrogen-rich gas fuel, the fuel consuming means is a fuel cell, and the energy is The storage means is a power storage means.

【0014】第5の発明は、第4の発明において、前記
故障検出手段は、診断に要する水素量から算出される発
電電力に応じて前記電力貯蔵手段の充電状態を調節する
ことを特徴とする。
In a fifth aspect based on the fourth aspect, the failure detecting means adjusts the state of charge of the power storage means in accordance with the generated power calculated from the amount of hydrogen required for diagnosis. .

【0015】第6の発明は、第1の発明において、前記
燃料消費手段は、補助燃料消費手段を並列に備え、前記
燃料供給ラインは、前記燃料消費手段と前記補助燃料消
費手段に燃料を供給する割合を制御する燃料供給割合制
御手段を備えることを特徴とする。
In a sixth aspect based on the first aspect, the fuel consuming means includes auxiliary fuel consuming means in parallel, and the fuel supply line supplies fuel to the fuel consuming means and the auxiliary fuel consuming means. It is characterized in that it is provided with a fuel supply ratio control means for controlling the ratio.

【0016】第7の発明は、第6の発明において、前記
補助燃料消費手段は、燃焼器で構成していることを特徴
とする。
A seventh invention is characterized in that, in the sixth invention, the auxiliary fuel consuming means comprises a combustor.

【0017】[0017]

【発明の効果】したがって、第1の発明では、故障検出
手段は燃料消費手段の燃料消費量を増大化して制御でき
るので、遮断弁の故障診断をする際に、燃料消費手段の
燃料消費量を調節することにより、より短時間で燃料供
給ラインの圧力を下げることができ、より短時間に遮断
弁の故障診断を行うことができる。
Therefore, according to the first aspect of the present invention, the failure detecting means can increase and control the fuel consumption amount of the fuel consuming means, so that the fuel consumption amount of the fuel consuming means can be controlled when diagnosing the failure of the shutoff valve. By adjusting the pressure, the pressure of the fuel supply line can be reduced in a shorter time, and the failure diagnosis of the shutoff valve can be performed in a shorter time.

【0018】第2の発明では、第1の発明の効果に加え
て、遮断弁の故障診断のために余分に得られるエネルギ
ーをエネルギー保存手段に蓄えるので、燃料を無駄にせ
ずに故障診断をより短い時間で行うことができる。
In the second invention, in addition to the effect of the first invention, the energy obtained by extra for the failure diagnosis of the shut-off valve is stored in the energy storage means, so that the failure diagnosis can be further performed without wasting the fuel. It can be done in a short time.

【0019】第3の発明では、第2の発明の効果に加え
て、遮断弁の故障診断前に前記エネルギー保存手段の保
存量を調節するため、故障診断によって得られるエネル
ギーに応じてエネルギー保存手段の保存量を下げてお
き、エネルギー保存手段に故障診断によって得られる余
分なエネルギーを蓄えることができ、エネルギーを無駄
に捨てることなく故障診断ができる。
In the third invention, in addition to the effect of the second invention, since the storage amount of the energy storage means is adjusted before the failure diagnosis of the shut-off valve, the energy storage means is adjusted according to the energy obtained by the failure diagnosis. It is possible to store the excess amount of energy obtained by the failure diagnosis in the energy storage means by reducing the storage amount of, and to perform the failure diagnosis without wasting energy.

【0020】第4の発明では、第1ないし第3の発明の
効果に加えて、遮断弁の故障診断時に水素ガス燃料を消
費する燃料電池の発電電力は電力貯蔵手段に保存される
ので、水素を無駄にすることなく遮断弁の故障診断を行
うことができる。
In the fourth invention, in addition to the effects of the first to third inventions, the generated power of the fuel cell that consumes hydrogen gas fuel at the time of failure diagnosis of the shutoff valve is stored in the power storage means. The failure diagnosis of the shutoff valve can be carried out without wasting.

【0021】第5の発明では、第4の発明の効果に加え
て、診断に要する水素量から算出される発電電力に応じ
て前記電力貯蔵手段の充電状態を調節するため、故障診
断によって発電した電力を無駄にすることなく電力貯蔵
手段に充電することができる。
In addition to the effect of the fourth aspect of the invention, the fifth aspect of the invention adjusts the state of charge of the power storage means in accordance with the generated power calculated from the amount of hydrogen required for the diagnosis, so that power is generated by failure diagnosis. The power storage means can be charged without wasting power.

【0022】第6の発明では、第1の発明の効果に加え
て、燃料供給割合制御手段が目標燃料消費率と燃料消費
手段の燃料消費率に応じて燃料消費手段と補助燃料消費
手段に燃料を供給する割合を制御するので、燃料消費手
段の燃料消費率が目標燃料消費率に対して十分でないと
き、補助燃料消費手段に燃料を供給することによって目
標燃料消費率で燃料を消費することができる。
In the sixth invention, in addition to the effect of the first invention, the fuel supply ratio control means supplies fuel to the fuel consumption means and the auxiliary fuel consumption means according to the target fuel consumption rate and the fuel consumption rate of the fuel consumption means. When the fuel consumption rate of the fuel consuming means is not sufficient for the target fuel consumption rate, the fuel can be consumed at the target fuel consumption rate by supplying the fuel to the auxiliary fuel consuming means. it can.

【0023】第7の発明には、第6の発明の効果に加え
て、補助燃料消費手段を燃焼器により構成したため、燃
料消費手段が十分にガス燃料を消費できないときでも、
燃料供給割合制御手段により燃焼器がガス燃料を消費す
るので、燃料消費手段が十分に水素を消費できないとき
でも目標燃料消費率で燃料を消費することができる。
In addition to the effect of the sixth aspect of the invention, the seventh aspect of the present invention comprises the combustor as the auxiliary fuel consuming means, so that even when the fuel consuming means cannot sufficiently consume the gas fuel,
Since the combustor consumes the gas fuel by the fuel supply ratio control means, the fuel can be consumed at the target fuel consumption rate even when the fuel consumption means cannot sufficiently consume hydrogen.

【0024】[0024]

【発明の実施の形態】以下、本発明におけるガス燃料供
給装置を実現する実施の形態を、請求項1に対応する第
1の実施形態に基づいて説明する。
BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, an embodiment for realizing a gas fuel supply system according to the present invention will be described based on a first embodiment corresponding to claim 1.

【0025】(第1の実施形態)図1〜図4は、本発明
の第1の実施形態に係わるガス燃料供給装置の一例を示
し、図1はシステム構成図、図2〜図4は故障診断の制
御フローチャートを示す。なお、以下に説明する燃料電
池およびガス燃料供給装置は、燃料電池自動車等の移動
体に搭載される装置である。
(First Embodiment) FIGS. 1 to 4 show an example of a gas fuel supply apparatus according to the first embodiment of the present invention. FIG. 1 is a system configuration diagram, and FIGS. The control flowchart of a diagnosis is shown. The fuel cell and the gas fuel supply device described below are devices mounted on a moving body such as a fuel cell vehicle.

【0026】図1において、ガス燃料供給装置は、主と
して、水素吸蔵合金が充填されている燃料供給手段とし
ての燃料タンク2と、燃料タンク2よりのガス燃料と酸
化剤ガスの供給を受けて電気化学的な反応により電力を
発生する燃料消費手段としての燃料電池1と、燃料電池
1の電力が供給されるモータ・インバータ等の電力消費
部11と、燃料電池1を安全且つ効率的に運転すること
等を目的とするコントローラ6とを備える。
In FIG. 1, the gas fuel supply device mainly comprises a fuel tank 2 as a fuel supply means filled with a hydrogen storage alloy, and an electric fuel supplied from the fuel tank 2 with a gas fuel and an oxidant gas. A fuel cell 1 as a fuel consuming means for generating electric power by a chemical reaction, a power consuming portion 11 such as a motor / inverter to which the electric power of the fuel cell 1 is supplied, and a safe and efficient operation of the fuel cell 1. And a controller 6 for the purpose of doing so.

【0027】前記燃料タンク2は、水素吸蔵合金に吸蔵
させた水素をガス燃料として貯蔵する。燃料タンク2よ
りのガス燃料は、逆流防止機能付きの遮断弁3および配
管からなる燃料供給ライン4を経由して燃料電池1に供
給可能であり、遮断弁3の開閉により供給量を制御す
る。
The fuel tank 2 stores hydrogen stored in a hydrogen storage alloy as gas fuel. The gas fuel from the fuel tank 2 can be supplied to the fuel cell 1 via a shutoff valve 3 with a backflow prevention function and a fuel supply line 4 made of piping, and the shutoff valve 3 is opened / closed to control the supply amount.

【0028】コントローラ6は、燃料消費量制御手段と
しての燃料消費量制御部71および故障検出手段として
の故障検出部61を備える。燃料消費量制御部71は、
燃料電池1の通常運転時には電力消費部11に消費され
る電力消費量に基づいて燃料電池1の目標発電量を算定
して燃料電池1の燃料消費率を演算し、必要な遮断弁3
のバルブ開度(全閉または全開)を故障検出部61に出
力して遮断弁3を開閉操作する。燃料消費量制御部71
は、また、故障診断時には故障検出部61より規定され
る目標燃料消費率C1と燃料電池1から入力される燃料
電池1の燃料消費率から、目標発電量を算出して燃料電
池1に出力し、電力消費部11へ目標電力消費量を出力
する。
The controller 6 comprises a fuel consumption control section 71 as fuel consumption control means and a failure detection section 61 as failure detection means. The fuel consumption control unit 71
During normal operation of the fuel cell 1, the target power generation amount of the fuel cell 1 is calculated based on the power consumption amount consumed by the power consumption unit 11, the fuel consumption rate of the fuel cell 1 is calculated, and the required shutoff valve 3
The valve opening degree (fully closed or fully open) is output to the failure detection unit 61 to open / close the shutoff valve 3. Fuel consumption control unit 71
In addition, at the time of failure diagnosis, the target power generation rate is calculated from the target fuel consumption rate C1 defined by the failure detection unit 61 and the fuel consumption rate of the fuel cell 1 input from the fuel cell 1 and output to the fuel cell 1. The target power consumption amount is output to the power consumption unit 11.

【0029】故障検出部61には、遮断弁3よりも下流
の燃料供給ライン4の配管内の圧力を検出する圧力セン
サ5よりの圧力信号が入力されている。故障検出部61
は、燃料電池1の通常運転時には、前記燃料消費量制御
部71よりの開度信号に応じて遮断弁3を開閉制御す
る。なお、燃料電池の通常運転時には、図示しないレギ
ュレータ弁により供給量を連続的(リニア)に制御され
る。故障検出部61は、また、故障診断時には、目標燃
料消費量C1、所定時間t0、圧力低下しきい値a0を
算出設定し、燃料消費量制御部71に出力して燃料電池
1および電力消費部11の作動が目標燃料消費量C1と
なるよう制御させる。また、遮断弁3を閉じ、閉弁後の
圧力センサ5よりの圧力信号により遮断弁3の故障を判
定する。
A pressure signal from a pressure sensor 5 for detecting the pressure in the pipe of the fuel supply line 4 downstream of the shutoff valve 3 is input to the failure detection unit 61. Failure detection unit 61
Controls the opening / closing of the shutoff valve 3 according to the opening signal from the fuel consumption control unit 71 during the normal operation of the fuel cell 1. During normal operation of the fuel cell, the supply amount is controlled continuously (linearly) by a regulator valve (not shown). The failure detection unit 61 also calculates and sets the target fuel consumption amount C1, the predetermined time t0, and the pressure drop threshold value a0 at the time of the failure diagnosis, and outputs the calculated fuel consumption amount control unit 71 to the fuel consumption amount control unit 71. The operation of 11 is controlled to reach the target fuel consumption amount C1. Further, the shutoff valve 3 is closed, and the failure of the shutoff valve 3 is determined by the pressure signal from the pressure sensor 5 after the shutoff.

【0030】次に第1実施態様の故障診断の詳細な手順
を、図2〜図4のフローチャートに基づいて説明する。
図2に示すステップ100〜150は故障診断の条件設
定を、図3に示すステップ220〜240は燃料消費量
制御部71の作動を、図4に示すステップ300〜38
0は故障診断の作動を、夫々示している。
Next, the detailed procedure of the failure diagnosis of the first embodiment will be explained based on the flow charts of FIGS.
Steps 100 to 150 shown in FIG. 2 are for setting conditions for failure diagnosis, steps 220 to 240 shown in FIG. 3 are operations for the fuel consumption control section 71, and steps 300 to 38 shown in FIG.
0 indicates the operation of the failure diagnosis, respectively.

【0031】故障診断の条件設定は、先ず、ステップ1
00で、故障検出部61に対し故障診断信号が出された
か否かを判断する。出されていなければステップ100
に戻り、故障診断信号が出されるまで待つ。故障診断信
号が出されていればステップ110へ進む。
To set the conditions for failure diagnosis, first, step 1
At 00, it is determined whether or not a failure diagnosis signal is issued to the failure detection unit 61. If not issued, step 100
And wait until the failure diagnostic signal is issued. If the failure diagnosis signal has been issued, the process proceeds to step 110.

【0032】ステップ110では、目標燃料消費率C1
を設定しステップ120へ進む。目標燃料消費率C1
は、図5に示すように、従来の燃料電池1の燃料消費率
をC0とすると、規定の水素量nを消費するために経過
する時間はtlongとなる。本発明では水素量nを消
費するための時間がより短くなるように燃料消費率をC
0よりも大きい目標燃料消費率C1に設定することによ
ってtlongよりも短い時間t0で規定の水素量nを
消費することができる。よって目標燃料消費率はC1に
設定する。
In step 110, the target fuel consumption rate C1
Is set and the process proceeds to step 120. Target fuel consumption rate C1
As shown in FIG. 5, when the fuel consumption rate of the conventional fuel cell 1 is C0, the elapsed time for consuming the specified hydrogen amount n is tlong. In the present invention, the fuel consumption rate is set to C so that the time for consuming the hydrogen amount n becomes shorter.
By setting the target fuel consumption rate C1 larger than 0, the specified hydrogen amount n can be consumed in the time t0 shorter than tlong. Therefore, the target fuel consumption rate is set to C1.

【0033】規定の水素量nは、圧力センサ5の検出値
がP0からP1になるために消費しなくてはならない水
素量である。即ち、遮断弁3から燃料電池1までの燃料
供給ライン4の容積をVpipeとし、Rを気体定数、
Tをガス燃料の絶対温度、n0を圧力が初期圧力P0の
ときの水素量、n1を圧力がP1のときの水素量とする
と、 P0・Vpipe=n0・R・T P1・Vpipe=n1・R・T となるので、消費しなくてはならない水素量nは、 n=n0−n1=(1−P1/P0)n0 =(1−P1/P0)P0・Vpipe/(R・T) =(P0−P1)Vpipe/(R・T) となる。
The specified hydrogen amount n is the amount of hydrogen that must be consumed because the detection value of the pressure sensor 5 changes from P0 to P1. That is, the volume of the fuel supply line 4 from the shutoff valve 3 to the fuel cell 1 is Vpipe, R is a gas constant,
If T is the absolute temperature of the gas fuel, n0 is the amount of hydrogen when the pressure is the initial pressure P0, and n1 is the amount of hydrogen when the pressure is P1, then P0 · Vpipe = n0 · R · T P1 · Vpipe = n1 · R -Since it becomes T, the amount n of hydrogen which must be consumed is: n = n0-n1 = (1-P1 / P0) n0 = (1-P1 / P0) P0 * Vpipe / (R * T) = ( It becomes P0-P1) Vpipe / (R · T).

【0034】ここで、圧力低下量(P0−P1)=ΔP
は、圧力センサ5の検出範囲と分解能より、圧力センサ
5で十分に識別可能である圧力差△Pが決定されるの
で、圧力低下量(P0−P1)は、圧力差△P以上に設
定すればよい。
Here, the pressure decrease amount (P0-P1) = ΔP
Is determined by the detection range and resolution of the pressure sensor 5, the pressure difference ΔP that can be sufficiently identified by the pressure sensor 5 is determined. Therefore, the pressure decrease amount (P0-P1) can be set to be equal to or greater than the pressure difference ΔP. Good.

【0035】ステップ120では、所定時間t0を設定
しステップ130へ進む。所定時間t0は、目標燃料消
費率C1で前記水素量nを消費したときの消費時間に相
当する。即ち、燃料消費率C1を決定すると、燃料消費
率C1で消費される水素量が(P0−P1)Vpipe
/(R・T)となる時間となる。図6は、遮断弁3が閉
じた時点よりの圧力センサ5から検出される圧力と時間
の関係を示したものである。時点0のときに遮断弁3に
閉指令を出力し、予め定められた所定時間t0が経過す
るまでの圧力低下量(P0−P1)から圧力低下率a1
を算出する。
At step 120, a predetermined time t0 is set and the routine proceeds to step 130. The predetermined time t0 corresponds to the consumption time when the hydrogen amount n is consumed at the target fuel consumption rate C1. That is, when the fuel consumption rate C1 is determined, the amount of hydrogen consumed at the fuel consumption rate C1 is (P0-P1) Vpipe.
The time becomes / (RT). FIG. 6 shows the relationship between the pressure detected by the pressure sensor 5 and the time after the shutoff valve 3 is closed. At time 0, a close command is output to the shutoff valve 3, and the pressure decrease rate a1 from the pressure decrease amount (P0-P1) until the predetermined time t0 elapses.
To calculate.

【0036】ステップ130では、圧力低下率しきい値
a0を設定しステップ140へ進む。圧力低下率しきい
値a0は、目標燃料消費率C1より、遮断弁3が完全に
閉じたときの理論圧力低下率が算出でき、遮断弁3が故
障していないと判断可能である圧力低下率の幅を考慮し
て圧力低下率しきい値a0を算出する。なお、故障して
いる遮断弁3を用いて実験をし、故障時の圧力低下率を
測定して圧力低下率しきい値a0を算出してもよい。こ
のようにして、故障検出部61は前述の目標燃料消費率
C1を算出し、燃料消費量制御部71に出力する。
At step 130, the pressure drop rate threshold value a0 is set, and the routine proceeds to step 140. The pressure drop rate threshold value a0 can be calculated from the target fuel consumption rate C1 by calculating the theoretical pressure drop rate when the shutoff valve 3 is completely closed, and it can be determined that the shutoff valve 3 is not out of order. The pressure drop rate threshold value a0 is calculated in consideration of the width of the above. It should be noted that an experiment may be performed using the broken shut-off valve 3, the pressure drop rate at the time of failure may be measured, and the pressure drop rate threshold value a0 may be calculated. In this way, the failure detection unit 61 calculates the above-described target fuel consumption rate C1 and outputs it to the fuel consumption amount control unit 71.

【0037】ステップ140では、燃料消費量制御部7
1により目標発電量を設定しステップ150へ進む。目
標発電量は、故障検出手段61から入力される目標燃料
消費率C1と燃料電池1から入力される燃料電池1の燃
料消費率から算出される。
In step 140, the fuel consumption control unit 7
The target power generation amount is set by 1, and the process proceeds to step 150. The target power generation amount is calculated from the target fuel consumption rate C1 input from the failure detection means 61 and the fuel consumption rate of the fuel cell 1 input from the fuel cell 1.

【0038】ステップ150では、燃料電池1で発生さ
れる発電量を電力消費部11で消費させる目標電力消費
量を設定し、図3の燃料消費量制御部71のフローチャ
ートのステップ220へ進む。
In step 150, a target power consumption amount for causing the power consumption portion 11 to consume the power generation amount generated in the fuel cell 1 is set, and the process proceeds to step 220 in the flowchart of the fuel consumption amount control portion 71 in FIG.

【0039】燃料消費量制御部71の作動を開始するス
テップ220では、目標燃料消費率C1で燃料電池1が
水素を消費するように目標発電量を調整して燃料電池1
へ出力し、ステップ230へ進む。
In step 220 of starting the operation of the fuel consumption control unit 71, the target power generation amount is adjusted so that the fuel cell 1 consumes hydrogen at the target fuel consumption rate C1.
Output to step 230.

【0040】ステップ230では、燃料電池1が発電し
た電力を電力消費部11で消費するために目標電力消費
量を調整し、燃料消費量制御部71から電力消費部11
に目標電力消費量を出力し、ステップ240へ進む。
In step 230, the target power consumption amount is adjusted so that the power consumption unit 11 consumes the power generated by the fuel cell 1, and the fuel consumption amount control unit 71 causes the power consumption unit 11 to operate.
The target power consumption is output to and the process proceeds to step 240.

【0041】ステップ240では、燃料電池1の燃料消
費率と目標燃料消費率C1の差が所定の範囲内であるか
を判断する。範囲内であれば図4の故障診断作動のフロ
ーチャートのステップ300に進む。範囲外であればス
テップ220〜230を繰り返して燃料電池1の燃料消
費率と目標燃料消費率C1の差が所定の範囲内となるよ
う調整する。
In step 240, it is determined whether the difference between the fuel consumption rate of the fuel cell 1 and the target fuel consumption rate C1 is within a predetermined range. If it is within the range, the process proceeds to step 300 in the flowchart of the failure diagnosis operation of FIG. If it is out of the range, steps 220 to 230 are repeated to adjust the difference between the fuel consumption rate of the fuel cell 1 and the target fuel consumption rate C1 to be within a predetermined range.

【0042】図4の故障診断作動を開始するステップ3
00では、故障検出部61が遮断弁3に閉指令を出し、
ステップ310へ進む。図6では、時点0である。
Step 3 for starting the failure diagnosis operation of FIG.
At 00, the failure detection unit 61 issues a close command to the shutoff valve 3,
Go to step 310. In FIG. 6, the time is 0.

【0043】ステップ310では、燃料供給ライン4の
遮断弁3下流のガス燃料圧力P0を圧力センサ5より検
出し、ステップ320へ進む。
In step 310, the gas fuel pressure P0 downstream of the shutoff valve 3 in the fuel supply line 4 is detected by the pressure sensor 5, and the process proceeds to step 320.

【0044】ステップ320では、遮断弁3に閉指令が
出されてから、所定時間t0が経過したか否かを判断す
る。経過していたらステップ330へ進み、経過してい
なければ所定時間t0が経過するまで待つ。図6の時点
t0参照。
In step 320, it is determined whether or not a predetermined time t0 has elapsed since the close command was issued to the shutoff valve 3. If it has elapsed, the process proceeds to step 330, and if it has not elapsed, it waits until the predetermined time t0 elapses. See time point t0 in FIG.

【0045】ステップ330では、所定時間t0が経過
した後の遮断弁3下流の燃料供給ライン4のガス燃料圧
力P1を圧力センサ5より検出し、ステップ340へ進
む。
In step 330, the gas fuel pressure P1 of the fuel supply line 4 downstream of the shutoff valve 3 after the elapse of the predetermined time t0 is detected by the pressure sensor 5, and the process proceeds to step 340.

【0046】ステップ340では、(P0−P1)/t
0により圧力低下率a1を算出し、ステップ350へ進
む。
At step 340, (P0-P1) / t
The pressure decrease rate a1 is calculated from 0, and the process proceeds to step 350.

【0047】ステップ350では、ステップ340で算
出された圧力低下率a1が予め定められた圧力低下率し
きい値a0よりも小さいか否かを判断する。小さければ
ステップ360へ進み、小さくなければステップ370
へ進む。
In step 350, it is determined whether the pressure decrease rate a1 calculated in step 340 is smaller than a predetermined pressure decrease rate threshold value a0. If it is smaller, proceed to step 360, and if it is not smaller, step 370.
Go to.

【0048】ステップ360では圧力低下率a1が圧力
低下率しきい値a0よりも小さかったので、遮断弁3が
ガス燃料を完全に遮断せずにガス燃料を燃料電池1に供
給してしまっていると判断し遮断弁故障フラグをセット
し、ステップ380へ進む。
In step 360, the pressure decrease rate a1 is smaller than the pressure decrease rate threshold value a0, so that the shutoff valve 3 does not completely shut off the gas fuel but supplies the gas fuel to the fuel cell 1. Then, the shutoff valve failure flag is set, and the routine proceeds to step 380.

【0049】ステップ370では、圧力低下率a1が圧
力低下率しきい値a0よりも小さくないので遮断弁3は
ガス燃料を遮断していると判断し、遮断弁故障フラグを
クリアし、ステップ380へ進む。
In step 370, since the pressure reduction rate a1 is not smaller than the pressure reduction rate threshold value a0, it is judged that the shutoff valve 3 shuts off the gas fuel, the shutoff valve failure flag is cleared, and the routine proceeds to step 380. move on.

【0050】ステップ380では、図示しない故障処理
ルーチンへ進む。遮断弁故障フラグがセットされている
場合はシステムを停止しドライバーに故障していること
を報知するなどの故障処理を行い、次へ進み終了する。
At step 380, the routine proceeds to a failure handling routine (not shown). When the shutoff valve failure flag is set, the system is stopped and failure processing is performed, such as notifying the driver that there is a failure, and the process proceeds to the next step and ends.

【0051】このように処理することで遮断弁3の故障
診断をより短い時間で行うことが可能となる。
By performing the processing as described above, the failure diagnosis of the shutoff valve 3 can be performed in a shorter time.

【0052】なお、診断時間t0を短くするためには、
P1はP0に近づけてより大きくしたいので、P1はP
0−△Pに設定することが望ましい。
In order to shorten the diagnosis time t0,
We want P1 to be larger and closer to P0, so P1 is P
It is desirable to set it to 0-ΔP.

【0053】本実施の形態にあっては、燃料消費量制御
手段としての燃料消費量制御部71は、故障検出手段と
しての故障検出部61により算出される目標燃料消費率
C1で燃料を消費するよう燃料消費手段11を制御する
ため、遮断弁3の故障診断をする際に、燃料消費手段と
しての燃料電池1の燃料消費量を調節することにより、
より短時間で燃料供給ライン4の圧力を下げることがで
き、より短時間に遮断弁3の故障診断を行うことができ
る。
In this embodiment, the fuel consumption control section 71 as the fuel consumption control means consumes the fuel at the target fuel consumption rate C1 calculated by the failure detection section 61 as the failure detection means. In order to control the fuel consumption means 11 as described above, when the failure diagnosis of the shutoff valve 3 is performed, the fuel consumption of the fuel cell 1 as the fuel consumption means is adjusted,
The pressure of the fuel supply line 4 can be reduced in a shorter time, and the failure diagnosis of the shutoff valve 3 can be performed in a shorter time.

【0054】(第2実施形態)以下、本発明におけるガ
ス燃料供給装置を実現する実施の形態を、請求項6、7
に対応する第2の実施形態に基づいて説明する。
(Second Embodiment) Hereinafter, an embodiment for realizing the gas fuel supply system according to the present invention will be described in claims 6 and 7.
Will be described based on the second embodiment.

【0055】図7〜図9は、本発明の第2の実施形態に
係わるガス燃料供給装置の一例を示し、第1の実施形態
とは、ガス燃料による燃焼器と燃料電池へ供給するガス
燃料を分岐して燃焼器へ供給する燃料供給割合制御部と
を備えている構成で相違している。図7はシステム構成
図、図2、図8、9は故障診断の制御フローチャートで
ある。
7 to 9 show an example of a gas fuel supply apparatus according to the second embodiment of the present invention. The first embodiment is the gas fuel supplied to the combustor and the fuel cell using the gas fuel. And a fuel supply ratio control unit for branching and supplying the fuel to the combustor. FIG. 7 is a system configuration diagram, and FIGS. 2, 8 and 9 are control flowcharts for failure diagnosis.

【0056】図7において、9はガス燃料を燃焼させる
燃焼器を示し、燃料供給ライン4からの燃料電池1への
ガス燃料を燃料供給割合制御部10により分流して供給
される。燃焼器9は燃料消費率制御部72からの起動信
号により起動される。燃料供給ライン4は燃料タンク2
と燃料電池1の間に遮断弁3と圧力センサ5と燃料供給
割合制御部10がこの順で設けてある。燃料供給割合制
御部10は、燃料消費量制御部72から入力される目標
燃料供給割合指令に応じて燃料電池1と燃焼器9に供給
するガス燃料の割合を調節する。即ち、燃料消費量制御
部72は燃料供給割合制御部10に目標燃料供給割合指
令を出力し、燃料電池1に目標発電量指令を出力し、燃
焼器に起動信号を出力し、電力消費部11に目標電力消
費量を出力する。
In FIG. 7, reference numeral 9 denotes a combustor for combusting a gas fuel, which is diverted from the fuel supply line 4 to the fuel cell 1 by the fuel supply ratio controller 10 and supplied. The combustor 9 is activated by an activation signal from the fuel consumption rate control unit 72. Fuel supply line 4 is fuel tank 2
A shutoff valve 3, a pressure sensor 5, and a fuel supply ratio controller 10 are provided in this order between the fuel cell 1 and the fuel cell 1. The fuel supply ratio controller 10 adjusts the ratio of the gas fuel supplied to the fuel cell 1 and the combustor 9 according to the target fuel supply ratio command input from the fuel consumption controller 72. That is, the fuel consumption control unit 72 outputs a target fuel supply ratio command to the fuel supply ratio control unit 10, outputs a target power generation amount command to the fuel cell 1, outputs a start signal to the combustor, and the power consumption unit 11 Output the target power consumption to.

【0057】次に第2実施態様の故障診断の詳細な手順
を、図2、図8、9のフローチャートに基づいて説明す
る。図2に示すステップ100〜150は故障診断の条
件設定を、図8に示すステップ211〜271は燃料消
費量制御部72の作動を、図9に示すステップ400〜
490は故障診断の作動を、夫々示している。
Next, the detailed procedure of the failure diagnosis of the second embodiment will be described with reference to the flow charts of FIGS. Steps 100 to 150 shown in FIG. 2 are for setting conditions for failure diagnosis, steps 211 to 271 shown in FIG. 8 are operations of the fuel consumption control unit 72, and steps 400 to 400 shown in FIG.
Reference numerals 490 respectively indicate the operation of the failure diagnosis.

【0058】図2に示すステップ100〜150は故障
診断の条件設定は、既に説明しており、図8に示す燃料
消費量制御部72の作動をステップ211〜271の順
を追って説明する。
Steps 100 to 150 shown in FIG. 2 have already described the condition setting for failure diagnosis, and the operation of the fuel consumption control unit 72 shown in FIG. 8 will be described in the order of steps 211 to 271.

【0059】燃料消費量制御部72の作動のステップ2
11では、目標燃料供給割合を調整してステップ221
へ進む。目標燃料供給割合の初期値は、燃料電池1に1
00%、燃焼器に0%となっている。ステップ251を
経由してステップ211へ到達した場合には、燃料消費
量が目標燃料消費量に一致するように目標燃料供給割合
を調整する。調整量はあらかじめ実験などにより燃料消
費量と目標燃料供給割合の関係をマップ化しておき、算
出する。
Step 2 of the operation of the fuel consumption controller 72
In step 11, the target fuel supply ratio is adjusted and step 221
Go to. The initial value of the target fuel supply ratio is 1 for the fuel cell 1.
00% and 0% in the combustor. When the process reaches Step 211 via Step 251, the target fuel supply ratio is adjusted so that the fuel consumption amount matches the target fuel consumption amount. The adjustment amount is calculated by mapping the relationship between the fuel consumption amount and the target fuel supply ratio in advance through experiments or the like.

【0060】ステップ221では、目標燃料消費率C1
で燃料電池1が水素を消費するように目標発電量を調整
しステップ231へ進む。燃焼器9が起動している場合
は、目標燃料消費率C1と燃料電池1に供給される水素
量に応じて目標発電量を調整する。
At step 221, the target fuel consumption rate C1
Then, the target power generation amount is adjusted so that the fuel cell 1 consumes hydrogen, and the routine proceeds to step 231. When the combustor 9 is activated, the target power generation amount is adjusted according to the target fuel consumption rate C1 and the hydrogen amount supplied to the fuel cell 1.

【0061】ステップ231では、燃料電池1が発電し
た電力を電力消費部11で消費するために電力消費部1
1での目標電力消費量を調整しステップ241へ進む。
燃焼器9が起動している場合は、燃料電池1に供給され
る水素量に応じて目標電力消費量を調整する。
In step 231, the power consuming unit 1 consumes the power generated by the fuel cell 1 in order to consume the power.
The target power consumption in 1 is adjusted and the process proceeds to step 241.
When the combustor 9 is activated, the target power consumption amount is adjusted according to the amount of hydrogen supplied to the fuel cell 1.

【0062】ステップ241では、燃料電池1の燃料消
費率が目標燃料消費率C1よりも小さいか否かを判断す
る。小さければステップ251に進み、小さくなければ
ステップ271へ進む。
In step 241, it is determined whether the fuel consumption rate of the fuel cell 1 is smaller than the target fuel consumption rate C1. If it is smaller, the process proceeds to step 251, and if it is not smaller, the process proceeds to step 271.

【0063】ステップ271では、燃料電池1の燃料消
費率が目標燃料消費率C1よりも大きいか否かを判断す
る。大きければステップ221に進み、大きくなければ
Bを経由して図9に示す故障診断の作動であるステップ
400へ進む。
In step 271, it is determined whether the fuel consumption rate of the fuel cell 1 is larger than the target fuel consumption rate C1. If it is larger, the process proceeds to step 221, and if it is not larger, the process proceeds to step 400, which is the operation of the failure diagnosis shown in FIG.

【0064】ステップ251では、燃焼器9に起動信号
を出力してステップ211に進む。
At step 251, a start signal is output to the combustor 9 and the routine proceeds to step 211.

【0065】ステップ241とステップ271の判断
は、分岐条件に適切な範囲をもたせて判断を行う。具体
的には、燃料消費率Cと目標燃料消費率C1を比較する
際、適切な範囲△C>0を設定し、ステップ241で
は、(C1<C+△C)が成立すればステップ271へ
進み、ステップ271では、(C1>C−△C)が成立
すれば、図9に示す故障診断の作動であるステップ40
0へ進む。
The judgments in steps 241 and 271 are made by giving an appropriate range to the branch condition. Specifically, when comparing the fuel consumption rate C and the target fuel consumption rate C1, an appropriate range ΔC> 0 is set, and in step 241, if (C1 <C + ΔC) is satisfied, the process proceeds to step 271. In step 271, if (C1> C-ΔC) is satisfied, step 40 which is the operation of the failure diagnosis shown in FIG.
Go to 0.

【0066】図9に示す故障診断の作動においては、図
4の故障診断の作動が、所定時間t0が経過したときの
圧力低下量を計測して遮断弁3の故障診断をするのに対
し、圧力センサ5から検出される圧力が所定圧力P2ま
で低下する経過時間t1を計測して遮断弁3の故障診断
を行うものである。
In the failure diagnosis operation shown in FIG. 9, the failure diagnosis operation shown in FIG. 4 measures the pressure drop amount when a predetermined time t0 has elapsed to perform the failure diagnosis of the shutoff valve 3. The failure time of the shutoff valve 3 is diagnosed by measuring the elapsed time t1 when the pressure detected by the pressure sensor 5 decreases to a predetermined pressure P2.

【0067】図10により、故障診断方法の詳細を説明
する。図10の太線は圧力センサ5から検出される圧力
と時間の関係を示した図である。時点0で遮断弁3に閉
指令を出し、圧力センサ5の検出値が予め定められた所
定圧力P2になるまでの経過時間t1を計測する。前述
の圧力低下率しきい値a0によって圧力がP0から所定
圧力P2になるまでの時間と経過時間t1を比較するこ
とによって遮断弁3の故障診断を行うものである。
The details of the failure diagnosis method will be described with reference to FIG. The thick line in FIG. 10 is a diagram showing the relationship between the pressure detected by the pressure sensor 5 and time. At time 0, the shutoff valve 3 is instructed to close, and the elapsed time t1 until the detection value of the pressure sensor 5 reaches a predetermined pressure P2 is measured. The failure diagnosis of the shutoff valve 3 is performed by comparing the elapsed time t1 with the time required for the pressure to change from P0 to the predetermined pressure P2 by the pressure decrease rate threshold value a0.

【0068】図9に戻り、故障診断の作動をフローチャ
ートに基づいて説明する。
Returning to FIG. 9, the operation of failure diagnosis will be described with reference to the flowchart.

【0069】ステップ400では、遮断弁3に故障検出
部61が閉指令を出力する。
In step 400, the failure detector 61 outputs a close command to the shutoff valve 3.

【0070】ステップ410では、遮断弁3下流の燃料
供給ライン4のガス燃料圧力P0を検出し、時々刻々と
圧力センサ5より検出するガス燃料圧力P1の計測を開
始する。
In step 410, the gas fuel pressure P0 of the fuel supply line 4 downstream of the shutoff valve 3 is detected, and the measurement of the gas fuel pressure P1 detected by the pressure sensor 5 is started every moment.

【0071】ステップ420では、遮断弁3に閉指令を
出力してからの経過時間t1の計測を開始する。
At step 420, the measurement of the elapsed time t1 from the output of the close command to the shutoff valve 3 is started.

【0072】ステップ430では、圧力センサ5より時
事刻々と検出されるガス燃料圧力P1が予め定められた
診断停止圧力P2より小さいか否か判断する。小さけれ
ばステップ440に進み、小さくなければステップ43
0に進む。診断停止圧力P2は圧力センサ5で十分に識
別可能である範囲でより大きな値としたほうが、診断に
かかる時間が少なくなり、より効果的である。よって遮
断弁3下流のガス燃料圧力P0と圧力センサ5の分解能
や検出範囲から診断停止圧力P2が設定される。
In step 430, it is determined whether or not the gas fuel pressure P1 detected by the pressure sensor 5 every moment is smaller than a predetermined diagnostic stop pressure P2. If it is smaller, proceed to step 440, and if it is not smaller, step 43.
Go to 0. It is more effective to set the diagnostic stop pressure P2 to a larger value within a range where the pressure sensor 5 can be sufficiently identified, because the time required for the diagnosis is reduced. Therefore, the diagnostic stop pressure P2 is set from the gas fuel pressure P0 downstream of the shutoff valve 3 and the resolution and detection range of the pressure sensor 5.

【0073】ステップ440では、遮断弁3に閉指令を
出力してから、圧力センサ5より時事刻々と検出される
ガス燃料圧力P1が診断停止圧力P2を下回るまでの経
過時間t1の計測を停止する。
In step 440, the measurement of the elapsed time t1 from the output of the closing command to the shutoff valve 3 until the gas fuel pressure P1 detected by the pressure sensor 5 momentarily falls below the diagnostic stop pressure P2 is stopped. .

【0074】ステップ450では、(P0−P2)/t
1より圧力低下率a2を算出する。
At step 450, (P0-P2) / t
The pressure decrease rate a2 is calculated from 1.

【0075】ステップ460では、ステップ450で算
出された圧力低下率a2が予め定められた圧力低下率し
きい値a0よりも小さいか否か判断する。小さければス
テップ470に進み、小さくなければステップ480に
進む。
At step 460, it is determined whether the pressure decrease rate a2 calculated at step 450 is smaller than a predetermined pressure decrease rate threshold value a0. If it is smaller, the process proceeds to step 470, and if it is not smaller, the process proceeds to step 480.

【0076】ステップ470では、圧力低下率a2が圧
力低下率しきい値a0よりも小さかったので、遮断弁3
がガス燃料を遮断せずにガス燃料を燃料電池1側に供給
してしまっていると判断し遮断弁故障フラグをセットす
る。
At step 470, since the pressure decrease rate a2 is smaller than the pressure decrease rate threshold value a0, the shutoff valve 3
Determines that the gas fuel has been supplied to the fuel cell 1 side without shutting off the gas fuel, and sets the shutoff valve failure flag.

【0077】ステップ480では、圧力低下率a2が圧
力低下率しきい値a0よりも小さくないので遮断弁3は
ガス燃料を遮断していると判断し遮断弁故障フラグをク
リアする。
At step 480, since the pressure reduction rate a2 is not smaller than the pressure reduction rate threshold value a0, it is judged that the shutoff valve 3 shuts off the gas fuel, and the shutoff valve failure flag is cleared.

【0078】ステップ490では、図示しない故障処理
ルーチンへ進む。遮断弁故障フラグがセットされている
場合はシステムを停止しドライバーに故障していること
を報知するなどの故障処理を行い、次へ進み終了する。
At step 490, the routine proceeds to a failure processing routine (not shown). When the shutoff valve failure flag is set, the system is stopped and failure processing is performed, such as notifying the driver that there is a failure, and the process proceeds to the next step and ends.

【0079】このように処理することで、燃料電池1が
目標燃料消費率C1で燃料を消費できなくても燃焼器9
を用いることにより目標燃料消費率C1で燃料を消費す
ることが可能となり、遮断弁3の故障診断をより短時間
で行うことが可能となる。
By performing the above processing, even if the fuel cell 1 cannot consume the fuel at the target fuel consumption rate C1, the combustor 9
By using, it becomes possible to consume the fuel at the target fuel consumption rate C1, and it becomes possible to perform the failure diagnosis of the shutoff valve 3 in a shorter time.

【0080】本実施の形態にあっては、第1の実施の形
態による効果に加えて、燃料消費手段としての燃料電池
1は補助燃料消費手段としての燃焼器9を並列に備え、
燃料供給割合制御手段としての燃料供給割合制御部10
が目標燃料消費率C1と燃料電池1の燃料消費率に応じ
て燃料電池1と燃焼器9に燃料を供給する割合を制御す
るので、燃料電池1の燃料消費率が目標燃料消費率C1
に対して十分でないとき、燃焼器9に燃料を供給するこ
とによって目標燃料消費率C1で燃料を消費することが
できる。
In the present embodiment, in addition to the effects of the first embodiment, the fuel cell 1 as fuel consumption means is provided with the combustor 9 as auxiliary fuel consumption means in parallel,
Fuel supply ratio control unit 10 as fuel supply ratio control means
Controls the ratio of fuel supplied to the fuel cell 1 and the combustor 9 according to the target fuel consumption rate C1 and the fuel consumption rate of the fuel cell 1. Therefore, the fuel consumption rate of the fuel cell 1 is the target fuel consumption rate C1.
When not enough, the fuel can be consumed at the target fuel consumption rate C1 by supplying the fuel to the combustor 9.

【0081】また、補助燃料消費手段を燃焼器9により
構成したため、燃料電池1が十分にガス燃料を消費でき
ないときでも、燃料供給割合制御部10により燃焼器9
がガス燃料を消費するので、目標燃料消費率C1で燃料
を消費することができる。
Further, since the auxiliary fuel consuming means is constituted by the combustor 9, even when the fuel cell 1 cannot sufficiently consume the gas fuel, the fuel supply ratio controller 10 causes the combustor 9 to operate.
Consumes gas fuel, it is possible to consume fuel at the target fuel consumption rate C1.

【0082】(第3実施形態)以下、本発明におけるガ
ス燃料供給装置を実現する実施の形態を、請求項2〜5
に対応する第3の実施形態に基づいて説明する。
(Third Embodiment) Hereinafter, an embodiment for realizing the gas fuel supply system according to the present invention will be described in claims 2-5.
Will be described based on the third embodiment.

【0083】図11〜図13は、本発明の第3の実施形
態に係わるガス燃料供給装置の一例を示し、第1の実施
形態に対して、燃料電池で発電した電力を充電可能な二
次電池を付加したものである。図11はシステム構成
図、図12、13、および図4は故障診断の制御フロー
チャートを示す。
11 to 13 show an example of a gas fuel supply apparatus according to the third embodiment of the present invention, which is a secondary battery capable of charging the electric power generated by the fuel cell with respect to the first embodiment. It has a battery added. FIG. 11 is a system configuration diagram, and FIGS. 12, 13 and 4 are control flowcharts for failure diagnosis.

【0084】図11において、二次電池8は燃料電池1
が発電した電力を充電することが可能であり、また、電
力消費部11に放電することが可能である。二次電池8
の充電状態は燃料電池1の発電量と電力消費部11の電
力消費量に応じて変化する。
In FIG. 11, the secondary battery 8 is the fuel cell 1
It is possible to charge the electric power generated by the electric power generation unit, and to discharge the electric power consumption unit 11. Secondary battery 8
The charging state of changes according to the power generation amount of the fuel cell 1 and the power consumption amount of the power consumption unit 11.

【0085】故障検出部63は故障診断信号より故障診
断を開始する。故障検出部63は、遮断弁3を閉じる前
に、故障診断によって燃料電池1が余分に発電する電力
を二次電池8が充電できる状態となるように電力調整量
を算出し燃料消費量制御部73に出力する。
The fault detecting section 63 starts the fault diagnosis from the fault diagnosis signal. Before closing the shutoff valve 3, the failure detection unit 63 calculates a power adjustment amount so that the secondary battery 8 can be charged with the extra power generated by the fuel cell 1 by the failure diagnosis, and the fuel consumption control unit. Output to 73.

【0086】燃料消費量制御部73は故障検出部63か
ら目標燃料消費率C1と電力調整量が入力され、燃料電
池1から燃料消費率が入力され、目標発電量と目標電力
消費量を算出する。電力調整量が変化すると、目標発電
量と目標電力消費量のバランスも変化し二次電池8の充
電状態を変化させることができる。
The fuel consumption control unit 73 receives the target fuel consumption rate C1 and the power adjustment amount from the failure detection unit 63, the fuel consumption rate from the fuel cell 1, and calculates the target power generation amount and the target power consumption amount. . When the power adjustment amount changes, the balance between the target power generation amount and the target power consumption amount also changes, and the state of charge of the secondary battery 8 can be changed.

【0087】次に第2実施態様の故障診断の詳細な手順
を、図12、13、および、図4のフローチャートに基
づいて説明する。図12に示すステップ100〜195
は故障診断の条件設定を、図13に示すステップ221
〜241は燃料消費量制御部73の作動を、図4に示す
ステップ300〜380は故障診断の作動を、夫々示し
ている。
Next, the detailed procedure of the failure diagnosis of the second embodiment will be described based on the flowcharts of FIGS. 12, 13 and 4. Steps 100 to 195 shown in FIG.
Indicates the condition setting for failure diagnosis, and step 221 shown in FIG.
˜241 shows the operation of the fuel consumption control section 73, and steps 300-380 shown in FIG. 4 show the operation of the failure diagnosis.

【0088】図12に示す故障診断の条件設定のステッ
プ100〜150に係わる部分は、故障診断開始信号を
ステップ100で検出し、ステップ110で目標燃料消
費率C1を設定し、所定時間t0をステップ120で設
定し、圧力低下率しきい値a0をステップ130で算出
し、目標発電量をステップ140で設定し、目標電力消
費量C1をステップ150で設定する作動は、図2のス
テップ100〜150と同じである。
In the part relating to steps 100 to 150 of the condition setting of the failure diagnosis shown in FIG. 12, the failure diagnosis start signal is detected in step 100, the target fuel consumption rate C1 is set in step 110, and the predetermined time t0 is set. The pressure reduction rate threshold value a0 is calculated in step 130, the target power generation amount is set in step 140, and the target power consumption amount C1 is set in step 150. Is the same as.

【0089】ステップ160では、二次電池8の充電状
態を読み込み、ステップ170へ進む。
At step 160, the charge state of the secondary battery 8 is read, and the routine proceeds to step 170.

【0090】ステップ170では、電力調整量を次のよ
うに設定し、ステップ180へ進む。故障診断をするた
めに燃料電池1が消費しなければならない水素量nから
発電される電力を算出する。算出した電力から燃料電池
1を運転するために必要な補器で用いる電力を引く。こ
の電力が二次電池8に充電可能となる目標充電状態を算
出する。ステップ160で読み込んだ二次電池8の充電
状態と、目標充電状態との差を算出し、二次電池8への
電力調整量を算出する。
At step 170, the power adjustment amount is set as follows, and the routine proceeds to step 180. The electric power generated is calculated from the amount of hydrogen n that the fuel cell 1 must consume to make a failure diagnosis. From the calculated electric power, the electric power used by the auxiliary device necessary for operating the fuel cell 1 is subtracted. A target state of charge that allows the secondary battery 8 to be charged with this power is calculated. The difference between the state of charge of the secondary battery 8 read in step 160 and the target state of charge is calculated, and the amount of power adjustment to the secondary battery 8 is calculated.

【0091】ステップ180で調整される第一の目標発
電量とステップ190で調整される第一の目標電力消費
量は二次電池8の充電状態が目標充電状態と一致するよ
うに調整する。例えば、第一の目標電力消費量は電力の
無駄を避けるために必要最低限の値に設定し、第一の目
標発電量は二次電池8の充電状態が目標充電状態となる
所望の時間を設定し、設定した時間で充電状態が目標充
電状態となるように第一の目標発電量を設定すればよ
い。
The first target power generation amount adjusted in step 180 and the first target power consumption amount adjusted in step 190 are adjusted so that the state of charge of the secondary battery 8 matches the target state of charge. For example, the first target power consumption amount is set to a minimum value necessary to avoid wasting power, and the first target power generation amount is a desired time for which the state of charge of the secondary battery 8 becomes the target state of charge. The first target power generation amount may be set so that the charging state becomes the target charging state at the set time.

【0092】ステップ195では、二次電池8の充電状
態が故障診断によって発電される電力を充電できる状態
になったか否かを判断する。なっていれば図13の燃料
消費量制御部73の作動であるステップ221へ進み、
なっていなければステップ160〜190を再度実行す
る。
In step 195, it is determined whether or not the charge state of the secondary battery 8 has reached a state where the power generated by the failure diagnosis can be charged. If so, the process proceeds to step 221 which is the operation of the fuel consumption control unit 73 in FIG.
If not, steps 160 to 190 are executed again.

【0093】図13の燃料消費量制御部73の作動であ
るステップ221では目標燃料消費率C1で燃料電池1
が水素を消費するように第二の目標発電量を調整し、ス
テップ231へ進む。
In step 221, which is the operation of the fuel consumption control section 73 in FIG. 13, the fuel cell 1 is operated at the target fuel consumption rate C1.
Adjusts the second target power generation amount so that hydrogen consumes hydrogen, and proceeds to step 231.

【0094】ステップ231では、燃料電池1が発電し
た電力を電力消費部11で消費するために目標電力消費
量を調整し、ステップ241へ進む。
At step 231, the target power consumption amount is adjusted so that the power consumption portion 11 consumes the power generated by the fuel cell 1, and the routine proceeds to step 241.

【0095】ステップ241では、燃料電池1の燃料消
費率と目標燃料消費率C1の差が所定の範囲内であるか
を判断する。範囲内であれば故障診断の作動である図4
のBを経由してステップ300に進む、範囲外であれば
ステップ221へと進み、再度ステップ221〜241
を実行する。
At step 241, it is judged whether the difference between the fuel consumption rate of the fuel cell 1 and the target fuel consumption rate C1 is within a predetermined range. If it is within the range, it is the operation of the failure diagnosis.
Via B in step 300, the process proceeds to step 300. If it is out of the range, the process proceeds to step 221, and steps 221 to 241 again.
To execute.

【0096】次いで、図4のステップ300〜380の
故障診断処理(既に、第1実施態様において詳細に説明
しており、ここでは、簡略に記載する)を実行し、遮断
弁3を閉じ、所定時間t0経過後の燃料供給ライン4の
ガス燃料圧P1を検出し、圧力低下率a1(=(P0−
P1)/t0)を算出し、圧力低下しきい値a0と比較
して遮断弁3を故障診断し、終了する。
Then, the failure diagnosis processing of steps 300 to 380 in FIG. 4 (which has already been described in detail in the first embodiment and will be briefly described here) is performed, the shutoff valve 3 is closed, and the predetermined operation is performed. The gas fuel pressure P1 of the fuel supply line 4 after the lapse of time t0 is detected, and the pressure decrease rate a1 (= (P0-
P1) / t0) is calculated and compared with the pressure drop threshold value a0 to diagnose the failure of the shutoff valve 3, and the process ends.

【0097】このように、燃料電池1が発電した電力を
電力消費部11による消費に加えて二次電池8に蓄える
ため、遮断弁3の故障診断をより短い時間で行うことが
可能となる。しかも、発電された電力を二次電池8に貯
えるため、ガス燃料および発電された電力を無駄にする
ことがなくなる。
As described above, since the electric power generated by the fuel cell 1 is stored in the secondary battery 8 in addition to being consumed by the electric power consuming portion 11, it is possible to perform the failure diagnosis of the shutoff valve 3 in a shorter time. Moreover, since the generated power is stored in the secondary battery 8, the gas fuel and the generated power are not wasted.

【0098】本実施の形態にあっては、第1の実施の形
態による効果に加えて、下記に記載した効果を奏するこ
とができる。即ち、遮断弁3の故障診断のために余分に
得られるエネルギーをエネルギー保存手段としての二次
電池8に蓄えるので、燃料を無駄にせずに故障診断をよ
り短い時間で行うことができる。
In addition to the effects of the first embodiment, this embodiment can achieve the effects described below. That is, since the extra energy obtained for the failure diagnosis of the shutoff valve 3 is stored in the secondary battery 8 as the energy storage means, the failure diagnosis can be performed in a shorter time without wasting the fuel.

【0099】遮断弁3の故障診断前に前記エネルギー保
存手段としての二次電池8の保存量を調節するため、故
障診断によって得られるエネルギーに応じて二次電池8
の保存量を下げておき、二次電池8に故障診断によって
得られる余分なエネルギーを蓄えることができ、エネル
ギーを無駄に捨てることなく故障診断ができる。
Before the failure diagnosis of the shutoff valve 3, the storage amount of the secondary battery 8 serving as the energy storage means is adjusted, so that the secondary battery 8 is adjusted according to the energy obtained by the failure diagnosis.
It is possible to store the extra amount of energy obtained by the failure diagnosis in the secondary battery 8 by preserving the storage amount thereof and to perform the failure diagnosis without wasting energy.

【0100】なお、上記第1実施形態にあっては、図2
(故障診断の条件設定)、図3(燃料消費量制御部の作
動)、図4(故障診断作動)とし、第2実施形態にあっ
ては、図2(故障診断の条件設定)、図8(燃料消費量
制御部の作動)、図9(故障診断作動)とし、第3実施
形態においては、図12(故障診断の条件設定)、図1
3(燃料消費量制御部の作動)、図4(故障診断作動)
として、3種類の構成となっている。しかしながら、こ
れらの組合わせは、上記組み合わせに限定されるもので
なく、図示しないが、例えば、図12、図8、図4の組
合わせであってもよい。即ち、図2若しくは図12で開
始され、図3、図8、図13のいずれか一つへ進み、図
4若しくは図9で終了される組合わせであれば、どの組
み合わせでも遮断弁3の診断をより短い時間で行うこと
が可能である。
In addition, in the first embodiment, as shown in FIG.
(Fault diagnosis condition setting), FIG. 3 (fuel consumption control unit operation), and FIG. 4 (fault diagnosis operation). In the second embodiment, FIG. 2 (fault diagnosis condition setting), FIG. (Operation of fuel consumption control unit), FIG. 9 (fault diagnosis operation), and in the third embodiment, FIG. 12 (fault diagnosis condition setting), FIG.
3 (operation of fuel consumption control unit), FIG. 4 (fault diagnosis operation)
There are three types of configurations. However, these combinations are not limited to the above combinations, and although not shown, for example, the combinations shown in FIGS. 12, 8 and 4 may be used. That is, if the combination is started in FIG. 2 or FIG. 12, proceeds to any one of FIG. 3, FIG. 8 and FIG. Can be performed in a shorter time.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施形態を示すガス燃料供給装置の
システム構成図。
FIG. 1 is a system configuration diagram of a gas fuel supply device showing an embodiment of the present invention.

【図2】故障診断の条件設定の制御フローチャート。FIG. 2 is a control flowchart for setting conditions for failure diagnosis.

【図3】同じく図2に続く故障診断の燃料消費量制御部
の制御フローチャート。
FIG. 3 is a control flowchart of a fuel consumption amount control unit for failure diagnosis, which is also the same as FIG.

【図4】同じく図3に続く故障診断の作動を示す制御フ
ローチャート。
FIG. 4 is a control flowchart showing an operation of failure diagnosis following FIG.

【図5】目標燃料消費率と消費時間との関係を示すグラ
フ。
FIG. 5 is a graph showing a relationship between a target fuel consumption rate and consumption time.

【図6】遮断弁が閉じた時点より所定時間後の圧力低下
量測定による故障診断の圧力センサから検出される圧力
と時間の関係を示したグラフ。
FIG. 6 is a graph showing the relationship between the pressure detected by the pressure sensor for failure diagnosis by measuring the pressure drop amount after a predetermined time from the time when the shutoff valve is closed and the time.

【図7】本発明の第2の実施形態を示すガス燃料供給装
置のシステム構成図。
FIG. 7 is a system configuration diagram of a gas fuel supply device showing a second embodiment of the present invention.

【図8】図2に続く故障診断の燃料消費量制御部の制御
フローチャート。
FIG. 8 is a control flowchart of a fuel consumption amount control unit for failure diagnosis following FIG.

【図9】同じく図8に続く故障診断の作動を示す制御フ
ローチャート。
FIG. 9 is a control flow chart showing an operation of failure diagnosis following FIG.

【図10】遮断弁が閉じた時点より所定圧力低下に要し
た経過時間測定による故障診断の圧力センサから検出さ
れる圧力と時間の関係を示したグラフ。
FIG. 10 is a graph showing a relationship between pressure detected by a pressure sensor for failure diagnosis by measuring elapsed time required for a predetermined pressure decrease from the time when the shutoff valve is closed and time, and time.

【図11】本発明の第3の実施形態を示すガス燃料供給
装置のシステム構成図。
FIG. 11 is a system configuration diagram of a gas fuel supply device showing a third embodiment of the present invention.

【図12】故障診断の条件設定の制御フローチャート。FIG. 12 is a control flowchart for setting condition for failure diagnosis.

【図13】図13に続く故障診断の燃料消費量制御部の
制御フローチャート。
FIG. 13 is a control flowchart of a fuel consumption control section for failure diagnosis following FIG.

【符号の説明】[Explanation of symbols]

1 燃料消費手段としての燃料電池 2 燃料供給手段としての燃料タンク 3 遮断弁 4 燃料供給ライン 5 圧力センサ 6 コントローラ 8 エネルギー保存手段および電力貯蔵手段としての二
次電池 9 補助燃料消費手段としての燃焼器 10 燃料供給割合制御部(燃料供給割合制御手段) 11 電力消費部 61、62 故障検出部(故障検出手段) 71、72、73 燃料消費量制御部(燃料消費量制御
手段)
1 Fuel Cell as Fuel Consumption Means 2 Fuel Tank as Fuel Supply Means 3 Shutoff Valve 4 Fuel Supply Line 5 Pressure Sensor 6 Controller 8 Secondary Battery 9 as Energy Storage and Electricity Storage Means Combustor as Auxiliary Fuel Consumption Means 10 Fuel Supply Ratio Control Section (Fuel Supply Ratio Control Means) 11 Electric Power Consumption Sections 61, 62 Failure Detection Section (Failure Detection Means) 71, 72, 73 Fuel Consumption Amount Control Section (Fuel Consumption Control Means)

───────────────────────────────────────────────────── フロントページの続き (72)発明者 布施 徹 神奈川県横浜市神奈川区宝町2番地 日産 自動車株式会社内 Fターム(参考) 5H027 AA02 BA13 KK05 KK25 MM09   ─────────────────────────────────────────────────── ─── Continued front page    (72) Inventor Toru Fuse             Nissan, Takaracho, Kanagawa-ku, Yokohama-shi, Kanagawa Nissan             Inside the automobile corporation F term (reference) 5H027 AA02 BA13 KK05 KK25 MM09

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 燃料供給手段から燃料を燃料消費手段に
供給し、遮断弁と圧力センサを有する燃料供給ライン
と、故障診断信号に基づいて前記遮断弁を閉弁し、少な
くとも前記圧力センサからの圧力情報と経過時間とに基
づいて圧力低下率を算出し、前記圧力低下率が予め定め
た圧力低下率しきい値より小さいときに、前記遮断弁が
故障状態であると判断する故障検出手段を有するガス燃
料供給装置において、 前記故障診断信号に基づいて前記故障検出手段が作動す
る条件下では、前記燃料消費手段が消費する目標燃料消
費率を増大化して制御する燃料消費量制御手段を備える
ことを特徴とするガス燃料供給装置。
1. A fuel supply means supplies fuel to a fuel consuming means, a fuel supply line having a shutoff valve and a pressure sensor, and the shutoff valve is closed based on a failure diagnosis signal, and at least from the pressure sensor. Failure detection means for calculating a pressure decrease rate based on pressure information and elapsed time, and determining that the shutoff valve is in a failure state when the pressure decrease rate is smaller than a predetermined pressure decrease rate threshold value. The gas fuel supply device having: a fuel consumption control means for increasing and controlling a target fuel consumption rate consumed by the fuel consumption means under a condition that the failure detection means operates based on the failure diagnosis signal. A gas fuel supply device characterized by:
【請求項2】 前記燃料消費手段に加え、遮断弁の故障
診断の実行時に消費した燃料によって得られるエネルギ
ーを蓄えるエネルギー保存手段を備えることを特徴とす
る請求項1に記載のガス燃料供給装置。
2. The gas fuel supply device according to claim 1, further comprising, in addition to the fuel consuming means, an energy storage means for storing energy obtained by the fuel consumed at the time of executing the failure diagnosis of the shutoff valve.
【請求項3】 前記エネルギー保存手段は、遮断弁の故
障診断前にエネルギー保存量を調節することを特徴とす
る請求項2に記載のガス燃料供給装置。
3. The gas fuel supply device according to claim 2, wherein the energy storage means adjusts the energy storage amount before the failure diagnosis of the shutoff valve.
【請求項4】 前記燃料供給手段は、水素リッチなガス
燃料を貯留する水素タンクであり、前記燃料消費手段
は、燃料電池であり、前記エネルギー保存手段は、電力
貯蔵手段であることを特徴とする請求項1ないし請求項
3のいずれか一つに記載のガス燃料供給装置。
4. The fuel supply means is a hydrogen tank for storing hydrogen-rich gas fuel, the fuel consuming means is a fuel cell, and the energy storage means is an electric power storage means. The gas fuel supply device according to any one of claims 1 to 3.
【請求項5】 前記故障検出手段は、診断に要する水素
量から算出される発電電力に応じて前記電力貯蔵手段の
充電状態を調節することを特徴とする請求項4に記載の
ガス燃料供給装置。
5. The gas fuel supply device according to claim 4, wherein the failure detection unit adjusts the state of charge of the power storage unit according to the generated power calculated from the amount of hydrogen required for diagnosis. .
【請求項6】 前記燃料消費手段は、補助燃料消費手段
を並列に備え、 前記燃料供給ラインは、前記燃料消費手段と前記補助燃
料消費手段に燃料を供給する割合を制御する燃料供給割
合制御手段を備えることを特徴とする請求項1に記載の
ガス燃料供給装置
6. The fuel consumption means includes auxiliary fuel consumption means in parallel, and the fuel supply line controls a fuel supply ratio control means for controlling a ratio of supplying fuel to the fuel consumption means and the auxiliary fuel consumption means. The gas fuel supply device according to claim 1, further comprising:
【請求項7】 前記補助燃料消費手段は、燃焼器で構成
していることを特徴とする請求項6に記載のガス燃料供
給装置
7. The gas fuel supply apparatus according to claim 6, wherein the auxiliary fuel consuming means is a combustor.
JP2002115900A 2002-04-18 2002-04-18 Gas fuel supply device Expired - Fee Related JP3783650B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002115900A JP3783650B2 (en) 2002-04-18 2002-04-18 Gas fuel supply device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002115900A JP3783650B2 (en) 2002-04-18 2002-04-18 Gas fuel supply device

Publications (2)

Publication Number Publication Date
JP2003308868A true JP2003308868A (en) 2003-10-31
JP3783650B2 JP3783650B2 (en) 2006-06-07

Family

ID=29396976

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002115900A Expired - Fee Related JP3783650B2 (en) 2002-04-18 2002-04-18 Gas fuel supply device

Country Status (1)

Country Link
JP (1) JP3783650B2 (en)

Cited By (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6815108B2 (en) * 2002-11-29 2004-11-09 Honda Motor Co., Ltd. Function maintaining method for a fuel cell system
JP2005228688A (en) * 2004-02-16 2005-08-25 Toyota Motor Corp Wet condition judging device for solid polymer fuel cell
JP2005310550A (en) * 2004-04-21 2005-11-04 Toyota Motor Corp Valve abnormality judgement control device of fuel cell
WO2005119823A1 (en) * 2004-06-02 2005-12-15 Toyota Jidosha Kabushiki Kaisha Failure diagnosis device for exhaust valves
WO2006033426A1 (en) * 2004-09-21 2006-03-30 Toyota Jidosha Kabushiki Kaisha Fuel cell system, abnormality detection method for the system, and movable body
WO2006033425A1 (en) * 2004-09-22 2006-03-30 Toyota Jidosha Kabushiki Kaisha Fuel cell system and fuel cell system failure judgment method
WO2006048983A1 (en) * 2004-11-04 2006-05-11 Nissan Motor Co., Ltd. Fuel cell system
JP2006140132A (en) * 2004-10-13 2006-06-01 Toyota Motor Corp Fuel supply system
JP2006210055A (en) * 2005-01-26 2006-08-10 Toyota Motor Corp Abnormality detecting device
WO2006082993A1 (en) * 2005-02-02 2006-08-10 Toyota Jidosha Kabushiki Kaisha Gas leakage detection device and fuel cell system
WO2007013667A1 (en) * 2005-07-27 2007-02-01 Toyota Jidosha Kabushiki Kaisha Fuel cell system and gas leak detection device
JP2007149496A (en) * 2005-11-28 2007-06-14 Honda Motor Co Ltd Fuel cell system
WO2008023503A1 (en) * 2006-08-25 2008-02-28 Toyota Jidosha Kabushiki Kaisha Fuel cell system and method of diagnosing on-off valve
WO2008099905A1 (en) * 2007-02-14 2008-08-21 Toyota Jidosha Kabushiki Kaisha Fuel cell system
WO2009041271A1 (en) * 2007-09-28 2009-04-02 Toyota Jidosha Kabushiki Kaisha Fuel cell system
JP2009117191A (en) * 2007-11-07 2009-05-28 Canon Inc System state judgment method in fuel cell system
US7581431B2 (en) 2004-03-17 2009-09-01 Toyota Jidosha Kabushiki Kaisha Gas leak detection device and method for same
JP2010103062A (en) * 2008-10-27 2010-05-06 Honda Motor Co Ltd Fuel cell system and method of controlling the same
WO2011114754A1 (en) * 2010-03-18 2011-09-22 株式会社ケーヒン Shut-off valve fault diagnosis device
WO2011114757A1 (en) * 2010-03-19 2011-09-22 株式会社ケーヒン Shut-off valve fault diagnosis device and fuel supply system
US8216729B2 (en) 2004-09-16 2012-07-10 Toyota Jidosha Kabushiki Kaisha Fuel cell system and gas leak determination method for fuel cell system
JP2013114852A (en) * 2011-11-28 2013-06-10 Aisin Seiki Co Ltd Fuel cell system
US8486577B2 (en) 2005-07-27 2013-07-16 Toyota Jidosha Kabushiki Kaisha Fuel cell system
US10124697B2 (en) 2014-05-20 2018-11-13 Zhejiang Geely Holding Group Co., Ltd Hybrid vehicle with a fuel pressure protection mode
US10158133B2 (en) 2016-04-08 2018-12-18 Hyundai Motor Company Fuel cell system and method for controlling the same
JP2019071183A (en) * 2017-10-06 2019-05-09 トヨタ自動車株式会社 Fuel cell system

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110131582A (en) * 2019-05-30 2019-08-16 北京亿华通科技股份有限公司 A kind of hydrogen storage cylinder degradation detecting method of fuel cell hydrogen system

Cited By (41)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6815108B2 (en) * 2002-11-29 2004-11-09 Honda Motor Co., Ltd. Function maintaining method for a fuel cell system
JP2005228688A (en) * 2004-02-16 2005-08-25 Toyota Motor Corp Wet condition judging device for solid polymer fuel cell
JP4655486B2 (en) * 2004-02-16 2011-03-23 トヨタ自動車株式会社 Wet state determination device for polymer electrolyte fuel cell
US7581431B2 (en) 2004-03-17 2009-09-01 Toyota Jidosha Kabushiki Kaisha Gas leak detection device and method for same
JP2005310550A (en) * 2004-04-21 2005-11-04 Toyota Motor Corp Valve abnormality judgement control device of fuel cell
JP4609630B2 (en) * 2004-04-21 2011-01-12 トヨタ自動車株式会社 Fuel cell valve abnormality determination control device
WO2005119823A1 (en) * 2004-06-02 2005-12-15 Toyota Jidosha Kabushiki Kaisha Failure diagnosis device for exhaust valves
US9147893B2 (en) 2004-06-02 2015-09-29 Toyota Jidosha Kabushiki Kaisha Failure diagnostic device for discharge valve
US8216729B2 (en) 2004-09-16 2012-07-10 Toyota Jidosha Kabushiki Kaisha Fuel cell system and gas leak determination method for fuel cell system
DE112005002230B4 (en) 2004-09-16 2023-03-02 Toyota Jidosha Kabushiki Kaisha Fuel cell system and method for determining a gas leak for a fuel cell system
WO2006033426A1 (en) * 2004-09-21 2006-03-30 Toyota Jidosha Kabushiki Kaisha Fuel cell system, abnormality detection method for the system, and movable body
US8349509B2 (en) 2004-09-22 2013-01-08 Toyota Jidosha Kabushiki Kaisha Fuel cell system and fuel cell system failure judgment method
DE112005002320B4 (en) 2004-09-22 2012-09-13 Toyota Jidosha K.K. Fuel cell system and method for assessing a failure of a fuel cell system
JP2006092860A (en) * 2004-09-22 2006-04-06 Toyota Motor Corp Fuel cell system
WO2006033425A1 (en) * 2004-09-22 2006-03-30 Toyota Jidosha Kabushiki Kaisha Fuel cell system and fuel cell system failure judgment method
JP2006140132A (en) * 2004-10-13 2006-06-01 Toyota Motor Corp Fuel supply system
WO2006048983A1 (en) * 2004-11-04 2006-05-11 Nissan Motor Co., Ltd. Fuel cell system
JP2006210055A (en) * 2005-01-26 2006-08-10 Toyota Motor Corp Abnormality detecting device
WO2006082993A1 (en) * 2005-02-02 2006-08-10 Toyota Jidosha Kabushiki Kaisha Gas leakage detection device and fuel cell system
US8563191B2 (en) 2005-07-27 2013-10-22 Totota Jidosha Kabushiki Kaisha Fuel cell system and gas leakage detection device
US8486577B2 (en) 2005-07-27 2013-07-16 Toyota Jidosha Kabushiki Kaisha Fuel cell system
JP2007035446A (en) * 2005-07-27 2007-02-08 Toyota Motor Corp Fuel cell system and gas leak detector
WO2007013667A1 (en) * 2005-07-27 2007-02-01 Toyota Jidosha Kabushiki Kaisha Fuel cell system and gas leak detection device
JP2007149496A (en) * 2005-11-28 2007-06-14 Honda Motor Co Ltd Fuel cell system
WO2008023503A1 (en) * 2006-08-25 2008-02-28 Toyota Jidosha Kabushiki Kaisha Fuel cell system and method of diagnosing on-off valve
US8105730B2 (en) 2006-08-25 2012-01-31 Toyota Jidosha Kabushiki Kaisha Fuel cell system with an injector and having a failure detection device for the injector and a pressure sensor upstream of the injector
WO2008099905A1 (en) * 2007-02-14 2008-08-21 Toyota Jidosha Kabushiki Kaisha Fuel cell system
US9028992B2 (en) 2007-02-14 2015-05-12 Toyota Jidosha Kabushiki Kaisha Fuel cell system
US8541142B2 (en) 2007-09-28 2013-09-24 Toyota Jidosha Kabushiki Kaisha Fuel cell system
WO2009041271A1 (en) * 2007-09-28 2009-04-02 Toyota Jidosha Kabushiki Kaisha Fuel cell system
JP2009117191A (en) * 2007-11-07 2009-05-28 Canon Inc System state judgment method in fuel cell system
JP2010103062A (en) * 2008-10-27 2010-05-06 Honda Motor Co Ltd Fuel cell system and method of controlling the same
WO2011114754A1 (en) * 2010-03-18 2011-09-22 株式会社ケーヒン Shut-off valve fault diagnosis device
JP2011196225A (en) * 2010-03-18 2011-10-06 Keihin Corp Shut-off valve fault diagnosis device
JP2011196258A (en) * 2010-03-19 2011-10-06 Keihin Corp Fuel supply system and shut-off valve fault diagnosis device
US8967123B2 (en) 2010-03-19 2015-03-03 Keihin Corporation Shut-off valve fault diagnosis device and fuel supply system
WO2011114757A1 (en) * 2010-03-19 2011-09-22 株式会社ケーヒン Shut-off valve fault diagnosis device and fuel supply system
JP2013114852A (en) * 2011-11-28 2013-06-10 Aisin Seiki Co Ltd Fuel cell system
US10124697B2 (en) 2014-05-20 2018-11-13 Zhejiang Geely Holding Group Co., Ltd Hybrid vehicle with a fuel pressure protection mode
US10158133B2 (en) 2016-04-08 2018-12-18 Hyundai Motor Company Fuel cell system and method for controlling the same
JP2019071183A (en) * 2017-10-06 2019-05-09 トヨタ自動車株式会社 Fuel cell system

Also Published As

Publication number Publication date
JP3783650B2 (en) 2006-06-07

Similar Documents

Publication Publication Date Title
JP2003308868A (en) Gas fuel supply device
JP6229634B2 (en) FUEL CELL SYSTEM, VEHICLE, AND METHOD FOR JUDGING FAILURE OF ON / OFF VALVE
JP4876369B2 (en) Fuel cell system and gas leak detection method
US8486577B2 (en) Fuel cell system
US10804548B2 (en) Fuel cell system and hydrogen leak decision method in fuel cell system
RU2359367C1 (en) Fuel cell battery and mobile facility
KR101083371B1 (en) Fuel cell system and method of diagnosing on-off valve
KR20170134296A (en) A tank device, a vehicle, and a method for evaluating an output of a pressure sensor
KR101190170B1 (en) Fuel cell system
JP4941730B2 (en) Fuel supply device and vehicle
WO2007018132A1 (en) Fuel cell system and method for judging fuel gas leakage in fuel cell system
US7285345B2 (en) Ventilation of fuel cell power plant
JP2007134168A (en) Fuel cell system and its hydrogen leak detection method
JP4033376B2 (en) Fuel supply device
KR20200042278A (en) Condensate water drain control system and control method for fuel cell
JP2005347185A (en) Fuel cell system and its abnormality judging method
JP2008071734A (en) Fuel cell system
JP2007227058A (en) Fuel cell system, and method of controlling fuel cell system
JP5034160B2 (en) Fuel cell system
JP4632119B2 (en) Fuel supply device
JP2007311304A (en) Fuel cell system
JP3698101B2 (en) Control device for fuel reforming fuel cell system
JP2009037884A (en) Fuel cell system
JP5266626B2 (en) Fuel cell system
JP2007134200A (en) Fuel cell system and its gas leak detection method

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050322

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060221

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060306

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees