JP2003282589A - Method for manufacturing semiconductor device - Google Patents

Method for manufacturing semiconductor device

Info

Publication number
JP2003282589A
JP2003282589A JP2002086408A JP2002086408A JP2003282589A JP 2003282589 A JP2003282589 A JP 2003282589A JP 2002086408 A JP2002086408 A JP 2002086408A JP 2002086408 A JP2002086408 A JP 2002086408A JP 2003282589 A JP2003282589 A JP 2003282589A
Authority
JP
Japan
Prior art keywords
semiconductor substrate
impurity diffusion
wafer
forming
diffusion regions
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002086408A
Other languages
Japanese (ja)
Other versions
JP3580293B2 (en
Inventor
Yutaka Fukuda
豊 福田
Mikimasa Suzuki
幹昌 鈴木
Naohiko Hirano
尚彦 平野
Chikage Noritake
千景 則武
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2002086408A priority Critical patent/JP3580293B2/en
Priority to US10/201,556 priority patent/US7145254B2/en
Priority to KR1020020043963A priority patent/KR100659376B1/en
Priority to DE10234155A priority patent/DE10234155B4/en
Priority to CNB02127066XA priority patent/CN1267990C/en
Publication of JP2003282589A publication Critical patent/JP2003282589A/en
Application granted granted Critical
Publication of JP3580293B2 publication Critical patent/JP3580293B2/en
Priority to KR1020060092571A priority patent/KR20060109390A/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L24/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L24/33Structure, shape, material or disposition of the layer connectors after the connecting process of a plurality of layer connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L24/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L24/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/2612Auxiliary members for layer connectors, e.g. spacers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/3201Structure
    • H01L2224/32012Structure relative to the bonding area, e.g. bond pad
    • H01L2224/32014Structure relative to the bonding area, e.g. bond pad the layer connector being smaller than the bonding area, e.g. bond pad
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32245Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48245Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • H01L2224/48247Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/484Connecting portions
    • H01L2224/4847Connecting portions the connecting portion on the bonding area of the semiconductor or solid-state body being a wedge bond
    • H01L2224/48472Connecting portions the connecting portion on the bonding area of the semiconductor or solid-state body being a wedge bond the other connecting portion not on the bonding area also being a wedge bond, i.e. wedge-to-wedge
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73265Layer and wire connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/73Means for bonding being of different types provided for in two or more of groups H01L24/10, H01L24/18, H01L24/26, H01L24/34, H01L24/42, H01L24/50, H01L24/63, H01L24/71
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01004Beryllium [Be]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01005Boron [B]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01006Carbon [C]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01013Aluminum [Al]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01029Copper [Cu]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01033Arsenic [As]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01078Platinum [Pt]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01079Gold [Au]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01082Lead [Pb]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/102Material of the semiconductor or solid state bodies
    • H01L2924/1025Semiconducting materials
    • H01L2924/10251Elemental semiconductors, i.e. Group IV
    • H01L2924/10253Silicon [Si]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/13Discrete devices, e.g. 3 terminal devices
    • H01L2924/1304Transistor
    • H01L2924/1305Bipolar Junction Transistor [BJT]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/13Discrete devices, e.g. 3 terminal devices
    • H01L2924/1304Transistor
    • H01L2924/1305Bipolar Junction Transistor [BJT]
    • H01L2924/13055Insulated gate bipolar transistor [IGBT]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/13Discrete devices, e.g. 3 terminal devices
    • H01L2924/1304Transistor
    • H01L2924/1306Field-effect transistor [FET]
    • H01L2924/13091Metal-Oxide-Semiconductor Field-Effect Transistor [MOSFET]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/181Encapsulation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/30Technical effects
    • H01L2924/35Mechanical effects
    • H01L2924/351Thermal stress

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for manufacturing a thin semiconductor device on which a back electrode is disposed via an impurity diffusion region for contact for preventing the strength failure of a wafer-shaped substrate, and obtaining the contact of the back electrode at a lower temperature. <P>SOLUTION: An impurity diffusion region for forming an element is formed on one surface of a water-shaped semiconductor substrate 30, and the substrate 30 is formed with a predetermined thickness being ground from the opposite face, and etched to a predetermined depth so as to be made thin excluding the outer periphery. An impurity doped polysilicon film 31 is formed, and an impurity is diffused from the film 31 to the semiconductor substrate 30 side so that the impurity diffusion region for contact can be formed on the surface. The back electrode 32 is formed so as to be brought into contact with the impurity doped polysilicon film 30, and then diced. <P>COPYRIGHT: (C)2004,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は半導体装置の製造方
法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a semiconductor device manufacturing method.

【0002】[0002]

【従来の技術】縦型パワーMOSトランジスタの構成の
一例を述べると、n型シリコン基板における一方の面の
表層部にp型ベース領域およびn型ソース領域が形成さ
れるとともに、n型シリコン基板における他方の面には
ドレイン電極(裏面電極)が形成される。縦型パワーM
OSトランジスタにおいて、基板の厚さを薄くすること
により縦方向に形成される電流経路における基板での抵
抗成分を低くしてオン抵抗を低減することができる。こ
れを実現するためには製造工程においてウエハを薄く加
工することになる。詳しい工程は、ウエハ状シリコン基
板の一方の面においてベース・ソース領域と配線材と保
護膜を形成した後、ウエハ状シリコン基板を薄くする加
工を行い、さらに、裏面電極を形成する。この裏面電極
の形成前におけるウエハ状基板は薄くなっており反りや
歪みの発生が危惧される。
2. Description of the Related Art An example of the structure of a vertical power MOS transistor will be described. A p-type base region and an n-type source region are formed on the surface layer of one surface of an n-type silicon substrate, and an n-type silicon substrate is formed. A drain electrode (back surface electrode) is formed on the other surface. Vertical power M
In the OS transistor, by reducing the thickness of the substrate, the on-resistance can be reduced by lowering the resistance component in the substrate in the current path formed in the vertical direction. In order to realize this, the wafer is thinly processed in the manufacturing process. More specifically, after forming the base / source regions, the wiring material, and the protective film on one surface of the wafer-shaped silicon substrate, the wafer-shaped silicon substrate is thinned, and the back electrode is further formed. The wafer-shaped substrate before the formation of the back electrode is thin, and there is a concern that warpage or distortion may occur.

【0003】一方、前述の構成の縦型パワーMOSトラ
ンジスタにおいて、n型シリコン基板の裏面での表層部
にn+領域をコンタクト用不純物拡散領域として形成
し、このコンタクト用不純物拡散領域に接するように裏
面電極を形成することが行われている。この構成とすべ
く、製造工程の一例として以下のようにする。ウエハ状
シリコン基板の一方の面においてベース・ソース領域と
配線材と保護膜(SiN膜又はPIQ膜)を形成する。
そして、ウエハ状シリコン基板の裏面側においてコンタ
クト確保のためのn+領域を形成する。このとき、
(i)イオン打ち込み法、あるいは、(ii)熱拡散に
よる不純物導入法を、用いる。(i)のイオン打ち込み
法においては、後工程で500〜700℃のアニールを
行う必要があるとともに、より高濃度化すべくドーズ量
を多くする必要があり、さらに、打ち込まれたイオンの
活性化率を100%近くにすべくアニール温度を高くす
る必要がある。一方、(ii)の熱拡散法においては、
より高い温度と時間が要求される。
On the other hand, in the vertical power MOS transistor having the above-described structure, an n + region is formed as a contact impurity diffusion region in the surface layer portion on the back surface of the n type silicon substrate, and is in contact with the contact impurity diffusion region. Backside electrodes are being formed. In order to have this configuration, the following is an example of the manufacturing process. A base / source region, a wiring material, and a protective film (SiN film or PIQ film) are formed on one surface of a wafer-shaped silicon substrate.
Then, an n + region for securing a contact is formed on the back surface side of the wafer-shaped silicon substrate. At this time,
An ion implantation method (i) or an impurity introduction method by thermal diffusion (ii) is used. In the ion implantation method of (i), it is necessary to perform annealing at 500 to 700 ° C. in a later step, and it is necessary to increase the dose amount in order to increase the concentration, and further, the activation rate of the implanted ions. It is necessary to raise the annealing temperature in order to make the value close to 100%. On the other hand, in the thermal diffusion method of (ii),
Higher temperatures and times are required.

【0004】ここで、ウエハ状シリコン基板の一方の面
においてベース・ソース領域と配線材を形成した後にお
いて、前述の(i)あるいは(ii)の手法によりコン
タクト用n+領域を形成する場合には、配線材(例えば
アルミ膜)の軟化温度(450℃)以下で行う必要があ
る。
When the base / source region and the wiring material are formed on one surface of the wafer-shaped silicon substrate and then the contact n + region is formed by the method (i) or (ii) described above. Need to be performed at a softening temperature (450 ° C.) or lower of the wiring material (for example, an aluminum film).

【0005】[0005]

【発明が解決しようとする課題】本発明はこのような背
景の下になされたものであり、その目的は、薄型で、か
つ、コンタクト用不純物拡散領域を介して裏面電極を配
した半導体装置において、ウエハ状の基板における強度
的な不具合を回避できるとともに、より低温で裏面電極
のコンタクトをとることができる半導体装置の製造方法
を提供することにある。
SUMMARY OF THE INVENTION The present invention has been made under such a background, and an object thereof is to provide a semiconductor device which is thin and has a back surface electrode arranged through a contact impurity diffusion region. An object of the present invention is to provide a method for manufacturing a semiconductor device, which can avoid a strength problem in a wafer-shaped substrate and can make contact with a back electrode at a lower temperature.

【0006】[0006]

【課題を解決するための手段】請求項1,2,3に記載
の半導体装置の製造方法においては、ウエハ状の半導体
基板における一方の面の表層部に素子形成用不純物拡散
領域を形成する工程と、ウエハ状の半導体基板における
素子形成用不純物拡散領域を形成した面とは反対の面か
ら研削加工して当該基板を所定の厚さにする工程と、ウ
エハ状の半導体基板における素子形成用不純物拡散領域
を形成した面とは反対の面に対し同半導体基板の外周部
を残して所定深さまでエッチングして薄膜化する工程
と、ウエハ状の半導体基板における素子形成用不純物拡
散領域を形成した面とは反対の面に不純物ドープトポリ
シリコン膜を形成するとともに、不純物ドープトポリシ
リコン膜から半導体基板側に不純物を拡散させてウエハ
状の半導体基板における素子形成用不純物拡散領域を形
成した面とは反対の面の表層部にコンタクト用不純物拡
散領域を形成する工程と、不純物ドープトポリシリコン
膜に接するように裏面電極を形成する工程を備えてい
る。よって、ウエハ状の半導体基板の外周部に厚肉部を
残したままその内方の領域を薄膜化でき、反りや歪みの
心配のない状態で裏面に電極を形成することができる。
また、不純物ドープトポリシリコン膜からの不純物の拡
散、つまり、コンタクト用不純物拡散領域の形成は低温
で行うことができ、このコンタクト用不純物拡散領域を
介して裏面電極と低抵抗なるオーミックコンタクト接続
することが可能となる。その結果、ウエハ状の基板にお
ける強度的な不具合を回避できるとともに、より低温で
裏面電極のコンタクトをとることができる。
In the method of manufacturing a semiconductor device according to any one of claims 1, 2 and 3, a step of forming an impurity diffusion region for element formation in a surface layer portion of one surface of a wafer-shaped semiconductor substrate. And a step of grinding the surface of the wafer-shaped semiconductor substrate opposite to the surface on which the element-forming impurity diffusion regions are formed to make the substrate have a predetermined thickness, and the element-forming impurities in the wafer-shaped semiconductor substrate. A step of forming a thin film by etching to a predetermined depth while leaving the outer peripheral portion of the semiconductor substrate on the surface opposite to the surface on which the diffusion region is formed, and the surface on which the impurity diffusion region for forming elements in the wafer-shaped semiconductor substrate is formed An impurity-doped polysilicon film is formed on the surface opposite to the surface, and impurities are diffused from the impurity-doped polysilicon film to the semiconductor substrate side to form a wafer-shaped semiconductor substrate. A step of forming a contact impurity diffusion region on the surface layer portion opposite to the surface on which the element forming impurity diffusion region is formed, and a step of forming a back electrode so as to contact the impurity-doped polysilicon film. There is. Therefore, the inner region of the wafer-shaped semiconductor substrate can be thinned while leaving the thick portion on the outer peripheral portion, and the electrode can be formed on the back surface without any fear of warpage or distortion.
Further, the diffusion of impurities from the impurity-doped polysilicon film, that is, the formation of the contact impurity diffusion region can be performed at a low temperature, and ohmic contact connection with low resistance is made to the back electrode through the contact impurity diffusion region. It becomes possible. As a result, it is possible to avoid strength problems in the wafer-shaped substrate and to make contact with the back electrode at a lower temperature.

【0007】特に、請求項2に記載の発明においては、
ウエハ状の半導体基板を各チップにダイシングする工程
と、チップにおける両面側にヒートシンク材を接合する
とともに当該ヒートシンク材の一部が露出するようにし
て樹脂モールドする工程と、を備えている。よって、両
面放熱モールド構造とすることができる。
Particularly, in the invention described in claim 2,
The method includes a step of dicing a wafer-shaped semiconductor substrate into each chip, and a step of bonding a heat sink material to both surface sides of the chip and resin-molding so that a part of the heat sink material is exposed. Therefore, a double-sided heat dissipation mold structure can be obtained.

【0008】さらに、請求項3に記載の発明において
は、ダイシング前において、ウエハ状の半導体基板にお
ける素子形成用不純物拡散領域を形成した面に、熱的良
導性材料よりなる板材を接合する工程を備えている。よ
って、ダイシングしてチップ状態にしても容易に取り扱
うことができる。
Further, in the third aspect of the present invention, before dicing, a step of bonding a plate material made of a thermally conductive material to the surface of the wafer-shaped semiconductor substrate on which the element-forming impurity diffusion regions are formed. Is equipped with. Therefore, it can be easily handled even if it is diced into a chip state.

【0009】さらには、請求項4に記載の発明において
は、ダイシング前においてウエハ状の半導体基板におけ
る裏面電極を形成した面にも、熱的良導性材料よりなる
板材を接合する。よって、半導体基板における裏面電極
を形成した面において熱的良導性材料よりなる板材を介
してヒートシンク材が配置されるので、チップを中心位
置に配置し易く、放熱性の向上を図ることができる。
Further, in the invention according to the fourth aspect, a plate member made of a thermally conductive material is also bonded to the surface of the wafer-shaped semiconductor substrate on which the back electrode is formed before dicing. Therefore, since the heat sink material is arranged on the surface of the semiconductor substrate on which the back electrode is formed via the plate material made of a thermally conductive material, the chip can be easily arranged at the center position and the heat dissipation can be improved. .

【0010】[0010]

【発明の実施の形態】以下、この発明を具体化した一実
施の形態を図面に従って説明する。図1には、本実施形
態における半導体装置の全体構成を示す。
BEST MODE FOR CARRYING OUT THE INVENTION An embodiment of the present invention will be described below with reference to the drawings. FIG. 1 shows the overall configuration of the semiconductor device according to this embodiment.

【0011】図1において、シリコンチップ1には、図
2に示すように縦型パワーMOSトランジスタが作り込
まれている。図1のチップ1の上面にはハンダ2を介し
て銅板3が接合されている。この銅板3は熱的良導性材
料よりなる板材である。また、チップ1の下面にはハン
ダ4を介してヒートシンク材5が接合されている。チッ
プ1とリードフレーム6とがワイヤー7にてボンディン
グされている。一方、前述の銅板3の上面にはハンダ8
を介してヒートシンク材9が接合されている。これらの
部材1,3,5,9は樹脂10にてモールドされてい
る。ここで、ヒートシンク材9の上面とヒートシンク材
5の下面とはモールド用樹脂10から露出している。こ
のように両面放熱モールド構造となっている。
In FIG. 1, a silicon chip 1 is provided with a vertical power MOS transistor as shown in FIG. A copper plate 3 is bonded to the upper surface of the chip 1 of FIG. 1 via a solder 2. The copper plate 3 is a plate material made of a thermally conductive material. A heat sink material 5 is bonded to the lower surface of the chip 1 via a solder 4. The chip 1 and the lead frame 6 are bonded by a wire 7. On the other hand, solder 8 is placed on the upper surface of the copper plate 3 described above.
The heat sink material 9 is joined via the. These members 1, 3, 5, 9 are molded with resin 10. Here, the upper surface of the heat sink material 9 and the lower surface of the heat sink material 5 are exposed from the molding resin 10. Thus, it has a double-sided heat dissipation mold structure.

【0012】図2において、半導体基板としてのn型シ
リコン基板20は主表面(上面)とその反対面の裏面
(下面)を有している。このn型シリコン基板20は厚
さが25〜150μm程度であり、薄型パワーデバイス
となっている。このように基板20の厚さが25〜15
0μm程度と薄くなっていることにより、縦方向に形成
される電流経路における基板20での抵抗成分を低くし
てオン抵抗を低減することができる。
In FIG. 2, an n-type silicon substrate 20 as a semiconductor substrate has a main surface (upper surface) and a back surface (lower surface) opposite to the main surface. The n-type silicon substrate 20 has a thickness of about 25 to 150 μm and is a thin power device. Thus, the thickness of the substrate 20 is 25 to 15
Since the thickness is as thin as about 0 μm, the resistance component in the substrate 20 in the current path formed in the vertical direction can be lowered to reduce the on-resistance.

【0013】n型シリコン基板20の主表面(上面)に
おいて表層部にはp型ベース領域21が形成されるとと
もに、p型ベース領域21の内部においてn+ソース領
域22が形成されている。本例では、p型ベース領域2
1およびn+ソース領域22が素子形成用不純物拡散領
域である。また、n型シリコン基板20の主表面(上
面)の上にはゲート酸化膜23を介してポリシリコンゲ
ート電極24が形成されている。ポリシリコンゲート電
極24は酸化膜25にて覆われている。酸化膜25の上
を含めたn型シリコン基板20の主表面(上面)の上に
はソース電極26が形成されている。ソース電極26は
アルミ材よりなる。さらに、ソース電極26の上には保
護膜(図示略)が形成されている。
On the main surface (upper surface) of the n-type silicon substrate 20, a p-type base region 21 is formed in the surface layer portion, and an n + source region 22 is formed inside the p-type base region 21. In this example, the p-type base region 2
The 1 and n + source regions 22 are element forming impurity diffusion regions. A polysilicon gate electrode 24 is formed on the main surface (upper surface) of n-type silicon substrate 20 with gate oxide film 23 interposed. The polysilicon gate electrode 24 is covered with an oxide film 25. A source electrode 26 is formed on the main surface (upper surface) of the n-type silicon substrate 20 including the oxide film 25. The source electrode 26 is made of an aluminum material. Further, a protective film (not shown) is formed on the source electrode 26.

【0014】一方、n型シリコン基板20の裏面(下
面)において表層部には、n+型ドレインコンタクト領
域27が形成されている。このn+型ドレインコンタク
ト領域27の表面には不純物ドープトポリシリコン膜2
8を介してドレイン電極29が基板裏面の全面に形成さ
れている。ドレイン電極(裏面電極)29はチタン(T
i)とニッケル(Ni)と金(Au)の積層体よりな
る。また、n+型ドレインコンタクト領域27は、不純
物ドープトポリシリコン膜28からの不純物の拡散によ
り形成したものである。
On the other hand, on the back surface (lower surface) of the n-type silicon substrate 20, an n + -type drain contact region 27 is formed in the surface layer portion. On the surface of the n + type drain contact region 27, the impurity-doped polysilicon film 2 is formed.
A drain electrode 29 is formed on the entire back surface of the substrate via the electrode 8. The drain electrode (back surface electrode) 29 is made of titanium (T
i), nickel (Ni), and gold (Au). The n + type drain contact region 27 is formed by diffusing impurities from the impurity-doped polysilicon film 28.

【0015】このように本トランジスタ(DMOS)
は、シリコン基板20における素子形成用不純物拡散領
域21,22を形成した面とは反対の面に不純物ドープ
トポリシリコン膜28が形成され、この不純物ドープト
ポリシリコン膜28に接するシリコン基板20の表層部
に当該膜28からの不純物の拡散によるコンタクト用不
純物拡散領域27が形成されている。また、不純物ドー
プトポリシリコン膜28に接するように裏面電極29が
形成されている。さらに、シリコン基板20における素
子形成用不純物拡散領域21,22を形成した面に、図
1に示すごとく熱的良導性材料よりなる板材3を介して
ヒートシンク材9が接合されるとともにシリコン基板2
0における裏面電極29を形成した面にヒートシンク材
5が接合されている。これらヒートシンク材5,9の一
部が露出するようにして樹脂モールドされている。
Thus, the present transistor (DMOS)
The impurity-doped polysilicon film 28 is formed on the surface of the silicon substrate 20 opposite to the surface on which the element-forming impurity diffusion regions 21 and 22 are formed, and the silicon substrate 20 in contact with the impurity-doped polysilicon film 28 is formed. Contact impurity diffusion regions 27 are formed in the surface layer portion by diffusion of impurities from the film 28. A back electrode 29 is formed in contact with the impurity-doped polysilicon film 28. Further, as shown in FIG. 1, the heat sink material 9 is bonded to the surface of the silicon substrate 20 on which the element-forming impurity diffusion regions 21 and 22 are formed, via the plate material 3 made of a thermally conductive material, and the silicon substrate 2
The heat sink material 5 is bonded to the surface of the No. 0 surface on which the back surface electrode 29 is formed. The heat sink materials 5 and 9 are resin-molded so that part of them are exposed.

【0016】次に、製造方法を説明する。まず、図3
(a)に示すように、ウエハ状のn型シリコン基板(半
導体基板)30を用意する。そして、このウエハ状のn
型シリコン基板30に対し図2に示したように主表面側
にゲート酸化膜23を介してポリシリコンゲート電極2
4を形成する(パターニングする)。そして、ウエハ状
のn型シリコン基板30の主表面の表層部にp型ベース
領域21とn+ソース領域22を形成する。さらに、ポ
リシリコンゲート電極24の上に酸化膜25を形成する
とともに酸化膜25の上を含めたn型シリコン基板30
の主表面(上面)の上にアルミ材よりなるソース電極2
6を形成する。また、ゲート配線等の必要なアルミ配線
材および保護膜を形成する。
Next, the manufacturing method will be described. First, FIG.
As shown in (a), a wafer-shaped n-type silicon substrate (semiconductor substrate) 30 is prepared. Then, this wafer-shaped n
As shown in FIG. 2, the polysilicon gate electrode 2 is formed on the main surface side of the type silicon substrate 30 via the gate oxide film 23.
4 is formed (patterned). Then, p-type base region 21 and n + source region 22 are formed in the surface layer portion of the main surface of wafer-shaped n-type silicon substrate 30. Further, an oxide film 25 is formed on the polysilicon gate electrode 24 and the n-type silicon substrate 30 including the oxide film 25 is formed.
Source electrode 2 made of aluminum on the main surface (upper surface) of
6 is formed. Also, necessary aluminum wiring material such as gate wiring and a protective film are formed.

【0017】このようにして、ウエハ状のシリコン基板
30における一方の面の表層部に素子形成用不純物拡散
領域21,22を形成するとともにソース電極26や配
線材等を形成する。
Thus, the element-forming impurity diffusion regions 21 and 22 are formed in the surface layer portion of one surface of the wafer-shaped silicon substrate 30, and the source electrode 26 and the wiring material are formed.

【0018】その後、図3(a)に示すように、ウエハ
状のシリコン基板30における素子形成用不純物拡散領
域21,22を形成した面とは反対の面(裏面)から研
削加工して当該基板30を所定の厚さにする。つまり、
ウエハ状シリコン基板30の裏面を研削加工(SG:S
urface Grinding)して250μm程度まで薄くする。
After that, as shown in FIG. 3A, the surface of the wafer-shaped silicon substrate 30 opposite to the surface on which the element-forming impurity diffusion regions 21 and 22 are formed (rear surface) is ground, and the substrate is ground. 30 is set to a predetermined thickness. That is,
The back surface of the wafer-shaped silicon substrate 30 is ground (SG: S
urface Grinding) and thin to about 250 μm.

【0019】そして、図3(b)に示すように、ウエハ
状のシリコン基板30における素子形成用不純物拡散領
域21,22を形成した面とは反対の面(裏面)に対し
同シリコン基板30の外周部を残して所定深さまでエッ
チングして薄膜化する(断面形状として凹状の薄型基板
とする)。詳しくは、図4,5に示すポットエッチング
装置を用いて、ウエハ外周部を除いて、25〜150μ
m程度まで薄くする。これにより、ウエハは4〜8イン
チであるが、外周の厚い部分が存在するので反り等が抑
えられる。
Then, as shown in FIG. 3B, the surface of the silicon substrate 30 in the wafer shape is opposite to the surface (rear surface) opposite to the surface on which the impurity diffusion regions 21 and 22 for element formation are formed. The thin film is formed by etching to a predetermined depth while leaving the outer peripheral portion (a thin substrate having a concave sectional shape). More specifically, using the pot etching apparatus shown in FIGS.
Thin to about m. As a result, the wafer is 4 to 8 inches, but since there is a thick outer peripheral portion, warpage or the like is suppressed.

【0020】ポットエッチング(薄肉加工用エッチン
グ)について、詳しく説明する。図4に、エッチングポ
ットPeの構成を示すとともに、図5に、薄肉加工用エ
ッチング装置としてのポットエッチング装置の全体構成
を示す。
The pot etching (etching for thin wall processing) will be described in detail. FIG. 4 shows the configuration of the etching pot Pe, and FIG. 5 shows the overall configuration of the pot etching apparatus as an etching apparatus for thin wall processing.

【0021】図4に示すように、エッチングポットPe
は、プレート状のポットベース40と、筒状のポットリ
ング41とを具備し、ポットベース40の上面にはシリ
コンウエハ30が載置できるとともにその上にポットリ
ング41が一方の開口部を下にした状態で配置される。
つまり、シリコンウエハ30が筒状のポットリング41
の下面開口部を塞ぐように配置される。より詳しくは、
ポットベース40はその中央部がシリコンウエハ30を
乗せる台の役割をしている。また、ポットベース40に
おけるウエハ載置部の外周側には凹部42が環状に形成
され、この凹部42にポットリング41の突部43が嵌
合する。このように凹部42は位置合わせの機能を持
つ。さらに、ポットベース40における凹部42の外周
側(ウエハ載置部の周囲)には、平坦なシール面S1が
環状に形成され、シール面S1には凹部44が環状に形
成され真空用ポケットとして機能する。
As shown in FIG. 4, the etching pot Pe
Comprises a plate-shaped pot base 40 and a cylindrical pot ring 41. The silicon wafer 30 can be placed on the upper surface of the pot base 40, and the pot ring 41 has one opening downward. It will be placed in the state of being.
That is, the silicon wafer 30 is a cylindrical pot ring 41.
Is arranged so as to close the lower surface opening of the. For more details,
The pot base 40 has a central portion which serves as a base on which the silicon wafer 30 is placed. Further, a recess 42 is formed in an annular shape on the outer peripheral side of the wafer mounting portion in the pot base 40, and the projection 43 of the pot ring 41 is fitted into this recess 42. In this way, the concave portion 42 has a function of positioning. Further, a flat seal surface S1 is formed in an annular shape on the outer peripheral side of the recess 42 in the pot base 40 (around the wafer mounting portion), and the recess 44 is formed in an annular shape on the seal surface S1 to function as a vacuum pocket. To do.

【0022】また、ポットリング41の下面での内周部
にはウエハ形シールパッキンPsが固定され、このパッ
キンPsはシリコンウエハ30の縁部上面をシールすべ
くウエハ形状に形抜きされている。ウエハ形シールパッ
キンPsにより、ポットリング41内に満たされるエッ
チング液に対しシールすることができる。つまり、シー
ルパッキンPsは、ポットベース40にシリコンウエハ
30を載置した状態でポットリング41の下面とウエハ
30の外周部とを液密状態でシールするためのものであ
る。また、ポットリング41における下面外周部には平
坦なシール面S2が環状に形成され、このシール面S2
には凹部45が環状に形成され真空用ポケットとして機
能する。
A wafer-shaped seal packing Ps is fixed to the inner peripheral portion of the lower surface of the pot ring 41, and the packing Ps is cut into a wafer shape so as to seal the upper surface of the edge portion of the silicon wafer 30. The wafer-type seal packing Ps can seal the etching liquid with which the pot ring 41 is filled. That is, the seal packing Ps is for liquid-tightly sealing the lower surface of the pot ring 41 and the outer peripheral portion of the wafer 30 with the silicon wafer 30 placed on the pot base 40. A flat seal surface S2 is formed in an annular shape on the outer peripheral portion of the lower surface of the pot ring 41.
A concave portion 45 is formed in a ring shape in the groove and functions as a vacuum pocket.

【0023】ポットベース40のシール面S1とポット
リング41のシール面S2との間には、環状のX形パッ
キン46が配置されている。そして、真空ポンプ等で凹
部(真空用ポケット)44,45内の空気を排出するこ
とでX形パッキン46が収縮してポットベース40とポ
ットリング41とが引き寄せられ、シールパッキンPs
にてシリコンウエハ30の外周部をシールした状態で固
定される。このように、X形パッキン46が固定部材と
して機能する。
An annular X-shaped packing 46 is arranged between the sealing surface S1 of the pot base 40 and the sealing surface S2 of the pot ring 41. Then, by discharging the air in the recesses (vacuum pockets) 44 and 45 with a vacuum pump or the like, the X-shaped packing 46 contracts to draw the pot base 40 and the pot ring 41, and the seal packing Ps.
The silicon wafer 30 is fixed in a sealed state at its outer periphery. Thus, the X-shaped packing 46 functions as a fixing member.

【0024】このように構成したエッチングポットPe
が図5に示すようにエッチング装置にセットされ、エッ
チングポットPe内にエッチング液Leが注入される。
この際、ウエハ形シールパッキンPsによりシールされ
るとともにエッチング液Leに対しシリコンウエハ30
の外周部がマスク(保護)される。
The etching pot Pe having the above structure
Is set in the etching apparatus as shown in FIG. 5, and the etching liquid Le is injected into the etching pot Pe.
At this time, the silicon wafer 30 is sealed by the wafer type seal packing Ps, and the silicon wafer 30
The outer peripheral portion of is masked (protected).

【0025】このようにエッチングポットPeの内部に
エッチング液Leが満たされるとともに、ポットPeの
底面部にシリコンウエハ30が支持され、上向きのシリ
コンウエハ30の被加工面がエッチング液Leにて覆わ
れる。
In this manner, the etching pot Pe is filled with the etching liquid Le, the silicon wafer 30 is supported on the bottom surface of the pot Pe, and the surface to be processed of the upward facing silicon wafer 30 is covered with the etching liquid Le. .

【0026】詳しくは、エッチングポットPeがポット
載置台47の上に搭載されるとともに、エッチングポッ
トPeの上面開口部がキャップ48にて塞がれる。キャ
ップ48には攪拌翼49がシール材50にてシールされ
た状態で垂下され、モータ51の駆動により同攪拌翼4
9が回転してエッチング液Leを攪拌する。また、キャ
ップ48にはヒータ52がシール材53にてシールされ
た状態で垂下され、同ヒータ52にてエッチング液Le
が加熱される。さらに、キャップ48には温度センサ5
4がシール材55にてシールされた状態で垂下され、温
度センサ54にてエッチング液Leの温度が検出され
る。そして、エッチング中はエッチング液Leが攪拌翼
49により十分攪拌され、温調器56により温度センサ
54による液温が所定の温度となるようにヒータ52が
通電制御される。
More specifically, the etching pot Pe is mounted on the pot mounting table 47, and the upper opening of the etching pot Pe is closed by the cap 48. A stirring blade 49 is hung down on the cap 48 while being sealed by a sealing material 50, and the stirring blade 4 is driven by a motor 51.
9 rotates to stir the etching liquid Le. Further, a heater 52 is hung down on the cap 48 in a state of being sealed by a sealing material 53, and the etching liquid Le is dripped by the heater 52.
Is heated. Further, the cap 48 has a temperature sensor 5
4 is hung down while being sealed by the sealing material 55, and the temperature of the etching liquid Le is detected by the temperature sensor 54. Then, during the etching, the etching solution Le is sufficiently stirred by the stirring blade 49, and the heater 52 is energized and controlled by the temperature controller 56 so that the temperature of the solution by the temperature sensor 54 becomes a predetermined temperature.

【0027】また、キャップ48には洗浄用純水の通路
57が形成され、ポットリング41の内壁に沿って純水
をエッチングポットPe内に注入することができる。ま
た、キャップ48には排液口58が形成され、ポットP
e内でオーバーフローした液を排出することができる。
Further, a passage 57 for pure water for cleaning is formed in the cap 48, and pure water can be injected into the etching pot Pe along the inner wall of the pot ring 41. A drain port 58 is formed in the cap 48, and the pot P
The liquid overflowing in e can be discharged.

【0028】また、ポットベース40には厚さセンサ5
9が設けられ、シリコンウエハ30における凹部の底面
部での厚さ(エッチング量)を測定してエッチングの進
行状況を検出し、エッチング終了時期を検出する。
The thickness sensor 5 is attached to the pot base 40.
9 is provided to measure the thickness (etching amount) of the bottom surface of the recess in the silicon wafer 30 to detect the progress of etching, and to detect the etching end time.

【0029】そして、所定量のエッチングが行われ、シ
リコンウエハ30における凹部の底面部での厚さが所望
の値になると、エッチングを停止すべく図5の通路57
を通してエッチングポットPe内に洗浄用純水が注入さ
れてエッチング液を希釈冷却するとともに、オーバーフ
ローした液が排液口58を通して排水される。その後、
真空ポンプ等による凹部(真空用ポケット)44,45
内の真空引きを止めて凹部44,45内を大気圧にす
る。そして、キャップ48およびポットリング41(シ
ールパッキンPs)を取り外して、エッチング加工後の
シリコンウエハ30を次工程に送る。
When a predetermined amount of etching is performed and the thickness of the bottom surface of the recess in the silicon wafer 30 reaches a desired value, the passage 57 of FIG.
Pure water for cleaning is injected into the etching pot Pe to dilute and cool the etching liquid, and the overflowed liquid is drained through the drain port 58. afterwards,
Recesses (vacuum pockets) 44, 45 by vacuum pump, etc.
The vacuum inside is stopped and the inside of the recesses 44 and 45 is brought to atmospheric pressure. Then, the cap 48 and the pot ring 41 (seal packing Ps) are removed, and the silicon wafer 30 after etching is sent to the next step.

【0030】図4,5の説明を終え、製造工程の説明に
戻る。引き続き、図3(c)に示すように、ウエハ状の
シリコン基板30における素子形成用不純物拡散領域2
1,22を形成した面とは反対の面(裏面)に不純物ド
ープトポリシリコン膜31を形成(堆積)するととも
に、不純物ドープトポリシリコン膜31からシリコン基
板30側に不純物を拡散させて(ドーピングし)ウエハ
状のシリコン基板30における素子形成用不純物拡散領
域21,22を形成した面とは反対の面の表層部にn+
コンタクト用不純物拡散領域27(図2参照)を形成す
る。詳しくは、不純物ドープトポリシリコン膜31を堆
積するときの温度は450℃以下で、例えばLP(減
圧)−CVD法あるいは、PVD(スパッタ)法を用い
る。これは、ポリシリコンは単結晶に比べ数倍から数十
倍の拡散速度であるとともに、結晶間に多量の不純物を
ドープすることができるためであり、これによりトラン
ジスタセル、アルミによる電極や配線材を形成した後の
工程で、裏面に不純物を高濃度に導入することが可能と
なる。
After the description of FIGS. 4 and 5, the description returns to the manufacturing process. Subsequently, as shown in FIG. 3C, the element-forming impurity diffusion regions 2 in the wafer-shaped silicon substrate 30.
Impurity-doped polysilicon film 31 is formed (deposited) on the surface (back surface) opposite to the surface on which 1 and 22 are formed, and impurities are diffused from impurity-doped polysilicon film 31 to the silicon substrate 30 side ( N + is formed on the surface layer portion of the surface of the silicon substrate 30 in the form of a wafer which is opposite to the surface on which the element forming impurity diffusion regions 21 and 22 are formed.
The contact impurity diffusion region 27 (see FIG. 2) is formed. Specifically, the temperature at which the impurity-doped polysilicon film 31 is deposited is 450 ° C. or lower, and for example, LP (decompression) -CVD method or PVD (sputtering) method is used. This is because polysilicon has a diffusion rate that is several to several tens of times that of single crystals, and it is possible to dope a large amount of impurities between crystals, which allows transistor cells, electrodes and wiring materials made of aluminum. It becomes possible to introduce a high concentration of impurities into the back surface in a step after the formation of.

【0031】その後、図3(d)に示すように、不純物
ドープトポリシリコン膜31に接するように裏面電極3
2を形成する。つまり、Ti、Ni、Auの各膜を順に
形成する。
Thereafter, as shown in FIG. 3D, the back electrode 3 is contacted with the impurity-doped polysilicon film 31.
Form 2. That is, Ti, Ni, and Au films are sequentially formed.

【0032】このようにして、450℃以下で不純物ド
ープトポリシリコン膜31を堆積し、ドーピング(熱処
理)することにより、n+型ドレインコンタクト層27
が形成され、この高濃度層27を介して低抵抗なるオー
ミックコンタクト接続することが可能となる。
In this way, the impurity-doped polysilicon film 31 is deposited at 450 ° C. or lower and doped (heat-treated), whereby the n + type drain contact layer 27 is formed.
Is formed, and ohmic contact connection with low resistance can be performed through the high concentration layer 27.

【0033】引き続き、図6に示すように、ウエハ状の
シリコン基板30における素子形成用不純物拡散領域2
1,22を形成した面(ソース電極側)に、銅板(熱的
良導性材料よりなる板材)33を接合し、その後に、ウ
エハ状のシリコン基板30をダイシング(スクライブ)
して各チップにする。これは、以下の理由による。図3
(d)の状態においてはセル領域は厚みが25〜150
μm程度まで薄くしているので、ダイシングしてチップ
状態にすると取り扱いが困難となる。そこで、図6のよ
うにソース側に板材33をハンダ付けして、ダイシング
にてチップ状態にしても容易に取り扱うことができる。
Subsequently, as shown in FIG. 6, the element-forming impurity diffusion regions 2 in the wafer-shaped silicon substrate 30.
A copper plate (a plate material made of a thermally conductive material) 33 is bonded to the surface (source electrode side) on which 1 and 22 are formed, and then the wafer-shaped silicon substrate 30 is diced (scribed).
And make each chip. This is for the following reason. Figure 3
In the state of (d), the cell region has a thickness of 25 to 150.
Since the thickness is reduced to about μm, it becomes difficult to handle when dicing into chips. Therefore, as shown in FIG. 6, the plate member 33 is soldered to the source side and can be easily handled even in a chip state by dicing.

【0034】図7は、ウエハ状のシリコン基板30およ
び板材33の平面図である。図6,7に示すように、ウ
エハ状のシリコン基板30は円板状をなしている。ま
た、板材(銅板)33は四角形状をなしている。板材3
3には突起33aが形成されている。この突起33a
は、ウエハ状のシリコン基板30における各チップ形成
予定領域でのソース領域(各チップでのソース電極)に
対応しており、突起33aの平面形状は例えば正方形で
ある。板材33に関して、より具体的には、例えば銅板
にニッケル膜を無電解メッキし、これをプレスにより凹
凸を設けるとよい。また、ウエハ状のシリコン基板30
と板材33との接合の際に、板材33の突起33aがウ
エハの各チップでのソース電極に対応するように目合わ
せして接合する。
FIG. 7 is a plan view of a wafer-shaped silicon substrate 30 and a plate member 33. As shown in FIGS. 6 and 7, the wafer-shaped silicon substrate 30 has a disk shape. The plate material (copper plate) 33 has a quadrangular shape. Plate material 3
3 has a protrusion 33a formed thereon. This protrusion 33a
Corresponds to the source region (source electrode in each chip) in each chip formation planned region in the wafer-shaped silicon substrate 30, and the projection 33a has a square planar shape, for example. More specifically, with respect to the plate member 33, for example, a nickel film may be electrolessly plated on a copper plate, and the nickel film may be pressed to form irregularities. In addition, a wafer-shaped silicon substrate 30
At the time of bonding the plate material 33 with the plate material 33, the projections 33a of the plate material 33 are aligned and bonded so as to correspond to the source electrodes in each chip of the wafer.

【0035】図8,9にはダイシング後のチップを示
す。シリコンチップ1が板材3とソース電極部分でハン
ダ付けされている。その後、図1に示すように、チップ
1における両面側にヒートシンク材5,9をハンダ付け
(接合)するとともに当該ヒートシンク材5,9の一部
が露出するようにして樹脂モールド(トランスファモー
ルド)する。
8 and 9 show the chip after dicing. The silicon chip 1 is soldered to the plate member 3 and the source electrode portion. After that, as shown in FIG. 1, heat sink materials 5 and 9 are soldered (bonded) to both surface sides of the chip 1 and resin molding (transfer molding) is performed so that a part of the heat sink materials 5 and 9 is exposed. .

【0036】ヒートシンク材5,9と板材3は、例えば
銅板(Cu板)で構成し、モールド樹脂10についても
銅(Cu)に近い熱膨張係数を持つ材料を選択する。冷
熱サイクルにおける熱応力のバランスを考慮した場合、
異なる熱膨張係数を有するのはシリコンチップ1だけで
ある。よって、シリコンチップ1の厚みをできるだけ薄
くすることが熱応力アンバランスによる素子端面剥離と
か素子、樹脂のクラック防止に効果が大きく、耐冷熱サ
イクル性等の信頼性向上に有効である。
The heat sink materials 5 and 9 and the plate material 3 are made of, for example, a copper plate (Cu plate), and the mold resin 10 is selected from materials having a thermal expansion coefficient close to that of copper (Cu). When considering the balance of thermal stress in the thermal cycle,
Only the silicon chip 1 has a different coefficient of thermal expansion. Therefore, it is effective to reduce the thickness of the silicon chip 1 as much as possible in order to prevent element end face peeling due to thermal stress imbalance, cracking of the element and resin, and to improve reliability such as resistance to cold and heat cycles.

【0037】このようにして、ポットエッチング技術を
用いてウエハ状のシリコン基板30の外周部に厚肉部を
残したままその内方の領域(アクティブ領域)を薄膜化
でき、反りや歪みの心配のない状態でウエハ裏面にスパ
ッタ等で電極を形成することができる。その結果、ウエ
ハ状シリコン基板30における強度的な不具合を回避で
きる。また、エピタキシャル形成する必要がなくウエハ
(基板)のコストを低減できる。
In this way, by using the pot etching technique, the inner region (active region) can be thinned while leaving the thick portion on the outer peripheral portion of the wafer-shaped silicon substrate 30, and there is a fear of warpage or distortion. The electrode can be formed on the back surface of the wafer without sputtering by sputtering or the like. As a result, it is possible to avoid strength problems in the wafer-shaped silicon substrate 30. Further, the cost of the wafer (substrate) can be reduced because it is not necessary to form it epitaxially.

【0038】一方、ウエハの主表面側にベース・ソース
領域とアルミによる電極・配線材と保護膜(SiN膜又
はPIQ膜)を形成した後に、裏面側コンタクト確保の
ためn+高濃度層27を形成する場合において、高濃度
層を形成する方法としては、イオン打ち込み法と熱拡散
による不純物導入法があり、イオン打ち込み法において
は後工程のアニールで500〜700℃でのアニールす
る必要があり、又、高濃度層形成のためにドーズ量を多
くし、打ち込まれたイオンの活性化率を100%近くに
するには、必然的にアニール温度が高くなってしまう傾
向にある。また、熱拡散においては、より高い温度と時
間が要求される。このようなことから、主表面側にベー
ス・ソース領域とアルミによる電極・配線材を形成した
後の工程なので、特にアルミの軟化温度(450℃)以
下での処理が要求される。これに対し本実施形態におい
ては、不純物ドープトポリシリコン膜31(28)から
の不純物の拡散、つまり、高濃度層(コンタクト用不純
物拡散領域)27の形成は低温で行うことができ、この
高濃度層(コンタクト用不純物拡散領域)27を介して
裏面電極32(29)を低抵抗なるオーミックコンタク
ト接続することが可能となる。その結果、薄型で、か
つ、コンタクト用不純物拡散領域27を介して裏面電極
29を配した半導体装置において、より低温で裏面電極
のコンタクトをとることができ、高信頼性デバイスとす
ることができる。
On the other hand, after forming a base / source region, an electrode / wiring material made of aluminum, and a protective film (SiN film or PIQ film) on the main surface side of the wafer, an n + high-concentration layer 27 is formed to secure a contact on the back surface side. In the case of forming, as a method of forming the high-concentration layer, there are an ion implantation method and an impurity introduction method by thermal diffusion. In the ion implantation method, it is necessary to anneal at a temperature of 500 to 700 ° C. in a subsequent annealing step. Further, the annealing temperature tends to be inevitably increased in order to increase the dose amount for forming the high-concentration layer and make the activation rate of the implanted ions close to 100%. Further, higher temperature and time are required for thermal diffusion. For this reason, since it is a process after the base / source regions and the electrode / wiring material made of aluminum are formed on the main surface side, treatment at a softening temperature of aluminum (450 ° C.) or lower is particularly required. On the other hand, in the present embodiment, diffusion of impurities from the impurity-doped polysilicon film 31 (28), that is, formation of the high-concentration layer (contact impurity diffusion region) 27 can be performed at a low temperature. The back electrode 32 (29) can be ohmic contact-connected with low resistance via the concentration layer (contact impurity diffusion region) 27. As a result, in a thin semiconductor device in which the back surface electrode 29 is disposed via the contact impurity diffusion region 27, the back surface electrode can be contacted at a lower temperature, and a highly reliable device can be obtained.

【0039】以下、応用例を説明する。図8,9に示し
た構成に対し、図10,11に示すように、板材3に代
わる板材(銅板)60の形状としてソース電極対応部を
広くしてもよい。この形状はプレスで作成できる。この
場合、樹脂にてモールドすると図12に示すようにな
る。
An application example will be described below. In contrast to the configurations shown in FIGS. 8 and 9, as shown in FIGS. 10 and 11, the source electrode corresponding portion may be widened as a shape of a plate material (copper plate) 60 instead of the plate material 3. This shape can be created by pressing. In this case, when molded with resin, it becomes as shown in FIG.

【0040】また、図6,7に示したものに比べ図1
3,14に示すようにしてもよい。つまり、図3(d)
のウエハ30に対し図13,14に示すように、ウエハ
状基板30のソース側に板材(銅板)33をハンダ付け
するとともにウエハ状基板30のドレイン側に板材(銅
板)70をハンダ付けする。このようにしてダイシング
前においてウエハ状のシリコン基板30における裏面電
極32を形成した面にも、熱的良導性材料よりなる板材
70をハンダ付け(接合)する。そして、ダイシング
し、さらに、図15に示すようにヒートシンク材5,9
の間においてハンダ付けし、樹脂10にてモールドす
る。図15においては、板材70によりシリコンチップ
1をヒートシンク材5から持ち上げて(より離間して)
配置でき、縦方向のパッケージ断面においてシリコンチ
ップ1をちょうどセンターに位置させることができる。
これにより、熱応力のバランスをとり、熱歪がチップ端
面に集中しない。その結果、ヒートサイクルに対する耐
久性が更に向上する。
In addition, as compared with those shown in FIGS.
3 and 14 may be shown. That is, FIG. 3 (d)
13 and 14, a plate material (copper plate) 33 is soldered to the source side of the wafer-shaped substrate 30 and the plate material (copper plate) 70 is soldered to the drain side of the wafer-shaped substrate 30 as shown in FIGS. In this way, the plate member 70 made of a thermally conductive material is also soldered (bonded) to the surface of the wafer-shaped silicon substrate 30 on which the back electrode 32 is formed before dicing. Then, dicing is performed, and further, as shown in FIG.
Solder between them and mold with resin 10. In FIG. 15, the silicon chip 1 is lifted from the heat sink material 5 by the plate material 70 (further away from the heat sink material 5).
It can be arranged, and the silicon chip 1 can be positioned exactly in the center in the package cross section in the vertical direction.
This balances the thermal stress and prevents thermal strain from concentrating on the chip end surface. As a result, the durability against heat cycle is further improved.

【0041】このように、チップ1における裏面電極2
9を形成した面に、熱的良導性材料よりなる板材70を
介してヒートシンク材5を配置することにより、チップ
1を中心位置に配置し易く、放熱性の向上を図ることが
できる。
Thus, the back surface electrode 2 of the chip 1 is
By disposing the heat sink material 5 on the surface on which the chip 9 is formed via the plate material 70 made of a thermally conductive material, it is easy to dispose the chip 1 at the center position and the heat dissipation can be improved.

【0042】なお、これまでの説明においては半導体装
置として縦型MOSFETに適用した場合について説明
してきたが、縦型IGBT(絶縁ゲート型バイポーラト
ランジスタ)に適用してもよい。この場合には裏面電極
はコレクタ電極となる。
In the above description, the case where the present invention is applied to the vertical MOSFET as the semiconductor device has been explained, but it may be applied to the vertical IGBT (insulated gate bipolar transistor). In this case, the back electrode becomes the collector electrode.

【図面の簡単な説明】[Brief description of drawings]

【図1】実施の形態における半導体装置の全体構成図。FIG. 1 is an overall configuration diagram of a semiconductor device according to an embodiment.

【図2】シリコンチップの縦断面図。FIG. 2 is a vertical sectional view of a silicon chip.

【図3】製造工程を説明するための断面図。FIG. 3 is a cross-sectional view for explaining the manufacturing process.

【図4】エッチングポットの断面図。FIG. 4 is a sectional view of an etching pot.

【図5】エッチング装置の断面図。FIG. 5 is a sectional view of an etching apparatus.

【図6】製造工程を説明するための断面図。FIG. 6 is a cross-sectional view for explaining the manufacturing process.

【図7】製造工程を説明するための平面図。FIG. 7 is a plan view for explaining the manufacturing process.

【図8】製造工程を説明するための平面図。FIG. 8 is a plan view for explaining the manufacturing process.

【図9】製造工程を説明するための断面図。FIG. 9 is a cross-sectional view for explaining the manufacturing process.

【図10】別例の製造工程を説明するための平面図。FIG. 10 is a plan view for explaining another manufacturing process.

【図11】別例の製造工程を説明するための断面図。FIG. 11 is a cross-sectional view for explaining the manufacturing process of another example.

【図12】別例の半導体装置の全体構成図。FIG. 12 is an overall configuration diagram of a semiconductor device of another example.

【図13】別例の製造工程を説明するための断面図。FIG. 13 is a cross-sectional view for explaining the manufacturing process of another example.

【図14】別例の製造工程を説明するための平面図。FIG. 14 is a plan view for explaining another manufacturing process.

【図15】別例の半導体装置の全体構成図。FIG. 15 is an overall configuration diagram of a semiconductor device of another example.

【符号の説明】[Explanation of symbols]

1…シリコンチップ、3…板材、5…ヒートシンク材、
9…ヒートシンク材、20…n型シリコン基板、21…
p型ベース領域、22…n+ソース領域、23…ゲート
酸化膜、24…ゲート電極、26…ソース電極、27…
+コンタクト領域、28…不純物ドープトポリシリコ
ン膜、29…ドレイン電極、30…ウエハ状シリコン基
板、31…不純物ドープトポリシリコン膜、32…裏面
電極、33…板材、70…板材。
1 ... Silicon chip, 3 ... Plate material, 5 ... Heat sink material,
9 ... Heat sink material, 20 ... N type silicon substrate, 21 ...
p-type base region, 22 ... N + source region, 23 ... Gate oxide film, 24 ... Gate electrode, 26 ... Source electrode, 27 ...
n + contact region, 28 ... Impurity-doped polysilicon film, 29 ... Drain electrode, 30 ... Wafer-shaped silicon substrate, 31 ... Impurity-doped polysilicon film, 32 ... Back electrode, 33 ... Plate material, 70 ... Plate material.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) H01L 29/78 658F 658A (72)発明者 平野 尚彦 愛知県刈谷市昭和町1丁目1番地 株式会 社デンソー内 (72)発明者 則武 千景 愛知県刈谷市昭和町1丁目1番地 株式会 社デンソー内─────────────────────────────────────────────────── ─── Continuation of front page (51) Int.Cl. 7 Identification code FI theme code (reference) H01L 29/78 658F 658A (72) Inventor Naohiko Hirano 1-1c Showa-cho, Kariya city, Aichi prefecture DENSO CORPORATION (72) Inventor Noritake Chikage 1-1, Showa-cho, Kariya city, Aichi Prefecture DENSO CORPORATION

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 半導体基板(20)における一方の面の
表層部に素子形成用不純物拡散領域(21,22)が形
成されるとともに、前記半導体基板(20)における他
方の面の表層部にコンタクト用不純物拡散領域(27)
が形成され、当該コンタクト用不純物拡散領域(27)
を介して裏面電極(29)が配置された半導体装置の製
造方法であって、 ウエハ状の半導体基板(30)における一方の面の表層
部に素子形成用不純物拡散領域(21,22)を形成す
る工程と、 前記ウエハ状の半導体基板(30)における素子形成用
不純物拡散領域(21,22)を形成した面とは反対の
面から研削加工して当該基板(30)を所定の厚さにす
る工程と、 前記ウエハ状の半導体基板(30)における素子形成用
不純物拡散領域(21,22)を形成した面とは反対の
面に対し同半導体基板(30)の外周部を残して所定深
さまでエッチングして薄膜化する工程と、 前記ウエハ状の半導体基板(30)における素子形成用
不純物拡散領域(21,22)を形成した面とは反対の
面に不純物ドープトポリシリコン膜(31)を形成する
とともに、不純物ドープトポリシリコン膜(31)から
半導体基板(30)側に不純物を拡散させてウエハ状の
半導体基板(30)における素子形成用不純物拡散領域
(21,22)を形成した面とは反対の面の表層部にコ
ンタクト用不純物拡散領域(27)を形成する工程と、 前記不純物ドープトポリシリコン膜(31)に接するよ
うに裏面電極(32)を形成する工程と、を備えたこと
を特徴とする半導体装置の製造方法。
1. A semiconductor substrate (20) is provided with element-forming impurity diffusion regions (21, 22) in a surface layer portion of one surface thereof, and contacts the surface layer portion of the other surface of the semiconductor substrate (20). Impurity diffusion region (27)
And the contact impurity diffusion region (27) is formed.
A method of manufacturing a semiconductor device in which a back surface electrode (29) is disposed via a device, comprising: forming element-forming impurity diffusion regions (21, 22) in a surface layer portion of one surface of a wafer-shaped semiconductor substrate (30). And a step of grinding the wafer-shaped semiconductor substrate (30) from the surface opposite to the surface on which the element-forming impurity diffusion regions (21, 22) are formed to bring the substrate (30) to a predetermined thickness. And a predetermined depth with respect to the surface of the wafer-shaped semiconductor substrate (30) opposite to the surface on which the element-forming impurity diffusion regions (21, 22) are formed, leaving the outer peripheral portion of the semiconductor substrate (30). Then, the step of etching to reduce the thickness, and the impurity-doped polysilicon film (31) on the surface of the semiconductor substrate (30) opposite to the surface on which the element-forming impurity diffusion regions (21, 22) are formed. And the impurities were diffused from the impurity-doped polysilicon film (31) to the semiconductor substrate (30) side to form the element-forming impurity diffusion regions (21, 22) in the wafer-shaped semiconductor substrate (30). A step of forming a contact impurity diffusion region (27) on the surface layer opposite to the surface, and a step of forming a back electrode (32) in contact with the impurity-doped polysilicon film (31). A method of manufacturing a semiconductor device, comprising:
【請求項2】 半導体基板(20)における一方の面の
表層部に素子形成用不純物拡散領域(21,22)が形
成されるとともに、前記半導体基板(20)における他
方の面の表層部にコンタクト用不純物拡散領域(27)
が形成され、当該コンタクト用不純物拡散領域(27)
を介して裏面電極(29)が配置された半導体装置の製
造方法であって、 ウエハ状の半導体基板(30)における一方の面の表層
部に素子形成用不純物拡散領域(21,22)を形成す
る工程と、 前記ウエハ状の半導体基板(30)における素子形成用
不純物拡散領域(21,22)を形成した面とは反対の
面から研削加工して当該基板(30)を所定の厚さにす
る工程と、 前記ウエハ状の半導体基板(30)における素子形成用
不純物拡散領域(21,22)を形成した面とは反対の
面に対し同半導体基板(30)の外周部を残して所定深
さまでエッチングして薄膜化する工程と、 前記ウエハ状の半導体基板(30)における素子形成用
不純物拡散領域(21,22)を形成した面とは反対の
面に不純物ドープトポリシリコン膜(31)を形成する
とともに、不純物ドープトポリシリコン膜(31)から
半導体基板(30)側に不純物を拡散させてウエハ状の
半導体基板(30)における素子形成用不純物拡散領域
(21,22)を形成した面とは反対の面の表層部にコ
ンタクト用不純物拡散領域(27)を形成する工程と、 前記不純物ドープトポリシリコン膜(31)に接するよ
うに裏面電極(32)を形成する工程と、 前記ウエハ状の半導体基板(30)を各チップにダイシ
ングする工程と、 チップにおける両面側にヒートシンク材(5,9)を接
合するとともに当該ヒートシンク材(5,9)の一部が
露出するようにして樹脂モールドする工程と、を備えた
ことを特徴とする半導体装置の製造方法。
2. A semiconductor substrate (20) is provided with element-forming impurity diffusion regions (21, 22) in a surface layer portion of one surface thereof, and contacts the surface layer portion of the other surface of the semiconductor substrate (20). Impurity diffusion region (27)
And the contact impurity diffusion region (27) is formed.
A method of manufacturing a semiconductor device in which a back surface electrode (29) is disposed via a device, comprising: forming element-forming impurity diffusion regions (21, 22) in a surface layer portion of one surface of a wafer-shaped semiconductor substrate (30). And a step of grinding the wafer-shaped semiconductor substrate (30) from the surface opposite to the surface on which the element-forming impurity diffusion regions (21, 22) are formed to bring the substrate (30) to a predetermined thickness. And a predetermined depth with respect to the surface of the wafer-shaped semiconductor substrate (30) opposite to the surface on which the element-forming impurity diffusion regions (21, 22) are formed, leaving the outer peripheral portion of the semiconductor substrate (30). Then, the step of etching to reduce the thickness, and the impurity-doped polysilicon film (31) on the surface of the semiconductor substrate (30) opposite to the surface on which the element-forming impurity diffusion regions (21, 22) are formed. And the impurities were diffused from the impurity-doped polysilicon film (31) to the semiconductor substrate (30) side to form the element-forming impurity diffusion regions (21, 22) in the wafer-shaped semiconductor substrate (30). Forming a contact impurity diffusion region (27) on the surface layer opposite to the surface; forming a back electrode (32) in contact with the impurity-doped polysilicon film (31); A step of dicing a wafer-shaped semiconductor substrate (30) into each chip, and joining heat sink materials (5, 9) to both sides of the chip and exposing a part of the heat sink material (5, 9) A method of manufacturing a semiconductor device, comprising: a step of resin molding.
【請求項3】 半導体基板(20)における一方の面の
表層部に素子形成用不純物拡散領域(21,22)が形
成されるとともに、前記半導体基板(20)における他
方の面の表層部にコンタクト用不純物拡散領域(27)
が形成され、当該コンタクト用不純物拡散領域(27)
を介して裏面電極(29)が配置された半導体装置の製
造方法であって、 ウエハ状の半導体基板(30)における一方の面の表層
部に素子形成用不純物拡散領域(21,22)を形成す
る工程と、 前記ウエハ状の半導体基板(30)における素子形成用
不純物拡散領域(21,22)を形成した面とは反対の
面から研削加工して当該基板(30)を所定の厚さにす
る工程と、 前記ウエハ状の半導体基板(30)における素子形成用
不純物拡散領域(21,22)を形成した面とは反対の
面に対し同半導体基板(30)の外周部を残して所定深
さまでエッチングして薄膜化する工程と、 前記ウエハ状の半導体基板(30)における素子形成用
不純物拡散領域(21,22)を形成した面とは反対の
面に不純物ドープトポリシリコン膜(31)を形成する
とともに、不純物ドープトポリシリコン膜(31)から
半導体基板(30)側に不純物を拡散させてウエハ状の
半導体基板(30)における素子形成用不純物拡散領域
(21,22)を形成した面とは反対の面の表層部にコ
ンタクト用不純物拡散領域(27)を形成する工程と、 前記不純物ドープトポリシリコン膜(31)に接するよ
うに裏面電極(32)を形成する工程と、 前記ウエハ状の半導体基板(30)における素子形成用
不純物拡散領域(21,22)を形成した面に、熱的良
導性材料よりなる板材(33)を接合する工程と、 前記ウエハ状の半導体基板(30)を各チップにダイシ
ングする工程と、 チップにおける両面側にヒートシンク材(5,9)を接
合するとともに当該ヒートシンク材(5,9)の一部が
露出するようにして樹脂モールドする工程と、を備えた
ことを特徴とする半導体装置の製造方法。
3. An element forming impurity diffusion region (21, 22) is formed in a surface layer portion of one surface of a semiconductor substrate (20), and a contact is made with the surface layer portion of the other surface of the semiconductor substrate (20). Impurity diffusion region (27)
And the contact impurity diffusion region (27) is formed.
A method of manufacturing a semiconductor device in which a back surface electrode (29) is disposed via a device, comprising: forming element-forming impurity diffusion regions (21, 22) in a surface layer portion of one surface of a wafer-shaped semiconductor substrate (30). And a step of grinding the wafer-shaped semiconductor substrate (30) from the surface opposite to the surface on which the element-forming impurity diffusion regions (21, 22) are formed to bring the substrate (30) to a predetermined thickness. And a predetermined depth with respect to the surface of the wafer-shaped semiconductor substrate (30) opposite to the surface on which the element-forming impurity diffusion regions (21, 22) are formed, leaving the outer peripheral portion of the semiconductor substrate (30). Then, the step of etching to reduce the thickness, and the impurity-doped polysilicon film (31) on the surface of the semiconductor substrate (30) opposite to the surface on which the element-forming impurity diffusion regions (21, 22) are formed. And the impurities were diffused from the impurity-doped polysilicon film (31) to the semiconductor substrate (30) side to form the element-forming impurity diffusion regions (21, 22) in the wafer-shaped semiconductor substrate (30). Forming a contact impurity diffusion region (27) on the surface layer opposite to the surface; forming a back electrode (32) in contact with the impurity-doped polysilicon film (31); Bonding a plate member (33) made of a thermally conductive material to the surface of the wafer-shaped semiconductor substrate (30) on which the element-forming impurity diffusion regions (21, 22) are formed, and the wafer-shaped semiconductor substrate Step of dicing (30) into each chip, and joining heat sink materials (5, 9) to both sides of the chip and exposing part of the heat sink material (5, 9) And a step of resin molding as described above.
【請求項4】 ダイシング前において前記ウエハ状の半
導体基板(30)における裏面電極(32)を形成した
面にも、熱的良導性材料よりなる板材(70)を接合す
るようにしたことを特徴とする請求項3に記載の半導体
装置の製造方法。
4. A plate member (70) made of a thermally conductive material is bonded to the surface of the wafer-shaped semiconductor substrate (30) on which the back electrode (32) is formed before dicing. The method for manufacturing a semiconductor device according to claim 3, wherein the semiconductor device is manufactured.
【請求項5】 半導体基板(20)に作り込まれるのは
縦型パワーMOSトランジスタであることを特徴とする
請求項1〜4のいずれか1項に記載の半導体装置の製造
方法。
5. The method of manufacturing a semiconductor device according to claim 1, wherein a vertical power MOS transistor is built in the semiconductor substrate (20).
JP2002086408A 2001-07-26 2002-03-26 Method for manufacturing semiconductor device Expired - Fee Related JP3580293B2 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2002086408A JP3580293B2 (en) 2002-03-26 2002-03-26 Method for manufacturing semiconductor device
US10/201,556 US7145254B2 (en) 2001-07-26 2002-07-24 Transfer-molded power device and method for manufacturing transfer-molded power device
KR1020020043963A KR100659376B1 (en) 2001-07-26 2002-07-25 Transfer-molded power device and method for manufacturing transfer-molded power device
DE10234155A DE10234155B4 (en) 2001-07-26 2002-07-26 Press-molded power component
CNB02127066XA CN1267990C (en) 2001-07-26 2002-07-26 Pressure cast power device and its making process
KR1020060092571A KR20060109390A (en) 2001-07-26 2006-09-22 Transfer-molded power device and method for manufacturing transfer-molded power device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002086408A JP3580293B2 (en) 2002-03-26 2002-03-26 Method for manufacturing semiconductor device

Publications (2)

Publication Number Publication Date
JP2003282589A true JP2003282589A (en) 2003-10-03
JP3580293B2 JP3580293B2 (en) 2004-10-20

Family

ID=29233021

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002086408A Expired - Fee Related JP3580293B2 (en) 2001-07-26 2002-03-26 Method for manufacturing semiconductor device

Country Status (1)

Country Link
JP (1) JP3580293B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007019461A (en) * 2005-04-27 2007-01-25 Disco Abrasive Syst Ltd Method for processing wafer and wafer
JP2007035756A (en) * 2005-07-25 2007-02-08 Disco Abrasive Syst Ltd Wafer processing method and grinding apparatus
US7521757B2 (en) 2006-06-22 2009-04-21 Fuji Electric Device Technology Co., Ltd. Semiconductor device with back surface electrode including a stress relaxation film
KR101152873B1 (en) * 2005-04-27 2012-06-12 가부시기가이샤 디스코 Semiconductor wafer and processing method for same
CN116598210A (en) * 2023-07-12 2023-08-15 江苏富乐华半导体科技股份有限公司 Method for manufacturing retaining dam for DPC product

Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61234041A (en) * 1985-04-09 1986-10-18 Tdk Corp Semiconductor device and manufacture thereof
JPH03236225A (en) * 1990-02-14 1991-10-22 Nippondenso Co Ltd Manufacture of semiconductor device
JPH0563113A (en) * 1991-09-04 1993-03-12 Sony Corp Resin-sealed semiconductor device
JPH06275759A (en) * 1993-03-17 1994-09-30 Fujitsu Ltd Semiconductor device and its manufacture
JPH06334069A (en) * 1993-05-24 1994-12-02 Toyota Autom Loom Works Ltd Semiconductor package incorporating heat spreader
JPH0799272A (en) * 1993-09-28 1995-04-11 Fuji Xerox Co Ltd Electronic circuit packaging body
JPH07153878A (en) * 1993-11-26 1995-06-16 Tokyo Tungsten Co Ltd Manufacture of plastic packaged semiconductor device and heat sink
JPH1070141A (en) * 1996-06-28 1998-03-10 Internatl Business Mach Corp <Ibm> Chip carrier module, information processing system and forming method
JPH10321768A (en) * 1997-05-19 1998-12-04 Nec Corp Semiconductor device and manufacture thereof
JP2000031351A (en) * 1998-07-09 2000-01-28 Toshiba Corp Semiconductor device
JP2000124166A (en) * 1998-10-20 2000-04-28 Denso Corp Thin-wall processing of semiconductor chip and etching device for thin-wall processing
US6114413A (en) * 1997-07-10 2000-09-05 International Business Machines Corporation Thermally conducting materials and applications for microelectronic packaging
JP2001156219A (en) * 1999-11-24 2001-06-08 Denso Corp Semiconductor device
US20020074627A1 (en) * 1993-09-03 2002-06-20 Combs Edward G. Molded plastic package with heat sink and enhanced electrical performance
JP2002324816A (en) * 2001-04-25 2002-11-08 Denso Corp Semiconductor device and method for manufacturing the same

Patent Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61234041A (en) * 1985-04-09 1986-10-18 Tdk Corp Semiconductor device and manufacture thereof
JPH03236225A (en) * 1990-02-14 1991-10-22 Nippondenso Co Ltd Manufacture of semiconductor device
JPH0563113A (en) * 1991-09-04 1993-03-12 Sony Corp Resin-sealed semiconductor device
JPH06275759A (en) * 1993-03-17 1994-09-30 Fujitsu Ltd Semiconductor device and its manufacture
JPH06334069A (en) * 1993-05-24 1994-12-02 Toyota Autom Loom Works Ltd Semiconductor package incorporating heat spreader
US20020074627A1 (en) * 1993-09-03 2002-06-20 Combs Edward G. Molded plastic package with heat sink and enhanced electrical performance
JPH0799272A (en) * 1993-09-28 1995-04-11 Fuji Xerox Co Ltd Electronic circuit packaging body
JPH07153878A (en) * 1993-11-26 1995-06-16 Tokyo Tungsten Co Ltd Manufacture of plastic packaged semiconductor device and heat sink
JPH1070141A (en) * 1996-06-28 1998-03-10 Internatl Business Mach Corp <Ibm> Chip carrier module, information processing system and forming method
JPH10321768A (en) * 1997-05-19 1998-12-04 Nec Corp Semiconductor device and manufacture thereof
US6114413A (en) * 1997-07-10 2000-09-05 International Business Machines Corporation Thermally conducting materials and applications for microelectronic packaging
JP2000031351A (en) * 1998-07-09 2000-01-28 Toshiba Corp Semiconductor device
JP2000124166A (en) * 1998-10-20 2000-04-28 Denso Corp Thin-wall processing of semiconductor chip and etching device for thin-wall processing
JP2001156219A (en) * 1999-11-24 2001-06-08 Denso Corp Semiconductor device
JP2002324816A (en) * 2001-04-25 2002-11-08 Denso Corp Semiconductor device and method for manufacturing the same

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007019461A (en) * 2005-04-27 2007-01-25 Disco Abrasive Syst Ltd Method for processing wafer and wafer
KR101152873B1 (en) * 2005-04-27 2012-06-12 가부시기가이샤 디스코 Semiconductor wafer and processing method for same
JP2013165286A (en) * 2005-04-27 2013-08-22 Disco Abrasive Syst Ltd Method for processing wafer
JP2007035756A (en) * 2005-07-25 2007-02-08 Disco Abrasive Syst Ltd Wafer processing method and grinding apparatus
US7521757B2 (en) 2006-06-22 2009-04-21 Fuji Electric Device Technology Co., Ltd. Semiconductor device with back surface electrode including a stress relaxation film
CN116598210A (en) * 2023-07-12 2023-08-15 江苏富乐华半导体科技股份有限公司 Method for manufacturing retaining dam for DPC product

Also Published As

Publication number Publication date
JP3580293B2 (en) 2004-10-20

Similar Documents

Publication Publication Date Title
US7145254B2 (en) Transfer-molded power device and method for manufacturing transfer-molded power device
US9136154B2 (en) Substrateless power device packages
US6803294B2 (en) Semiconductor wafer and manufacturing method of semiconductor device
US7923350B2 (en) Method of manufacturing a semiconductor device including etching to etch stop regions
US9099454B2 (en) Molded semiconductor package with backside die metallization
TW201140799A (en) Semiconductor device
JP3637330B2 (en) Semiconductor device
US9911686B2 (en) Source down semiconductor devices and methods of formation thereof
JP3620528B2 (en) Manufacturing method of semiconductor device
US9870938B2 (en) Semiconductor element producing method by flattening protective tape
US20090032871A1 (en) Integrated circuit with interconnected frontside contact and backside contact
US8624358B2 (en) Semiconductor substrate and semiconductor device
JP3580293B2 (en) Method for manufacturing semiconductor device
JP3427751B2 (en) Thin processing method of semiconductor chip and etching apparatus for thin processing
TWI536507B (en) A ultrathin semiconductor device
TWM610828U (en) Semiconductor device package structure
US9640419B2 (en) Carrier system for processing semiconductor substrates, and methods thereof
JP2004071886A (en) Vertical power semiconductor device and its manufacturing method
US20230207411A1 (en) Sic mosfet semiconductor packages and related methods
TWI447824B (en) A Method Of Molded Wafer Level Chip Size Package
JP3620511B2 (en) Semiconductor wafer processing method
JP2004349383A (en) High breakdown voltage semiconductor device
US10734362B2 (en) Die stack assembly using an edge separation structure for connectivity through a die of the stack
JP2005217012A (en) Semiconductor device and manufacturing method therefor
JP2006173321A (en) Semiconductor device and its manufacturing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040513

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20040513

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20040601

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040629

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040712

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees