JP2003297435A - Device for estimating life of storage battery and device for controlling storage battery - Google Patents

Device for estimating life of storage battery and device for controlling storage battery

Info

Publication number
JP2003297435A
JP2003297435A JP2002095295A JP2002095295A JP2003297435A JP 2003297435 A JP2003297435 A JP 2003297435A JP 2002095295 A JP2002095295 A JP 2002095295A JP 2002095295 A JP2002095295 A JP 2002095295A JP 2003297435 A JP2003297435 A JP 2003297435A
Authority
JP
Japan
Prior art keywords
storage battery
deterioration
amount
life
current
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002095295A
Other languages
Japanese (ja)
Other versions
JP3949488B2 (en
Inventor
Tatsuro Minami
達郎 南
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP2002095295A priority Critical patent/JP3949488B2/en
Publication of JP2003297435A publication Critical patent/JP2003297435A/en
Application granted granted Critical
Publication of JP3949488B2 publication Critical patent/JP3949488B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L1/00Supplying electric power to auxiliary equipment of vehicles
    • B60L1/003Supplying electric power to auxiliary equipment of vehicles to auxiliary motors, e.g. for pumps, compressors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/12Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries responding to state of charge [SoC]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/16Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries responding to battery ageing, e.g. to the number of charging cycles or the state of health [SoH]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/24Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries for controlling the temperature of batteries
    • B60L58/26Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries for controlling the temperature of batteries by cooling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/54Drive Train control parameters related to batteries
    • B60L2240/545Temperature
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/54Drive Train control parameters related to batteries
    • B60L2240/547Voltage
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/54Drive Train control parameters related to batteries
    • B60L2240/549Current
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2250/00Driver interactions
    • B60L2250/16Driver interactions by display
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2260/00Operating Modes
    • B60L2260/40Control modes
    • B60L2260/44Control modes by parameter estimation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Secondary Cells (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a device for estimating a service life of a storage battery with high precision. <P>SOLUTION: The device comprises a temperature sensor 3 for detecting the temperature of the storage battery 2, a current sensor 4 for detecting the input/output currents of the storage battery 2, and a computation controller 5 having a power storage amount detecting means for detecting the amount of power stored in the storage battery 2 from an integrated value of the currents detected by the current sensor 4. The computation controller 5 has a degradation speed calculating means for calculating the degradation speed of the storage battery 2 from an average temperature and an average current value of the battery 2 and the amount of the power stored in the battery 2, and a life calculating means for calculating the service life of the battery 2 by dividing a preset degradation characteristic value by the degradation speed. <P>COPYRIGHT: (C)2004,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、使用状態に応じて
変動する蓄電池の寿命を予測する蓄電池の寿命予測装置
と、蓄電池の寿命を延ばすように使用状態を制御する蓄
電池の制御装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a storage battery life predicting device for predicting the life of a storage battery which varies depending on the use condition, and a storage battery control device for controlling the use condition so as to extend the life of the storage battery. is there.

【0002】[0002]

【従来の技術】蓄電池(バッテリ)は、自動車のスター
タ用、無停電電源装置あるいは太陽光発電システムなど
の様々な分野や環境で利用されており、それぞれの電力
として大きな役割を果たしている。そのため、蓄電池の
寿命を知ることは各分野において非常に重要なことであ
る。
2. Description of the Related Art A storage battery (battery) is used in various fields and environments such as a starter of an automobile, an uninterruptible power supply or a solar power generation system, and plays a large role as electric power for each. Therefore, it is very important to know the life of the storage battery in each field.

【0003】例えば、特開2000−228227号公
報においては、蓄電池の蓄電量(SOC:state of cha
rge)と温度との関係式から電池容量の劣化速度を積算
し、これを初期の電池容量から減算することにより、所
定時間における電池容量を算出するものが開示されてい
る。
For example, in Japanese Unexamined Patent Publication No. 2000-228227, the storage amount (SOC: state of cha) of a storage battery is set.
rge) and the temperature, the deterioration rate of the battery capacity is integrated, and this is subtracted from the initial battery capacity to calculate the battery capacity at a predetermined time.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、蓄電池
が使用される分野によっては、蓄電池の充電状態や温度
を考慮するのみでは、十分に蓄電池の寿命を予測できな
い場合がある。例えば、蓄電池を駆動源とするハイブリ
ッド車両においては、蓄電池の寿命を高い精度で予測す
ることが要望されており、上述した従来の技術において
は十分に要望を満たすことができないという問題があっ
た。また、蓄電池の寿命を予測できた場合に、その寿命
を延ばすように蓄電池の制御を行うことが要望されてい
た。
However, depending on the field in which the storage battery is used, the life of the storage battery may not be sufficiently predicted only by considering the charge state and temperature of the storage battery. For example, in a hybrid vehicle using a storage battery as a drive source, it is required to predict the life of the storage battery with high accuracy, and the above-described conventional technique has a problem that the demand cannot be sufficiently satisfied. Further, when the life of the storage battery can be predicted, it has been demanded to control the storage battery so as to extend the life.

【0005】本発明は、このような事情に鑑みてなされ
たもので、ハイブリッド車両のような高い精度で蓄電池
の寿命を予測することが要望されている分野において
も、蓄電池の寿命を高い精度で予測することができる蓄
電池の寿命予測装置を提供することを目的とする。ま
た、本発明は、蓄電池の寿命を伸ばすことができる蓄電
池の制御装置を提供することを目的とする。
The present invention has been made in view of such circumstances, and even in a field where it is desired to predict the life of a storage battery with high accuracy such as in a hybrid vehicle, the life of the storage battery is highly accurate. It is an object of the present invention to provide a storage battery life prediction device capable of predicting. Another object of the present invention is to provide a control device for a storage battery, which can extend the life of the storage battery.

【0006】[0006]

【課題を解決するための手段】請求項1に記載した発明
は、蓄電池(例えば、後述する実施の形態における蓄電
池2)の温度を検出する温度検出器(例えば、後述する
実施の形態における温度センサー3)と、蓄電池の入出
力電流を検出する電流検出器(例えば、後述する実施の
形態における電流センサー4)と、電流検出器で検出さ
れた電流の積算値より蓄電池の蓄電量を検出する蓄電量
検出手段を有する演算制御器(例えば、後述する実施の
形態における演算制御器5)を備え、前記演算制御器
は、蓄電池の平均温度と平均電流値と蓄電量より蓄電池
の劣化速度を算出する劣化速度算出手段と、蓄電池の許
容劣化量を算出し、該許容劣化量を前記劣化速度で除算
して寿命時間を算出する寿命算出手段を備えたことを特
徴とする蓄電池の寿命予測装置(例えば、後述する実施
の形態における蓄電池の寿命予測装置1)である。
The invention described in claim 1 is a temperature detector for detecting the temperature of a storage battery (for example, a storage battery 2 in the embodiment described later) (for example, a temperature sensor in the embodiment described later). 3), a current detector for detecting the input / output current of the storage battery (for example, a current sensor 4 in the embodiment described later), and a storage for detecting the storage amount of the storage battery from the integrated value of the current detected by the current detector. An arithmetic controller having an amount detecting means (for example, arithmetic controller 5 in the embodiment described later) is provided, and the arithmetic controller calculates the deterioration rate of the storage battery from the average temperature of the storage battery, the average current value, and the stored amount. Life of a storage battery, comprising: a deterioration rate calculation means; and a life calculation means for calculating an allowable deterioration amount of the storage battery and dividing the allowable deterioration amount by the deterioration speed to calculate a life time. Prediction device (e.g., life prediction apparatus 1 battery in the embodiment described below) it is.

【0007】この発明は、蓄電池の劣化速度が、蓄電池
の温度と、蓄電池の入出力電流と、蓄電池の蓄電量とに
大きく依存するという、本発明者の知見によりなされた
ものである。この発明によれば、前記温度検出器により
検出する蓄電池の温度と、前記電流検出器により検出す
る蓄電池の入出力電流と、前記演算制御器の蓄電量検出
手段により検出する蓄電池の蓄電量の変動幅とに基づい
て、前記劣化速度算出手段により蓄電池の劣化速度を算
出しているため、使用条件に応じて変動する蓄電池の劣
化速度を求めることができる。加えて、前記寿命算出手
段により蓄電池の許容劣化量を算出し、該許容劣化量を
蓄電池の劣化速度で除算することで、使用条件に応じて
変動する蓄電池の寿命時間を高い精度で予測することが
できる。
The present invention was made by the inventor's knowledge that the deterioration rate of a storage battery largely depends on the temperature of the storage battery, the input / output current of the storage battery, and the amount of electricity stored in the storage battery. According to the present invention, the temperature of the storage battery detected by the temperature detector, the input / output current of the storage battery detected by the current detector, and the change in the storage amount of the storage battery detected by the storage amount detection means of the arithmetic controller. Since the deterioration speed of the storage battery is calculated by the deterioration speed calculation means based on the width, it is possible to obtain the deterioration speed of the storage battery which varies according to the usage conditions. In addition, by calculating the permissible deterioration amount of the storage battery by the life calculation means and dividing the permissible deterioration amount by the deterioration speed of the storage battery, it is possible to highly accurately predict the life time of the storage battery, which varies according to the usage conditions. You can

【0008】請求項2に記載した発明は、蓄電池の温度
を検出する温度検出器と、蓄電池の入出力電流を検出す
る電流検出器と、電流検出器で検出された電流の積算値
より蓄電池の蓄電量を検出する蓄電量検出手段を有する
演算制御器(例えば、後述する実施の形態における演算
制御器21)とを備え、前記演算制御器は、蓄電池の平
均温度と平均電流値と蓄電量より蓄電池の劣化速度を算
出する劣化速度算出手段を備え、劣化速度が所定値以上
になると蓄電池の劣化速度を低下させる劣化速度低下制
御手段(例えば、後述する実施の形態における演算制御
器21)を作動させることを特徴とする蓄電池の制御装
置(例えば、後述する実施の形態における蓄電池の制御
装置20)である。
According to the second aspect of the invention, a temperature detector for detecting the temperature of the storage battery, a current detector for detecting the input / output current of the storage battery, and an integrated value of the current detected by the current detector are used to detect the storage battery. An arithmetic controller (for example, arithmetic controller 21 in the embodiment described later) having an electricity storage amount detecting means for detecting an electricity storage amount, wherein the arithmetic and control unit is based on an average temperature, an average current value, and an electricity storage amount of a storage battery. A deterioration speed calculation means for calculating the deterioration speed of the storage battery is provided, and the deterioration speed reduction control means for decreasing the deterioration speed of the storage battery when the deterioration speed becomes a predetermined value or more (for example, arithmetic controller 21 in the embodiment described later) is operated. A control device for a storage battery (for example, a control device 20 for a storage battery in an embodiment described later) characterized by the above.

【0009】この発明によれば、請求項1の発明の場合
と同様にして、使用条件に応じて変動する蓄電池の劣化
速度を求めることができる。加えて、劣化速度が所定値
以上の場合には、前記劣化速度低下制御手段を作動させ
ることにより、蓄電池の劣化速度を低下させるため、蓄
電池の急激な劣化を防止することができ、蓄電池の寿命
を一定以上に確保することができる。
According to the present invention, similarly to the case of the first aspect of the present invention, it is possible to obtain the deterioration rate of the storage battery which varies depending on the use condition. In addition, when the deterioration speed is equal to or higher than a predetermined value, the deterioration speed of the storage battery is decreased by operating the deterioration speed lowering control means, so that the rapid deterioration of the storage battery can be prevented and the life of the storage battery can be prevented. Can be secured above a certain level.

【0010】請求項3に記載した発明は、請求項2に記
載のものであって、前記劣化速度低下制御手段は、劣化
速度が所定値以上になると蓄電池に設ける冷却装置(例
えば、後述する実施の形態における冷却用ファン22)
を作動させる冷却制御手段を備えていることを特徴とす
る蓄電池の制御装置である。
A third aspect of the present invention is the second aspect of the present invention, wherein the deterioration rate reduction control means provides a cooling device provided to the storage battery when the deterioration rate exceeds a predetermined value (for example, an embodiment described later). Fan 22) in the form of
It is a control device for a storage battery, which is provided with a cooling control means for activating.

【0011】この発明によれば、予定した蓄電池の入出
力電流を維持しつつ、蓄電池の劣化速度を低下させるこ
とができる。このため、蓄電池の作動を制限することな
く、蓄電池の寿命を一定時間以上確保することができ
る。
According to the present invention, the deterioration rate of the storage battery can be reduced while maintaining the planned input / output current of the storage battery. Therefore, the life of the storage battery can be secured for a certain period of time or more without limiting the operation of the storage battery.

【0012】請求項4に記載した発明は、請求項2また
は請求項3に記載のものであって、劣化速度が所定値以
上になると蓄電池の入出力電流を制限する電流制限手段
(例えば、後述する実施の形態における入出力制御器2
3)を備えていることを特徴とする蓄電池の制御装置で
ある。
The invention according to claim 4 is the invention according to claim 2 or 3, wherein current limiting means (for example, which will be described later) limits the input / output current of the storage battery when the deterioration rate exceeds a predetermined value. Input / output controller 2 in the embodiment
3) A storage battery control device comprising:

【0013】この発明によれば、劣化速度の低減をより
短時間で行うことができ、蓄電池の寿命をより確実に一
定時間以上確保することができる。
According to the present invention, the deterioration rate can be reduced in a shorter time, and the life of the storage battery can be more reliably ensured for a certain time or longer.

【0014】請求項5に記載した発明は、請求項2から
請求項4のいずれかに記載のものであって、劣化速度が
所定値以上になると蓄電池の蓄電量の上限値を小さくす
る充放電範囲制限手段を備えていることを特徴とする蓄
電池の制御装置である。この発明によれば、劣化速度の
低減をさらに短時間で行うことができ、蓄電池の寿命を
さらに確実に確保することができる。
A fifth aspect of the present invention is the charge-discharge method according to any one of the second to fourth aspects, wherein the upper limit value of the amount of electricity stored in the storage battery is reduced when the deterioration rate becomes a predetermined value or more. A storage battery control device comprising a range limiting means. According to the present invention, the deterioration rate can be reduced in a shorter time, and the life of the storage battery can be ensured more reliably.

【0015】請求項6に記載した発明は、請求項2から
請求項5のいずれかに記載のものであって、前記劣化速
度低下制御手段は、劣化速度が所定値以上になると蓄電
池の蓄電量の下限値を大きくする充放電範囲制限手段を
備えていることを特徴とする蓄電池の制御装置である。
この発明によれば、劣化速度の低減をさらに短時間で行
うことができ、蓄電池の寿命をさらに確実に一定時間以
上確保することができる。
The invention according to claim 6 is the invention according to any one of claims 2 to 5, wherein the deterioration speed reduction control means is arranged so that when the deterioration speed exceeds a predetermined value, the amount of electricity stored in the storage battery is increased. The storage battery control device is provided with a charging / discharging range limiting means for increasing the lower limit value of.
According to the present invention, the deterioration rate can be reduced in a shorter time, and the life of the storage battery can be more reliably ensured for a certain time or longer.

【0016】[0016]

【発明の実施の形態】以下、本発明の実施形態における
蓄電池の寿命予測装置、蓄電池の制御装置について図面
と共に説明する。本実施の形態においては、ハイブリッ
ド車両に搭載された蓄電池の寿命を予測する場合、該蓄
電池の寿命を制御する場合を例として説明する。
BEST MODE FOR CARRYING OUT THE INVENTION A storage battery life prediction apparatus and a storage battery control apparatus according to embodiments of the present invention will be described below with reference to the drawings. In the present embodiment, a case of predicting the life of a storage battery mounted on a hybrid vehicle and a case of controlling the life of the storage battery will be described as an example.

【0017】図1は本発明の第1の実施の形態における
蓄電池の寿命予測装置1(以下、単に「寿命予測装置
1」という)を示すブロック図である。同図に示したよ
うに、前記寿命予測装置1は、蓄電池2の温度を検出す
るための温度センサー3と、該蓄電池2の入出力電流を
検出するための電流センサー4と、該蓄電池2の蓄電量
を検出する蓄電量検出手段を有する演算制御器(EC
U)5を備えている。
FIG. 1 is a block diagram showing a storage battery life predicting apparatus 1 (hereinafter, simply referred to as "life predicting apparatus 1") according to a first embodiment of the present invention. As shown in FIG. 1, the life prediction apparatus 1 includes a temperature sensor 3 for detecting the temperature of the storage battery 2, a current sensor 4 for detecting the input / output current of the storage battery 2, and the storage battery 2 An arithmetic and control unit (EC having an electricity storage amount detecting means for detecting an electricity storage amount)
U) 5.

【0018】前記電流センサー4は、前記蓄電池2と電
動機(モータ・ジェネレータ)6との接続経路上に設け
られ、前記蓄電池2の充放電時の電流を検出できるよう
にしている。そして、前記演算制御器5は前記温度セン
サー3や前記電流センサー4に接続され、これらのセン
サー3,4で検出した蓄電池2の温度や電流が前記演算
制御器5に入力される。
The current sensor 4 is provided on the connection path between the storage battery 2 and the electric motor (motor / generator) 6 so as to detect the current when the storage battery 2 is charged and discharged. The arithmetic controller 5 is connected to the temperature sensor 3 and the current sensor 4, and the temperature and current of the storage battery 2 detected by these sensors 3 and 4 are input to the arithmetic controller 5.

【0019】また、前記演算制御器5は、その内部に蓄
電量検出手段(図示せず)が設けられ、前記電流センサ
ー4で検出された電流の積算値より蓄電池2の蓄電量を
検出できるようにしている。前記演算制御器5はイグニ
ッション7に接続され、該イグニッション7からの信号
を受けて、後述する演算処理を行うのである。そして、
演算制御器5は寿命推定表示器8に接続されており、該
寿命推定表示器8にて演算制御器5で演算した寿命を表
示できるようにしている。
Further, the arithmetic and control unit 5 is provided with a storage amount detecting means (not shown) therein, so that the storage amount of the storage battery 2 can be detected from the integrated value of the current detected by the current sensor 4. I have to. The arithmetic controller 5 is connected to the ignition 7 and receives a signal from the ignition 7 to perform an arithmetic process described later. And
The arithmetic and control unit 5 is connected to the life estimation display unit 8 so that the life estimation display unit 8 can display the life calculated by the arithmetic and control unit 5.

【0020】前記蓄電池2は、前記電動機6がモータと
して機能する場合には、該モータに駆動電力を供給す
る。一方、前記電動機6がジェネレータ6として機能す
る場合には、該ジェネレータから回生電力が供給され
る。このように、蓄電池2は使用状態が様々に変動す
る。
When the electric motor 6 functions as a motor, the storage battery 2 supplies drive power to the motor. On the other hand, when the electric motor 6 functions as the generator 6, regenerative electric power is supplied from the generator. As described above, the usage state of the storage battery 2 varies in various ways.

【0021】本発明者は、蓄電池2の劣化速度が、温度
Tと、入出力電流(電流負荷)と、蓄電池の蓄電量の変
動幅(充電深度或いは放電深度で表される充放電範囲)
とに大きく依存するという知見に基づいて、これらの間
の関係式を導出した。以下にその内容を示す。
The inventor has found that the deterioration rate of the storage battery 2 is such that the temperature T, the input / output current (current load), and the fluctuation range of the amount of electricity stored in the storage battery (charge / discharge range represented by charge depth or discharge depth).
Based on the finding that it greatly depends on and, we derived the relational expression between them. The contents are shown below.

【0022】蓄電池2の劣化速度をKとし、使用条件の
変数をXとすると、これらは次式(1)で表わすことが
できる。 式(1):K=f(X) この関数f(X)は、指数関数によってほぼ正確に近似
できる傾向がある。
When the deterioration rate of the storage battery 2 is K and the variable of the usage condition is X, these can be expressed by the following equation (1). Formula (1): K = f (X) This function f (X) tends to be approximated by an exponential function almost exactly.

【0023】さらに、上述の式(1)は、変数XがX
1、X2の場合の劣化速度をK1、K2とすると、その
比率Q(K2/K1)は他の変数Yの条件が変化しても
ほぼ等しくなる傾向がある。
Further, in the above equation (1), the variable X is X
If the deterioration rates in the cases of 1 and X2 are K1 and K2, the ratio Q (K2 / K1) tends to be substantially the same even if the conditions of other variables Y change.

【0024】例えば、K=f(X)が温度Tの相関式の
場合、電流値I1のときの劣化速度比率Q1と電流値が
I2のときの劣化速度の比率Q2は、ほぼ同じ値を示
す。これは、各使用条件の間で交互作用が少ないので成
立する。
For example, when K = f (X) is a correlation expression of the temperature T, the deterioration speed ratio Q1 when the current value is I1 and the deterioration speed ratio Q2 when the current value is I2 show substantially the same value. . This holds because there are few interactions between each use condition.

【0025】本発明者は以上の知見に基づき、劣化速度
Kが下記の式(2)で表現できることを確認した。 式(2):K=ft(T) ×fi(I) × fs(S) ここで、 ft(T)は温度Tに依存する項、fi(I)
は電流値Iに依存する項、fs(S)は蓄電量の変動幅S
に依存する項である。
Based on the above findings, the present inventor has confirmed that the deterioration rate K can be expressed by the following equation (2). Formula (2): K = ft (T) × fi (I) × fs (S) where ft (T) is a term dependent on the temperature T, fi (I)
Is a term depending on the current value I, and fs (S) is a fluctuation range S of the stored amount.
Is a term that depends on.

【0026】この劣化速度Kで、予め実験で計測した蓄
電池の許容劣化量Rを除算することにより、該劣化量R
に達する蓄電池2の寿命時間Lが求められる。すなわ
ち、 式(3):L = R÷K これらの式(2)、式(3)を用いて、蓄電池2の寿命
時間Lを容易に推定することができる。なお、許容劣化
量Rについては詳細を後述する。
The deterioration rate R is obtained by dividing the allowable deterioration rate R of the storage battery measured in advance by an experiment by the deterioration rate K.
The life time L of the storage battery 2 that reaches That is, the formula (3): L = R / K These formulas (2) and (3) can be used to easily estimate the life time L of the storage battery 2. The allowable deterioration amount R will be described in detail later.

【0027】以下、前記式(2)の形をより具体的に算
出する。本発明者は、劣化速度Kが温度Tのみに依存す
る場合のアレニウスの式(4) 式(4):K=Λe(-ΔE/(kT) (ここで、Λは定数)と、温度Tと他のストレス因子S
を一つ含んだアイリングの式(5) 式(5):K=a((kT)/h)・e(-ΔE/(kT))
α に基づいて、以下の式(6)を導出した。 式(6):K=a((kT)/h)・e(-ΔE/(kT))
α・S’α' ここで、Sは電流負荷、S’は蓄電量の変動幅を示して
おり、温度以外のストレス因子である。hはプランク定
数、kはボルツマン定数、ΔEは活性化エネルギー、T
は絶対温度である。
Hereinafter, the form of the equation (2) will be calculated more concretely. The present inventor has found that the Arrhenius equation (4) when the deterioration rate K depends only on the temperature T: Equation (4): K = Λe (-ΔE / (kT) (where Λ is a constant) and the temperature T And other stress factors S
Eyring's equation (5) including one equation (5): K = a ((kT) / h) · e (-ΔE / (kT)) ·
The following equation (6) was derived based on S α . Formula (6): K = a ((kT) / h) ・ e (-ΔE / (kT))
S α · S 'α'where S is the current load and S'is the fluctuation range of the amount of stored electricity, which is a stress factor other than temperature. h is Planck's constant, k is Boltzmann's constant, ΔE is activation energy, T
Is the absolute temperature.

【0028】前記式(6)の係数を求めるために、劣化
速度Kと各変数(電流負荷、蓄電量、温度)ごとの関係
を、以下に示すように図3〜図5を用いて求める。前記
式(6)において、3つの変数のうち一つ(例えば電流
負荷)に着目して両辺の対数をとると、式(6)は、以
下のようになる。 式(7):lnK=A+αlnS ここでA、αは定数である。これらの値を図3から求め
る。
In order to obtain the coefficient of the above equation (6), the relationship between the deterioration rate K and each variable (current load, charge amount, temperature) is obtained using FIGS. 3 to 5 as follows. When the logarithm of both sides is taken by focusing on one of the three variables (for example, current load) in the equation (6), the equation (6) is as follows. Formula (7): lnK = A + αlnS where A and α are constants. These values are obtained from FIG.

【0029】図3は蓄電池2の電流負荷特性を示すグラ
フである。縦軸に内部抵抗劣化速度K(%/hr)の対
数をとり、横軸に電流負荷S(C)の対数をとったもの
である。同図においては、他の変数の影響を受けないよ
うに、温度と蓄電量の条件は一定としている。図3か
ら、この式(7)の係数A、αは 式(8):A=−3.5、α=1.00 となる。
FIG. 3 is a graph showing the current load characteristics of the storage battery 2. The vertical axis represents the logarithm of the internal resistance deterioration rate K (% / hr), and the horizontal axis represents the logarithm of the current load S (C). In the figure, the conditions of the temperature and the amount of stored electricity are constant so as not to be affected by other variables. From FIG. 3, the coefficients A and α of this equation (7) are equation (8): A = −3.5, α = 1.00.

【0030】同様にして、前記式(6)において、蓄電
量に着目すると、 式(9):lnK=A’+α’lnS’ ここでA’、α’は定数である。これらの値を図4から
求める。図4は蓄電池2の蓄電量特性を示すグラフであ
る。縦軸に内部抵抗劣化速度K(%/hr)の対数をと
り、横軸に蓄電量の変動幅(%)の対数をとったもので
ある。同図においては、他の変数の影響を受けないよう
に、温度と電流負荷の条件は一定としている。図4か
ら、この式(9)の係数A’、α’は、 式(10):A’=−3.8、α=0.32 となる。
Similarly, paying attention to the amount of electricity stored in the equation (6), the equation (9): lnK = A '+ α'lnS' where A'and α'are constants. These values are obtained from FIG. FIG. 4 is a graph showing the storage amount characteristic of the storage battery 2. The vertical axis represents the logarithm of the internal resistance deterioration rate K (% / hr), and the horizontal axis represents the logarithm of the fluctuation range (%) of the stored amount. In the figure, conditions of temperature and current load are constant so as not to be influenced by other variables. From FIG. 4, the coefficients A ′ and α ′ of this equation (9) are equation (10): A ′ = − 3.8, α = 0.32.

【0031】同様にして、前記式(6)において、温度
Tに着目すると、 式(11):lnK=A”−ΔE/(kT)=A”−
α”/T ここでA”、α”は定数であり、この内、α”=ΔE/
kである。これらの値を図5から求める。図5は蓄電池
2の温度特性を示すグラフである。縦軸に内部抵抗劣化
速度K(%/hr)の対数をとり、横軸に絶対温度の逆
数1/T(K)の対数をとったものである。同図におい
ては、他の変数の影響を受けないように、電流負荷と蓄
電量の変動幅の条件は一定としている。図5から、この
式の係数A”、α”は、 式(12):A”=11、α”=−4600 となる。
Similarly, focusing on the temperature T in the equation (6), the equation (11): lnK = A "-ΔE / (kT) = A"-
α ″ / T where A ″ and α ″ are constants, of which α ″ = ΔE /
k. These values are obtained from FIG. FIG. 5 is a graph showing the temperature characteristics of the storage battery 2. The vertical axis is the logarithm of the internal resistance deterioration rate K (% / hr), and the horizontal axis is the logarithm of the reciprocal 1 / T (K) of the absolute temperature. In the figure, the conditions of the fluctuation range of the current load and the stored amount are constant so as not to be influenced by other variables. From FIG. 5, the coefficients A ″ and α ″ of this equation are given by Equation (12): A ″ = 11, α ″ = − 4600.

【0032】以上より、蓄電池の劣化速度(内部抵抗劣
化反応速度)Kが次式(13)で表される。 式(13):K=dR/dt=55T・e(-4600/T)
1・S’0.32 この式(13)に、使用条件として温度T、電流負荷
S、蓄電量の変動幅S’の値を代入すれば、劣化速度K
の値を求めることができる。ここで、Rは蓄電池2の許
容劣化量、tは規定時間であり、許容劣化量Rは蓄電池
の寿命が到来し十分な充放電機能が得られなくなるまで
の劣化量を示す値であり、様々な使用条件下での実験に
より計測して得られる。そして、劣化速度Kを式(2)
に代入することにより、蓄電池2の寿命時間Lを求める
ことができる。
From the above, the deterioration rate (internal resistance deterioration reaction rate) K of the storage battery is expressed by the following equation (13). Formula (13): K = dR / dt = 55T · e (-4600 / T) ·
S 1 · S ′ 0.32 Degradation speed K
The value of can be obtained. Here, R is a permissible deterioration amount of the storage battery 2, t is a specified time, and the permissible deterioration amount R is a value indicating a deterioration amount until the life of the storage battery is reached and a sufficient charging / discharging function cannot be obtained. It is obtained by measurement by experiments under various usage conditions. Then, the deterioration rate K is calculated by the formula (2)
By substituting into, the life time L of the storage battery 2 can be obtained.

【0033】例えば、温度50℃、電流値2C、蓄電量
の変動幅20%の条件で蓄電池2を使用している場合に
は、式(13)から、反応速度Kは0.061(%/h
r)となり、寿命が到来するまでの許容劣化量Rが30
%の場合の寿命時間を式(2)より算出すると、490
hrが得られる。このように使用条件から、劣化速度K
と寿命時間Lを算出することができる。図6は蓄電池2
の寿命時間を使用条件ごとに実験したデータである。同
図では、許容劣化量Rが30%の場合を寿命として寿命
時間を計測している。
For example, when the storage battery 2 is used under the conditions of a temperature of 50 ° C., a current value of 2 C and a fluctuation range of the stored amount of 20%, the reaction rate K is 0.061 (% / h
r), and the allowable deterioration amount R until the end of the life is 30
When the life time in the case of% is calculated from the equation (2), it is 490
hr is obtained. In this way, the deterioration rate K
And the life time L can be calculated. FIG. 6 shows a storage battery 2
It is the data which experimented the life time of each for every use condition. In the figure, the life time is measured assuming that the allowable deterioration amount R is 30%.

【0034】図2は図1に示した寿命予測装置1のフロ
ーチャートである。同図のステップS10に示したよう
に、イグニッション7をONにすると、その信号が演算
制御器5に入力されてタイマー(図示せず)が作動し、
規定時間の計測を開始する。そして、劣化速度Kの変数
である蓄電池2の温度、電流負荷、蓄電量の変動幅を規
定測定時間ごとにサンプリングする。ステップS12に
示したようにサンプリングを行う時間が規定測定時間に
到達したかどうかを判定し、判定結果が「YES」であ
る場合はステップS14に進み、判定結果が「NO」で
ある場合はステップS10に戻って上記処理を繰り返
す。
FIG. 2 is a flow chart of the life prediction device 1 shown in FIG. As shown in step S10 of the figure, when the ignition 7 is turned on, the signal is input to the arithmetic controller 5 and a timer (not shown) is activated,
Start measuring the specified time. Then, the fluctuation range of the temperature of the storage battery 2, the current load, and the amount of stored electricity, which are variables of the deterioration rate K, are sampled for each specified measurement time. As shown in step S12, it is determined whether or not the sampling time has reached the specified measurement time. If the determination result is “YES”, the process proceeds to step S14, and if the determination result is “NO”, the step The process returns to S10 and the above process is repeated.

【0035】ステップS14では、規定時間毎に各変数
(温度等)の代表値(使用環境条件代表値、例えば平均
値)を算出する。そして、ステップS16では、この各
変数の代表値を式(13)に代入して、劣化速度Kを算
出する。本実施の形態においては、この劣化速度Kを前
記寿命推定表示器8にて表示させ、これにより、現在の
蓄電池2に及ぼす影響度合いを示している。
In step S14, a representative value (representative value of use environment condition, for example, average value) of each variable (temperature, etc.) is calculated every prescribed time. Then, in step S16, the deterioration rate K is calculated by substituting the representative value of each variable into the equation (13). In the present embodiment, the deterioration rate K is displayed on the life estimation display 8 to show the degree of influence on the current storage battery 2.

【0036】ステップS18においては、規定時間毎に
算出した各劣化速度Kに規定時間を乗じた劣化量Riを
積算して、積算劣化量ΣRiを算出する。そして、ステ
ップS20に示したように、この積算劣化量ΣRiを蓄
電池2の初期の許容劣化量R0から減算することで残存
する許容劣化量Rを算出する。例えば、初期の許容劣化
量R0が30(%)で積算劣化量が10(%)の場合、
残存する許容劣化量Rは20(%)となる。この許容劣
化量Rが0(%)になった場合は、蓄電池の機能が不十
分な状態となり寿命到来となる。
In step S18, the deterioration amount Ri obtained by multiplying each deterioration rate K calculated for each specified time by the specified time is integrated to calculate an integrated deterioration amount ΣRi. Then, as shown in step S20, the remaining allowable deterioration amount R is calculated by subtracting the integrated deterioration amount ΣRi from the initial allowable deterioration amount R0 of the storage battery 2. For example, when the initial allowable deterioration amount R0 is 30 (%) and the integrated deterioration amount is 10 (%),
The remaining allowable deterioration amount R is 20 (%). When the allowable deterioration amount R becomes 0 (%), the function of the storage battery becomes insufficient and the life of the storage battery is reached.

【0037】そして、ステップS22に示したように、
算出した劣化特性値を反応速度で除算することにより推
定寿命時間を算出して、処理を終了する。このようにし
たため、使用条件に応じて変動する蓄電池2の劣化速度
Kを求めることができ、使用条件に応じて変動する蓄電
池2の寿命時間Lを高い精度で予測することができる。
なお、劣化速度の履歴を記録しておくことにより、蓄電
池2の解析に寄与することができる。
Then, as shown in step S22,
The estimated life time is calculated by dividing the calculated deterioration characteristic value by the reaction speed, and the process ends. Since it did in this way, the deterioration rate K of the storage battery 2 which changes according to a use condition can be calculated | required, and the life time L of the storage battery 2 which changes according to a use condition can be estimated with high precision.
By recording the history of the deterioration rate, it is possible to contribute to the analysis of the storage battery 2.

【0038】 以下、蓄電池の制御装置について説明す
る。図7は本発明の実施の形態における蓄電池の制御装
置20(以下、単に「制御装置20」という)を示すブ
ロック図である。ここで、前記寿命予測装置1と同一の
構成部分については同一の番号を付してその説明を適宜
省略する。
The control device for the storage battery will be described below. FIG. 7 is a block diagram showing a storage battery control device 20 (hereinafter, simply referred to as “control device 20”) in the embodiment of the present invention. Here, the same components as those of the life prediction apparatus 1 are designated by the same reference numerals, and the description thereof will be omitted as appropriate.

【0039】前記制御装置20は演算制御器21を備え
ており、この演算制御器21は前記演算制御器5と同様
に、蓄電池2の劣化速度Kや寿命時間Lを式(13)や
式(2)により算出する機能を備えている。また、前記
演算制御器21は、蓄電池2に設けられた冷却用ファン
22や、電動機6に接続された入出力制御器23に接続
され、前記冷却用ファン22や入出力制御器23を制御
可能としている。
The control device 20 is provided with an arithmetic controller 21, which, like the arithmetic controller 5, calculates the deterioration rate K and the life time L of the storage battery 2 using the equation (13) or the equation ( It has a function to calculate by 2). Further, the arithmetic controller 21 is connected to a cooling fan 22 provided in the storage battery 2 and an input / output controller 23 connected to the electric motor 6 to control the cooling fan 22 and the input / output controller 23. I am trying.

【0040】図8は図7に示した制御装置20のフロー
チャートである。同図において、ステップS30〜S3
6の処理は、図2のステップS10〜S16の処理と同
様であるため、説明を省略する。
FIG. 8 is a flowchart of the control device 20 shown in FIG. In the figure, steps S30 to S3
Since the process of 6 is the same as the process of steps S10 to S16 of FIG. 2, description thereof will be omitted.

【0041】ステップS38においては、ステップS3
6において算出した劣化速度Kが基準劣化速度以上かど
うかを判定し、判定結果が「YES」である場合はステ
ップS40に進み、判定結果が「NO」である場合は一
連の処理を一旦終了する。
In step S38, step S3
It is determined whether or not the deterioration rate K calculated in 6 is equal to or higher than the reference deterioration rate. If the determination result is “YES”, the process proceeds to step S40, and if the determination result is “NO”, the series of processes is temporarily terminated. .

【0042】上記判定結果が「YES」の場合には、以
下に示すように蓄電池2の劣化速度を低下させる処理を
行う。すなわち、ステップS40では、前記冷却用ファ
ン22を作動させて蓄電池2を冷却する制御を行う。図
6に示したように、蓄電池2の寿命時間は温度が高くな
ると低下するため、上述した冷却制御を行うことによ
り、劣化速度Kの低下を図り、蓄電池2の延命を図って
いる。これにより、蓄電池2の作動機能を維持しつつ蓄
電池2の寿命を確保することができる。
When the result of the determination is "YES", the processing for reducing the deterioration rate of the storage battery 2 is performed as described below. That is, in step S40, the cooling fan 22 is operated to control the storage battery 2. As shown in FIG. 6, since the life time of the storage battery 2 decreases as the temperature increases, the deterioration rate K is reduced by extending the life of the storage battery 2 by performing the cooling control described above. Thereby, the life of the storage battery 2 can be ensured while maintaining the operation function of the storage battery 2.

【0043】そして、ステップS42に示すように、劣
化速度Kを再度算出してこれが基準劣化速度以上かどう
かを判定し、判定結果が「YES」である場合はステッ
プS44に進み、判定結果が「NO」である場合は一連
の処理を一旦終了する。
Then, as shown in step S42, the deterioration rate K is calculated again and it is determined whether or not this is the reference deterioration rate. If the determination result is "YES", the process proceeds to step S44, and the determination result is " If “NO”, the series of processes is once ended.

【0044】ステップS44では、前記入出力制御器2
3を作動させることにより充放電量を制御する処理を行
う。図6に示したように、蓄電池2の寿命時間は電流負
荷が大きくなると低下するため、上述した充放電量を制
御することにより、劣化速度Kの低下を図り、蓄電池2
の延命を図っている。これにより、蓄電池2の寿命をよ
り確実に一定時間以上確保することができる。
In step S44, the input / output controller 2
A process for controlling the charge / discharge amount is performed by activating No. 3. As shown in FIG. 6, since the life time of the storage battery 2 decreases as the current load increases, the deterioration rate K is reduced by controlling the charge / discharge amount described above.
Are trying to extend their lives. As a result, the life of the storage battery 2 can be more reliably ensured for a certain time or longer.

【0045】そして、ステップS46に示すように、劣
化速度Kを再度算出してこれが基準劣化速度以上かどう
かを判定し、判定結果が「YES」である場合はステッ
プS48に進み、判定結果が「NO」である場合は一連
の処理を一旦終了する。
Then, as shown in step S46, the deterioration rate K is calculated again, and it is determined whether or not this is equal to or higher than the reference deterioration rate. If the determination result is "YES", the process proceeds to step S48 and the determination result is " If “NO”, the series of processes is once ended.

【0046】ステップS48においては、前記蓄電池2
の蓄電量の変動幅を制御する処理を行う。図6に示した
ように、蓄電池2の寿命時間は蓄電量の変動幅が大きく
なると低下するため、上述した変動幅が小さくなるよう
制御することにより、劣化速度Kの低下を図り、蓄電池
2の延命を図っている。これにより、蓄電池2の寿命を
さらに確実に一定時間以上確保することができる。この
蓄電量の変動幅の制限としては、蓄電量の上限値を小さ
くすることで制限してもよいし、蓄電量の下限値を大き
くすることで制限してもよく、また両方の制限を行って
もよい。
In step S48, the storage battery 2
A process for controlling the fluctuation range of the stored power amount is performed. As shown in FIG. 6, since the life time of the storage battery 2 decreases as the fluctuation range of the stored amount increases, the deterioration rate K is reduced by controlling the fluctuation range described above to decrease. I am trying to extend my life. As a result, the life of the storage battery 2 can be more reliably ensured for a certain period of time or longer. The fluctuation range of the charged amount may be limited by decreasing the upper limit value of the charged amount, by increasing the lower limit value of the charged amount, or by both limits. May be.

【0047】なお、実施の形態においては、ハイブリッ
ド車両に適用される蓄電池の寿命予測や寿命制御を行う
場合について説明したが、本発明の適用範囲はこれに限
られず、例えば太陽光発電システムなどの様々な分野や
環境で利用される蓄電池の寿命予測や寿命制御を行う場
合に適用することができる。
In the embodiment, the case where the life prediction or life control of the storage battery applied to the hybrid vehicle is performed has been described, but the application range of the present invention is not limited to this, and for example, in a solar power generation system or the like. It can be applied in the case of performing life prediction and life control of storage batteries used in various fields and environments.

【0048】[0048]

【発明の効果】以上説明したように、請求項1に記載し
た発明によれば、使用条件に応じて変動する蓄電池の劣
化速度を求めることができ、この劣化速度に基づいて蓄
電池の寿命時間を高い精度で予測することができる。
As described above, according to the invention described in claim 1, it is possible to obtain the deterioration rate of the storage battery which varies according to the use condition, and the life time of the storage battery is calculated based on this deterioration rate. It can be predicted with high accuracy.

【0049】請求項2に記載した発明によれば、使用条
件に応じて変動する蓄電池の劣化速度を求めることがで
きる。加えて、劣化速度が所定値以上の場合には、前記
劣化速度低下制御手段を作動させることにより、蓄電池
の急激な劣化を防止することができ、蓄電池の劣化速度
を低下させるため、蓄電池の寿命を一定時間以上確保す
ることができる。
According to the second aspect of the present invention, it is possible to obtain the deterioration rate of the storage battery which varies depending on the usage conditions. In addition, when the deterioration rate is equal to or higher than a predetermined value, it is possible to prevent the rapid deterioration of the storage battery by operating the deterioration speed reduction control means, and to reduce the deterioration speed of the storage battery, so that the life of the storage battery is reduced. Can be secured for a certain time or longer.

【0050】請求項3に記載した発明によれば、予定し
た蓄電池の入出力電流を維持しつつ、蓄電池の劣化速度
を低下させることができるため、蓄電池の作動を制限す
ることなく、蓄電池の寿命を一定時間以上確保すること
ができる。請求項4に記載した発明によれば、劣化速度
の低減をより短時間で行うことができ、蓄電池の寿命を
より確実に確保することができる。
According to the third aspect of the present invention, the deterioration speed of the storage battery can be reduced while maintaining the planned input / output current of the storage battery. Therefore, the operation of the storage battery is not limited and the life of the storage battery is limited. Can be secured for a certain time or longer. According to the invention described in claim 4, the deterioration rate can be reduced in a shorter time, and the life of the storage battery can be more reliably ensured.

【0051】請求項5に記載した発明によれば、劣化速
度の低減をさらに短時間で行うことができ、蓄電池の寿
命をさらに確実に一定時間以上確保することができる。
請求項6に記載した発明によれば、劣化速度の低減をさ
らに短時間で行うことができ、蓄電池の寿命をさらに確
実に一定時間以上確保することができる。
According to the invention described in claim 5, the deterioration rate can be reduced in a shorter time, and the life of the storage battery can be more reliably ensured for a certain time or more.
According to the invention described in claim 6, the deterioration rate can be reduced in a shorter time, and the life of the storage battery can be more reliably ensured for a certain time or more.

【図面の簡単な説明】[Brief description of drawings]

【図1】 図1は本発明の実施の形態における蓄電池の
寿命予測装置を示すブロック図である。
FIG. 1 is a block diagram showing a life estimation device for a storage battery according to an embodiment of the present invention.

【図2】 図1に示した蓄電池の寿命予測装置のフロー
チャートである。
FIG. 2 is a flowchart of the storage battery life prediction apparatus shown in FIG.

【図3】 図1に示した蓄電池の電流負荷特性を示すグ
ラフである。
FIG. 3 is a graph showing current load characteristics of the storage battery shown in FIG.

【図4】 図1に示した蓄電池のSOC変動幅特性を示
すグラフである。
FIG. 4 is a graph showing SOC fluctuation range characteristics of the storage battery shown in FIG. 1.

【図5】 図1に示した蓄電池の温度特性を示すグラフ
である。
5 is a graph showing temperature characteristics of the storage battery shown in FIG.

【図6】 図1に示した蓄電池の寿命時間を使用条件ご
とに実験したデータである。
FIG. 6 is data obtained by performing an experiment on the life time of the storage battery shown in FIG. 1 for each use condition.

【図7】 図7は本発明の実施の形態における蓄電池の
制御装置を示すブロック図である。
FIG. 7 is a block diagram showing a control device for a storage battery according to an embodiment of the present invention.

【図8】 図7に示した蓄電池の制御装置のフローチャ
ートである。
8 is a flowchart of a control device for the storage battery shown in FIG.

【符号の説明】[Explanation of symbols]

1 蓄電池の寿命予測装置 2 蓄電池 3 温度検出器 4 電流センサー 5 演算制御器(ECU) 20 蓄電池の制御装置 21 演算制御器 22 冷却用ファン 23 入出力制御器 1 Battery life prediction device 2 storage battery 3 Temperature detector 4 current sensor 5 Operation controller (ECU) 20 Battery control device 21 Arithmetic controller 22 Cooling fan 23 I / O controller

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 5G003 BA01 DA07 EA08 FA06 GC05 5H030 AA03 AA04 AA06 AS08 BB01 BB21 FF22 FF42 FF52 5H031 AA01 AA02 AA09 KK01 5H115 PA11 PA15 PG04 PI16 PU01 PU21 SE06 TI09 TO05 TO12 TO13 TR19    ─────────────────────────────────────────────────── ─── Continued front page    F-term (reference) 5G003 BA01 DA07 EA08 FA06 GC05                 5H030 AA03 AA04 AA06 AS08 BB01                       BB21 FF22 FF42 FF52                 5H031 AA01 AA02 AA09 KK01                 5H115 PA11 PA15 PG04 PI16 PU01                       PU21 SE06 TI09 TO05 TO12                       TO13 TR19

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 蓄電池の温度を検出する温度検出器と、
蓄電池の入出力電流を検出する電流検出器と、電流検出
器で検出された電流の積算値より蓄電池の蓄電量を検出
する蓄電量検出手段を有する演算制御器を備え、 前記演算制御器は、蓄電池の平均温度と平均電流値と蓄
電量の変動幅より蓄電池の劣化速度を算出する劣化速度
算出手段と、蓄電池の許容劣化量を算出し、該許容劣化
量を前記劣化速度で除算して寿命時間を算出する寿命算
出手段を備えたことを特徴とする蓄電池の寿命予測装
置。
1. A temperature detector for detecting the temperature of a storage battery,
A current detector for detecting the input / output current of the storage battery, and an arithmetic controller having a storage amount detection means for detecting the storage amount of the storage battery from the integrated value of the current detected by the current detector, the arithmetic controller, A deterioration rate calculating means for calculating the deterioration rate of the storage battery from the fluctuation range of the average temperature, the average current value of the storage battery and the amount of stored electricity, and the allowable deterioration amount of the storage battery is calculated, and the allowable deterioration amount is divided by the deterioration speed to determine the life. A life prediction device for a storage battery, comprising a life calculation means for calculating time.
【請求項2】 蓄電池の温度を検出する温度検出器と、
蓄電池の入出力電流を検出する電流検出器と、電流検出
器で検出された電流の積算値より蓄電池の蓄電量を検出
する蓄電量検出手段を有する演算制御器を備え、 前記演算制御器は、蓄電池の平均温度と平均電流値と蓄
電量の変動幅より蓄電池の劣化速度を算出する劣化速度
算出手段を備え、劣化速度が所定値以上になると蓄電池
の劣化速度を低下させる劣化速度低下制御手段を作動さ
せることを特徴とする蓄電池の制御装置。
2. A temperature detector for detecting the temperature of a storage battery,
A current detector for detecting the input / output current of the storage battery, and an arithmetic controller having a storage amount detection means for detecting the storage amount of the storage battery from the integrated value of the current detected by the current detector, the arithmetic controller, A deterioration speed calculation means for calculating the deterioration speed of the storage battery from the average temperature of the storage battery, the average current value, and the fluctuation range of the amount of stored electricity is provided, and a deterioration speed reduction control means for decreasing the deterioration speed of the storage battery when the deterioration speed becomes a predetermined value or more A storage battery control device characterized by being operated.
【請求項3】 前記劣化速度低下制御手段は、前記劣化
速度が所定値以上になると蓄電池に設ける冷却装置を作
動させる冷却制御手段を備えていることを特徴とする請
求項2に記載の蓄電池の制御装置。
3. The storage battery according to claim 2, wherein the deterioration rate lowering control means includes a cooling control means that operates a cooling device provided in the storage battery when the deterioration rate becomes a predetermined value or more. Control device.
【請求項4】 前記劣化速度低下制御手段は、劣化速度
が所定値以上になると蓄電池への入出力電流を制限する
電流制限手段を備えていることを特徴とする請求項2ま
たは請求項3に記載の蓄電池の制御装置。
4. The deterioration rate lowering control means comprises current limiting means for limiting the input / output current to and from the storage battery when the deterioration rate becomes equal to or higher than a predetermined value. The storage battery control device described.
【請求項5】 前記劣化速度低下制御手段は、劣化速度
が所定値以上になると蓄電池の蓄電量の上限値を小さく
する充放電範囲制限手段を備えていることを特徴とする
請求項2から請求項4のいずれかに記載の蓄電池の制御
装置。
5. The deterioration rate lowering control means is provided with a charging / discharging range limiting means for reducing the upper limit value of the amount of electricity stored in the storage battery when the deterioration rate becomes equal to or higher than a predetermined value. Item 5. A storage battery control device according to any one of items 4.
【請求項6】 前記劣化速度低下制御手段は、劣化速度
が所定値以上になると蓄電池の蓄電量の下限値を大きく
する充放電範囲制限手段を備えていることを特徴とする
請求項2から請求項5のいずれかに記載の蓄電池の制御
装置。
6. The charging / discharging range limiting means for increasing the lower limit value of the amount of electricity stored in the storage battery when the deterioration speed reduction control means is equal to or higher than a predetermined value. Item 6. A storage battery control device according to any one of items 5.
JP2002095295A 2002-03-29 2002-03-29 Storage battery life prediction device and storage battery control device Expired - Fee Related JP3949488B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002095295A JP3949488B2 (en) 2002-03-29 2002-03-29 Storage battery life prediction device and storage battery control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002095295A JP3949488B2 (en) 2002-03-29 2002-03-29 Storage battery life prediction device and storage battery control device

Publications (2)

Publication Number Publication Date
JP2003297435A true JP2003297435A (en) 2003-10-17
JP3949488B2 JP3949488B2 (en) 2007-07-25

Family

ID=29387185

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002095295A Expired - Fee Related JP3949488B2 (en) 2002-03-29 2002-03-29 Storage battery life prediction device and storage battery control device

Country Status (1)

Country Link
JP (1) JP3949488B2 (en)

Cited By (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005039919A1 (en) * 2003-10-29 2005-05-06 Toyota Jidosha Kabushiki Kaisha Secondary battery control apparatus and control method
JP2007057385A (en) * 2005-08-24 2007-03-08 Fuji Heavy Ind Ltd Degradation estimation system for electricity accumulation device
WO2007114410A1 (en) * 2006-03-31 2007-10-11 Toyota Jidosha Kabushiki Kaisha Hybrid vehicle battery information display device
JP2008024124A (en) * 2006-07-20 2008-02-07 Honda Motor Co Ltd Controller of vehicular power source and its control method
WO2008016129A1 (en) * 2006-08-01 2008-02-07 Toyota Jidosha Kabushiki Kaisha Secondary battery charge/discharge control device and hybrid vehicle using the same
WO2008029244A2 (en) 2006-09-04 2008-03-13 Toyota Jidosha Kabushiki Kaisha Electricity storage control apparatus and method of controlling electricity storage
JP2008210020A (en) * 2007-02-23 2008-09-11 Nec Corp Disk array device and disk controller control program
US7482779B2 (en) 2003-10-20 2009-01-27 Toyota Jidosha Kabushiki Kaishi Control apparatus of electricity accumulation mechanism
WO2009037881A1 (en) * 2007-09-18 2009-03-26 Mitsubishi Heavy Industries, Ltd. Power storage system
WO2009063688A1 (en) * 2007-11-13 2009-05-22 Toyota Jidosha Kabushiki Kaisha Secondary battery control device and method
FR2944358A1 (en) * 2009-04-09 2010-10-15 Peugeot Citroen Automobiles Sa Battery's e.g. lithium-ion battery, health state estimating device for electrical traction of e.g. hybrid vehicle, has samplers to calculate difference between symptomatic and effective parameters, and comparator to indicate health state
WO2011061809A1 (en) * 2009-11-17 2011-05-26 トヨタ自動車株式会社 Vehicle and method for controlling vehicle
JP2011220900A (en) * 2010-04-12 2011-11-04 Honda Motor Co Ltd Battery deterioration estimation method, battery capacity estimation method, battery capacity equalization method and battery deterioration estimation device
WO2011142023A1 (en) * 2010-05-14 2011-11-17 トヨタ自動車株式会社 Control device and control method of secondary battery
JP2013501326A (en) * 2009-08-04 2013-01-10 リ−テック・バッテリー・ゲーエムベーハー Method for controlling a battery and apparatus for carrying out the method
JP2013065481A (en) * 2011-09-20 2013-04-11 Hitachi Ltd Lithium ion secondary battery control system and battery pack control system
WO2014023746A2 (en) * 2012-08-06 2014-02-13 Jaguar Land Rover Limited Control of rechargeable electric battery system for a vehicle
US8676482B2 (en) 2006-02-10 2014-03-18 Toyota Jidosha Kabushiki Kaisha Hybrid vehicle battery life evaluating apparatus
JP2014055896A (en) * 2012-09-13 2014-03-27 Toshiba Corp Charge/discharge management device, storage battery management device and storage battery management system
JP2014079065A (en) * 2012-10-09 2014-05-01 Mitsubishi Motors Corp Power control device
FR3007371A1 (en) * 2013-06-19 2014-12-26 Bosch Gmbh Robert METHOD FOR MANAGING THE AGING OF A COMPONENT AND THE ENERGY CONSUMPTION IN PARTICULAR OF A MOTOR VEHICLE
WO2015059873A1 (en) * 2013-10-21 2015-04-30 パナソニックIpマネジメント株式会社 Power management apparatus
KR20150106912A (en) * 2013-03-04 2015-09-22 가부시끼가이샤 도시바 Secondary cell system having plurality of cells, and method for distributing charge/discharge electric power
JP2015171197A (en) * 2014-03-05 2015-09-28 三菱自動車工業株式会社 Management device of secondary battery
WO2016159087A1 (en) * 2015-03-31 2016-10-06 株式会社Gsユアサ Power storage element degradation estimator, power storage device, device for controlling input/output of power storage element, and method for controlling input/output of power storage element
WO2017043239A1 (en) * 2015-09-09 2017-03-16 日立オートモティブシステムズ株式会社 Storage battery control device
CN106937534A (en) * 2014-12-16 2017-07-07 英特尔公司 Mechanism for extending the cycle life of battery
US10228425B2 (en) 2014-06-24 2019-03-12 Samsung Electronics Co., Ltd. Method and apparatus for learning and estimating battery state information
JP2020195208A (en) * 2019-05-28 2020-12-03 本田技研工業株式会社 Management device, management method, and program
WO2022024500A1 (en) * 2020-07-29 2022-02-03 パナソニック インテレクチュアル プロパティ コーポレーション オブ アメリカ Information processing device, program, and information processing method
CN114509103A (en) * 2020-10-23 2022-05-17 丰田自动车株式会社 Service life prediction device for vehicle component

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104656026B (en) * 2014-11-13 2017-10-27 科力远混合动力技术有限公司 A kind of hybrid power automobile battery overcharges diagnostic method and system
CN113875067A (en) * 2019-05-30 2021-12-31 株式会社杰士汤浅国际 Generation device, prediction system, generation method, and computer program

Cited By (63)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7482779B2 (en) 2003-10-20 2009-01-27 Toyota Jidosha Kabushiki Kaishi Control apparatus of electricity accumulation mechanism
CN1874912B (en) * 2003-10-29 2012-02-08 丰田自动车株式会社 Secondary battery control apparatus and control method
WO2005039919A1 (en) * 2003-10-29 2005-05-06 Toyota Jidosha Kabushiki Kaisha Secondary battery control apparatus and control method
US7479761B2 (en) 2003-10-29 2009-01-20 Toyota Jidosha Kabushiki Kaisha Secondary battery control apparatus and control method for predicting charging in regenerative braking
JP2007057385A (en) * 2005-08-24 2007-03-08 Fuji Heavy Ind Ltd Degradation estimation system for electricity accumulation device
US8676482B2 (en) 2006-02-10 2014-03-18 Toyota Jidosha Kabushiki Kaisha Hybrid vehicle battery life evaluating apparatus
US7880597B2 (en) 2006-03-31 2011-02-01 Toyota Jidosha Kabushiki Kaisha Hybrid vehicle battery information display device
WO2007114410A1 (en) * 2006-03-31 2007-10-11 Toyota Jidosha Kabushiki Kaisha Hybrid vehicle battery information display device
JP2008024124A (en) * 2006-07-20 2008-02-07 Honda Motor Co Ltd Controller of vehicular power source and its control method
WO2008016129A1 (en) * 2006-08-01 2008-02-07 Toyota Jidosha Kabushiki Kaisha Secondary battery charge/discharge control device and hybrid vehicle using the same
JP2008042960A (en) * 2006-08-01 2008-02-21 Toyota Motor Corp Charge/discharge controller of secondary battery and hybrid vehicle mounting it
US8336651B2 (en) 2006-08-01 2012-12-25 Toyota Jidosha Kabushiki Kaisha Charge/discharge control device for secondary battery and hybrid vehicle using the same
WO2008029244A2 (en) 2006-09-04 2008-03-13 Toyota Jidosha Kabushiki Kaisha Electricity storage control apparatus and method of controlling electricity storage
WO2008029244A3 (en) * 2006-09-04 2008-07-24 Toyota Motor Co Ltd Electricity storage control apparatus and method of controlling electricity storage
US8180508B2 (en) 2006-09-04 2012-05-15 Toyota Jidosha Kabushiki Kaisha Electricity storage control apparatus and method of controlling electricity storage
JP4501946B2 (en) * 2007-02-23 2010-07-14 日本電気株式会社 Control program for disk array device and disk controller
JP2008210020A (en) * 2007-02-23 2008-09-11 Nec Corp Disk array device and disk controller control program
JP2009070777A (en) * 2007-09-18 2009-04-02 Mitsubishi Heavy Ind Ltd Electric power storage system
US8729861B2 (en) 2007-09-18 2014-05-20 Mitsubishi Heavy Industries, Ltd. Power storage system
WO2009037881A1 (en) * 2007-09-18 2009-03-26 Mitsubishi Heavy Industries, Ltd. Power storage system
KR101162937B1 (en) * 2007-09-18 2012-07-05 규슈덴료쿠 가부시키가이샤 Power storage system
WO2009063688A1 (en) * 2007-11-13 2009-05-22 Toyota Jidosha Kabushiki Kaisha Secondary battery control device and method
JP4494453B2 (en) * 2007-11-13 2010-06-30 トヨタ自動車株式会社 Secondary battery control device and control method
JP2009123435A (en) * 2007-11-13 2009-06-04 Toyota Motor Corp Device and method of controlling secondary battery
FR2944358A1 (en) * 2009-04-09 2010-10-15 Peugeot Citroen Automobiles Sa Battery's e.g. lithium-ion battery, health state estimating device for electrical traction of e.g. hybrid vehicle, has samplers to calculate difference between symptomatic and effective parameters, and comparator to indicate health state
JP2013501326A (en) * 2009-08-04 2013-01-10 リ−テック・バッテリー・ゲーエムベーハー Method for controlling a battery and apparatus for carrying out the method
JP5310865B2 (en) * 2009-11-17 2013-10-09 トヨタ自動車株式会社 Vehicle and vehicle control method
CN102648106A (en) * 2009-11-17 2012-08-22 丰田自动车株式会社 Vehicle and method for controlling vehicle
WO2011061809A1 (en) * 2009-11-17 2011-05-26 トヨタ自動車株式会社 Vehicle and method for controlling vehicle
US8712619B2 (en) 2009-11-17 2014-04-29 Toyota Jidosha Kabushiki Kaisha Vehicle and method for controlling vehicle
JP2011220900A (en) * 2010-04-12 2011-11-04 Honda Motor Co Ltd Battery deterioration estimation method, battery capacity estimation method, battery capacity equalization method and battery deterioration estimation device
WO2011142023A1 (en) * 2010-05-14 2011-11-17 トヨタ自動車株式会社 Control device and control method of secondary battery
JP5644855B2 (en) * 2010-05-14 2014-12-24 トヨタ自動車株式会社 Secondary battery control device and control method
JP2013065481A (en) * 2011-09-20 2013-04-11 Hitachi Ltd Lithium ion secondary battery control system and battery pack control system
WO2014023746A2 (en) * 2012-08-06 2014-02-13 Jaguar Land Rover Limited Control of rechargeable electric battery system for a vehicle
WO2014023746A3 (en) * 2012-08-06 2014-06-19 Jaguar Land Rover Limited Control of rechargeable electric battery system for a vehicle
US9834099B2 (en) 2012-08-06 2017-12-05 Jaguar Land Rover Limited Control of rechargeable electric battery system for a vehicle
JP2014055896A (en) * 2012-09-13 2014-03-27 Toshiba Corp Charge/discharge management device, storage battery management device and storage battery management system
JP2014079065A (en) * 2012-10-09 2014-05-01 Mitsubishi Motors Corp Power control device
KR20150106912A (en) * 2013-03-04 2015-09-22 가부시끼가이샤 도시바 Secondary cell system having plurality of cells, and method for distributing charge/discharge electric power
KR101725701B1 (en) * 2013-03-04 2017-04-10 가부시끼가이샤 도시바 Secondary cell system having plurality of cells, and method for distributing charge/discharge electric power or current
US9825474B2 (en) 2013-03-04 2017-11-21 Kabushiki Kaisha Toshiba Secondary battery system with plural batteries and method of distributing charge/discharge power
FR3007371A1 (en) * 2013-06-19 2014-12-26 Bosch Gmbh Robert METHOD FOR MANAGING THE AGING OF A COMPONENT AND THE ENERGY CONSUMPTION IN PARTICULAR OF A MOTOR VEHICLE
WO2015059873A1 (en) * 2013-10-21 2015-04-30 パナソニックIpマネジメント株式会社 Power management apparatus
JPWO2015059873A1 (en) * 2013-10-21 2017-03-09 パナソニックIpマネジメント株式会社 Power management equipment
JP2015171197A (en) * 2014-03-05 2015-09-28 三菱自動車工業株式会社 Management device of secondary battery
US10228425B2 (en) 2014-06-24 2019-03-12 Samsung Electronics Co., Ltd. Method and apparatus for learning and estimating battery state information
US11682908B2 (en) 2014-12-16 2023-06-20 Tahoe Research, Ltd. Mechanism for extending cycle life of a battery
CN106937534B (en) * 2014-12-16 2020-11-24 英特尔公司 Mechanism for extending cycle life of a battery
JP2018504875A (en) * 2014-12-16 2018-02-15 インテル コーポレイション Mechanisms for extending battery cycle life
CN106937534A (en) * 2014-12-16 2017-07-07 英特尔公司 Mechanism for extending the cycle life of battery
US10527681B2 (en) 2015-03-31 2020-01-07 Gs Yuasa International Ltd. Degradation estimator for energy storage device, energy storage apparatus, input-output control device for energy storage device, and method for controlling input and output of energy storage device
JPWO2016159087A1 (en) * 2015-03-31 2018-02-01 株式会社Gsユアサ Degradation estimator for power storage element, power storage device, input / output control device for power storage element, and input / output control method for power storage element
WO2016159087A1 (en) * 2015-03-31 2016-10-06 株式会社Gsユアサ Power storage element degradation estimator, power storage device, device for controlling input/output of power storage element, and method for controlling input/output of power storage element
CN108028438A (en) * 2015-09-09 2018-05-11 日立汽车系统株式会社 Accumulator control device
JP2017054684A (en) * 2015-09-09 2017-03-16 日立オートモティブシステムズ株式会社 Power storage battery control device
WO2017043239A1 (en) * 2015-09-09 2017-03-16 日立オートモティブシステムズ株式会社 Storage battery control device
US11226376B2 (en) 2015-09-09 2022-01-18 Vehicle Energy Japan Inc. Storage battery control device
JP2020195208A (en) * 2019-05-28 2020-12-03 本田技研工業株式会社 Management device, management method, and program
US11390187B2 (en) 2019-05-28 2022-07-19 Honda Motor Co., Ltd. Management device, management method, and program
WO2022024500A1 (en) * 2020-07-29 2022-02-03 パナソニック インテレクチュアル プロパティ コーポレーション オブ アメリカ Information processing device, program, and information processing method
CN114509103A (en) * 2020-10-23 2022-05-17 丰田自动车株式会社 Service life prediction device for vehicle component
CN114509103B (en) * 2020-10-23 2024-03-29 丰田自动车株式会社 Device for predicting life of vehicle component

Also Published As

Publication number Publication date
JP3949488B2 (en) 2007-07-25

Similar Documents

Publication Publication Date Title
JP2003297435A (en) Device for estimating life of storage battery and device for controlling storage battery
US9594122B2 (en) Estimating state of charge (SOC) and uncertainty from relaxing voltage measurements in a battery
JP6615011B2 (en) Battery management system, battery system and hybrid vehicle control system
US7688032B2 (en) Battery remaining capacity detecting apparatus and battery remaining capacity detecting method
JP5058814B2 (en) Battery state and parameter estimation system and method
US20120310571A1 (en) Deterioration estimating apparatus and deterioration estimating method for electric storage element
JP4865523B2 (en) Battery charge rate estimation method, battery charge rate estimation device, and battery power supply system
JP5595361B2 (en) Secondary battery charge state estimation device
JP6256609B2 (en) Battery degradation level estimation device and battery degradation level estimation method
JP2007292648A (en) Device for estimating charged state of secondary battery
CN109507604B (en) Battery output monitoring device and battery output monitoring method
EP3611526B1 (en) Battery capacity monitor
EP2664938B1 (en) Open circuit voltage estimation device, condition estimation device, and method of estimating open circuit voltage
EP3379277B1 (en) Capacity maintenance rate estimation apparatus or capacity maintenance rate estimation method
JP6791002B2 (en) Deterioration estimation device for secondary batteries
JP2007292666A (en) Device for estimating charged state of secondary battery
JP5470961B2 (en) Secondary battery control device
JP6314390B2 (en) Charge / discharge status monitoring and control system for power storage equipment
JP2022044621A (en) Rechargeable battery liquid decrease detection device and rechargeable battery liquid decrease detection method
JP2020079723A (en) Secondary battery system
WO2019131740A1 (en) Rechargeable battery temperature estimation device and rechargeable battery temperature estimation method
JPH1138105A (en) Method for calculating residual capacity of battery and method for outputting alarm to insufficient residual capacity
RU2016130874A (en) METHOD AND SYSTEM OF MANAGEMENT OF BATTERY OF VEHICLE VEHICLE
JP7276676B2 (en) SECONDARY BATTERY EVALUATION METHOD, SECONDARY BATTERY EVALUATION DEVICE, AND POWER SUPPLY SYSTEM
JP2018087716A (en) Battery system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041130

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070329

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070410

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070418

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110427

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110427

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130427

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130427

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140427

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees