JP2003307632A - Photonic crystal optical fiber - Google Patents

Photonic crystal optical fiber

Info

Publication number
JP2003307632A
JP2003307632A JP2002114985A JP2002114985A JP2003307632A JP 2003307632 A JP2003307632 A JP 2003307632A JP 2002114985 A JP2002114985 A JP 2002114985A JP 2002114985 A JP2002114985 A JP 2002114985A JP 2003307632 A JP2003307632 A JP 2003307632A
Authority
JP
Japan
Prior art keywords
optical fiber
clad
photonic crystal
outer diameter
core
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002114985A
Other languages
Japanese (ja)
Other versions
JP3814220B2 (en
Inventor
Masataka Nakazawa
正隆 中沢
Kazuya Murakami
和也 村上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Cable Ltd
Original Assignee
Hitachi Cable Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Cable Ltd filed Critical Hitachi Cable Ltd
Priority to JP2002114985A priority Critical patent/JP3814220B2/en
Publication of JP2003307632A publication Critical patent/JP2003307632A/en
Application granted granted Critical
Publication of JP3814220B2 publication Critical patent/JP3814220B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/02Optical fibres with cladding with or without a coating
    • G02B6/02295Microstructured optical fibre
    • G02B6/02314Plurality of longitudinal structures extending along optical fibre axis, e.g. holes
    • G02B6/02342Plurality of longitudinal structures extending along optical fibre axis, e.g. holes characterised by cladding features, i.e. light confining region
    • G02B6/02366Single ring of structures, e.g. "air clad"
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/02Optical fibres with cladding with or without a coating
    • G02B6/02395Glass optical fibre with a protective coating, e.g. two layer polymer coating deposited directly on a silica cladding surface during fibre manufacture

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Optical Fibers, Optical Fiber Cores, And Optical Fiber Bundles (AREA)
  • Surface Treatment Of Glass Fibres Or Filaments (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a photonic crystal optical fiber durable against bending from the viewpoint of transmission loss, strength and reliability and usable for connecting parts of conventional optical fibers. <P>SOLUTION: Tensile strain due to bending can be decreased by using quartz for the core 3 and a clad 2 and by making the outer diameter of the clad 2 smaller than the outer diameter (125 μm) of a standard optical fiber. For example, by controlling the outer diameter of the clad 2 comprising quartz to 60 μm, the tensile strain is 0.002 even when the bending radius is decreased as small as 15 mm, which suppresses the strain to an almost equal level to that of conventional optical fibers. By forming resin coating layers 5 to 7 around the clad 2 to make the outer diameter of 125 μm, connecting parts such as connectors and mechanical splice for conventional optical fibers can be used. <P>COPYRIGHT: (C)2004,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、フォトニッククリ
スタル光ファイバに関する。
TECHNICAL FIELD The present invention relates to a photonic crystal optical fiber.

【0002】[0002]

【従来の技術】従来の光ファイバは、コアと、コアを覆
うと共にコアより屈折率の低いクラッドとの2層構造を
有している。これらコア及びクラッドの素材は石英がベ
ースであり、コアはクラッドよりも屈折率を高くするた
めゲルマニウム等の添加物を石英に添加した組成になっ
ている。
2. Description of the Related Art A conventional optical fiber has a two-layer structure including a core and a clad which covers the core and has a refractive index lower than that of the core. The material of the core and the clad is based on quartz, and the core has a composition in which an additive such as germanium is added to the quartz in order to make the refractive index higher than that of the clad.

【0003】この種の光ファイバにおいては、光ファイ
バのコアの屈折率がクラッドの屈折率よりも高いので、
この屈折率差によって光ファイバに入射した光はコア内
に閉じ込められて光ファイバ中を伝搬することができ
る。光が光ファイバ内を伝搬するとき、伝搬する光の単
一モード条件を満足するためには、コアの直径を5μm
〜10μm程度にする必要がある。
In this type of optical fiber, the refractive index of the core of the optical fiber is higher than that of the cladding,
Due to this refractive index difference, the light incident on the optical fiber can be confined in the core and propagate in the optical fiber. When light propagates in an optical fiber, in order to satisfy the single mode condition of the propagating light, the diameter of the core should be 5 μm.
It is necessary to set the thickness to about 10 μm.

【0004】ところが、近年、光増幅技術や波長多重
(WDM)技術の発展により光ファイバへ入射させる光
のパワーが大きくなっており、種々の非線形効果現象が
生じやすくなっている。例えば、非線形効果現象の1つ
である自己位相変調現象が生じると、光ファイバ中を伝
搬するパルス信号波形が歪み伝送容量が制限されてしま
う。また、同じ非線形現象の1つであるブリルアン散乱
現象も生じやすくなる。このブリルアン散乱現象が生じ
ると、光ファイバの入射パワーが飽和する。
However, in recent years, due to the development of optical amplification technology and wavelength division multiplexing (WDM) technology, the power of light incident on an optical fiber has increased, and various nonlinear effect phenomena are likely to occur. For example, when the self-phase modulation phenomenon, which is one of the nonlinear effect phenomena, occurs, the pulse signal waveform propagating in the optical fiber is distorted and the transmission capacity is limited. In addition, the Brillouin scattering phenomenon, which is one of the same non-linear phenomena, is likely to occur. When this Brillouin scattering phenomenon occurs, the incident power of the optical fiber is saturated.

【0005】このような非線形効果現象が生じると、光
ファイバ中を伝搬する伝送特性の劣化を招いてしまう。
また、現状の光ファイバの伝送損失は最良のものでも
0.16dB/km程度であり、その主な要因は光が伝
搬するコア及びクラッドのコア近傍の組成密度揺らぎに
よるレーリー散乱損失であるが、大陸間長距離伝送等に
用いられる光ファイバには、より一層の低損失化が望ま
れている。
When such a non-linear effect phenomenon occurs, the transmission characteristics propagating in the optical fiber are deteriorated.
Further, the transmission loss of the current optical fiber is about 0.16 dB / km even at the best, and the main factor is the Rayleigh scattering loss due to the fluctuation of the composition density in the vicinity of the core where the light propagates and the clad core. Further reduction of loss is desired for optical fibers used for long-distance transmission between continents.

【0006】ところで、上述した光ファイバの問題点を
解決した光ファイバとして、フォトニッククリスタル光
ファイバ(PCF:Photonic Crystal
Fiber)があり、注目を集めている。このPCF
とは、フォトニック結晶構造がクラッドに形成された光
ファイバである。フォトニック結晶構造とは、屈折率の
周期構造のことであり、具体的には蜂の巣のようなハニ
カム構造の空間をクラッドに形成したものである。この
ようなハニカム構造とすることで光の禁制帯であるフォ
トニックバンドギャップ(PBG:Photonic
Band Gap)が発生する。例えば、Knight
氏らはScience282,1476,(1998)
においてPCGを導波原理とするPBF構造を報告して
いる。
By the way, as an optical fiber that solves the above-mentioned problems of the optical fiber, a photonic crystal optical fiber (PCF: Photonic Crystal) is used.
Fiber), which is attracting attention. This PCF
Is an optical fiber having a photonic crystal structure formed in the cladding. The photonic crystal structure is a periodic structure with a refractive index, and specifically, a space having a honeycomb structure such as a honeycomb is formed in a clad. With such a honeycomb structure, a photonic band gap (PBG: Photonic) which is a light forbidden band is formed.
Band Gap) occurs. For example, Knight
Et al. Science 282, 1476, (1998)
Reported a PBF structure using PCG as a guiding principle.

【0007】また、Cregan氏らはScience
285,1573,(1999)においてPCG構造を
導波原理とする中空コアのPCFの報告を行っている。
中空コアのPCFは光が伝搬するコアに石英媒質が無い
ため、損失の主要因となるレーリー散乱が非常に小さく
なる超低損失光ファイバの可能性を示すものである。
[0007] Also, Cregan et al.
285, 1573, (1999) reported a hollow core PCF having a PCG structure as a guiding principle.
Since the hollow core PCF has no quartz medium in the core through which light propagates, it shows the possibility of an ultra-low-loss optical fiber in which Rayleigh scattering, which is the main cause of loss, becomes extremely small.

【0008】さらに、特許第3072842号公報にお
いて、中空コアのPCFについて開示されており、0.
01dB/km程度の低損失が期待できると記載されて
いる。
Furthermore, Japanese Patent No. 3072842 discloses a PCF having a hollow core.
It is described that a low loss of about 01 dB / km can be expected.

【0009】しかしながら、これらのPCFにおいて光
を伝搬させるためには、精密なPBG構造を構成する必
要があるので、わずかな構造的な揺らぎがあると、光の
伝搬条件を維持できなくなり、いわゆる構造不正損失を
発生させる。
However, in order to propagate light in these PCFs, it is necessary to construct a precise PBG structure. Therefore, if there is a slight structural fluctuation, the light propagation condition cannot be maintained, and so-called structure. Generate fraudulent losses.

【0010】最近、完全なPBG構造を有する光ファイ
バではないが、従来のガラス組成の違いによる比屈折率
差を有する光ファイバのクラッドのコア近傍に気孔を形
成してクラッドの実効的な屈折率を低下させて、コア/
クラッド間の比屈折率差を拡大することで、従来得られ
なかった特性を有する光ファイバが報告されている。例
えば長谷川氏らはOFC2001PD−1において、通
常のシングルモード光ファイバの構造を有する光ファイ
バのクラッドのコア近傍に4つの空孔を形成した空孔付
加型ホーリー光ファイバであり、コア/クラッド間の実
効的な比屈折率差を拡大することで波長0.8μm帯に
ゼロ分散とシングルモード動作を有する光ファイバを実
現した報告を行っている。
Recently, although it is not an optical fiber having a perfect PBG structure, pores are formed in the vicinity of the core of the optical fiber having a relative refractive index difference due to the difference in the conventional glass composition to form an effective refractive index of the clad. Lower the core /
It has been reported that by expanding the relative refractive index difference between the clads, an optical fiber having characteristics that could not be obtained conventionally. For example, Hasegawa et al. Is a hole-added holey optical fiber in which four holes are formed in the vicinity of the core of the cladding of an optical fiber having a normal single-mode optical fiber structure in OFC2001PD-1, and between the core and the cladding. We have reported that by expanding the effective relative refractive index difference, we have realized an optical fiber with zero dispersion and single mode operation in the 0.8 μm wavelength band.

【0011】このように、フォトニッククリスタル光フ
ァイバは、従来の光ファイバに比べて実効的な屈折率を
大きくすることができるので、様々な可能性を有する
が、曲げ損失を小さくできる、換言すれば小さい曲げ半
径でも損失増加を抑制できることもひとつの特長であ
る。
As described above, the photonic crystal optical fiber has various possibilities because it can increase the effective refractive index as compared with the conventional optical fiber, but it can reduce the bending loss. One feature is that loss increase can be suppressed even with a small bending radius.

【0012】発明者らは、コア近傍に4つの気孔を形成
したフォトニッククリスタル光ファイバを試作し、直径
15mmのマンドレルに1m巻き付けたときの損失が
0.01dBという非常に良好な結果を得ている。
The inventors of the present invention prototyped a photonic crystal optical fiber having four pores formed in the vicinity of the core and obtained a very good result of a loss of 0.01 dB when wound around a mandrel having a diameter of 15 mm for 1 m. There is.

【0013】ここで、FTTH(Fiber To T
he Home)はブロードバンドの究極形態と考えら
れており、普及が進みつつある。既存住宅等での宅内で
光ファイバを布設する場合も増加してくるが、光ファイ
バは銅線と異なり曲げ径に制限があることから、銅線の
布設に比べて布設が困難であったり、曲げを制限する特
殊な部品を用いなければならない等の使用上の問題があ
る。このような場合、前述のフォトニッククリスタル光
ファイバを用いれば、伝送損失の劣化が無く、曲げ半径
を小さくすることができ、特殊な部品が不要で布設が容
易になると考えられる。
Here, FTTH (Fiber To T
(He Home) is considered to be the ultimate form of broadband, and is becoming popular. The number of optical fibers installed in homes such as existing houses will also increase, but because optical fibers have a limited bending diameter unlike copper wires, installation is more difficult than installation of copper wires, There are problems in use, such as having to use special parts that limit bending. In such a case, if the photonic crystal optical fiber described above is used, it is considered that there is no deterioration in transmission loss, the bending radius can be reduced, special components are not required, and installation is easy.

【0014】[0014]

【発明が解決しようとする課題】ところで、従来の石英
系光ファイバでは、曲げ径を小さくすると、曲線部の外
側にあたるガラス表面に引っ張り歪みが生じる。このた
め、長期間放置すると、静疲労破壊を起こすことが知ら
れている。一般に、25年程度の使用を考えると、曲げ
半径を30mm以上に維持する必要がある。この場合、
石英系光ファイバのガラス径がΦ125μmであるか
ら、歪みは0.002以下になる。
By the way, in the conventional silica-based optical fiber, when the bending diameter is reduced, tensile strain occurs on the glass surface which is outside the curved portion. Therefore, it is known that static fatigue fracture occurs when left for a long period of time. Generally, considering the use for about 25 years, it is necessary to maintain the bending radius at 30 mm or more. in this case,
Since the glass diameter of the silica-based optical fiber is Φ125 μm, the strain is 0.002 or less.

【0015】フォトニッククリスタル光ファイバも石英
からなるので、曲げによる伝送損失の劣化は抑えられる
ものの、静疲労の問題が残ってしまうという問題があっ
た。
Since the photonic crystal optical fiber is also made of quartz, the deterioration of transmission loss due to bending can be suppressed, but the problem of static fatigue remains.

【0016】そこで、本発明の目的は、上記課題を解決
し、伝送損失、強度、信頼性の面で曲げに強く、かつ従
来の光ファイバ用の接続部品に使用できるフォトニック
クリスタル光ファイバを提供することにある。
Therefore, an object of the present invention is to solve the above problems and provide a photonic crystal optical fiber which is resistant to bending in terms of transmission loss, strength, and reliability and which can be used as a conventional connecting component for optical fibers. To do.

【0017】[0017]

【課題を解決するための手段】上記目的を達成するため
に請求項1に記載の発明は、コアとクラッドとの間の実
効的な比屈折率差を拡大するためクラッドに多数の空孔
を有するフォトニッククリスタル光ファイバにおいて、
コア及びクラッドのみが石英からなり、石英からなる部
分の外径を125μmよりも小さくしたものである。
In order to achieve the above object, the invention according to claim 1 is to provide a large number of holes in the clad in order to expand the effective relative refractive index difference between the core and the clad. In the photonic crystal optical fiber that we have,
Only the core and the clad are made of quartz, and the outer diameter of the portion made of quartz is smaller than 125 μm.

【0018】請求項2に記載の発明は、請求項1に記載
の構成に加え、クラッドの外周を覆う被覆層が2層以上
の樹脂被覆層からなり、最内層は第2被覆層よりも硬度
が大きい樹脂で形成されると共に、外径が125μmで
あるのが好ましい。
According to a second aspect of the present invention, in addition to the structure of the first aspect, the coating layer that covers the outer periphery of the clad is composed of two or more resin coating layers, and the innermost layer is harder than the second coating layer. It is preferable that the outer diameter is 125 μm and the resin is large.

【0019】本発明によれば、コア及びクラッドに石英
を用い、クラッドの外径を標準光ファイバの外径(12
5μm)よりも小さくすることにより、曲げによる引っ
張り歪みを低減することができる。例えば、クラッドの
外径を60μmにすることにより、曲げ半径を15mm
と小さくしても、引っ張り歪みは0.002となり、従
来、すなわち標準の光ファイバと同等の歪みに抑えるこ
とができる。
According to the present invention, quartz is used for the core and the clad, and the outer diameter of the clad is set to the outer diameter (12) of the standard optical fiber.
By making it smaller than 5 μm, the tensile strain due to bending can be reduced. For example, by setting the outer diameter of the clad to be 60 μm, the bending radius is 15 mm.
Even if it is made smaller, the tensile strain becomes 0.002, and it is possible to suppress the strain to the same level as that of the conventional optical fiber, that is, the standard optical fiber.

【0020】一方、光ファイバを細径化すると光ファイ
バ同士の接続が問題となる。家庭内での配線として使用
する場合は、コネクタやメカニカルスプライス等のよう
に簡易な接続で安価に実施できることが重要であるが、
これらの接続部品はいずれも外径125μmの標準光フ
ァイバを対象としたものであり、これらの接続部品を細
径用に製作すると高価なものになってしまう。そこで、
クラッドの外周に外径125μmの樹脂被覆層を形成す
ることにより、従来の光ファイバ用のコネクタやメカニ
カルスプライス等の接続部品を使用することができる。
On the other hand, if the optical fibers are made thin, the connection between the optical fibers becomes a problem. When it is used as wiring at home, it is important that it can be implemented at low cost with simple connections such as connectors and mechanical splices.
All of these connecting parts are intended for a standard optical fiber having an outer diameter of 125 μm, and if these connecting parts are manufactured for a small diameter, they will be expensive. Therefore,
By forming a resin coating layer having an outer diameter of 125 μm on the outer circumference of the clad, a conventional connector for optical fiber or a connecting component such as a mechanical splice can be used.

【0021】[0021]

【発明の実施の形態】以下、本発明の実施の形態を添付
図面に基づいて詳述する。
BEST MODE FOR CARRYING OUT THE INVENTION Embodiments of the present invention will be described in detail below with reference to the accompanying drawings.

【0022】図1は本発明のフォトニッククリスタル光
ファイバの一実施の形態を示す断面図である。
FIG. 1 is a sectional view showing an embodiment of the photonic crystal optical fiber of the present invention.

【0023】同図に示すフォトニッククリスタル光ファ
イバ1は、クラッド2のコア3近傍に多数(図では4個
だけ示されているが、限定されるものではない。)の空
孔4を形成することによりコア3とクラッド2との間の
実効的な比屈折率差を拡大したフォトニッククリスタル
光ファイバであって、クラッド2及びコア3のみが石英
からなり、クラッド2の外径が標準の光ファイバの外径
(125μm)よりも小さいものである。また、クラッ
ド2の外周に2層以上(図では3層であるが限定されな
い。)の樹脂被覆層5、6、7が形成され、樹脂被覆層
5〜7のうち最内層5は第2被覆層6よりも硬度が大き
い樹脂からなり、最外層7が標準光ファイバの外径より
も小さくなっている。
In the photonic crystal optical fiber 1 shown in the figure, a large number of holes 4 (only four are shown in the figure, but not limited to them) are formed in the vicinity of the core 3 of the clad 2. Thus, a photonic crystal optical fiber in which the effective relative refractive index difference between the core 3 and the clad 2 is expanded, and only the clad 2 and the core 3 are made of quartz, and the outer diameter of the clad 2 is a standard optical fiber. It is smaller than the outer diameter (125 μm) of the fiber. In addition, two or more (three layers in the figure, but not limited to) resin coating layers 5, 6, and 7 are formed on the outer periphery of the clad 2, and the innermost layer 5 of the resin coating layers 5 to 7 is the second coating. It is made of a resin having a hardness higher than that of the layer 6, and the outermost layer 7 is smaller than the outer diameter of the standard optical fiber.

【0024】このようにコア3及びクラッド2に石英を
用い、クラッド2の外径を標準の光ファイバの外径(1
25μm)よりも小さくすることにより、曲げによる引
っ張り歪みを低減することができる。また、クラッド2
の外周に外径125μmの硬い樹脂被覆層5〜7が形成
されているので、従来の光ファイバ用のコネクタやメカ
ニカルスプライス等の接続部品をそのまま使用すること
ができる。
As described above, quartz is used for the core 3 and the clad 2, and the outer diameter of the clad 2 is set to the outer diameter (1) of the standard optical fiber.
By making it smaller than 25 μm), tensile strain due to bending can be reduced. Also, clad 2
Since the hard resin coating layers 5 to 7 having an outer diameter of 125 μm are formed on the outer circumference of the above, the conventional connecting parts such as the connector for the optical fiber and the mechanical splice can be used as they are.

【0025】[0025]

【実施例】次に具体的な数値を挙げるが、本発明は限定
されるものではない。
EXAMPLES The following are specific numerical values, but the present invention is not limited thereto.

【0026】クラッド2の外径を60μmとしてフォト
ニッククリスタル光ファイバ1を製作したところ、曲げ
半径15mmで引っ張り歪みは0.002と従来同様と
なり、静疲労は実用上問題がない。また、損失は0.0
1dB以下と、低損失である。
When the photonic crystal optical fiber 1 was manufactured with the outer diameter of the clad 2 being 60 μm, the tensile strain was 0.002 at a bending radius of 15 mm, which was the same as the conventional one, and static fatigue has no practical problem. Also, the loss is 0.0
Low loss of 1 dB or less.

【0027】また、第1、第2、第3被覆層5〜7に紫
外線硬化型樹脂を被覆する。第2、第3被覆層6、7の
ヤング率をそれぞれ1Mpa、800Mpaとし、第1
被覆層5のヤング率は第2、第3被覆層6、7のヤング
率よりも十分大きいものとする。
Further, the first, second and third coating layers 5 to 7 are coated with an ultraviolet curable resin. The Young's moduli of the second and third coating layers 6 and 7 are set to 1 Mpa and 800 Mpa, respectively.
The Young's modulus of the coating layer 5 is sufficiently larger than the Young's modulus of the second and third coating layers 6 and 7.

【0028】以上において、本発明によれば、小さな径
で曲げても、伝送損失、強度、信頼性が良好な光ファイ
バを得ることが可能である。また、従来の光ファイバ用
接続部品を用いて安価に接続できる。さらに、本光ファ
イバを用いて光コードを製造することにより、宅内の配
線が容易、かつ安価になる。
As described above, according to the present invention, it is possible to obtain an optical fiber having good transmission loss, strength and reliability even if it is bent with a small diameter. In addition, the connection can be made inexpensively using the conventional optical fiber connecting component. Furthermore, by manufacturing an optical cord using the present optical fiber, wiring in a house is easy and inexpensive.

【0029】[0029]

【発明の効果】以上要するに本発明によれば、伝送損
失、強度、信頼性の面で曲げに強く、かつ従来の光ファ
イバ用の接続部品に使用できるフォトニッククリスタル
光ファイバの提供を実現することができる。
In summary, according to the present invention, it is possible to provide a photonic crystal optical fiber which is resistant to bending in terms of transmission loss, strength and reliability and which can be used as a conventional connecting component for optical fibers. You can

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明のフォトニッククリスタル光ファイバの
一実施の形態を示す断面図である。
FIG. 1 is a sectional view showing an embodiment of a photonic crystal optical fiber of the present invention.

【符号の説明】[Explanation of symbols]

1 フォトニッククリスタル光ファイバ 2 クラッド 3 コア 4 空孔 5 樹脂被覆層(第1被覆層) 6 樹脂被覆層(第2被覆層) 7 樹脂被覆層(第3被覆層) 1 Photonic crystal optical fiber 2 clad 3 core 4 holes 5 Resin coating layer (first coating layer) 6 Resin coating layer (second coating layer) 7 Resin coating layer (third coating layer)

───────────────────────────────────────────────────── フロントページの続き (72)発明者 村上 和也 東京都千代田区大手町一丁目6番1号 日 立電線株式会社内 Fターム(参考) 2H050 AC62 BA32 BB33 BC04 4G060 AA01 AC02    ─────────────────────────────────────────────────── ─── Continued front page    (72) Inventor Kazuya Murakami             1-6-1, Otemachi, Chiyoda-ku, Tokyo             Standing Wire Co., Ltd. F-term (reference) 2H050 AC62 BA32 BB33 BC04                 4G060 AA01 AC02

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 コアとクラッドとの間の実効的な比屈折
率差を拡大するため上記クラッドに多数の空孔を有する
フォトニッククリスタル光ファイバにおいて、上記コア
及び上記クラッドのみが石英からなり、該石英からなる
部分の外径を125μmよりも小さくしたことを特徴と
するフォトニッククリスタル光ファイバ。
1. In a photonic crystal optical fiber having a large number of holes in the clad for expanding an effective relative refractive index difference between the core and the clad, only the core and the clad are made of quartz, A photonic crystal optical fiber, wherein the outer diameter of the quartz portion is smaller than 125 μm.
【請求項2】 上記クラッドの外周を覆う被覆層が2層
以上の樹脂被覆層からなり、最内層は第2被覆層よりも
硬度が大きい樹脂で形成されると共に、外径が125μ
mであることを特徴とする請求項1に記載のフォトニッ
ククリスタル光ファイバ。
2. The coating layer covering the outer periphery of the clad is made of two or more resin coating layers, the innermost layer is made of a resin having a hardness higher than that of the second coating layer, and the outer diameter is 125 μm.
The photonic crystal optical fiber according to claim 1, wherein m is m.
JP2002114985A 2002-04-17 2002-04-17 Photonic crystal optical fiber Expired - Fee Related JP3814220B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002114985A JP3814220B2 (en) 2002-04-17 2002-04-17 Photonic crystal optical fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002114985A JP3814220B2 (en) 2002-04-17 2002-04-17 Photonic crystal optical fiber

Publications (2)

Publication Number Publication Date
JP2003307632A true JP2003307632A (en) 2003-10-31
JP3814220B2 JP3814220B2 (en) 2006-08-23

Family

ID=29396553

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002114985A Expired - Fee Related JP3814220B2 (en) 2002-04-17 2002-04-17 Photonic crystal optical fiber

Country Status (1)

Country Link
JP (1) JP3814220B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010169832A (en) * 2009-01-21 2010-08-05 Nippon Telegr & Teleph Corp <Ntt> Optical fibre and identification light coupler
JP2011033718A (en) * 2009-07-30 2011-02-17 Hitachi Cable Ltd Optical fiber, tape-like optical fiber, and optical module using the same
JP2016133596A (en) * 2015-01-19 2016-07-25 日本電信電話株式会社 Small-diameter low bending loss optical fiber and optical code and optical cable using the same

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010169832A (en) * 2009-01-21 2010-08-05 Nippon Telegr & Teleph Corp <Ntt> Optical fibre and identification light coupler
JP2011033718A (en) * 2009-07-30 2011-02-17 Hitachi Cable Ltd Optical fiber, tape-like optical fiber, and optical module using the same
JP2016133596A (en) * 2015-01-19 2016-07-25 日本電信電話株式会社 Small-diameter low bending loss optical fiber and optical code and optical cable using the same

Also Published As

Publication number Publication date
JP3814220B2 (en) 2006-08-23

Similar Documents

Publication Publication Date Title
JP4358073B2 (en) Low bending loss trench type multimode fiber
JP4612583B2 (en) Optical fiber filter for suppression of amplified spontaneous emission
US8687931B2 (en) Optical fiber
WO2011114795A1 (en) Multi-core optical fibre and production method for same
JP2010061170A (en) Optical fiber module
JP2007536580A (en) Long wavelength pure silica core single mode fiber and method of forming the fiber
JP4268115B2 (en) Single mode optical fiber
WO2007043277A1 (en) Optical fiber and optical transmission medium
JP2012247780A5 (en)
WO2010122790A1 (en) Holey single-mode optical fiber and optical transmission system using same
EP2083291B1 (en) Low bending loss multimode holey fiber
JP6973384B2 (en) Combined multi-core optical fiber and optical transmission system including it
WO2011115146A1 (en) Holey fiber
WO2008026737A1 (en) Optical fiber, optical fiber tape and optical interconnection system
JPH1082918A (en) Optical fiber grating
JP2010181641A (en) Optical fiber
JP2019152811A (en) Optical fiber, coated optical fiber, and optical transmission system
US20090180746A1 (en) Holey fiber
US7903919B2 (en) Holey fiber
JP2019112293A (en) Optical fiber for applications requiring high system optical signal-to-noise ratio performance and low degradation caused by nonlinear impairments
WO2013051481A1 (en) Optical fiber
WO2003098296A1 (en) Dispersion shift optical fiber
US20040151449A1 (en) Single mode fibre
JP3814220B2 (en) Photonic crystal optical fiber
JP2006011328A (en) Photonic crystal fiber

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040525

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20051215

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060110

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060302

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060523

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060602

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 3814220

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100609

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100609

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110609

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120609

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120609

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130609

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140609

Year of fee payment: 8

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees