JP2003294567A - Gas leak visualizing and distance measuring device - Google Patents

Gas leak visualizing and distance measuring device

Info

Publication number
JP2003294567A
JP2003294567A JP2002096266A JP2002096266A JP2003294567A JP 2003294567 A JP2003294567 A JP 2003294567A JP 2002096266 A JP2002096266 A JP 2002096266A JP 2002096266 A JP2002096266 A JP 2002096266A JP 2003294567 A JP2003294567 A JP 2003294567A
Authority
JP
Japan
Prior art keywords
gas
distance
leak
wavelength
absorption
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002096266A
Other languages
Japanese (ja)
Inventor
Satoshi Takagi
聡 高木
Keiji Kawaguchi
圭史 川口
Masayuki Tamura
雅之 田村
Kenji Suyama
憲次 須山
Hiroshi Ishida
宏 石田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JAPAN GAS ASS
Saibu Gas Co Ltd
Osaka Gas Co Ltd
Tokyo Gas Co Ltd
Toho Gas Co Ltd
Japan Gas Association
Original Assignee
JAPAN GAS ASS
Saibu Gas Co Ltd
Osaka Gas Co Ltd
Tokyo Gas Co Ltd
Toho Gas Co Ltd
Japan Gas Association
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JAPAN GAS ASS, Saibu Gas Co Ltd, Osaka Gas Co Ltd, Tokyo Gas Co Ltd, Toho Gas Co Ltd, Japan Gas Association filed Critical JAPAN GAS ASS
Priority to JP2002096266A priority Critical patent/JP2003294567A/en
Publication of JP2003294567A publication Critical patent/JP2003294567A/en
Pending legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To visualize the gas leak state even from a separated position, and to measure the distance to the leak position. <P>SOLUTION: A region where hydrocarbons 3 leak from a gas pipe 2 or the like is irradiated with visualizing infrared rays 4 from a light emitting part 6. The visualizing infrared rays 4 include infrared rays having two wavelengths, namely, an absorption wavelength λON absorbed by the hydrocarbons and a nonabsorption wavelength λOFF. Reflected light is received by a light receiving element 30, and a concentration distribution of the hydrocarbons 3 can be acquired on a visualizing screen 9 as a leak state image 10 from comparison of the light receiving intensity by an image processing circuit 32. Distance measuring infrared rays 5 having the wavelength λL not absorbed by the hydrocarbons 3 are also irradiated from the light emitting part 6, and received by the light receiving element 30. The position where the hydrocarbon 3 concentration becomes maximum is supposed as a leak spot, and the distance to the position is measured by a distance measuring circuit 33, and can be displayed on the visualizing screen 9 as a distance display 12. <P>COPYRIGHT: (C)2004,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、炭化水素化合物の
気体などの漏洩箇所を可視化し、距離を計測する気体漏
洩可視化および測距装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a gas leak visualization and distance measuring device for visualizing a leak location of a hydrocarbon compound gas or the like to measure a distance.

【0002】[0002]

【従来の技術】従来から、炭化水素化合物の一つである
メタンを主成分とする都市ガスでは漏洩があると判りや
すいように、本来は無臭であるにもかかわらず、特有の
臭いが付加されている。また、メタンの存在を検知し、
濃度が基準値をこえると警報を発するガス漏れ警報器な
ども用いられている。都市ガスの漏洩が検知されると、
その原因を解明し、対策を施す必要がある。ホースが外
れるなど、漏れが顕著な場合は、都市ガスの使用者側で
も容易に原因が判り、漏洩を止めることができる。配管
の途中からの微少な洩れなどが原因の場合は、配管が天
井や壁に埋込まれているようなことも多く、専門家が出
動しないと、漏洩箇所の検知や漏洩防止の修繕を行うこ
とは不可能である。
2. Description of the Related Art Conventionally, a city gas containing methane, which is one of the hydrocarbon compounds, as a main component has a unique odor, although it is odorless in nature, so that it is easy to recognize that there is a leak. ing. It also detects the presence of methane,
Gas leak alarms that give an alarm when the concentration exceeds the standard value are also used. When a city gas leak is detected,
It is necessary to clarify the cause and take countermeasures. If the leak is noticeable, such as when the hose comes off, the user can easily find the cause and stop the leak. If the cause is a slight leak in the middle of the pipe, the pipe is often buried in the ceiling or wall, and unless a specialist is dispatched, the leak location is detected and leak prevention repairs are performed. Is impossible.

【0003】[0003]

【発明が解決しようとする課題】たとえば天井裏に敷設
されているガスの配管から漏洩が生じていると判断され
るときには、漏洩箇所のところの天井をはつり、露出さ
せる必要がある。天井には、部分的に開口可能な点検口
などが設けられていることも多いけれども、漏洩箇所が
離れていれば、実際に漏洩を生じている箇所は、はつり
によって露出させてみなくては判らない。しかも、漏洩
が微量であれば、はつりで露出させても判りにくいこと
も多い。このため、はつる範囲をかなり広くして、充分
な時間をかけないと、漏洩箇所を発見することができな
い。天井などをはつる範囲が広くなると、はつり作業自
体と、はつり後の修復作業に多大の手間を要し、多額の
修繕費を要することになる。
For example, when it is determined that gas leaks from a gas pipe laid behind the ceiling, it is necessary to suspend and expose the ceiling at the leak location. In many cases, the ceiling is provided with an inspection port that can be partially opened, but if the leaking points are far apart, the actual leaking points must be exposed by means of chipping. I do not know. Moreover, if the amount of leakage is very small, it is often difficult to understand even if it is exposed by chipping. For this reason, the leaking point cannot be found unless the climbing range is considerably widened and sufficient time is taken. If the ceiling and other areas are widened, the chipping work itself and the repairing work after the chipping will take a lot of time and labor, and a large amount of repair costs will be required.

【0004】本発明の目的は、離れた位置からでも気体
の漏洩状態可視化し、漏洩位置までの距離を測定可能な
気体漏洩可視化および測距装置を提供することである。
It is an object of the present invention to provide a gas leakage visualization and distance measuring device capable of visualizing a gas leakage state even from a distant position and measuring the distance to the leakage position.

【0005】[0005]

【課題を解決するための手段】本発明は、可視化の対象
となる気体によって吸収される波長の吸収赤外線と、該
気体によっては吸収されない波長の非吸収赤外線とを、
気体漏洩の可能性がある空間に照射し、該空間を通過し
て反射してきた吸収赤外線と非吸収赤外線とを受光し、
吸収赤外線と非吸収赤外線との受光量の比率に基づいて
該気体の漏洩濃度の分布状態を算出する画像処理を行
い、漏洩濃度の分布状態を、該空間の画像中に漏洩状態
として可視化する可視化手段と、可視化手段によって可
視化される漏洩濃度の分布状態で濃度が最大となる位置
に対応する該空間内の位置を含む領域に、該気体によっ
て吸収されない波長の測距赤外線を照射し、該領域内か
ら反射してきた測距赤外線を受光して、該領域までの距
離を算出する測距手段とを含むことを特徴とする気体漏
洩可視化および測距装置である。
The present invention provides an absorption infrared ray having a wavelength absorbed by a gas to be visualized and a non-absorption infrared ray having a wavelength not absorbed by the gas.
Irradiate the space where there is a possibility of gas leakage, receive the absorbed infrared rays and the non-absorbed infrared rays that have passed through the space and are reflected,
Visualization is performed to perform image processing to calculate the distribution state of the leak concentration of the gas based on the ratio of the amount of received light of the absorbed infrared ray and the non-absorbed infrared ray, and visualize the distribution state of the leak concentration in the image of the space as the leak state. Means and a region including a position in the space corresponding to a position where the concentration is maximized in a leakage concentration distribution state visualized by the visualization device is irradiated with ranging infrared light having a wavelength not absorbed by the gas, A gas leak visualization and distance measuring device comprising: a distance measuring unit that receives distance measuring infrared rays reflected from inside and calculates a distance to the area.

【0006】本発明に従えば、気体が特定の波長の赤外
線を吸収する性質を利用して可視化を行う。可視化手段
では、可視化の対象となる気体によって吸収される波長
の吸収赤外線と、その気体によっては吸収されない波長
の非吸収赤外線とを、気体漏洩の可能性がある空間に照
射する。空間に照射された吸収赤外線は、可視化の対象
となる気体が存在すれば、その空間を通過して、壁など
で反射して受光されるまでに、吸収されて減衰する割合
が、非吸収赤外線に比較して大きくなる。吸収赤外線と
非吸収赤外線との受光量の比率に基づいて気体の漏洩濃
度の分布状態を算出する画像処理を行い、漏洩濃度の分
布状態を、その空間の画像中に漏洩状態として可視化す
るので、漏洩箇所があれば、その近傍では濃度が高い状
態となり、画像として可視化することができる。測距手
段は、可視化手段によって可視化される漏洩濃度の分布
状態で濃度が最大となる位置に対応している空間内の位
置を含む領域に、気体によって吸収されない波長の測距
赤外線を照射し、その領域内から反射してきた測距赤外
線を受光する。気体の濃度が高くても、その気体によっ
て吸収されない波長の測距赤外線を用いるので、漏洩気
体の影響を受けずに、漏洩が生じている可能性が高い位
置までの距離を算出することができる。漏洩箇所の画像
と距離とを得ることができるので、天井裏などの漏洩箇
所でも、点検口などから赤外線の照射と受光とを行って
可視化し、距離に基づいて漏洩箇所の位置を正確に判断
し、天井をはつりする場合の精度を高め、はつる範囲を
最小限にとどめて、修繕費を抑えることができる。
According to the present invention, visualization is performed by utilizing the property that gas absorbs infrared rays having a specific wavelength. The visualization means irradiates a space having a possibility of gas leakage with an absorption infrared ray having a wavelength absorbed by a gas to be visualized and a non-absorption infrared ray having a wavelength not absorbed by the gas. If there is a gas to be visualized, the absorbed infrared light radiated into the space is absorbed and attenuated by the time it passes through the space, is reflected by a wall, etc., and is received. It will be larger than. Image processing is performed to calculate the distribution state of the leakage concentration of gas based on the ratio of the amount of received light of the absorption infrared ray and the non-absorption infrared ray, and since the distribution state of the leakage concentration is visualized as the leakage state in the image of the space, If there is a leaking point, the density is high in the vicinity of the leaking point and it can be visualized as an image. The range-finding means irradiates a range-finding infrared ray having a wavelength that is not absorbed by the gas, to a region including a position in the space corresponding to the position where the concentration becomes maximum in the distribution state of the leak concentration visualized by the visualization means, It receives the range-finding infrared rays reflected from within the area. Even if the concentration of the gas is high, the distance measuring infrared ray having the wavelength that is not absorbed by the gas is used, so that the distance to the position where the leakage is likely to occur can be calculated without being affected by the leakage gas. . Since it is possible to obtain the image and distance of the leaked part, even at the leaked part such as the ceiling, the infrared rays are radiated and received from the inspection port to be visualized, and the position of the leaked part is accurately determined based on the distance. However, it is possible to improve the precision when mounting the ceiling, minimize the mounting range, and reduce repair costs.

【0007】また、前記可視化手段は、前記吸収赤外線
および前記非吸収赤外線を、角錐状の光束となるように
幅を拡張させる拡張手段を含み、前記測距手段は、前記
漏洩濃度が最大となる位置を含む方向に測定位置合せ機
構が光束を照射するタイミングに合わせて、前記測距赤
外線を測定位置合せ機構を介して前記領域に照射するよ
うに構成することもできる。
Further, the visualization means includes expansion means for expanding the absorption infrared rays and the non-absorption infrared rays into a pyramidal light flux, and the distance measuring means maximizes the leak density. The distance measuring infrared ray may be applied to the region via the measurement position adjusting mechanism at the timing when the measuring position adjusting mechanism emits the light flux in the direction including the position.

【0008】この構成に従えば、漏洩状態を可視化する
ために、吸収赤外線および非吸収赤外線を照射する際に
拡張するための拡張手段を利用して、測距赤外線を漏洩
箇所に照射するので、漏洩箇所を判断する画像を利用し
て距離を測定することができる。
According to this construction, in order to visualize the leaked state, the range-finding infrared ray is radiated to the leaked portion by utilizing the expansion means for expanding the irradiation of the absorption infrared ray and the non-absorption infrared ray. It is possible to measure the distance by using the image for determining the leakage location.

【0009】また本発明で、前記吸収赤外線、前記非吸
収赤外線および前記測距赤外線を、共通に受光する受光
手段をさらに含むことを特徴とする。
Further, the present invention is characterized by further comprising light receiving means for commonly receiving the absorption infrared ray, the non-absorption infrared ray and the distance measuring infrared ray.

【0010】本発明に従えば、受光手段で気体の可視化
のための吸収赤外線および非吸収赤外線と、測距のため
の測距赤外線とを共通に受光するので、装置の構成を簡
略化し、製造コストを低減することができる。可視化の
ための非吸収赤外線も、測距のための測距赤外線も、可
視化対象の気体によって吸収されない波長の赤外線であ
るので、受光手段を共通化するとともに、照射側も共通
化することができる。
According to the present invention, since the absorption light and the non-absorption infrared light for visualizing the gas and the distance measurement infrared light for distance measurement are commonly received by the light receiving means, the structure of the device is simplified and the manufacturing is performed. The cost can be reduced. Since both the non-absorbing infrared ray for visualization and the ranging infrared ray for distance measurement are infrared rays having a wavelength that is not absorbed by the gas to be visualized, the light receiving means can be made common and the irradiation side can be made common. .

【0011】[0011]

【発明の実施の形態】図1は、本発明の実施の一形態で
ある気体漏洩可視化および測距装置1の概略的な構成を
示す。本実施形態の気体漏洩可視化および測距装置1
は、ガス配管2から漏洩するガスの主成分である炭化水
素3を、漏洩濃度に応じる画像として可視化する。炭化
水素3が漏洩している可能性が高い領域には、可視化用
赤外線4と、測距用赤外線5とが発光部6から照射され
る。照射された可視化用赤外線4と測距用赤外線5と
は、炭化水素3の漏洩している領域を通過し、壁7など
の表面で反射して受光部8に到達する。受光部8は可視
化画面9を備え、炭化水素3の漏洩状態画像10と、漏
洩の元になっているガス配管画像11とを表示し、測定
された距離の数値を距離表示12で表示することができ
る。
1 shows a schematic configuration of a gas leakage visualization and distance measuring device 1 according to an embodiment of the present invention. Gas leak visualization and distance measuring device 1 of the present embodiment
Makes the hydrocarbon 3 which is the main component of the gas leaking from the gas pipe 2 visible as an image according to the leak concentration. The region where the hydrocarbon 3 is likely to leak is irradiated with the visualization infrared ray 4 and the distance measuring infrared ray 5 from the light emitting unit 6. The irradiated infrared ray 4 and distance measuring infrared ray 5 pass through the area where the hydrocarbon 3 leaks, are reflected by the surface of the wall 7 or the like, and reach the light receiving portion 8. The light-receiving unit 8 includes a visualization screen 9, displays a leak state image 10 of the hydrocarbon 3 and a gas pipe image 11 that is the source of the leak, and displays a numerical value of the measured distance on the distance display 12. You can

【0012】発光部6は、レーザ光源20を備え、複数
の波長の赤外線レーザ光を発生する。レーザ光源20
は、漏洩検知用レーザ21、波長安定化回路22、炭化
水素セル23および位置合せ機構24などを含む。漏洩
検知用レーザ21からは、炭化水素3によって吸収され
る波長λONの吸収赤外線と、炭化水素3によって吸収
されない波長λOFFの非吸収赤外線とが、可視化用赤
外線4として発生される。さらに、炭化水素3によって
吸収されない波長λLの測距用赤外線5も発生される。
測距用赤外線5は、可視化用赤外線4のうちの非吸収赤
外線と共通化することもできる。なお、波長安定化回路
22は、炭化水素セル23を介して吸収赤外線を選択
し、漏洩検知用レーザ21の出力波長を安定化させる。
The light emitting section 6 includes a laser light source 20 and emits infrared laser light having a plurality of wavelengths. Laser light source 20
Includes a leakage detection laser 21, a wavelength stabilization circuit 22, a hydrocarbon cell 23, an alignment mechanism 24, and the like. From the leak detection laser 21, an absorption infrared ray having a wavelength λON that is absorbed by the hydrocarbon 3 and a non-absorption infrared ray having a wavelength λOFF that is not absorbed by the hydrocarbon 3 are generated as the visualization infrared ray 4. Further, the infrared ray 5 for distance measurement having the wavelength λL which is not absorbed by the hydrocarbon 3 is also generated.
The infrared ray 5 for distance measurement can be shared with the non-absorbing infrared ray of the infrared ray 4 for visualization. The wavelength stabilization circuit 22 selects the absorption infrared ray through the hydrocarbon cell 23 and stabilizes the output wavelength of the leak detection laser 21.

【0013】受光部8は、可視化画面9とともに、受光
素子30および処理回路31を含む。受光素子30は、
微小な受光セルを面状、線状、または点状に配列して形
成される。処理回路31は、画像処理回路32および距
離測定回路33を含む。画像処理回路32は、受光素子
30が受光に基づいて発生する電気信号に演算処理を施
して、可視化画面9で表示する漏洩濃度に応じた画像を
生成する。距離測定回路33は、炭化水素3の高濃度領
域近傍のガス配管2などに想定される漏洩箇所までの距
離を、測距用赤外線5を照射して、照射時と受信時との
時間差や、受光素子30に入射する位置のずれなどか
ら、ガス配管2の漏洩箇所までの距離を算出する。
The light receiving unit 8 includes a visualization screen 9 and a light receiving element 30 and a processing circuit 31. The light receiving element 30 is
It is formed by arranging minute light receiving cells in a planar shape, a linear shape, or a dot shape. The processing circuit 31 includes an image processing circuit 32 and a distance measuring circuit 33. The image processing circuit 32 performs arithmetic processing on the electric signal generated by the light receiving element 30 based on the light reception, and generates an image according to the leakage concentration displayed on the visualization screen 9. The distance measuring circuit 33 irradiates the distance to the supposed leak point in the gas pipe 2 near the high concentration region of the hydrocarbon 3 with the infrared ray 5 for distance measurement, and the time difference between the time of irradiation and the time of reception, The distance to the leakage point of the gas pipe 2 is calculated from the shift of the position of incidence on the light receiving element 30.

【0014】図2は、本実施形態の気体漏洩可視化およ
び測距装置1について、典型的な使用状態を示す。炭化
水素3の漏洩が生じているガス配管2が天井板40の裏
側に存在しているような場合、まず図1の可視化画面9
に、漏洩状態画像10が形成されていることで漏洩が生
じていることを検知し、漏洩箇所までの距離Lを得るこ
とができる。天井板40と実際の天井との間の間隔は狭
く、また天井板40の強度は充分でないので、天井板4
0の上を人間が移動することは不可能である。点検口4
1から漏洩箇所の方向は、照射方向から判るので、距離
Lを求めることができれば、修繕箇所42の位置を天井
板40に対して精度良く求めることができ、天井板40
をはつる範囲を最小限に限定して、修繕箇所42を露出
させることができる。
FIG. 2 shows a typical use state of the gas leakage visualization and distance measuring device 1 of this embodiment. When the gas pipe 2 in which the hydrocarbon 3 is leaking is present behind the ceiling plate 40, first, the visualization screen 9 in FIG.
In addition, since the leakage state image 10 is formed, it is possible to detect that leakage has occurred and obtain the distance L to the leakage location. The space between the ceiling board 40 and the actual ceiling is narrow, and the strength of the ceiling board 40 is not sufficient.
It is impossible for humans to move over 0. Inspection port 4
Since the direction of the leaked portion is known from the irradiation direction from 1, the position of the repaired portion 42 can be accurately obtained with respect to the ceiling plate 40 if the distance L can be obtained.
The repair area 42 can be exposed by limiting the range over which the repair is performed.

【0015】図3は、本実施形態の気体漏洩可視化およ
び測距装置1でガスの漏洩時、炭化水素3を可視化する
原理を示す。炭化水素3は、特定の波長(周波数)の赤
外線を吸収する性質がある。発光部6から炭化水素が吸
収する波長λONの吸収赤外線と、炭化水素が吸収しな
い波長λOFFの非吸収赤外線とを照射する。照射され
た赤外線は、壁7や地面などで反射するので、受光部8
で受ける。受光した2つの波長λONとλOFFとを受
光する受光素子30からの受光出力を比較し、吸収赤外
線が非吸収赤外線に比べて減少していれば、炭化水素3
が存在していることが判る。また、受光出力の減少量
は、炭化水素3の濃度に比例している。
FIG. 3 shows the principle of visualizing the hydrocarbons 3 at the time of gas leakage in the gas leakage visualization and distance measuring device 1 of this embodiment. The hydrocarbon 3 has a property of absorbing infrared rays having a specific wavelength (frequency). The light emitting unit 6 irradiates the absorption infrared ray having the wavelength λON absorbed by the hydrocarbon and the non-absorption infrared ray having the wavelength λOFF not absorbed by the hydrocarbon. Since the irradiated infrared rays are reflected by the wall 7 and the ground, the light receiving unit 8
Receive at. The received light output from the light receiving element 30 that receives the two received wavelengths λON and λOFF is compared, and if the absorbed infrared light is smaller than the non-absorbed infrared light, the hydrocarbon 3
It turns out that exists. Further, the decrease amount of the received light output is proportional to the concentration of the hydrocarbon 3.

【0016】図1の漏洩検知用レーザ21から、波長λ
ONとは異なる波長λOFFの非吸収赤外線も発生させ
て、2波長の赤外線レーザ光をガス配管2などの対象物
を含む空間に照射し、壁7や地面からの反射光を受光す
る。2波長の赤外線レーザ光を照射した空間の範囲に炭
化水素3が存在している場合は、吸収波長λONの受光
強度が、非吸収波長λOFFの受光強度に比べて低くな
ることから、受光したそれぞれの反射光強度の比較から
炭化水素3の漏洩濃度を求めることができる。漏洩を検
出可能な濃度を予め試験して確認しておくことなどによ
って、濃度の絶対値も求めることができる。
From the leak detection laser 21 of FIG.
A non-absorbing infrared ray having a wavelength λOFF different from that of ON is also generated to irradiate a space including an object such as the gas pipe 2 with an infrared laser beam of two wavelengths and receive reflected light from the wall 7 or the ground. When the hydrocarbon 3 is present in the range of the space irradiated with the infrared laser light of two wavelengths, the received light intensity of the absorption wavelength λON becomes lower than the received light intensity of the non-absorption wavelength λOFF, so that each received light is detected. The leakage concentration of the hydrocarbon 3 can be obtained from the comparison of the reflected light intensities. The absolute value of the concentration can also be obtained by previously testing and confirming the concentration at which leakage can be detected.

【0017】図1に示すような漏洩状態画像10を得る
には、角錐状に広がる赤外線レーザ光を照射し、受光素
子30で反射光を検知する。これによって、濃度分布を
計測することができる。この濃度分布を元に画像処理回
路32で画像処理することによって、漏洩状態画像10
として可視化を行うことができる。
In order to obtain the leaked state image 10 as shown in FIG. 1, the infrared laser light which spreads in a pyramid shape is irradiated and the reflected light is detected by the light receiving element 30. Thereby, the concentration distribution can be measured. By performing image processing in the image processing circuit 32 based on this density distribution, the leak state image 10
Can be visualized as.

【0018】図4は、本実施形態の気体漏洩可視化およ
び測距装置1で炭化水素3の漏洩状態の可視化を行って
いるイメージを示す。気体漏洩可視化および測距装置1
は、いわゆるノート型のパーソナルコンピュータなどを
利用して形成する。たとえば図1の可視化画面9は、液
晶表示装置などのディスプレイ画面を利用する。図1の
発光部6や受光素子30は、アダプタとして付加する。
FIG. 4 shows an image in which the leakage state of the hydrocarbon 3 is visualized by the gas leakage visualization and range finder 1 of this embodiment. Gas leak visualization and ranging device 1
Is formed using a so-called notebook personal computer or the like. For example, the visualization screen 9 in FIG. 1 uses a display screen such as a liquid crystal display device. The light emitting unit 6 and the light receiving element 30 of FIG. 1 are added as an adapter.

【0019】図5は、本実施形態の気体漏洩可視化およ
び測距装置1を運転して、炭化水素漏洩状態の可視化と
距離測定とを行う手順を示す。ステップs0で電源をO
Nにして投入し、暖機運転を行った後、ステップs1で
は、図1のレーザ光源20から波長λONの吸収赤外線
を出力する。ステップs2では、吸収赤外線を受光す
る。ステップs3では、レーザ光源20から、波長λO
FFの非吸収赤外線を出力する。ステップs4では、非
吸収赤外線を受光する。ステップs5では、背景からの
光を受光する。ステップs6では、レーザ光源20から
波長λLの測距用赤外線5を出力する。この出力は、漏
洩濃度最大の位置が求められてから、その位置を掃引す
るタイミングで行う。ステップs7では、測距用赤外線
5を受光する。ステップs7の後で、ステップs1に戻
り、以下ステップs1〜ステップs7を繰返す。
FIG. 5 shows a procedure for operating the gas leakage visualization and distance measuring apparatus 1 of this embodiment to visualize a hydrocarbon leakage state and measure a distance. Turn the power on at step s0
After turning on N and performing a warm-up operation, in step s1, the laser light source 20 of FIG. At step s2, the absorbed infrared rays are received. At step s3, the wavelength λO is emitted from the laser light source 20.
Outputs non-absorption infrared rays from FF. In step s4, the non-absorption infrared rays are received. In step s5, the light from the background is received. In step s6, the laser light source 20 outputs the infrared ray 5 for distance measurement having the wavelength λL. This output is performed at the timing of sweeping the position after the position of the maximum leakage concentration is obtained. In step s7, the infrared ray 5 for distance measurement is received. After step s7, the process returns to step s1 and steps s1 to s7 are repeated.

【0020】ステップs7で受光した測距用赤外線5に
基づいて、ステップs8では、図1の距離測定回路33
が距離計測処理を行い、距離情報を求める。次のステッ
プs9で、図1の可視化画面9で示すような漏洩状態画
像10、ガス配管画像11および距離表示12を行う。
ステップs2およびステップs4で受光する吸収波長λ
ONと非吸収波長λOFFとの画像に加えて、ステップ
s5で背景光を受光しているので、ノイズを低減するこ
とができる。吸収波長λONと非吸収波長λOFFとの
画像について差分処理を行い、非吸収波長λOFFによ
る画像に差分画像を重畳する。距離情報と差分情報とか
ら、漏洩量が最大値の位置を求め、その位置までの距離
を計算する。可視化画面9内に、漏洩位置とそこまでの
距離を表示する。漏洩量が最大の位置は、濃度が一定以
上の領域の重心位置などとして求めることもできる。
Based on the infrared ray 5 for distance measurement received in step s7, in step s8, the distance measuring circuit 33 of FIG.
Performs distance measurement processing to obtain distance information. In the next step s9, the leakage state image 10, the gas pipe image 11 and the distance display 12 as shown in the visualization screen 9 of FIG. 1 are performed.
Absorption wavelength λ received in steps s2 and s4
Since the background light is received in step s5 in addition to the image of ON and the non-absorption wavelength λOFF, noise can be reduced. Difference processing is performed on the images of the absorption wavelength λON and the non-absorption wavelength λOFF, and the difference image is superimposed on the image of the non-absorption wavelength λOFF. From the distance information and the difference information, the position with the maximum leak amount is obtained, and the distance to that position is calculated. The leakage position and the distance to the leakage position are displayed in the visualization screen 9. The position where the amount of leakage is maximum can also be obtained as the position of the center of gravity of a region where the concentration is above a certain level.

【0021】なお、吸収波長λON、非吸収波長λOF
Fおよび測距波長λLの赤外線は別々に照射して受光し
ているけれども、受光素子30からの出力を波長に応じ
て弁別すれば、同時に照射して受光することもできる。
また、非吸収波長λOFFと測距波長λLとを共通化す
ることもできる。共通化する場合は、濃度最大位置から
の非吸収赤外線を受光するタイミングで距離の計測も行
う。
The absorption wavelength λON and the non-absorption wavelength λOF
Although F and the infrared rays having the distance measurement wavelength λL are separately emitted and received, if the output from the light receiving element 30 is discriminated according to the wavelength, it can be emitted and received at the same time.
Further, the non-absorption wavelength λOFF and the distance measurement wavelength λL can be made common. In the case of common use, the distance is also measured at the timing of receiving the non-absorbed infrared rays from the maximum density position.

【0022】以上で説明した実施形態では、炭化水素の
漏洩検知を行っているけれども、検知対象となる気体に
応じて吸収波長を選択すれば、種々の気体の漏洩検知に
本発明を適用することができる。
Although hydrocarbon leakage is detected in the embodiments described above, the present invention can be applied to leakage detection of various gases if the absorption wavelength is selected according to the gas to be detected. You can

【0023】[0023]

【発明の効果】以上のように本発明によれば、気体が特
定の波長の赤外線を吸収する性質を利用して可視化を行
い、可視化される気体の漏洩濃度の分布状態で濃度が最
大となる位置に対応している空間内の位置を含む領域
に、気体によって吸収されない波長の測距赤外線を照射
し、漏洩が生じている可能性が高い位置までの距離を算
出することができる。漏洩箇所の画像と距離とを得るこ
とができるので、天井裏などの漏洩箇所でも、点検用の
開口部から可視化し、距離に基づいて漏洩箇所の位置を
正確に判断し、天井をはつりする場合の精度を高め、は
つる範囲を最小限にとどめて、修繕費を抑えることがで
きる。
As described above, according to the present invention, visualization is performed by utilizing the property that gas absorbs infrared rays having a specific wavelength, and the concentration becomes maximum in the distribution state of leakage concentration of the visualized gas. It is possible to calculate the distance to a position where there is a high possibility that leakage has occurred, by irradiating the area including the position in the space corresponding to the position with the ranging infrared light having a wavelength that is not absorbed by the gas. Since it is possible to obtain an image of the leak location and the distance, even if the leak location such as the ceiling is visualized from the opening for inspection, the position of the leak location can be accurately determined based on the distance, and the ceiling can be hung. You can improve the accuracy of the, and to minimize the amount of flapping and reduce the repair cost.

【0024】また、吸収赤外線および非吸収赤外線を照
射する際に拡大するための光束拡大手段を利用して、測
距赤外線を漏洩箇所に照射し、漏洩箇所までの距離を測
定することができる。
Further, it is possible to irradiate the leaking area with the distance measuring infrared ray and measure the distance to the leaking area by utilizing the luminous flux expanding means for expanding the irradiation of the absorption infrared ray and the non-absorption infrared ray.

【0025】また本発明によれば、受光手段で吸収赤外
線および非吸収赤外線と測距赤外線とを共通に受光する
ので、装置の構成を簡略化し、非吸収赤外線と測距赤外
線との共通化も可能にして、製造コストの低減を図るこ
とができる。
Further, according to the present invention, since the absorption infrared ray and the non-absorption infrared ray and the distance measuring infrared ray are commonly received by the light receiving means, the structure of the apparatus is simplified and the non-absorption infrared ray and the distance measuring infrared ray are commonly used. This makes it possible to reduce the manufacturing cost.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施の一形態である気体漏洩可視化お
よび測距装置1の概略的な構成を示すブロック図であ
る。
FIG. 1 is a block diagram showing a schematic configuration of a gas leakage visualization and distance measuring device 1 according to an embodiment of the present invention.

【図2】図1の気体漏洩可視化および測距装置1の使用
状態を示す簡略化した天井付近の断面図である。
2 is a simplified cross-sectional view of the vicinity of the ceiling showing a gas leakage visualization and use state of the distance measuring device 1 of FIG. 1. FIG.

【図3】図1の気体漏洩可視化および測距装置1でガス
の漏洩時に、その主成分であるメタン3を可視化する原
理を示す図である。
FIG. 3 is a diagram showing a principle of visualizing methane 3 which is a main component of the gas leakage visualization and distance measuring apparatus 1 of FIG. 1 when a gas leaks.

【図4】図1の気体漏洩可視化および測距装置1でメタ
ン3の漏洩状態の可視化を行っているイメージを示す図
である。
FIG. 4 is a diagram showing an image in which the leakage state of methane 3 is visualized by the gas leakage visualization and range finding device 1 of FIG.

【図5】図1の気体漏洩可視化および測距装置1の運転
手順を示すフローチャートである。
5 is a flowchart showing an operating procedure of the gas leakage visualization and distance measuring device 1 of FIG.

【符号の説明】[Explanation of symbols]

1 気体漏洩可視化および測距装置 2 ガス配管 3 炭化水素 4 可視化用赤外線 5 測距用赤外線 6 発光部 8 受光部 9 可視化画面 10 漏洩状態画像 11 ガス配管画像 12 距離表示 20 レーザ光源 21 漏洩検知用レーザ 30 受光素子 32 画像処理回路 33 距離測定回路 40 天井板 41 点検口 42 修繕箇所 1 Gas leak visualization and ranging device 2 gas piping 3 hydrocarbons 4 Infrared for visualization 5 Infrared for distance measurement 6 light emitting part 8 Light receiving part 9 Visualization screen 10 Leakage status image 11 gas piping image 12 distance display 20 laser light source 21 Laser for leak detection 30 light receiving element 32 image processing circuit 33 Distance measuring circuit 40 ceiling plate 41 Inspection door 42 Repair points

───────────────────────────────────────────────────── フロントページの続き (71)出願人 000196680 西部瓦斯株式会社 福岡県福岡市博多区千代1丁目17番1号 (71)出願人 593185544 社団法人日本ガス協会 東京都港区虎ノ門1丁目15番12号 (72)発明者 高木 聡 大阪府大阪市中央区平野町四丁目1番2号 大阪瓦斯株式会社内 (72)発明者 川口 圭史 大阪府大阪市中央区平野町四丁目1番2号 大阪瓦斯株式会社内 (72)発明者 田村 雅之 東京都港区海岸通1丁目5番20号 東京瓦 斯株式会社内 (72)発明者 須山 憲次 東京都港区海岸通1丁目5番20号 東京瓦 斯株式会社内 (72)発明者 石田 宏 愛知県東海市新宝町507番地2 東邦瓦斯 株式会社内 Fターム(参考) 2G059 AA01 BB01 CC13 EE02 EE11 FF08 GG01 GG03 HH01 KK01 MM01 MM05 PP04 2G067 AA11 AA14 BB15 BB17 CC04 EE08 EE09    ─────────────────────────────────────────────────── ─── Continued front page    (71) Applicant 000196680             Seibu Gas Co., Ltd.             1-1-17 Chiyo, Hakata-ku, Fukuoka City, Fukuoka Prefecture (71) Applicant 593185544             Japan Gas Association             1-15-12 Toranomon, Minato-ku, Tokyo (72) Inventor Satoshi Takagi             4-1-2 Hirano-cho, Chuo-ku, Osaka-shi, Osaka Prefecture               Within Osaka Gas Co., Ltd. (72) Inventor Keishi Kawaguchi             4-1-2 Hirano-cho, Chuo-ku, Osaka-shi, Osaka Prefecture               Within Osaka Gas Co., Ltd. (72) Inventor Masayuki Tamura             1-5-20 Kaigan-dori, Minato-ku, Tokyo Tokyo tile             Within the corporation (72) Inventor Kenji Suyama             1-5-20 Kaigan-dori, Minato-ku, Tokyo Tokyo tile             Within the corporation (72) Inventor Hiroshi Ishida             2 Toho Gas, 507 Shinhorocho, Tokai City, Aichi Prefecture             Within the corporation F term (reference) 2G059 AA01 BB01 CC13 EE02 EE11                       FF08 GG01 GG03 HH01 KK01                       MM01 MM05 PP04                 2G067 AA11 AA14 BB15 BB17 CC04                       EE08 EE09

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 可視化の対象となる気体によって吸収さ
れる波長の吸収赤外線と、該気体によっては吸収されな
い波長の非吸収赤外線とを、気体漏洩の可能性がある空
間に照射し、該空間を通過して反射してきた吸収赤外線
と非吸収赤外線とを受光し、吸収赤外線と非吸収赤外線
との受光量の比率に基づいて該気体の漏洩濃度の分布状
態を算出する画像処理を行い、漏洩濃度の分布状態を、
該空間の画像中に漏洩状態として可視化する可視化手段
と、 可視化手段によって可視化される漏洩濃度の分布状態で
濃度が最大となる位置に対応する該空間内の位置を含む
領域に、該気体によって吸収されない波長の測距赤外線
を照射し、該領域内から反射してきた測距赤外線を受光
して、該領域までの距離を算出する測距手段とを含むこ
とを特徴とする気体漏洩可視化および測距装置。
1. A space having a possibility of gas leakage is irradiated with an absorption infrared ray having a wavelength that is absorbed by a gas to be visualized and a non-absorption infrared ray having a wavelength that is not absorbed by the gas, and the space is exposed. The absorption infrared rays and the non-absorption infrared rays that have passed through and are reflected are received, and image processing is performed to calculate the distribution state of the leakage concentration of the gas based on the ratio of the amount of received light of the absorption infrared rays and the non-absorption infrared rays, and the leakage concentration The distribution of
The visualization means for visualizing the leak state in the image of the space, and the absorption by the gas in a region including the position in the space corresponding to the position where the concentration becomes maximum in the distribution state of the leak concentration visualized by the visualization means. Gas leakage visualization and distance measurement, including distance measurement means for irradiating a distance measurement infrared ray having a wavelength that is not controlled, receiving the distance measurement infrared ray reflected from the area, and calculating a distance to the area. apparatus.
【請求項2】 前記吸収赤外線、前記非吸収赤外線およ
び前記測距赤外線を、共通に受光する受光手段をさらに
含むことを特徴とする請求項1または2記載の気体漏洩
可視化および測距装置。
2. The gas leakage visualization and distance measuring device according to claim 1, further comprising a light receiving unit that commonly receives the absorbed infrared light, the non-absorbed infrared light, and the distance measuring infrared light.
JP2002096266A 2002-03-29 2002-03-29 Gas leak visualizing and distance measuring device Pending JP2003294567A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002096266A JP2003294567A (en) 2002-03-29 2002-03-29 Gas leak visualizing and distance measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002096266A JP2003294567A (en) 2002-03-29 2002-03-29 Gas leak visualizing and distance measuring device

Publications (1)

Publication Number Publication Date
JP2003294567A true JP2003294567A (en) 2003-10-15

Family

ID=29239405

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002096266A Pending JP2003294567A (en) 2002-03-29 2002-03-29 Gas leak visualizing and distance measuring device

Country Status (1)

Country Link
JP (1) JP2003294567A (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006317366A (en) * 2005-05-16 2006-11-24 Mitsubishi Electric Corp Gas leak visualizing device
CN102401647A (en) * 2010-09-07 2012-04-04 原相科技股份有限公司 Optical ranging system
JP2014055858A (en) * 2012-09-12 2014-03-27 Tokyo Metropolitan Sewerage Service Corp Gas concentration measurement device
WO2016152789A1 (en) * 2015-03-20 2016-09-29 コニカミノルタ株式会社 Gas location detecting method, gas location detecting program, gas location detecting device, and gas location detecting system
WO2017009819A1 (en) * 2015-07-16 2017-01-19 Ci Systems (Israel) Ltd. Gas detection, imaging and flow rate measurement system
KR101807094B1 (en) * 2016-02-04 2018-01-18 숭실대학교산학협력단 System and method for measuring optical gas image
CN109937359A (en) * 2016-09-15 2019-06-25 前视红外系统股份公司 The detection of gas in scene
WO2020012906A1 (en) * 2018-07-11 2020-01-16 パナソニックIpマネジメント株式会社 Display device, image processing device, and control method
JP2020017265A (en) * 2018-07-11 2020-01-30 パナソニックIpマネジメント株式会社 Display device, image processing device, and control method
JP2021060377A (en) * 2019-10-09 2021-04-15 いであ株式会社 Gas leakage detection system and method
JP2021071483A (en) * 2019-10-29 2021-05-06 ダイキン工業株式会社 Gas detection device and gas leakage detection system

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006317366A (en) * 2005-05-16 2006-11-24 Mitsubishi Electric Corp Gas leak visualizing device
JP4712438B2 (en) * 2005-05-16 2011-06-29 三菱電機株式会社 Gas leak visualization device
CN102401647A (en) * 2010-09-07 2012-04-04 原相科技股份有限公司 Optical ranging system
JP2014055858A (en) * 2012-09-12 2014-03-27 Tokyo Metropolitan Sewerage Service Corp Gas concentration measurement device
WO2016152789A1 (en) * 2015-03-20 2016-09-29 コニカミノルタ株式会社 Gas location detecting method, gas location detecting program, gas location detecting device, and gas location detecting system
WO2017009819A1 (en) * 2015-07-16 2017-01-19 Ci Systems (Israel) Ltd. Gas detection, imaging and flow rate measurement system
EP3322970A4 (en) * 2015-07-16 2018-06-20 CI Systems (Israel) LTD. Gas detection, imaging and flow rate measurement system
KR101807094B1 (en) * 2016-02-04 2018-01-18 숭실대학교산학협력단 System and method for measuring optical gas image
CN109937359A (en) * 2016-09-15 2019-06-25 前视红外系统股份公司 The detection of gas in scene
US11573172B2 (en) 2016-09-15 2023-02-07 Flir Systems Ab Broad range gas illumination and imaging
WO2020012906A1 (en) * 2018-07-11 2020-01-16 パナソニックIpマネジメント株式会社 Display device, image processing device, and control method
JP2020017265A (en) * 2018-07-11 2020-01-30 パナソニックIpマネジメント株式会社 Display device, image processing device, and control method
CN112041665A (en) * 2018-07-11 2020-12-04 松下知识产权经营株式会社 Display device, image processing device, and control method
JP7113375B2 (en) 2018-07-11 2022-08-05 パナソニックIpマネジメント株式会社 Display device, image processing device and control method
US11694659B2 (en) 2018-07-11 2023-07-04 Panasonic Intellectual Property Management Co., Ltd. Display apparatus, image processing apparatus, and control method
JP2021060377A (en) * 2019-10-09 2021-04-15 いであ株式会社 Gas leakage detection system and method
JP7280797B2 (en) 2019-10-09 2023-05-24 いであ株式会社 Gas leak detection system and method
JP2021071483A (en) * 2019-10-29 2021-05-06 ダイキン工業株式会社 Gas detection device and gas leakage detection system
JP7114832B2 (en) 2019-10-29 2022-08-09 ダイキン工業株式会社 Gas detector and leak gas detection system

Similar Documents

Publication Publication Date Title
JP2003294573A (en) Gas leakage position indicator
JP2003294567A (en) Gas leak visualizing and distance measuring device
US20080029702A1 (en) Method and apparatus for detecting methane gas in mines
JP6712418B2 (en) Nondestructive inspection device and method
KR20140034835A (en) Method and device for measuring gas component concentration inside a glass unit
JP7114832B2 (en) Gas detector and leak gas detection system
JP2011085481A (en) Method and device for nondestructive inspection
JP2009174920A (en) Optical combustible gas concentration detection method and optical combustible gas concentration detector
Munsat et al. Laboratory characterization of an imaging reflectometer system
JP7280797B2 (en) Gas leak detection system and method
JP6148836B2 (en) Gas concentration measuring device
JP4522882B2 (en) Absorption measuring device
EP3671205B1 (en) Laser ultrasound imaging for determining structural characteristics
KR20170073582A (en) Device for analyzing tubular specimen using terahertz wave and method for analyzing tubular specimen using the device
Krasovskii et al. Angle-resolved photoemission from surface states
JP6456695B2 (en) Method and device for identifying gas components inside a transparent container
Krasicky et al. A laser interferometer for monitoring thin film processes: Application to polymer dissolution
KR20190042359A (en) Apparatus for detecting leakage gas, Method thereof, and Storage medium having the same
CN109238220B (en) Method for measuring space rotation angle of object
Huang et al. High-sensitivity photoacoustic leak testing
WO2022085591A1 (en) Nondestructive inspecting device, and nondestructive inspecting method
WO2022157923A1 (en) Liquid leak detection device, liquid leak detection system, liquid leak detection method, and recording medium
JP2009198253A (en) Inspection apparatus and inspection method of optical film
JP2019158745A (en) Displacement measuring device and displacement measuring method
KR20230056462A (en) Inspection device for thermal infrared shielding performance

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040630

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050908

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050920

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20060131