JP2003298078A - Photoelectromotive element - Google Patents

Photoelectromotive element

Info

Publication number
JP2003298078A
JP2003298078A JP2002096229A JP2002096229A JP2003298078A JP 2003298078 A JP2003298078 A JP 2003298078A JP 2002096229 A JP2002096229 A JP 2002096229A JP 2002096229 A JP2002096229 A JP 2002096229A JP 2003298078 A JP2003298078 A JP 2003298078A
Authority
JP
Japan
Prior art keywords
film
type
substrate
semiconductor
photovoltaic element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002096229A
Other languages
Japanese (ja)
Inventor
Takahiro Mishima
孝博 三島
Naoki Ishikawa
直揮 石川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ebara Corp
Original Assignee
Ebara Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ebara Corp filed Critical Ebara Corp
Priority to JP2002096229A priority Critical patent/JP2003298078A/en
Priority to PCT/JP2003/003507 priority patent/WO2003083955A1/en
Priority to AU2003217486A priority patent/AU2003217486A1/en
Publication of JP2003298078A publication Critical patent/JP2003298078A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers
    • H01L31/072Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN heterojunction type
    • H01L31/0745Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN heterojunction type comprising a AIVBIV heterojunction, e.g. Si/Ge, SiGe/Si or Si/SiC solar cells
    • H01L31/0747Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN heterojunction type comprising a AIVBIV heterojunction, e.g. Si/Ge, SiGe/Si or Si/SiC solar cells comprising a heterojunction of crystalline and amorphous materials, e.g. heterojunction with intrinsic thin layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • H01L31/022408Electrodes for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/022425Electrodes for devices characterised by at least one potential jump barrier or surface barrier for solar cells
    • H01L31/022441Electrode arrangements specially adapted for back-contact solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/1804Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof comprising only elements of Group IV of the Periodic Table
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/547Monocrystalline silicon PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/548Amorphous silicon PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Engineering & Computer Science (AREA)
  • Sustainable Energy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Electromagnetism (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Sustainable Development (AREA)
  • Manufacturing & Machinery (AREA)
  • Photovoltaic Devices (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a photoelectromotive element such as a solar cell or the like that is superior in electric characteristics such as power generation efficiency or the like, by adopting a low-temperature process to keep a semiconductor substrate with a long carrier life time and high quality. <P>SOLUTION: A rear-side joint type solar cell is provided with a PN joint and an electrode on the opposite surface to the light incident surface of a semiconductor substrate 11, and it is also provided with an intrinsic semiconductor film 12 of ≥0.1 nm and ≤50 nm in thickness, P- an N-type conductive semiconductor layers 13 and 14 thereon, and electrodes 15 and 16 thereon, on the entire surface with the PN joint. <P>COPYRIGHT: (C)2004,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、光入射面と反対の
面にPN接合と正負の電極を配置した裏面接合型太陽電
池等の光起電力素子に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a photovoltaic element such as a back junction solar cell having a PN junction and positive and negative electrodes arranged on the surface opposite to the light incident surface.

【0002】[0002]

【従来の技術】工業的に大量に生産されている太陽電池
は、非結晶(アモルファス)シリコン材料を用いたもの
が多い。しかしながら、このような太陽電池は生産コス
トは低いが発電効率が低いという問題がある。そこでこ
の改良のため、シリコン単結晶または多結晶基板に、該
基板とは反対導電型の非結晶シリコン膜を被着してPN
接合を形成し、これにより光起電力の変換効率を向上さ
せる努力がなされている。
2. Description of the Related Art Many of the solar cells that are industrially produced in large quantities use amorphous silicon materials. However, such a solar cell has a problem that the production cost is low but the power generation efficiency is low. Therefore, for this improvement, a silicon single crystal or polycrystalline substrate is coated with an amorphous silicon film having a conductivity type opposite to that of the substrate, and PN is formed.
Efforts have been made to form junctions and thereby improve photovoltaic conversion efficiency.

【0003】このような結晶系シリコン基板と、非結晶
シリコン膜との組合せで接合を形成した場合に、異なる
種類の半導体層の界面で、界面順位の存在により光生成
キャリアの再結合が生じて、期待される性能を実現する
ことが困難であるという問題があった。このような問題
点を解決するため、結晶性シリコン基板と非結晶シリコ
ン膜との界面に真性非結晶半導体膜を形成し、界面順位
を低減する試みがなされている。
When a junction is formed by combining such a crystalline silicon substrate and an amorphous silicon film, recombination of photogenerated carriers occurs at the interface between different types of semiconductor layers due to the existence of the interface order. There was a problem that it was difficult to achieve the expected performance. In order to solve such a problem, an attempt has been made to reduce the order of interfaces by forming an intrinsic amorphous semiconductor film at the interface between the crystalline silicon substrate and the amorphous silicon film.

【0004】また、一般に太陽電池は、光入射面側に透
明電極を備え、光入射面と反対面に設けた電極との間で
光起電力を取り出している。このため、光入射面側に設
けた透明電極による光の遮蔽損が存在し、このため発電
効率に限界が生じるという問題があった。このような問
題点を避けるため、光入射面側に透明電極を配置せず、
基板の光入射面と反対面側の近傍にPN接合を形成し、
P層およびN層に接続する電極をそれぞれ配置し、P層
とN層とを交互に櫛の歯状に並べた裏面接合型太陽電池
が知られている。
Further, generally, a solar cell is provided with a transparent electrode on the light incident surface side and takes out a photoelectromotive force between the light incident surface and an electrode provided on the opposite surface. For this reason, there is a problem that light is blocked by the transparent electrode provided on the light incident surface side, which limits the power generation efficiency. In order to avoid such problems, do not arrange a transparent electrode on the light incident surface side,
A PN junction is formed in the vicinity of the side opposite to the light incident surface of the substrate,
There is known a back surface junction solar cell in which electrodes respectively connected to the P layer and the N layer are arranged, and the P layers and the N layers are alternately arranged in a comb tooth shape.

【0005】ところが、裏面接合型太陽電池では、半導
体基板の表面付近で生成したキャリアが基板の裏面近傍
に配置されたPN接合まで到達するために、大きなキャ
リアライフタイムを有する高品質な結晶性半導体基板が
必要である。しかしながら、裏面接合型太陽電池の製造
工程では、熱酸化および熱拡散等の高温プロセスが必要
であるため、キャリアライフタイムが劣化し、期待した
発電効率等の性能が得られ難いという問題がある。
However, in the back junction solar cell, since carriers generated near the front surface of the semiconductor substrate reach the PN junction disposed near the back surface of the substrate, a high quality crystalline semiconductor having a large carrier lifetime. A substrate is needed. However, since a high temperature process such as thermal oxidation and thermal diffusion is required in the manufacturing process of the back junction solar cell, there is a problem that the carrier lifetime is deteriorated and it is difficult to obtain expected performance such as power generation efficiency.

【0006】[0006]

【発明が解決しようとする課題】本発明は上述した事情
に鑑みてなされたもので、低温処理プロセスを用いるこ
とで、大きなキャリアライフタイムを有する高品質な半
導体基板の状態を維持し、これにより発電効率の高い太
陽電池等の光起電力素子を提供することを目的とする。
The present invention has been made in view of the above-mentioned circumstances, and by using a low-temperature treatment process, the state of a high-quality semiconductor substrate having a large carrier lifetime is maintained. An object is to provide a photovoltaic element such as a solar cell having high power generation efficiency.

【0007】[0007]

【課題を解決するための手段】本発明の光起電力素子
は、半導体基板の光入射面と反対の面にPN接合と電極
を形成した裏面接合型太陽電池において、前記PN接合
を形成する面全体に、0.1nm以上50nm以下の膜
厚の真性半導体膜と、該膜上にP型およびN型の導電性
半導体層と、該半導体層上に設けた電極とを備えたこと
を特徴とする。ここで、前記P型およびN型の導電性半
導体層上に設けた電極は、櫛の歯状に交互に並べて配置
することが好ましい。
The photovoltaic element of the present invention is a back junction solar cell in which a PN junction and an electrode are formed on the surface of the semiconductor substrate opposite to the light incident surface, and the surface on which the PN junction is formed. An intrinsic semiconductor film having a thickness of 0.1 nm or more and 50 nm or less, a P-type and N-type conductive semiconductor layer on the film, and an electrode provided on the semiconductor layer To do. Here, it is preferable that the electrodes provided on the P-type and N-type conductive semiconductor layers are alternately arranged in a comb-like shape.

【0008】また、真性半導体膜は、プラズマCVDま
たは触媒CVDを用いて形成することが好ましく、特に
触媒CVDを用いることが好ましい。また、半導体基板
の光入射面側に基板と反対導電型の層を設けるようにし
てもよい。
The intrinsic semiconductor film is preferably formed by plasma CVD or catalytic CVD, and particularly preferably catalytic CVD. Further, a layer having a conductivity type opposite to that of the substrate may be provided on the light incident surface side of the semiconductor substrate.

【0009】真性半導体膜をプラズマCVDまたは触媒
CVDを用いて形成し、その真性半導体膜上にP型およ
びN型の櫛の歯状に交互に並べた接合および電極を同様
に低温処理プロセスで形成することで、半導体基板のキ
ャリアライフタイムを高い状態で維持することが可能と
なる。これにより、裏面接合型光起電力素子としての高
い発電効率等の良好な光電変換効率が得られる。特に、
触媒CVDを用いることで、高品位な状態に基板を維持
できると共に、膜生成の生産性を比較的高くすることが
できる。
An intrinsic semiconductor film is formed by using plasma CVD or catalytic CVD, and junctions and electrodes alternately arranged in the shape of P-type and N-type comb teeth are formed on the intrinsic semiconductor film by a low temperature treatment process. By doing so, the carrier lifetime of the semiconductor substrate can be maintained in a high state. Thereby, good photoelectric conversion efficiency such as high power generation efficiency as the back surface junction type photovoltaic element can be obtained. In particular,
By using the catalytic CVD, it is possible to maintain the substrate in a high quality state, and it is possible to relatively increase the productivity of film formation.

【0010】[0010]

【発明の実施の形態】以下、本発明の実施形態について
添付図面を参照しながら説明する。
BEST MODE FOR CARRYING OUT THE INVENTION Embodiments of the present invention will be described below with reference to the accompanying drawings.

【0011】図1は、本発明の一実施形態の光起電力素
子を示す。この光起電力素子は太陽電池であり、例えば
N型の結晶性半導体基板11の裏面側にPN接合と電極
を配置した裏面接合型の太陽電池である。結晶性半導体
基板11は、例えば厚さが100μm程度のデンドリッ
クウェブからなるN型に不純物ドープしたシリコン単結
晶基板であり、この裏面側に真性半導体膜12を備えて
いる。また、結晶性半導体基板11として、リボン多結
晶を用いてもよい。
FIG. 1 shows a photovoltaic device according to an embodiment of the present invention. This photovoltaic element is a solar cell, for example, a back surface junction solar cell in which a PN junction and an electrode are arranged on the rear surface side of the N-type crystalline semiconductor substrate 11. The crystalline semiconductor substrate 11 is, for example, a N-type impurity-doped silicon single crystal substrate made of a dendritic web having a thickness of about 100 μm, and the intrinsic semiconductor film 12 is provided on the back surface side. Further, ribbon polycrystal may be used as the crystalline semiconductor substrate 11.

【0012】係る単結晶または多結晶シリコン基板は、
所定温度に調整されたシリコン原料を溶融したるつぼか
ら、所定方位の結晶軸に沿って種結晶を引上げること
で、薄い帯状(シート状)の結晶を成長させて生産する
ことができる。即ち、この結晶をエンドレスベルトに挟
んで引上げることで、長尺の結晶を連続的に引上げるこ
とができる。そして、薄い帯状の結晶を適当な寸法で裁
断することにより、厚さ150μm以下の矩形シート形
状の単結晶または多結晶シリコン基板が得られる。この
詳細については、本出願人の特願2000−27531
5号を参照されたい。
The single crystal or polycrystalline silicon substrate is
A thin band-shaped (sheet-shaped) crystal can be grown and produced by pulling a seed crystal from a crucible obtained by melting a silicon raw material adjusted to a predetermined temperature along a crystal axis of a predetermined orientation. That is, a long crystal can be continuously pulled up by sandwiching this crystal between endless belts and pulling it up. Then, a thin band-shaped crystal is cut into an appropriate size to obtain a rectangular sheet-shaped single crystal or polycrystalline silicon substrate having a thickness of 150 μm or less. For details, see Japanese Patent Application No. 2000-27531 of the applicant.
See issue 5.

【0013】真性半導体膜12は、厚さが0.1nm以
上、50nm以下の極めて薄い非結晶性(アモルファ
ス)層である。そして、この真性半導体膜は、非結晶シ
リコン膜、または非結晶シリコンと微結晶シリコン膜と
のヘテロ構造膜、または非結晶炭化シリコン膜、または
非結晶炭化シリコン膜と微結晶シリコン膜とのヘテロ構
造膜等である。この真性半導体膜は、電気的に中性な膜
であり、この膜をPN接合間に挟むことで、水素パッシ
ベーション効果があり、開放電圧が上昇する等の電気的
特性の改良が可能である。
The intrinsic semiconductor film 12 is an extremely thin amorphous layer having a thickness of 0.1 nm or more and 50 nm or less. The intrinsic semiconductor film is an amorphous silicon film, a heterostructure film of amorphous silicon and a microcrystalline silicon film, an amorphous silicon carbide film, or a heterostructure of an amorphous silicon carbide film and a microcrystalline silicon film. A film or the like. This intrinsic semiconductor film is an electrically neutral film, and by sandwiching this film between PN junctions, there is a hydrogen passivation effect, and it is possible to improve electrical characteristics such as an increase in open circuit voltage.

【0014】この真性半導体膜12は、触媒CVDまた
はプラズマCVDで形成することが好ましい。触媒CV
D法は、図2(a)に示すように、減圧可能な真空容器
内にガス供給系装置21、高温触媒22、成膜対象の基
板23、基板ホルダ24等を備える。ここで、高温触媒
22は、タングステンまたはモリブデン等の線材を15
00〜2400℃に加熱して、対象ガスを活性化して基
板23の表面に気相成長被膜を形成するものである。こ
れに対して、図3(b)に示すプラズマCVD装置は、
電極25,26間に高周波電源27より高周波電圧を供
給することで、成膜対象のガス分子28をプラズマ化し
て図中の矢印方向に振動させ、これにより成膜対象の基
板23の表面上に気相成長被膜を形成するものである。
この図3(a)に示す触媒CVD法は、図3(b)に示
すプラズマCVD法と比較すると、成膜対象基板へのプ
ラズマダメージがほとんど存在しない、装置の構造が簡
単でかつ低コストとなる、スケールアップが容易である
等の特徴がある。特に、成膜速度が、例えば5〜10n
m/秒程度と比較的高く、アモルファスシリコン膜や微
結晶シリコン膜等の形成で品質が高い膜が比較的短時間
で得られる。
The intrinsic semiconductor film 12 is preferably formed by catalytic CVD or plasma CVD. Catalyst CV
As shown in FIG. 2A, the method D includes a gas supply system device 21, a high temperature catalyst 22, a film formation target substrate 23, a substrate holder 24, and the like in a vacuum container capable of depressurizing. Here, the high temperature catalyst 22 is made of a wire material such as tungsten or molybdenum.
It is heated to 00 to 2400 ° C. to activate the target gas to form a vapor phase growth film on the surface of the substrate 23. On the other hand, the plasma CVD apparatus shown in FIG.
By supplying a high-frequency voltage from the high-frequency power source 27 between the electrodes 25 and 26, the gas molecules 28 to be film-formed are made to be plasma and vibrated in the direction of the arrow in the figure, whereby the gas molecules 28 to be film-formed on the surface of the substrate 23 to be film-formed. It forms a vapor growth film.
Compared with the plasma CVD method shown in FIG. 3B, the catalytic CVD method shown in FIG. 3A has substantially no plasma damage to the film formation target substrate, has a simple device structure, and has a low cost. It has the features that it can be easily scaled up. In particular, the film formation rate is, for example, 5 to 10 n.
A relatively high value of about m / sec, and a film of high quality can be obtained in a relatively short time by forming an amorphous silicon film or a microcrystalline silicon film.

【0015】この真性半導体膜12の表面には、P型に
不純物ドープした導電性半導体層13と、N型に不純物
ドープした導電性半導体層14とが交互に並べて配置さ
れている。この半導体層13,14は、例えばメタルマ
スクを用いて触媒CVDまたはプラズマCVDにより形
成された非結晶導電性シリコン層である。半導体層1
3,14上にはそれぞれ電極15,16が配置されてい
る。これらの電極15,16は、例えば銀等の導電性ペ
ーストをスクリーン印刷によりパターン形成し、これを
加温硬化して形成される。P型およびN型にそれぞれ不
純物ドープした半導体層13,14間は、例えばポリイ
ミド樹脂膜等の絶縁膜17により絶縁されている。半導
体基板11の光入射面側にはSiNからなる反射防止膜
18が配置されている。
On the surface of the intrinsic semiconductor film 12, a P-type impurity-doped conductive semiconductor layer 13 and an N-type impurity-doped conductive semiconductor layer 14 are alternately arranged. The semiconductor layers 13 and 14 are amorphous conductive silicon layers formed by catalytic CVD or plasma CVD using a metal mask, for example. Semiconductor layer 1
Electrodes 15 and 16 are arranged on 3 and 14, respectively. The electrodes 15 and 16 are formed, for example, by patterning a conductive paste such as silver by screen printing, and heating and curing the pattern. The P-type and N-type impurity-doped semiconductor layers 13 and 14 are insulated from each other by an insulating film 17 such as a polyimide resin film. An antireflection film 18 made of SiN is arranged on the light incident surface side of the semiconductor substrate 11.

【0016】図3は、この太陽電池の裏面側を模式的に
示した図であり、P型半導体層13に接続する電極15
と、N型半導体層14に接続する電極16とが、櫛の歯
状に交互に並べて互いに平行に配置されている。多数の
櫛の歯状の電極15はその基部である母線部15aに接
続し、多数の櫛の歯状の電極16はその基部である母線
部16aにそれぞれ接続されている。従って、この太陽
電池の起電力は母線部の電極15a,16a間で取り出
される。
FIG. 3 is a diagram schematically showing the back surface side of this solar cell, in which an electrode 15 connected to the P-type semiconductor layer 13 is formed.
And electrodes 16 connected to the N-type semiconductor layer 14 are alternately arranged in a comb-like shape and arranged in parallel with each other. A large number of comb tooth-shaped electrodes 15 are connected to a bus bar portion 15a that is a base thereof, and a large number of comb tooth-shaped electrodes 16 are connected to a bus bar portion 16a that is a base thereof. Therefore, the electromotive force of this solar cell is taken out between the electrodes 15a and 16a of the bus bar.

【0017】次に、この太陽電池の構造上の特徴につい
て説明する。この太陽電池は、基板11の裏面側に触媒
CVDまたはプラズマCVDで形成された薄い非結晶真
性シリコン層(半導体膜)12を備え、その表面に触媒
CVDまたはプラズマCVDで形成されたP型およびN
型に不純物ドープした半導体層13,14を備えてい
る。従って、真性半導体膜12と導電性半導体層13,
14は共に触媒CVDまたはプラズマCVD等の低温プ
ロセスにより形成された膜を用いている。そして、絶縁
膜17の形成、および電極15,16の形成も、それぞ
れスクリーン印刷等により被膜のパターンを形成し、こ
れを比較的低温の400℃未満の加温硬化処理により形
成している。従って、すべてのプロセスが400℃未満
の低温処理により被膜が形成されるので、半導体基板1
1において大きなキャリアライフタイムを有する高品質
な状態をそのまま維持することができる。そして、その
表面側には透明電極が存在しないので、これによる遮蔽
損が発生せず、高い発電効率等の良好な光電変換特性が
得られる。
Next, the structural features of this solar cell will be described. This solar cell is provided with a thin amorphous intrinsic silicon layer (semiconductor film) 12 formed by catalytic CVD or plasma CVD on the back surface side of a substrate 11, and P-type and N-type formed by catalytic CVD or plasma CVD on the surface thereof.
The semiconductor layers 13 and 14 in which the mold is doped with impurities are provided. Therefore, the intrinsic semiconductor film 12 and the conductive semiconductor layer 13,
Both 14 use a film formed by a low temperature process such as catalytic CVD or plasma CVD. The insulating film 17 and the electrodes 15 and 16 are also formed by screen-printing or the like to form a coating film pattern, which is then heated and cured at a relatively low temperature of less than 400 ° C. Therefore, since the film is formed by the low temperature treatment of less than 400 ° C. in all the processes, the semiconductor substrate 1
In No. 1, it is possible to maintain a high quality state with a large carrier lifetime. Further, since the transparent electrode does not exist on the surface side, shielding loss due to this does not occur, and good photoelectric conversion characteristics such as high power generation efficiency can be obtained.

【0018】真性半導体膜12、およびP型およびN型
の導電性半導体層13,14は、それぞれ触媒CVDを
用いて形成することが好ましい。触媒CVDにおいて
は、基板温度が100〜400℃程度であり、低温プロ
セスであるため、半導体基板11がダメージを受けな
い。また、高濃度の水素ラジカルの存在により結晶内部
の欠陥を補修して欠陥順位密度を低減できる等の特徴が
ある。また、プラズマCVDと異なり、プラズマによる
ダメージを受けないので、これにより半導体基板11の
キャリアライフタイムの維持に寄与することができる。
The intrinsic semiconductor film 12 and the P-type and N-type conductive semiconductor layers 13 and 14 are preferably formed by catalytic CVD. In the catalytic CVD, the substrate temperature is about 100 to 400 ° C., and the semiconductor substrate 11 is not damaged because it is a low temperature process. Further, the presence of high-concentration hydrogen radicals has a feature that defects inside the crystal can be repaired and the defect rank density can be reduced. Further, unlike plasma CVD, since it is not damaged by plasma, it can contribute to maintaining the carrier lifetime of the semiconductor substrate 11.

【0019】図4は、本発明の他の実施形態の光起電力
素子を示す。この実施形態においては、基板11の光入
射面側にも真性半導体膜20を備えている。その他の構
成は、図1に示す第1の実施形態と同様である。ここ
で、真性半導体膜20は、基板裏面側の真性半導体膜1
2と同時に基板11の表裏両面および側面に形成するこ
とが好ましい。これにより、結晶性シリコン基板11の
光入射面側および側面もその表面が真性半導体膜で覆わ
れることにより、界面順位を低減して、電気的特性を向
上させることができる。
FIG. 4 shows a photovoltaic device according to another embodiment of the present invention. In this embodiment, the intrinsic semiconductor film 20 is also provided on the light incident surface side of the substrate 11. Other configurations are similar to those of the first embodiment shown in FIG. Here, the intrinsic semiconductor film 20 is the intrinsic semiconductor film 1 on the back surface side of the substrate.
It is preferable to form both the front and back surfaces and the side surface of the substrate 11 at the same time as 2. As a result, the light incident surface side and the side surface of the crystalline silicon substrate 11 are covered with the intrinsic semiconductor film, so that the interface order can be reduced and the electrical characteristics can be improved.

【0020】図5は、本発明の更に他の実施形態の光起
電力素子を示す。この実施形態においては、基板11の
光入射面側に基板11と反対導電型の層21を備えてい
る。この層21は、N型の半導体基板11に対して反対
導電型のP型層であり、反対導電型電荷により基板の内
部電界を利用してキャリア再結合を防止する機能を有し
ている。これにより、光電変換効率等の電気的特性を向
上することが可能である。
FIG. 5 shows a photovoltaic device according to still another embodiment of the present invention. In this embodiment, a layer 21 having a conductivity type opposite to that of the substrate 11 is provided on the light incident surface side of the substrate 11. This layer 21 is a P-type layer having a conductivity type opposite to that of the N-type semiconductor substrate 11, and has a function of preventing carrier recombination by utilizing an internal electric field of the substrate by charges of the opposite conductivity type. This makes it possible to improve electrical characteristics such as photoelectric conversion efficiency.

【0021】次に、図6を参照して本発明の光起電力素
子の製造方法について説明する。まず、図6(a)に示
すように、N型の単結晶または多結晶シリコン基板11
を準備する。これは、上述したようにデンドリックウェ
ブ結晶またはリボン多結晶を用いることができる。そし
て、次に洗浄を行い表面に付着した酸化膜等を除去し、
表面を清浄な状態にする。次に、図6(b)に示すよう
に、触媒CVDにより非結晶真性シリコン膜12,20
を基板11の表裏両面に形成する。この厚さは、0.1
nm以上50nm以下が好ましいが、一例として10n
m程度に形成する。この非結晶真性シリコン膜の形成条
件の一例は、次のとおりである。 ガス流量:SiH=20sccm ガス比:SiH/H=1:10 成膜圧力:1Pa 基板温度:250℃ フィラメント温度:1800℃
Next, a method of manufacturing the photovoltaic element of the present invention will be described with reference to FIG. First, as shown in FIG. 6A, an N-type single crystal or polycrystalline silicon substrate 11 is formed.
To prepare. This can use dendritic web crystals or ribbon polycrystals as described above. Then, cleaning is performed to remove the oxide film and the like adhering to the surface,
Keep the surface clean. Next, as shown in FIG. 6B, the non-crystalline intrinsic silicon films 12, 20 are formed by catalytic CVD.
Are formed on both front and back surfaces of the substrate 11. This thickness is 0.1
nm or more and 50 nm or less is preferable, but as an example, 10 n
It is formed to about m. An example of conditions for forming this amorphous intrinsic silicon film is as follows. Gas flow rate: SiH 4 = 20 sccm Gas ratio: SiH 4 / H 2 = 1: 10 Film formation pressure: 1 Pa Substrate temperature: 250 ° C. Filament temperature: 1800 ° C.

【0022】次に、図6(c)に示すように、触媒CV
Dにより非結晶導電性シリコン層13を形成する。ここ
で導電性シリコン層13はP型であり、例えば膜厚を3
0nm程度とする。このP型非結晶シリコン層は、 ガス流量:SiH=20sccm、B=1sc
cm(1%、H希釈)、 ガス比:SiH/H=1:10、 成膜圧力:1Pa、 基板温度:250℃、 フィラメント温度:1800℃、 により形成している。
Next, as shown in FIG. 6 (c), the catalyst CV is used.
The amorphous conductive silicon layer 13 is formed by D. Here, the conductive silicon layer 13 is P-type, and has a film thickness of 3
It is about 0 nm. This P-type amorphous silicon layer has a gas flow rate: SiH 4 = 20 sccm, B 2 H 6 = 1 sc.
cm (1%, diluted with H 2 ), gas ratio: SiH 4 / H 2 = 1: 10, film formation pressure: 1 Pa, substrate temperature: 250 ° C., filament temperature: 1800 ° C.

【0023】次に、図6(d)に示すようにN型の非結
晶導電性シリコン層14を形成する。これも同様にメタ
ルマスクを用いて導電性シリコン層13の間に櫛の歯状
に間挿するように多数の平行パターンを形成する。膜厚
は例えば30nm程度である。この条件は、 ガス流量:SiH=20sccm、PH=1scc
m(1%、H希釈)、 ガス比:SiH/H=1:10、 成膜圧力:1Pa、 基板温度:250℃、 フィラメント温度:1800℃、 により形成している。
Next, as shown in FIG. 6D, an N type amorphous conductive silicon layer 14 is formed. Similarly, a large number of parallel patterns are formed between the conductive silicon layers 13 using a metal mask so as to be interleaved in the shape of comb teeth. The film thickness is, for example, about 30 nm. The conditions are as follows: gas flow rate: SiH 4 = 20 sccm, PH 3 = 1 scc
m (1%, diluted with H 2 ), gas ratio: SiH 4 / H 2 = 1: 10, film forming pressure: 1 Pa, substrate temperature: 250 ° C., filament temperature: 1800 ° C.

【0024】次に、図6(e)に示すように、保護膜1
7を形成する。これは、例えばポリイミド樹脂ペースト
をスクリーン印刷法等により、導電性シリコン層13,
14の間に埋め込んで、250℃以下の温度で加温硬化
することにより形成する。この保護膜17の形成によ
り、耐候性および耐はんだ付け性が向上する。そして、
図6(f)に示すように、例えば銀ペーストをスクリー
ン印刷により塗布し、これを同様に250℃以下の比較
的低温で加温硬化することにより、図3に示す櫛の歯状
の交互に間挿した電極パターン15,16,15a,1
6aを形成する。
Next, as shown in FIG. 6 (e), the protective film 1
Form 7. The conductive silicon layer 13, for example, is formed by screen-printing a polyimide resin paste, etc.
It is formed by embedding between 14 and heating and curing at a temperature of 250 ° C. or less. By forming this protective film 17, weather resistance and soldering resistance are improved. And
As shown in FIG. 6 (f), for example, silver paste is applied by screen printing, and this is similarly heat-cured at a relatively low temperature of 250 ° C. or lower, so that the teeth of the comb shown in FIG. 3 alternate. Interposed electrode patterns 15, 16, 15a, 1
6a is formed.

【0025】なお、上記工程において、図示はしないが
基板11の表面に反射防止膜を形成することが好まし
い。反射防止膜は、例えば高周波スパッタ法によるSi
膜等が好適であり、例えば膜厚60nm程度に形
成する。また、図5に示すように、半導体基板11の光
入射面側に基板と反対導電型の拡散層を設けるようにし
てもよい。これは、半導体基板11にあらかじめ熱拡散
またはイオン注入等の方法により形成しておくことが好
ましい。
In the above process, although not shown, it is preferable to form an antireflection film on the surface of the substrate 11. The antireflection film is formed of, for example, Si by a high frequency sputtering method.
A 3 N 4 film or the like is suitable, and is formed to have a film thickness of about 60 nm, for example. Further, as shown in FIG. 5, a diffusion layer having a conductivity type opposite to that of the substrate may be provided on the light incident surface side of the semiconductor substrate 11. This is preferably formed in advance on the semiconductor substrate 11 by a method such as thermal diffusion or ion implantation.

【0026】なお、上記実施形態は本発明の実施例の一
態様を述べたもので、本発明の趣旨を逸脱することなく
種々の変形実施例が可能なことは勿論である。
It should be noted that the above embodiment describes one mode of the embodiment of the present invention, and it is needless to say that various modified embodiments can be made without departing from the gist of the present invention.

【0027】[0027]

【発明の効果】以上説明したように本発明によれば、半
導体基板のキャリアライフタイムが大きく、発電効率等
の電気的特性に優れた裏面接合型太陽電池等の光起電力
素子を提供できる。
As described above, according to the present invention, it is possible to provide a photovoltaic element such as a back junction solar cell in which the semiconductor substrate has a large carrier lifetime and is excellent in electrical characteristics such as power generation efficiency.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施形態の光起電力素子の概略構成
を示す断面図である。
FIG. 1 is a cross-sectional view showing a schematic configuration of a photovoltaic element according to an embodiment of the present invention.

【図2】(a)は触媒CVD法を示す図であり、(b)
はプラズマCVD法を示す図である。
FIG. 2A is a diagram showing a catalytic CVD method, and FIG.
FIG. 4 is a diagram showing a plasma CVD method.

【図3】図1の光起電力素子の底面の電極構成を示す図
である。
FIG. 3 is a diagram showing an electrode configuration on the bottom surface of the photovoltaic element of FIG.

【図4】本発明の他の実施形態の光起電力素子の概略構
成を示す断面図である。
FIG. 4 is a sectional view showing a schematic configuration of a photovoltaic element according to another embodiment of the present invention.

【図5】本発明の他の実施形態の光起電力素子の概略構
成を示す断面図である。
FIG. 5 is a sectional view showing a schematic configuration of a photovoltaic element according to another embodiment of the present invention.

【図6】本発明の光起電力素子の製造工程を示す図であ
る。
FIG. 6 is a diagram showing a manufacturing process of the photovoltaic element of the present invention.

【符号の説明】[Explanation of symbols]

11 結晶性半導体基板 12,20 真性半導体膜 13 P型導電性シリコン層 14 N型導電性シリコン層 15,16 電極 17 絶縁層 18 反射防止膜 21 反対導電型層 11 Crystalline semiconductor substrate 12,20 Intrinsic semiconductor film 13 P-type conductive silicon layer 14 N-type conductive silicon layer 15, 16 electrodes 17 Insulation layer 18 Antireflection film 21 Opposite conductivity type layer

Claims (9)

【特許請求の範囲】[Claims] 【請求項1】 半導体基板の光入射面と反対の面にPN
接合と電極を形成した裏面接合型太陽電池において、前
記PN接合を形成する面全体に、0.1nm以上50n
m以下の膜厚の真性半導体膜と、該膜上にP型およびN
型の導電性半導体層と、該半導体層上に設けた電極とを
備えたことを特徴とする裏面接合型光起電力素子。
1. A PN is provided on a surface of a semiconductor substrate opposite to a light incident surface.
In a back surface junction type solar cell in which a junction and an electrode are formed, 0.1 nm or more and 50 n or more are formed on the entire surface forming the PN junction.
an intrinsic semiconductor film having a thickness of m or less, and P-type and N-type on the film.
A back junction type photovoltaic element comprising a conductive semiconductor layer of a positive type and an electrode provided on the semiconductor layer.
【請求項2】 前記P型およびN型の導電性半導体層上
に設けた電極は、櫛の歯状に交互に並べて配置したこと
を特徴とする請求項1記載の光起電力素子。
2. The photovoltaic element according to claim 1, wherein the electrodes provided on the P-type and N-type conductive semiconductor layers are alternately arranged in a comb-like shape.
【請求項3】 前記基板が単結晶半導体基板または多結
晶半導体基板であることを特徴とする請求項1記載の光
起電力素子。
3. The photovoltaic element according to claim 1, wherein the substrate is a single crystal semiconductor substrate or a polycrystalline semiconductor substrate.
【請求項4】 前記真性半導体膜として、非結晶Si
膜、または非結晶Si/微結晶Siヘテロ構造膜、また
は非結晶SiC膜、または非結晶SiC/微結晶Siヘ
テロ構造膜を用いたことを特徴とする請求項1記載の光
起電力素子。
4. Amorphous Si is used as the intrinsic semiconductor film.
The photovoltaic element according to claim 1, wherein a film, an amorphous Si / microcrystalline Si heterostructure film, an amorphous SiC film, or an amorphous SiC / microcrystalline Si heterostructure film is used.
【請求項5】 前記真性半導体膜は、触媒CVDを用い
て形成したことを特徴とする請求項1記載の光起電力素
子。
5. The photovoltaic element according to claim 1, wherein the intrinsic semiconductor film is formed by using catalytic CVD.
【請求項6】 前記半導体基板の光入射面に反射防止膜
を備えたことを特徴とする請求項1記載の光起電力素
子。
6. The photovoltaic element according to claim 1, further comprising an antireflection film on a light incident surface of the semiconductor substrate.
【請求項7】 前記半導体基板の光入射面に前記半導体
基板と反対導電型の層を備えたことを特徴とする請求項
1記載の光起電力素子。
7. The photovoltaic element according to claim 1, wherein a layer having a conductivity type opposite to that of the semiconductor substrate is provided on a light incident surface of the semiconductor substrate.
【請求項8】 前記半導体基板の光入射面に真性半導体
膜を備えたことを特徴とする請求項1記載の光起電力素
子。
8. The photovoltaic device according to claim 1, wherein an intrinsic semiconductor film is provided on a light incident surface of the semiconductor substrate.
【請求項9】 一導電型の半導体結晶基板を準備し、前
記基板の少なくとも一面に真性非結晶半導体膜を被着
し、該膜上にP型およびN型に不純物ドープした導電性
半導体層を互いに離隔して配置することを特徴とする光
起電力素子の製造方法。
9. A semiconductor crystal substrate of one conductivity type is prepared, an intrinsic amorphous semiconductor film is deposited on at least one surface of the substrate, and a conductive semiconductor layer doped with impurities of P type and N type is formed on the film. A method for manufacturing a photovoltaic element, characterized in that the photovoltaic elements are arranged apart from each other.
JP2002096229A 2002-03-29 2002-03-29 Photoelectromotive element Pending JP2003298078A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2002096229A JP2003298078A (en) 2002-03-29 2002-03-29 Photoelectromotive element
PCT/JP2003/003507 WO2003083955A1 (en) 2002-03-29 2003-03-24 Photovoltaic element and method of manufacturing the same
AU2003217486A AU2003217486A1 (en) 2002-03-29 2003-03-24 Photovoltaic element and method of manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002096229A JP2003298078A (en) 2002-03-29 2002-03-29 Photoelectromotive element

Publications (1)

Publication Number Publication Date
JP2003298078A true JP2003298078A (en) 2003-10-17

Family

ID=28671828

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002096229A Pending JP2003298078A (en) 2002-03-29 2002-03-29 Photoelectromotive element

Country Status (3)

Country Link
JP (1) JP2003298078A (en)
AU (1) AU2003217486A1 (en)
WO (1) WO2003083955A1 (en)

Cited By (39)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006041105A (en) * 2004-07-26 2006-02-09 Sharp Corp Solar cell and method of manufacturing the same
JP2006156646A (en) * 2004-11-29 2006-06-15 Sharp Corp Solar cell manufacturing method
JP2006294802A (en) * 2005-04-08 2006-10-26 Toyota Motor Corp Photoelectric conversion element
WO2007034614A1 (en) * 2005-09-22 2007-03-29 Sharp Kabushiki Kaisha Method of manufacturing back junction solar cell
JP2008519438A (en) * 2004-10-29 2008-06-05 ビーピー・コーポレーション・ノース・アメリカ・インコーポレーテッド Back contact solar cell
JP2008135556A (en) 2006-11-28 2008-06-12 Sanyo Electric Co Ltd P-type amorphous silicon thin film, photovoltaic device, and manufacturing method for them
JP2008529265A (en) * 2005-01-20 2008-07-31 コミツサリア タ レネルジー アトミーク Semiconductor device having heterojunction and interfinger structure
JP2009524916A (en) * 2006-01-26 2009-07-02 アライズ テクノロジーズ コーポレーション Solar cell
JP2009206375A (en) * 2008-02-28 2009-09-10 Sanyo Electric Co Ltd Solar cell and method of manufacturing the same
JP2009535845A (en) * 2006-05-04 2009-10-01 サンパワー コーポレイション Solar cell with doped semiconductor heterojunction electrode
WO2009125628A1 (en) * 2008-04-08 2009-10-15 シャープ株式会社 Solar battery cell manufacturing method, solar battery module manufacturing method, and solar battery module
JP2010504636A (en) * 2006-09-26 2010-02-12 コミサリア、ア、レネルジ、アトミク Back heterojunction solar cell manufacturing method
JP2010123859A (en) * 2008-11-21 2010-06-03 Kyocera Corp Solar battery element and production process of solar battery element
JP2010521824A (en) * 2007-03-16 2010-06-24 ビーピー・コーポレーション・ノース・アメリカ・インコーポレーテッド Solar cell
JP2010528487A (en) * 2007-05-29 2010-08-19 サンパワー コーポレイション Array of small contacts for solar cell manufacturing
JP2010538492A (en) * 2008-02-25 2010-12-09 サニーバ,インコーポレイテッド Solar cell having crystalline silicon pn homojunction and amorphous silicon heterojunction for surface stabilization
JP2011009615A (en) * 2009-06-28 2011-01-13 Sino-American Silicon Products Inc Method for manufacturing solar cell
JP2011507245A (en) * 2007-12-11 2011-03-03 インスティトュート フィュル ゾラールエネルギーフォルシュング ゲーエムベーハー Back electrode type solar cell having elongated, interdigitated emitter region and base region on back side, and manufacturing method thereof
JP2011199277A (en) * 2010-02-26 2011-10-06 Ulvac Japan Ltd Surface treatment method and method for manufacturing solar cell
WO2011149021A1 (en) * 2010-05-28 2011-12-01 株式会社エバテック Method for manufacturing photovoltaic element, and photovoltaic element
KR20120025732A (en) * 2010-09-08 2012-03-16 엘지전자 주식회사 Method for manufacturing solar cell
JP2012084747A (en) * 2010-10-13 2012-04-26 National Institute Of Advanced Industrial & Technology Crystal silicon solar cell manufacturing method
WO2012117825A1 (en) * 2011-02-28 2012-09-07 三洋電機株式会社 Solar cell and process of manufacturing solar cell
JP2012525006A (en) * 2009-04-21 2012-10-18 テトラサン インコーポレイテッド High efficiency solar cell structure and manufacturing method
JP2012216593A (en) * 2011-03-31 2012-11-08 Mitsubishi Electric Corp Photovoltaic device, method of manufacturing the same, and photovoltaic module
WO2013008482A1 (en) * 2011-07-11 2013-01-17 国立大学法人東京農工大学 Solar cell and method for manufacturing same
JP2013512582A (en) * 2009-12-01 2013-04-11 サンパワー コーポレイション Formation of solar cell contacts using laser ablation
WO2014042114A1 (en) * 2012-09-12 2014-03-20 シャープ株式会社 Photoelectric conversion element and method for manufacturing photoelectric conversion element
JP2014123692A (en) * 2012-12-19 2014-07-03 Junji Hirokane Photovoltaic element and process of manufacturing the same
JP2015015472A (en) * 2013-07-05 2015-01-22 エルジー エレクトロニクス インコーポレイティド Solar cell and method of manufacturing the same
WO2015115360A1 (en) * 2014-01-29 2015-08-06 パナソニックIpマネジメント株式会社 Solar cell
US9123817B2 (en) 2010-10-12 2015-09-01 Samsung Electronics Co., Ltd. Transistors and electronic devices including the same
JP2015525961A (en) * 2012-06-29 2015-09-07 エコール ポリテクニク フェデラル ドゥ ローザンヌ(ウペエフエル) Solar cell
KR101578356B1 (en) 2009-02-25 2015-12-17 엘지전자 주식회사 Back contact solar cell and Manufacturing method thereof
US9443994B2 (en) 2010-03-26 2016-09-13 Tetrasun, Inc. Shielded electrical contact and doping through a passivating dielectric layer in a high-efficiency crystalline solar cell, including structure and methods of manufacture
WO2017061467A1 (en) * 2015-10-05 2017-04-13 株式会社アルバック Hbc crystalline solar cell and production method therefor
US9673341B2 (en) 2015-05-08 2017-06-06 Tetrasun, Inc. Photovoltaic devices with fine-line metallization and methods for manufacture
JP2017195391A (en) * 2012-03-23 2017-10-26 サンパワー コーポレイション Solar cell having emitter region containing wide bandgap semiconductor material
JP2019169599A (en) * 2018-03-23 2019-10-03 株式会社カネカ Method for manufacturing solar cell and solar cell

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1519422B1 (en) * 2003-09-24 2018-05-16 Panasonic Intellectual Property Management Co., Ltd. Photovoltaic cell and its fabrication method
US20080000522A1 (en) * 2006-06-30 2008-01-03 General Electric Company Photovoltaic device which includes all-back-contact configuration; and related processes
FR2914501B1 (en) * 2007-03-28 2009-12-04 Commissariat Energie Atomique PHOTOVOLTAIC DEVICE WITH DISCONTINUOUS INTERDIGITED HETEROJUNCTION STRUCTURE
DE102008030880A1 (en) * 2007-12-11 2009-06-18 Institut Für Solarenergieforschung Gmbh Rear contact solar cell with large backside emitter areas and manufacturing method therefor
DE102008030693A1 (en) * 2008-07-01 2010-01-14 Institut Für Solarenergieforschung Gmbh Heterojunction solar cell with absorber with integrated doping profile
KR101142861B1 (en) * 2009-02-04 2012-05-08 엘지전자 주식회사 Solar cell and manufacturing method of the same
US8525018B2 (en) * 2009-09-07 2013-09-03 Lg Electronics Inc. Solar cell
FR2953999B1 (en) 2009-12-14 2012-01-20 Total Sa PHOTOVOLTAIC CELL HETEROJUNCTION WITH REAR CONTACT
KR20110071375A (en) * 2009-12-21 2011-06-29 현대중공업 주식회사 Back contact type hetero-junction solar cell and method of fabricating the same
DE102010007695A1 (en) * 2010-02-09 2011-08-11 Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, 14109 Back-contacted solar cell with unstructured absorber layer
EP2555251A4 (en) * 2010-03-31 2017-04-19 Panasonic Intellectual Property Management Co., Ltd. Method for manufacturing solar cell, and solar cell
JP2013219065A (en) * 2010-08-06 2013-10-24 Sanyo Electric Co Ltd Solar cell and method for manufacturing the same
US8633379B2 (en) 2010-08-17 2014-01-21 Lg Electronics Inc. Solar cell
WO2012132995A1 (en) 2011-03-25 2012-10-04 三洋電機株式会社 Method for producing photoelectric conversion element
GB2491209B (en) 2011-05-27 2013-08-21 Renewable Energy Corp Asa Solar cell and method for producing same
US9490376B2 (en) * 2011-09-29 2016-11-08 Lg Electronics Inc. Solar cell module
GB2503515A (en) * 2012-06-29 2014-01-01 Rec Cells Pte Ltd A rear contact heterojunction solar cell
JP6774163B2 (en) * 2014-12-03 2020-10-21 シャープ株式会社 Photoelectric converter
EP3163632A1 (en) 2015-11-02 2017-05-03 CSEM Centre Suisse d'Electronique et de Microtechnique SA - Recherche et Développement Photovoltaic device and method for manufacturing the same
CN105932089B (en) * 2016-06-24 2019-02-22 深圳大学 The back contact silicon heterojunction solar battery and preparation method thereof of no interface doping
CN110416344A (en) * 2019-07-10 2019-11-05 中山大学 A kind of silicon substrate antimony trisulfide heterojunction solar battery and preparation method thereof

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4478879A (en) * 1983-02-10 1984-10-23 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Screen printed interdigitated back contact solar cell
JPH0682854B2 (en) * 1989-11-24 1994-10-19 株式会社日立製作所 Solar cell
JPH03181180A (en) * 1989-12-11 1991-08-07 Canon Inc Solar battery and its manufacture
JPH0427169A (en) * 1990-05-22 1992-01-30 Mitsubishi Materials Corp Solar cell
US5641362A (en) * 1995-11-22 1997-06-24 Ebara Solar, Inc. Structure and fabrication process for an aluminum alloy junction self-aligned back contact silicon solar cell
JP3468670B2 (en) * 1997-04-28 2003-11-17 シャープ株式会社 Solar cell and manufacturing method thereof
JP2001284616A (en) * 2000-04-03 2001-10-12 Toyota Motor Corp Photoelectric transfer element for thermal optical generating device
JP2002057352A (en) * 2000-06-02 2002-02-22 Honda Motor Co Ltd Solar battery and manufacturing method
JP2002280586A (en) * 2001-03-21 2002-09-27 Toyota Motor Corp Internal electrode type solar battery

Cited By (62)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006041105A (en) * 2004-07-26 2006-02-09 Sharp Corp Solar cell and method of manufacturing the same
JP2008519438A (en) * 2004-10-29 2008-06-05 ビーピー・コーポレーション・ノース・アメリカ・インコーポレーテッド Back contact solar cell
JP2006156646A (en) * 2004-11-29 2006-06-15 Sharp Corp Solar cell manufacturing method
JP2008529265A (en) * 2005-01-20 2008-07-31 コミツサリア タ レネルジー アトミーク Semiconductor device having heterojunction and interfinger structure
JP2006294802A (en) * 2005-04-08 2006-10-26 Toyota Motor Corp Photoelectric conversion element
WO2007034614A1 (en) * 2005-09-22 2007-03-29 Sharp Kabushiki Kaisha Method of manufacturing back junction solar cell
JP2007088254A (en) * 2005-09-22 2007-04-05 Sharp Corp Manufacturing method of back junction type solar cell
JP4657068B2 (en) * 2005-09-22 2011-03-23 シャープ株式会社 Manufacturing method of back junction solar cell
JP2009524916A (en) * 2006-01-26 2009-07-02 アライズ テクノロジーズ コーポレーション Solar cell
JP2009535845A (en) * 2006-05-04 2009-10-01 サンパワー コーポレイション Solar cell with doped semiconductor heterojunction electrode
JP2010504636A (en) * 2006-09-26 2010-02-12 コミサリア、ア、レネルジ、アトミク Back heterojunction solar cell manufacturing method
JP2008135556A (en) 2006-11-28 2008-06-12 Sanyo Electric Co Ltd P-type amorphous silicon thin film, photovoltaic device, and manufacturing method for them
JP2010521824A (en) * 2007-03-16 2010-06-24 ビーピー・コーポレーション・ノース・アメリカ・インコーポレーテッド Solar cell
JP2010528487A (en) * 2007-05-29 2010-08-19 サンパワー コーポレイション Array of small contacts for solar cell manufacturing
JP2014168076A (en) * 2007-05-29 2014-09-11 Sunpower Corp Method of fabricating solar cell
US8883247B2 (en) 2007-05-29 2014-11-11 Sunpower Corporation Array of small contacts for solar cell fabrication
JP2011507245A (en) * 2007-12-11 2011-03-03 インスティトュート フィュル ゾラールエネルギーフォルシュング ゲーエムベーハー Back electrode type solar cell having elongated, interdigitated emitter region and base region on back side, and manufacturing method thereof
JP2010538492A (en) * 2008-02-25 2010-12-09 サニーバ,インコーポレイテッド Solar cell having crystalline silicon pn homojunction and amorphous silicon heterojunction for surface stabilization
JP2009206375A (en) * 2008-02-28 2009-09-10 Sanyo Electric Co Ltd Solar cell and method of manufacturing the same
WO2009125628A1 (en) * 2008-04-08 2009-10-15 シャープ株式会社 Solar battery cell manufacturing method, solar battery module manufacturing method, and solar battery module
JP2009253096A (en) * 2008-04-08 2009-10-29 Sharp Corp Solar battery cell manufacturing method, solar battery module manufacturing method, and solar battery module
JP2010123859A (en) * 2008-11-21 2010-06-03 Kyocera Corp Solar battery element and production process of solar battery element
KR101578356B1 (en) 2009-02-25 2015-12-17 엘지전자 주식회사 Back contact solar cell and Manufacturing method thereof
JP2012525006A (en) * 2009-04-21 2012-10-18 テトラサン インコーポレイテッド High efficiency solar cell structure and manufacturing method
JP2014207475A (en) * 2009-04-21 2014-10-30 テトラサン インコーポレイテッド High-efficiency solar cell structure and manufacturing method
US9666732B2 (en) 2009-04-21 2017-05-30 Tetrasun, Inc. High-efficiency solar cell structures and methods of manufacture
US9130074B2 (en) 2009-04-21 2015-09-08 Tetrasun, Inc. High-efficiency solar cell structures and methods of manufacture
JP2011009615A (en) * 2009-06-28 2011-01-13 Sino-American Silicon Products Inc Method for manufacturing solar cell
JP2017076826A (en) * 2009-12-01 2017-04-20 サンパワー コーポレイション Solar cell
JP2015146446A (en) * 2009-12-01 2015-08-13 サンパワー コーポレイション Formation of contact with solar cell utilizing laser ablation
JP2013512582A (en) * 2009-12-01 2013-04-11 サンパワー コーポレイション Formation of solar cell contacts using laser ablation
JP2011199276A (en) * 2010-02-26 2011-10-06 Ulvac Japan Ltd Surface treatment method and method for manufacturing solar cell
JP2011199277A (en) * 2010-02-26 2011-10-06 Ulvac Japan Ltd Surface treatment method and method for manufacturing solar cell
US9443994B2 (en) 2010-03-26 2016-09-13 Tetrasun, Inc. Shielded electrical contact and doping through a passivating dielectric layer in a high-efficiency crystalline solar cell, including structure and methods of manufacture
US9966481B2 (en) 2010-03-26 2018-05-08 Tetrasun, Inc. Shielded electrical contact and doping through a passivating dielectric layer in a high-efficiency crystalline solar cell, including structure and methods of manufacture
WO2011149021A1 (en) * 2010-05-28 2011-12-01 株式会社エバテック Method for manufacturing photovoltaic element, and photovoltaic element
KR20120025732A (en) * 2010-09-08 2012-03-16 엘지전자 주식회사 Method for manufacturing solar cell
KR101699297B1 (en) * 2010-09-08 2017-02-13 엘지전자 주식회사 Method for manufacturing solar cell
US9123817B2 (en) 2010-10-12 2015-09-01 Samsung Electronics Co., Ltd. Transistors and electronic devices including the same
JP2012084747A (en) * 2010-10-13 2012-04-26 National Institute Of Advanced Industrial & Technology Crystal silicon solar cell manufacturing method
WO2012117825A1 (en) * 2011-02-28 2012-09-07 三洋電機株式会社 Solar cell and process of manufacturing solar cell
JP2012216593A (en) * 2011-03-31 2012-11-08 Mitsubishi Electric Corp Photovoltaic device, method of manufacturing the same, and photovoltaic module
JP2013021095A (en) * 2011-07-11 2013-01-31 Tokyo Univ Of Agriculture & Technology Solar cell and manufacturing method thereof
WO2013008482A1 (en) * 2011-07-11 2013-01-17 国立大学法人東京農工大学 Solar cell and method for manufacturing same
US10170657B2 (en) 2012-03-23 2019-01-01 Sunpower Corporation Solar cell having an emitter region with wide bandgap semiconductor material
JP2017195391A (en) * 2012-03-23 2017-10-26 サンパワー コーポレイション Solar cell having emitter region containing wide bandgap semiconductor material
US11605750B2 (en) 2012-03-23 2023-03-14 Sunpower Corporation Solar cell having an emitter region with wide bandgap semiconductor material
US10957809B2 (en) 2012-03-23 2021-03-23 Sunpower Corporation Solar cell having an emitter region with wide bandgap semiconductor material
US10490685B2 (en) 2012-03-23 2019-11-26 Sunpower Corporation Solar cell having an emitter region with wide bandgap semiconductor material
JP2015525961A (en) * 2012-06-29 2015-09-07 エコール ポリテクニク フェデラル ドゥ ローザンヌ(ウペエフエル) Solar cell
JP2014056918A (en) * 2012-09-12 2014-03-27 Sharp Corp Photoelectric conversion element and photoelectric conversion element manufacturing method
WO2014042114A1 (en) * 2012-09-12 2014-03-20 シャープ株式会社 Photoelectric conversion element and method for manufacturing photoelectric conversion element
JP2014123692A (en) * 2012-12-19 2014-07-03 Junji Hirokane Photovoltaic element and process of manufacturing the same
JP2015015472A (en) * 2013-07-05 2015-01-22 エルジー エレクトロニクス インコーポレイティド Solar cell and method of manufacturing the same
US10833210B2 (en) 2013-07-05 2020-11-10 Lg Electronics Inc. Solar cell and method for manufacturing the same
JPWO2015115360A1 (en) * 2014-01-29 2017-03-23 パナソニックIpマネジメント株式会社 Solar cell
WO2015115360A1 (en) * 2014-01-29 2015-08-06 パナソニックIpマネジメント株式会社 Solar cell
US9673341B2 (en) 2015-05-08 2017-06-06 Tetrasun, Inc. Photovoltaic devices with fine-line metallization and methods for manufacture
CN108140685A (en) * 2015-10-05 2018-06-08 株式会社爱发科 HBC type crystal solar cells and its manufacturing method
WO2017061467A1 (en) * 2015-10-05 2017-04-13 株式会社アルバック Hbc crystalline solar cell and production method therefor
JP2019169599A (en) * 2018-03-23 2019-10-03 株式会社カネカ Method for manufacturing solar cell and solar cell
JP7043308B2 (en) 2018-03-23 2022-03-29 株式会社カネカ How to manufacture solar cells and solar cells

Also Published As

Publication number Publication date
WO2003083955A1 (en) 2003-10-09
AU2003217486A1 (en) 2003-10-13

Similar Documents

Publication Publication Date Title
JP2003298078A (en) Photoelectromotive element
JP6746854B2 (en) Solar cell having emitter region containing wide bandgap semiconductor material
JP6411604B2 (en) Solar cell
JP5421701B2 (en) Crystalline silicon solar cell and manufacturing method thereof
US20150144197A1 (en) Hybrid polysilicon heterojunction back contact cell
JP2010518609A (en) Hybrid silicon solar cell and method of manufacturing the hybrid silicon solar cell
JP2003298077A (en) Solar cell
JPH04245683A (en) Manufacture of solar cell
JP6612359B2 (en) Method for manufacturing photoelectric conversion device
CN115188837B (en) Back contact solar cell, preparation method and cell assembly
JPH05235391A (en) Thin film solar cell and its manufacture and manufacture of semiconductor device
US20140014169A1 (en) Nanostring mats, multi-junction devices, and methods for making same
JPH0864851A (en) Photovoltaic element and fabrication thereof
TWI447919B (en) Silicon based solar cell with a heterojunction structure and the manufacturing method thereof
JP7237920B2 (en) Solar cell manufacturing method
EP2469602B1 (en) Method to manufacture an electrode
JP2005064014A (en) Thin film crystal solar cell and its manufacturing method
JP4693505B2 (en) Photoelectric conversion device and photovoltaic device using the same
JP3540149B2 (en) Thin film deposition method by plasma CVD
JP4485766B2 (en) Photoelectric conversion device and method for manufacturing photoelectric conversion device
JP2004296550A (en) Photovoltaic element and its fabricating process
CN205810839U (en) Silica-based heterojunction solaode
JP2833924B2 (en) Crystal solar cell and method of manufacturing the same
JP2005286067A (en) Forming method of polycrystalline silicon film
JPH07135332A (en) Fabrication of photovoltaic power element