JP2003277193A - SiC WAFER WITH EPITAXIAL FILM, METHOD FOR PRODUCING THE SAME, AND SiC ELECTRONIC DEVICE - Google Patents

SiC WAFER WITH EPITAXIAL FILM, METHOD FOR PRODUCING THE SAME, AND SiC ELECTRONIC DEVICE

Info

Publication number
JP2003277193A
JP2003277193A JP2002080295A JP2002080295A JP2003277193A JP 2003277193 A JP2003277193 A JP 2003277193A JP 2002080295 A JP2002080295 A JP 2002080295A JP 2002080295 A JP2002080295 A JP 2002080295A JP 2003277193 A JP2003277193 A JP 2003277193A
Authority
JP
Japan
Prior art keywords
growth
crystal
sic
plane
epitaxial film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002080295A
Other languages
Japanese (ja)
Other versions
JP3750622B2 (en
Inventor
Daisuke Nakamura
大輔 中村
Tadashi Ito
忠 伊藤
Masami Naito
正美 内藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Toyota Central R&D Labs Inc
Original Assignee
Denso Corp
Toyota Central R&D Labs Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp, Toyota Central R&D Labs Inc filed Critical Denso Corp
Priority to JP2002080295A priority Critical patent/JP3750622B2/en
Priority to DE10247017A priority patent/DE10247017B4/en
Priority to US10/268,103 priority patent/US6890600B2/en
Priority to SE0202992A priority patent/SE523917C2/en
Publication of JP2003277193A publication Critical patent/JP2003277193A/en
Application granted granted Critical
Publication of JP3750622B2 publication Critical patent/JP3750622B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an SiC wafer with an epitaxial film which hardly contains defects and dislocations in the wafer and the film, a method for producing the same, and an SiC electronic device having a low curren on resistance and nearly free from the generation of leak current in the backward direction. <P>SOLUTION: In a first growth process, a first growth crystal is produced by using a surface having an offset angle of ≤20° from ä1-100} plane or a surface having an offset angle of ≤20° from ä11-20} plane as the first growth surface, and in continuous growth process, the n-th growth crystal is produced by using a surface inclined from (n-1)-th growth plane at an angle of 45 to 90° and inclined from ä0001} plane at an angle of 60 to 90° as the n-th growth surface. In the film-forming processes mentioned above, an SiC wafer 3 is produced by exposing a film-forming surface 35 from the N-th growth crystal obtained when n=N, and an epitaxial film 30 is formed on the film-forming surface 35. <P>COPYRIGHT: (C)2004,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【技術分野】本発明は,エピタキシャル膜を有するSi
Cウエハ及びその製造方法,並びに該SiCウエハを用
いた電子デバイスに関する。
TECHNICAL FIELD The present invention relates to Si having an epitaxial film.
The present invention relates to a C wafer, a method of manufacturing the C wafer, and an electronic device using the SiC wafer.

【0002】[0002]

【従来技術】従来より,SiC単結晶を利用するSiC
半導体は,Si半導体に代わる次世代パワーデバイスの
候補材料として期待されている。高性能なSiCパワー
デバイスを実現するためには,上記SiC半導体に生じ
る逆方向リーク電流等を低減することが必須条件であ
る。これまでの研究報告によれば,上記SiC単結晶に
生じるマイクロパイプ欠陥,螺旋転位,刃状転位,積層
欠陥等の欠陥が,SiC半導体の逆方向リーク電流等の
原因となっていると考えられている。また,上記パワー
デバイスの用途には,特にエピタキシャル膜を有するS
iCウエハが用いられる。そのため,SiC単結晶中の
みならず,エピタキシャル膜中にも上記欠陥を含まない
エピタキシャル膜付きSiCウエハの開発が望まれてい
る。
2. Description of the Related Art Conventionally, SiC using a SiC single crystal
Semiconductors are expected as candidate materials for next-generation power devices to replace Si semiconductors. In order to realize a high performance SiC power device, it is an essential condition to reduce the reverse leakage current and the like generated in the SiC semiconductor. According to the research reports so far, it is considered that defects such as micropipe defects, screw dislocations, edge dislocations, and stacking faults generated in the above-mentioned SiC single crystal cause the reverse leakage current of the SiC semiconductor. ing. In addition, for the use of the above-mentioned power device, especially, an S film having an epitaxial film is used.
An iC wafer is used. Therefore, it is desired to develop a SiC wafer with an epitaxial film that does not contain the above defects not only in the SiC single crystal but also in the epitaxial film.

【0003】図4に示すごとく,SiC単結晶は主要な
面方位として{0001}面(c面)と,{0001}
面に垂直な{1−100}面(a面)及び{11−2
0}面(a面)とを有している。一般に,上記エピタキ
シャル膜付きSiCウエハを得る方法としては,まず,
六方晶の{0001}面又は{0001}面からオフセ
ット角度10°以内の面を種結晶面として露出するSi
C種結晶を用いて,昇華再析出法等により種結晶面上に
上記SiC単結晶を成長させる,いわゆるc面成長を行
い,成長させたSiCバルク単結晶を得る。
As shown in FIG. 4, a SiC single crystal has a {0001} plane (c-plane) and a {0001} plane as major plane orientations.
{1-100} plane (a plane) perpendicular to the plane and {11-2
0} surface (a surface). Generally, as a method for obtaining the SiC wafer with the epitaxial film, first,
Si that exposes a hexagonal {0001} plane or a plane within an offset angle of 10 ° from the {0001} plane as a seed crystal plane
Using the C seed crystal, the above-mentioned SiC single crystal is grown on the seed crystal plane by a sublimation reprecipitation method or the like, so-called c-plane growth is performed, and a grown SiC bulk single crystal is obtained.

【0004】次に,該SiCバルク単結晶から{000
1}面からオフセット角度10°以内の面を成膜面とし
て露出するSiCウエハを作製する。続いて,この成膜
面に研磨等の表面処理を施し,所望の元素及び密度の不
純物を導入したエピタキシャル膜を成膜してエピタキシ
ャル膜付きSiCウエハを得る。
Next, from the SiC bulk single crystal, {000
A SiC wafer is produced in which a surface within an offset angle of 10 ° from the 1} surface is exposed as a film formation surface. Then, a surface treatment such as polishing is applied to the film formation surface to form an epitaxial film into which impurities of desired elements and densities are introduced to obtain a SiC wafer with an epitaxial film.

【0005】しかし,上記のように{0001}面を種
結晶面とし,<0001>方向に成長させてなるSiC
バルク単結晶(c面成長結晶)中には,<0001>方
向に略平行な方向にマイクロパイプ欠陥,螺旋転位,刃
状転位が非常に多く発生するという問題があった。さら
に,このc面成長結晶からSiCウエハを作製してエピ
タキシャル膜を成膜すると,該エピタキシャル膜中には
SiCウエハの表面に露出する転位が継承される。これ
により,上記エピタキシャル膜中にもSiCウエハと略
同密度の転位が存在し,各種デバイス特性に悪影響を及
ぼすという問題があった。
However, as described above, the {0001} plane is used as a seed crystal plane and is grown in the <0001> direction.
The bulk single crystal (c-plane grown crystal) has a problem that very many micropipe defects, screw dislocations, and edge dislocations occur in a direction substantially parallel to the <0001> direction. Furthermore, when a SiC wafer is produced from this c-plane grown crystal and an epitaxial film is formed, dislocations exposed on the surface of the SiC wafer are inherited in the epitaxial film. As a result, dislocations having substantially the same density as that of the SiC wafer exist in the epitaxial film, which adversely affects various device characteristics.

【0006】一方,特開平5−262599号公報に
は,SiC単結晶の{0001}面からの傾きが60〜
120°(好ましくは90°)の面を種結晶面として,
この種結晶をa面成長させて,成長結晶(a面成長結
晶)を得る方法が開示されている。そして,このa面成
長結晶中には,マイクロパイプ欠陥や螺旋転位が含まれ
ないことを明らかにした。
On the other hand, in Japanese Unexamined Patent Publication No. 5-262599, an inclination of a SiC single crystal from the {0001} plane is 60 to 60.
The plane of 120 ° (preferably 90 °) is used as the seed crystal plane,
A method of growing a seed crystal by a-plane growth to obtain a grown crystal (a-plane grown crystal) is disclosed. It was also clarified that the a-plane grown crystal does not contain micropipe defects or screw dislocations.

【0007】[0007]

【解決しようとする課題】しかしながら,上記a面成長
結晶中には,<0001>方向に平行及び直交なバーガ
ースベクトルを持つ刃状転位及び{0001}面内の積
層欠陥が成長方向に略平行に高密度に存在する。そのた
め,このa面成長結晶からSiCウエハを作製しエピタ
キシャル膜を成膜すると,該エピタキシャル膜中にa面
成長結晶に含まれる高密度の刃状転位から転位が継承さ
れる。このようにエピタキシャル膜中に転位を高密度に
含有するエピタキシャル膜付きSiCウエハは,オン抵
抗が高くなり,また,逆方向リーク電流を生じるため,
デバイス動作に悪影響を及ぼすおそれがある。
However, in the above a-plane grown crystal, edge dislocations having Burgers vectors parallel to and orthogonal to the <0001> direction and stacking faults in the {0001} plane are substantially parallel to the growth direction. Exists in high density. Therefore, when a SiC wafer is produced from this a-plane grown crystal and an epitaxial film is formed, dislocations are inherited from the high density edge dislocations contained in the a-plane grown crystal in the epitaxial film. Thus, the SiC wafer with an epitaxial film containing dislocations at a high density in the epitaxial film has a high on-resistance and generates a reverse leakage current.
May adversely affect device operation.

【0008】本発明は,かかる従来の問題点に鑑みてな
されたもので,SiCウエハ及びエピタキシャル膜中に
欠陥及び転位をほとんど含有しないエピタキシャル膜付
きSiCウエハ及びその製造方法,並びにオン抵抗が低
く,逆方向リーク電流の発生がほとんどないSiC電子
デバイスを提供しようとするものである。
The present invention has been made in view of the above-mentioned conventional problems, and it is an SiC wafer and a SiC wafer with an epitaxial film containing few defects and dislocations in the epitaxial film, a method for manufacturing the same, and a low on-resistance. The present invention aims to provide a SiC electronic device in which a reverse leakage current is hardly generated.

【0009】[0009]

【課題の解決手段】第1の発明は,SiC単結晶よりな
る種結晶上にSiC単結晶を成長させてバルク状のSi
C単結晶を製造し,該SiC単結晶からSiCウエハを
作製して該SiCウエハの成膜面上にエピタキシャル膜
を成膜しエピタキシャル膜付きSiCウエハを製造する
方法において,該製造方法は,N回(Nは,N≧2の自
然数)の成長工程と,該成長工程後にエピタキシャル膜
を成膜する成膜工程とを含み,上記成長工程における各
成長工程を第n成長工程(nは自然数であって1から始
まりNで終わる序数)として表した場合,n=1である
第1成長工程においては,{1−100}面からオフセ
ット角度20°以下の面,または{11−20}面から
オフッセット角度20°以下の面を第1成長面として露
出させた第1種結晶を用いて,上記第1成長面上にSi
C単結晶を成長させ第1成長結晶を作製し,n=2,
3,...,N回目である連続成長工程においては,第
(n−1)成長面より45〜90°傾き,且つ{000
1}面より60〜90°傾いた面を第n成長面とした第
n種結晶を第(n−1)成長結晶より作製し,該第n種
結晶の上記第n成長面上にSiC単結晶を成長させて第
n成長結晶を作製し,上記成膜工程においては,n=N
である第N成長結晶から成膜面を露出させたSiCウエ
ハを作製し,該SiCウエハの上記成膜面上にエピタキ
シャル膜を成膜することを特徴とするエピタキシャル膜
付きSiCウエハの製造方法にある(請求項1)。
According to a first aspect of the present invention, bulk SiC is obtained by growing a SiC single crystal on a seed crystal made of a SiC single crystal.
A method for producing a C single crystal, producing an SiC wafer from the SiC single crystal, forming an epitaxial film on the film formation surface of the SiC wafer, and producing an SiC wafer with an epitaxial film, wherein the producing method is N (N is a natural number), which includes a number of times (N is a natural number of N ≧ 2) of growth steps and a film forming step of forming an epitaxial film after the growth steps. If it is expressed as an ordinal number starting from 1 and ending with N), in the first growth step where n = 1, from the {1-100} plane, an angle less than 20 ° or from the {11-20} plane Using a first seed crystal in which a surface having an offset angle of 20 ° or less is exposed as a first growth surface, Si is formed on the first growth surface.
A C single crystal is grown to form a first grown crystal, and n = 2.
3 ,. . . , The Nth continuous growth step, the inclination is 45 to 90 ° from the (n−1) th growth plane, and {000
An n-th seed crystal having a plane inclined by 60 to 90 ° from the 1} plane as the n-th growth surface was prepared from the (n-1) -th growth crystal, and a SiC single crystal was formed on the n-th growth surface of the n-th seed crystal. A crystal is grown to produce an nth grown crystal, and in the film forming step, n = N
A method for manufacturing a SiC wafer with an epitaxial film, characterized in that a SiC wafer having a film formation surface exposed from the Nth grown crystal is formed, and an epitaxial film is formed on the film formation surface of the SiC wafer. There is (claim 1).

【0010】本発明の第1成長工程においては,上記
{1−100}面,又は{11−20}面という,いわ
ゆるa面からオフセット角度20°以内の面を第1成長
面としている。そのため,上記第1成長結晶は第1成長
面と直交する方向に成長し,これはいわゆるa面成長に
相当する。それ故,上記第1成長結晶中には上記マイク
ロパイプ欠陥及び螺旋転位は発生しない。しかし,上記
第1成長工程に用いる第1種結晶中には,マイクロパイ
プ欠陥,螺旋転位,刃状転位,及びそれらの複合転位が
存在する。そのため,上記第1成長結晶中には,これら
の欠陥に起因する<0001>方向に平行及び直交する
バーガースベクトルを持つ刃状転位が上記第1成長面の
表面から継承されて存在する。このとき上記刃状転位
は,第1成長結晶の成長方向に平行な方向に伸びるよう
に存在する。
In the first growth step of the present invention, the {1-100} plane or the {11-20} plane, which is within the offset angle of 20 ° from the so-called a-plane, is used as the first growth plane. Therefore, the first grown crystal grows in the direction orthogonal to the first growth plane, which corresponds to so-called a-plane growth. Therefore, the micropipe defects and screw dislocations do not occur in the first grown crystal. However, micropipe defects, screw dislocations, edge dislocations, and composite dislocations thereof exist in the first seed crystal used in the first growth step. Therefore, edge dislocations having Burgers vectors parallel to and orthogonal to the <0001> direction due to these defects are present in the first growth crystal inherited from the surface of the first growth surface. At this time, the edge dislocations are present so as to extend in a direction parallel to the growth direction of the first grown crystal.

【0011】次に,上記連続成長工程においては,第
(n−1)成長面より45〜90°傾き,且つ{000
1}面より60〜90°傾いた面,即ちほぼa面を第n
成長面とした第n種結晶を第(n−1)成長結晶より作
製し,上記第n成長面上にSiC単結晶を成長させて第
n成長結晶を作製する。そのため,第(nー1)成長結
晶に含まれる刃状転位は,上記第n種結晶の表面にはほ
とんど露出されないので,第n成長結晶中に上記刃状転
位はほとんど発生しない。また,上記連続成長工程にお
けるSiC単結晶の成長は,略a面成長の方向に起こ
る。そのため,上記連続成長工程における成長結晶中に
は,マイクロパイプ欠陥及び螺旋転位は発生しない。ま
た,上記連続成長工程は,1回(N=2のとき),また
は複数回繰り返して行うことができる。そして,連続成
長工程の回数を増やす毎に,得られる成長結晶のいわゆ
る転位密度を指数関数的に減少させることができる。
Next, in the above continuous growth step, the inclination is 45 to 90 ° from the (n-1) th growth plane and {000
The plane inclined by 60 to 90 ° from the 1} plane, that is, almost the a plane
The n-th seed crystal used as the growth surface is prepared from the (n-1) -th growth crystal, and the SiC single crystal is grown on the n-th growth surface to prepare the n-th growth crystal. Therefore, the edge dislocations contained in the (n-1) th grown crystal are barely exposed on the surface of the nth seed crystal, so that the edge dislocations hardly occur in the nth grown crystal. Further, the growth of the SiC single crystal in the above continuous growth step occurs in the direction of substantially a-plane growth. Therefore, micropipe defects and screw dislocations do not occur in the grown crystal in the continuous growth process. Further, the continuous growth step can be performed once (when N = 2) or repeated a plurality of times. The so-called dislocation density of the obtained grown crystal can be exponentially decreased each time the number of continuous growth steps is increased.

【0012】次に,上記成膜工程においては,n=Nで
ある第N成長結晶から成膜面を露出させたSiCウエハ
を作製し,該SiCウエハの成膜面上にエピタキシャル
膜を成膜する。ここで,第N成長結晶は,上記第1成長
工程及び連続成長工程により得られた成長結晶であり,
マイクロパイプ欠陥,螺旋転位及び刃状転位をほとんど
含んでいない。そのため,上記SiCウエハの成膜面に
は,上記欠陥及び転位はほとんど露出されず,上記欠陥
及び転位が上記エピタキシャル膜中に継承されることは
ほとんどない。
Next, in the film forming step, a SiC wafer having a film forming surface exposed from the Nth grown crystal of n = N is prepared, and an epitaxial film is formed on the film forming surface of the SiC wafer. To do. Here, the Nth grown crystal is a grown crystal obtained by the first growth step and the continuous growth step,
It contains almost no micropipe defects, screw dislocations and edge dislocations. Therefore, the defects and dislocations are hardly exposed on the film formation surface of the SiC wafer, and the defects and dislocations are rarely inherited in the epitaxial film.

【0013】このように,本発明によれば,SiCウエ
ハ及びエピタキシャル膜中に欠陥及び転位をほとんど含
有しないエピタキシャル膜付きSiCウエハの製造方法
を提供することができる。
As described above, according to the present invention, it is possible to provide a method for manufacturing an SiC wafer and an SiC wafer with an epitaxial film in which defects and dislocations are scarcely contained in the SiC wafer.

【0014】尚,本発明において,{1−100},
{11−20}及び{0001}は,いわゆる結晶面の
面指数を表している。上記面指数において,「−」記号
は通常数字の上に付されるが,本明細書及び図面におい
ては書類作成の便宜上のため数字の左側に付した。ま
た,<0001>,<11−20>,及び<1−100
>は,結晶内の方向を表し,「−」記号の取り扱いにつ
いては,上記面指数と同様である。
In the present invention, {1-100},
{11-20} and {0001} represent so-called plane indices of crystal planes. In the above surface index, the "-" symbol is usually added above the number, but in this specification and the drawings, it is added to the left side of the number for convenience of document preparation. Also, <0001>, <11-20>, and <1-100
> Represents the direction in the crystal, and the handling of the "-" symbol is the same as the above-mentioned plane index.

【0015】第2の発明は,SiC単結晶よりなる種結
晶上にSiC単結晶を成長させてバルク状のSiC単結
晶を製造し,該SiC単結晶からSiCウエハを作製し
て該SiCウエハの成膜面上にエピタキシャル膜を成膜
しエピタキシャル膜付きSiCウエハを製造する方法に
おいて,該製造方法は,(N+α)回(Nは,N≧2の
自然数であり,αは自然数)の成長工程と,該成長工程
後にエピタキシャル膜を成膜する成膜工程とを含み,上
記成長工程における各成長工程を第n成長工程(nは自
然数であって1から始まりN+αで終わる序数)として
表した場合,n=1である第1成長工程においては,
{1−100}面からオフセット角度20°以下の面,
または{11−20}面からオフッセット角度20°以
下の面を第1成長面として露出させた第1種結晶を用い
て,上記第1成長面上にSiC単結晶を成長させ第1成
長結晶を作製し,n=2,3,...,N回目である第
1連続成長工程においては,第(n−1)成長面より4
5〜90°傾き,且つ{0001}面より60〜90°
傾いた面を第n成長面とした第n種結晶を第(n−1)
成長結晶より作製し,該第n種結晶の上記第n成長面上
にSiC単結晶を成長させて第n成長結晶を作製し,n
=N+1,N+2,...,N+α回目である第2連続
成長工程においては,第(n−1)成長面より0〜45
°傾き,且つ{0001}面より60〜90°傾いた面
を第n成長面とした第n種結晶を第(n−1)成長結晶
より作製し,該第n種結晶の上記第n成長面上にSiC
単結晶を成長させて第n成長結晶を作製し,上記成膜工
程においては,n=N+αである第(N+α)成長結晶
から成膜面を露出させたSiCウエハを作製し,該Si
Cウエハの上記成膜面上にエピタキシャル膜を成膜する
ことを特徴とするエピタキシャル膜付きSiCウエハの
製造方法にある(請求項2)。
According to a second aspect of the present invention, a bulk SiC single crystal is manufactured by growing a SiC single crystal on a seed crystal made of a SiC single crystal, and a SiC wafer is produced from the SiC single crystal to obtain the SiC wafer. In a method for manufacturing an SiC wafer with an epitaxial film by forming an epitaxial film on a film formation surface, the manufacturing method comprises (N + α) times (N is a natural number of N ≧ 2, and α is a natural number) of growth steps. And a film forming step of forming an epitaxial film after the growing step, where each growing step in the growing step is represented as an nth growing step (n is a natural number and starts from 1 and ends with N + α) , N = 1, in the first growth step,
A surface with an offset angle of 20 ° or less from the {1-100} surface,
Alternatively, using a first seed crystal in which a face having an offset angle of 20 ° or less from the {11-20} face is exposed as a first growth face, a SiC single crystal is grown on the first growth face to form a first growth crystal. Produced, n = 2, 3 ,. . . , Nth time, in the first continuous growth step, 4 times from the (n-1) th growth surface.
5 to 90 °, and 60 to 90 ° from the {0001} plane
The n-th seed crystal whose inclined surface is the n-th growth surface is the (n-1) th crystal.
And a SiC single crystal is grown on the nth growth surface of the nth seed crystal to produce an nth growth crystal.
= N + 1, N + 2 ,. . . , N + α times, in the second continuous growth step, 0 to 45 from the (n−1) th growth surface.
An n-th seed crystal having a surface inclined at an angle of 60 ° to 90 ° from the {0001} plane as an n-th growth surface from the (n-1) -th growth crystal, and the n-th growth of the n-th seed crystal is performed. SiC on the surface
A single crystal is grown to produce an nth grown crystal, and in the above film forming step, a SiC wafer having a film formation surface exposed from the (N + α) th grown crystal with n = N + α is prepared.
A method for manufacturing an SiC wafer with an epitaxial film is characterized in that an epitaxial film is formed on the film formation surface of the C wafer (claim 2).

【0016】本発明の第1成長工程においては,上記第
1の発明と同様に,上記{1−100}面,又は{11
−20}面という,いわゆるa面からオフセット角度2
0°以内の面を第1成長面としている。そのため,上記
第1成長結晶は第1成長面と直交する方向に成長し,こ
れはいわゆるa面成長に相当する。それ故,上記第1成
長結晶中には上記マイクロパイプ欠陥及び螺旋転位は発
生しない。しかし,上記第1成長工程に用いる第1種結
晶中には上記第1の発明と同様に,マイクロパイプ欠
陥,螺旋転位,刃状転位,及びそれらの複合転位が存在
する。そのため,上記第1成長結晶中には,これらの欠
陥に起因する<0001>方向に平行及び直交するバー
ガースベクトルを持つ刃状転位が上記第1成長面の表面
から継承されて存在する。このとき上記刃状転位は,第
1成長結晶の成長方向に平行な方向に伸びるように存在
する。
In the first growth step of the present invention, similarly to the first invention, the {1-100} plane or the {11} plane is used.
Offset angle 2 from the so-called a-plane, which is the −20} plane
The surface within 0 ° is the first growth surface. Therefore, the first grown crystal grows in the direction orthogonal to the first growth plane, which corresponds to so-called a-plane growth. Therefore, the micropipe defects and screw dislocations do not occur in the first grown crystal. However, similar to the first invention, micropipe defects, screw dislocations, edge dislocations, and composite dislocations thereof exist in the first seed crystal used in the first growth step. Therefore, edge dislocations having Burgers vectors parallel to and orthogonal to the <0001> direction due to these defects are present in the first growth crystal inherited from the surface of the first growth surface. At this time, the edge dislocations are present so as to extend in a direction parallel to the growth direction of the first grown crystal.

【0017】次に,上記第1連続成長工程においては,
上記第1の発明と同様に,第(n−1)成長面より45
〜90°傾き,且つ{0001}面より60〜90°傾
いた面,即ちほぼa面を第n成長面とした第n種結晶を
第(n−1)成長結晶より作製し,上記第n成長面上に
SiC単結晶を成長させて第n成長結晶を作製する。そ
のため,第(nー1)成長結晶に含まれる刃状転位は,
上記第n種結晶の表面にはほとんど露出されないので,
第n成長結晶中に上記刃状転位はほとんど発生しない。
また,上記第1連続成長工程におけるSiC単結晶の成
長は,略a面成長の方向に起こる。そのため,上記第1
連続成長工程における成長結晶中には,マイクロパイプ
欠陥及び螺旋転位は発生しない。また,上記第1の発明
と同様に,上記第1連続成長工程は,1回(N=2のと
き),または複数回繰り返して行うことができる。そし
て,第1連続成長工程の回数を増やす毎に,得られる成
長結晶のいわゆる転位密度を指数関数的に減少させるこ
とができる。
Next, in the first continuous growth step,
Similar to the first aspect of the present invention, 45 from the (n-1) th growth surface
An n-th seed crystal having a surface inclined by ~ 90 ° and inclined by 60-90 ° from the {0001} plane, that is, an a-plane is the n-th growth surface was prepared from the (n-1) -th growth crystal. A SiC single crystal is grown on the growth surface to produce an nth grown crystal. Therefore, the edge dislocations contained in the (n-1) grown crystal are
Since it is barely exposed on the surface of the n-th seed crystal,
The edge dislocation hardly occurs in the n-th grown crystal.
In addition, the growth of the SiC single crystal in the first continuous growth step occurs in the direction of substantially a-plane growth. Therefore, the first
Micropipe defects and screw dislocations do not occur in the grown crystal in the continuous growth process. Further, like the first aspect of the invention, the first continuous growth step can be performed once (when N = 2) or can be repeated a plurality of times. The so-called dislocation density of the obtained grown crystal can be exponentially decreased each time the number of times of the first continuous growth step is increased.

【0018】次に,n=N+1,N+2,...,(N
+α)回目である第2連続成長工程においては,第(n
−1)成長面より0〜45°傾き,且つ{0001}面
より60〜90°傾いた面を第n成長面とした第n種結
晶を第(n−1)成長結晶より作製し,該第n種結晶の
上記第n成長面上にSiC単結晶を成長させて第n成長
結晶を作製する。そのため,上記第2連続成長工程にお
いては,第N成長結晶と同品質の第(N+α)成長結晶
を作製することができる。そして,上記第2連続成長工
程においては,第(n−1)成長面より0〜45°とい
う傾きの小さい面を第n成長面とした第n種結晶を第
(n−1)成長結晶より作製している。そのため,上記
第(n−1)成長結晶より第n種結晶を作製する際に
は,第(n−1)成長結晶を高く成長させる必要がな
い。それ故,第n成長結晶を作製するための時間及びコ
ストを削減することができる。また,上記第2連続成長
工程は,1回(α=1のとき),または複数回繰り返し
て行うことができる。
Next, n = N + 1, N + 2 ,. . . , (N
In the second continuous growth step, which is the + αth time,
-1) An n-th seed crystal having a plane inclined by 0 to 45 ° from the growth plane and 60 to 90 ° from the {0001} plane as the nth growth plane was prepared from the (n-1) th growth crystal, and A SiC single crystal is grown on the nth growth surface of the nth seed crystal to produce an nth growth crystal. Therefore, in the second continuous growth step, the (N + α) th grown crystal having the same quality as the Nth grown crystal can be produced. Then, in the second continuous growth step, an n-th seed crystal having a surface having a smaller inclination of 0 to 45 ° than the (n-1) th growth surface as the nth growth surface is formed from the (n-1) th growth crystal. I am making it. Therefore, when producing the n-th seed crystal from the (n-1) th grown crystal, it is not necessary to grow the (n-1) th grown crystal high. Therefore, the time and cost for producing the nth grown crystal can be reduced. Further, the second continuous growth step can be performed once (when α = 1) or can be repeated a plurality of times.

【0019】次に,上記成膜工程においては,n=N+
αである第(N+α)成長結晶から成膜面を露出させた
SiCウエハを作製し,該SiCウエハの成膜面上にエ
ピタキシャル膜を成膜する。ここで,第(N+α)成長
結晶は,上記第1成長工程,第1連続成長工程及び第2
連続成長工程により得られた成長結晶であり,マイクロ
パイプ欠陥,螺旋転位及び刃状転位をほとんど含んでい
ない。そのため,上記SiCウエハの成膜面には,上記
欠陥及び転位はほとんど露出されず,上記欠陥及び転位
が上記エピタキシャル膜中に継承されることはほとんど
ない。
Next, in the film forming step, n = N +
A SiC wafer having a film formation surface exposed from the α-th (N + α) -grown crystal is produced, and an epitaxial film is formed on the film formation surface of the SiC wafer. Here, the (N + α) th growth crystal includes the first growth step, the first continuous growth step, and the second growth step.
It is a grown crystal obtained by the continuous growth process and contains almost no micropipe defects, screw dislocations and edge dislocations. Therefore, the defects and dislocations are hardly exposed on the film formation surface of the SiC wafer, and the defects and dislocations are rarely inherited in the epitaxial film.

【0020】このように本発明によれば,上記第1の発
明と同様に,SiCウエハ及びエピタキシャル膜中に欠
陥及び転位をほとんど含有しないエピタキシャル膜付き
SiCウエハの製造方法を提供することができる。
As described above, according to the present invention, as in the first aspect of the present invention, it is possible to provide a method for manufacturing an SiC wafer and an SiC wafer with an epitaxial film in which defects and dislocations are scarcely contained in the epitaxial wafer.

【0021】尚,本発明においても上記第1の発明と同
様に,{1−100},{11−20}及び{000
1}は,いわゆる結晶面の面指数を表している。上記面
指数において,「−」記号は通常数字の上に付される
が,本明細書及び図面においては書類作成の便宜上のた
め数字の左側に付した。また,<0001>,<11−
20>,及び<1−100>は,結晶内の方向を表し,
「−」記号の取り扱いについては,上記面指数と同様で
ある。
Incidentally, also in the present invention, as in the above first invention, {1-100}, {11-20} and {000
1} represents a so-called crystal plane index. In the above surface index, the "-" symbol is usually added above the number, but in this specification and the drawings, it is added to the left side of the number for convenience of document preparation. Also, <0001>, <11-
20> and <1-100> represent directions in the crystal,
The handling of the "-" symbol is the same as the above-mentioned surface index.

【0022】第3の発明は,上記第1又は第2の発明に
より作製されることを特徴とするエピタキシャル膜付き
SiCウエハにある(請求項9)。
A third invention is an SiC wafer with an epitaxial film, which is produced by the first or second invention described above (claim 9).

【0023】第1又は第2の発明により作製されるエピ
タキシャル膜付きSiCウエハは,上述したごとく,マ
イクロパイプ欠陥,螺旋転位,刃状転位をほとんど含ま
ず,高品質である。それ故,次世代パワーデバイスの材
料として非常に有効である。
As described above, the SiC wafer with an epitaxial film produced by the first or second invention is of high quality, containing almost no micropipe defects, screw dislocations and edge dislocations. Therefore, it is very effective as a material for next-generation power devices.

【0024】第4の発明は,上記第3の発明を用いて作
製されたことを特徴とするSiC電子デバイスにある
(請求項10)。
A fourth invention is a SiC electronic device manufactured by using the above-mentioned third invention (claim 10).

【0025】第3の発明のエピタキシャル膜付きSiC
ウエハは,上述したごとく,マイクロパイプ欠陥,螺旋
転位,刃状転位をほとんど含まず,高品質である。その
ため,上記SiC電子デバイスは,オン抵抗が低く,逆
方向リーク電流の発生が非常に少ないという優れたデバ
イス特性を有する。
SiC with epitaxial film of the third invention
As described above, the wafer has a high quality with almost no micropipe defects, screw dislocations and edge dislocations. Therefore, the SiC electronic device has excellent device characteristics of low on-resistance and very little reverse leakage current.

【0026】[0026]

【発明の実施の形態】本発明において,上記第1成長面
は,{1−100}面又は{11−20}面からオフセ
ット角度20°以下の面であり,これは{1−100}
又は{11−20}面を含む概念である。ここで,上記
第1成長面は,{1−100}面又は{11−20}面
であることが好ましい。この場合には,上記第1成長
は,それぞれ<1−100>又は<11−20>方向に
成長する(a面成長)。そのため,上記第1成長結晶に
含まれる<0001>方向の貫通欠陥をより効果的に減
少させることができる。
BEST MODE FOR CARRYING OUT THE INVENTION In the present invention, the first growth plane is a plane having an offset angle of 20 ° or less from a {1-100} plane or a {11-20} plane, which is {1-100}.
Alternatively, the concept includes the {11-20} plane. Here, the first growth plane is preferably a {1-100} plane or a {11-20} plane. In this case, the first growth is performed in the <1-100> or <11-20> direction (a-plane growth). Therefore, it is possible to more effectively reduce the penetrating defects in the <0001> direction included in the first grown crystal.

【0027】また,上記連続成長工程及び第1連続成長
工程において,上記第n成長面は,第(n−1)成長面
より80°〜90°傾き,且つ{0001}面より80
〜90°傾いた面であることが好ましい。この場合に
は,<0001>方向に平行及び直交するバーガースベ
クトルを持つ刃状転位をより効果的に減少させることが
できる。
In the continuous growth step and the first continuous growth step, the nth growth plane is inclined by 80 ° to 90 ° with respect to the (n-1) th growth plane and is 80 degrees from the {0001} plane.
It is preferable that the surface is inclined by 90 °. In this case, edge dislocations having Burgers vectors parallel and orthogonal to the <0001> direction can be more effectively reduced.

【0028】また,上記各成長面の上にSiC単結晶を
成長させる前には,各成長面の表面の付着物や加工変質
層を除去しておくことが好ましい。この場合には,上記
付着物や加工変質層に起因する各成長面から各成長結晶
に継承される転位を防ぐことができる。なお,上記付着
物や加工変質層を除去する方法としては,例えば研磨,
化学洗浄,Reactive Ion Etching
(RIE),犠牲酸化等がある。
Further, before growing the SiC single crystal on each growth surface, it is preferable to remove the deposits and work-affected layers on the surface of each growth surface. In this case, it is possible to prevent dislocations that are inherited by the grown crystals from the growth surfaces due to the deposits and work-affected layers. As a method for removing the above-mentioned deposits and work-affected layers, for example, polishing,
Chemical cleaning, Reactive Ion Etching
(RIE), sacrificial oxidation, etc.

【0029】また,上記各種結晶上でのSiC単結晶の
成長には昇華再析出法を用いることが好ましい(請求項
3)。この場合には,充分な成長高さが得られるため,
大口径のエピタキシャル膜付きSiCウエハを作製する
ことができる。なお,本発明において使用できるSiC
単結晶成長手法は昇華再析出法に限らず,十分な成長高
さのバルク状単結晶を成長できる手法であれば全て適用
できる。例えば,Mater. Sci. Eng. B
Vol.61−62(1999)113−120に示さ
れているような2000℃を越える温度域での化学気相
堆積法も用いることができる。
Further, it is preferable to use a sublimation reprecipitation method for growing the SiC single crystal on the above various crystals. In this case, a sufficient growth height can be obtained,
A SiC wafer with an epitaxial film having a large diameter can be manufactured. Note that SiC that can be used in the present invention
The single crystal growth method is not limited to the sublimation reprecipitation method, and any method capable of growing a bulk single crystal with a sufficient growth height can be applied. For example, Mater. Sci. Eng. B
Vol. 61-62 (1999) 113-120, the chemical vapor deposition method in the temperature range over 2000 degreeC can also be used.

【0030】また,上記各種結晶の厚みは1mm以上で
あることが好ましい(請求項4)。この場合には,上記
種結晶と種結晶を固定している物体との熱膨張差による
応力によって成長結晶に生じる転位及び積層欠陥を防止
することができる。即ち,上記種結晶の厚みを充分大き
くすることにより,上記応力が種結晶を構成する格子を
歪めて,成長結晶に転位及び積層欠陥が発生することを
防止することができる。また,特に,上記種結晶の成長
面の面積Aが500mm2を越える場合には,上記種結
晶の厚みを1mmよりさらに大きくする必要がある。こ
のときの必要最低限の厚みをtseedとすると,ts
eed=A1/2×2/πの式が与えられる。なお,上記
種結晶及び成長結晶とは,本発明におけるすべての種結
晶及びすべての成長結晶を含む概念である。
The thickness of each crystal is preferably 1 mm or more (claim 4). In this case, it is possible to prevent dislocations and stacking faults that occur in the grown crystal due to the stress due to the difference in thermal expansion between the seed crystal and the object fixing the seed crystal. That is, by sufficiently increasing the thickness of the seed crystal, it is possible to prevent the stress from distorting the lattice constituting the seed crystal and causing dislocations and stacking faults in the grown crystal. Further, especially when the area A of the growth surface of the seed crystal exceeds 500 mm 2 , the thickness of the seed crystal needs to be made larger than 1 mm. If the minimum necessary thickness at this time is tseed, ts
The equation of eded = A 1/2 × 2 / π is given. The seed crystal and the grown crystal are concepts including all seed crystals and all grown crystals in the present invention.

【0031】また,上記成膜面は,{0001}面から
オフセット角度0.5°〜20°の面,{1−100}
面からオフセット角度20°以下の面,又は{11−2
0}面からオフセット角度20°以下の面とすることが
好ましい(請求項5)。この場合には,上記エピタキシ
ャル膜中へのマイクロパイプ欠陥,螺旋転位,刃状転位
の発生をほとんど抑制することができる。なお,{00
01}面からオフセット角度0.5°未満の面を成膜面
とした場合には,上記エピタキシャル膜の成膜が困難に
なるおそれがある。
The film-forming surface is a surface having an offset angle of 0.5 ° to 20 ° from the {0001} surface, {1-100}
A surface with an offset angle of 20 ° or less from the surface, or {11-2
It is preferable that the angle is 20 ° or less from the 0 plane. In this case, generation of micropipe defects, screw dislocations and edge dislocations in the epitaxial film can be almost suppressed. Note that {00
When the surface having an offset angle of less than 0.5 ° from the 01} plane is used as the film formation surface, it may be difficult to form the epitaxial film.

【0032】また,上記エピタキシャル膜の成膜には,
CVD法,PVE法,又はLPE法を用いることが好ま
しい(請求項6)。ここで上記CVD法は,Chemi
cal Vapor Deposition(化学気相
堆積法)法,上記PVE法は,Physical Va
por Epitaxy(昇華エピタキシー)法,上記
LPE法は,Liquid Phase Epitax
y(液相エピタキシー)法をいう。この場合には,デバ
イス作製上重要な設計パラメータである膜厚及び膜中の
不純物濃度を容易に制御することができる。
Further, in forming the above-mentioned epitaxial film,
It is preferable to use the CVD method, the PVE method, or the LPE method (claim 6). Here, the CVD method is based on Chemi.
cal vapor deposition (chemical vapor deposition) method, the PVE method is a physical vapor deposition method.
The por epitaxy method, the LPE method is a liquid phase epitaxy method.
y (liquid phase epitaxy) method. In this case, the film thickness and the impurity concentration in the film, which are important design parameters in device fabrication, can be easily controlled.

【0033】また,上記エピタキシャル膜に1×1013
〜1×1020/cm3の不純物を含有させることが好ま
しい(請求項7)。この場合には,上記不純物がドナー
やアクセプタ等の役割を果たし,上記エピタキシャル膜
付きSiCウエハを半導体デバイス等として用いること
ができる。上記不純物の含有量が1×1013/cm3
満の場合には,上記不純物は充分な量のキャリアを供給
することができず,上記エピタキシャル膜付きSiCウ
エハのデバイス特性が低下するおそれがある。一方,1
×1020/cm3を越える場合には,上記不純物が凝集
し,その結果上記エピタキシャル膜中に転位や積層欠陥
が発生するおそれがある。
Further, 1 × 10 13 is formed on the epitaxial film.
It is preferable to contain impurities of about 1 × 10 20 / cm 3 (claim 7). In this case, the impurities play a role of donors or acceptors, and the SiC wafer with the epitaxial film can be used as a semiconductor device or the like. When the content of the impurities is less than 1 × 10 13 / cm 3 , the impurities cannot supply a sufficient amount of carriers, and the device characteristics of the SiC wafer with the epitaxial film may deteriorate. . On the other hand, 1
If it exceeds x10 20 / cm 3 , the impurities may aggregate, resulting in the generation of dislocations and stacking faults in the epitaxial film.

【0034】また,上記不純物はその構成元素として,
窒素,ホウ素又はアルミニウムの1種以上を含有するこ
とが好ましい(請求項8)。この場合には,上記エピタ
キシャル膜をp又はn型半導体とすることができる。そ
のため,上記エピタキシャル膜付きSiCウエハをダイ
オード等の半導体デバイスとして利用することができ
る。
Further, the above-mentioned impurities are constituent elements thereof,
It is preferable to contain at least one of nitrogen, boron and aluminum (claim 8). In this case, the epitaxial film can be a p-type or n-type semiconductor. Therefore, the SiC wafer with the epitaxial film can be used as a semiconductor device such as a diode.

【0035】[0035]

【実施例】以下に,図面を用いて本発明の実施例につい
て説明する。 (実施例1)本例のエピタキシャル膜付きSiCウエハ
の製造方法は,図1〜図3に示すごとく,SiC単結晶
よりなる種結晶上にSiC単結晶を成長させてバルク状
のSiC単結晶を製造し,該SiC単結晶からSiCウ
エハを作製し,該SiCウエハ上にエピタキシャル膜を
成膜してエピタキシャル膜付きSiCウエハを製造する
方法である。そして,この製造方法は,N回(Nは,N
≧2の自然数)の成長工程と,該成長工程後にエピタキ
シャル膜を成膜する成膜工程とを含み,上記成長工程に
おける各成長工程を第n成長工程(nは自然数であって
1から始まりNで終わる序数)として表す。
Embodiments of the present invention will be described below with reference to the drawings. (Embodiment 1) As shown in FIGS. 1 to 3, a method for manufacturing an SiC wafer with an epitaxial film according to the present embodiment comprises growing a SiC single crystal on a seed crystal made of a SiC single crystal to form a bulk SiC single crystal. This is a method of manufacturing, producing a SiC wafer from the SiC single crystal, and forming an epitaxial film on the SiC wafer to produce an SiC wafer with an epitaxial film. This manufacturing method is performed N times (N is N
A growth step of a natural number of ≧ 2 and a film formation step of forming an epitaxial film after the growth step, and each growth step in the growth step is the n-th growth step (n is a natural number and starts from 1 to N). Ordinal number ending with).

【0036】まず,図1に示すごとく,n=1である第
1成長工程においては,{1−100}面からオフセッ
ト角度20°以下の面を第1成長面15として露出させ
た第1種結晶1を用いて,上記第1成長面15上にSi
C単結晶を成長させ第1成長結晶10を作製する(第1
成長工程)。
First, as shown in FIG. 1, in the first growth step in which n = 1, a surface of an offset angle of 20 ° or less from the {1-100} plane is exposed as a first growth surface 15 of the first type. The crystal 1 is used to form Si on the first growth surface 15.
A C single crystal is grown to produce a first grown crystal 10 (first
Growth process).

【0037】次に,図1及び図2に示すごとく,n=2
である第2成長工程としての連続成長工程においては,
第1成長面15より45〜90°傾き,且つ{000
1}面より60〜90°傾いた面を第2成長面25とし
た第2種結晶2を第1成長結晶10より作製し,該第2
種結晶2の上記第2成長面25上にSiC単結晶を成長
させて第2成長結晶20を作製する(連続成長工程)。
Next, as shown in FIGS. 1 and 2, n = 2
In the continuous growth step as the second growth step,
45-90 ° tilt from the first growth surface 15 and {000
The second seed crystal 2 having the plane inclined by 60 to 90 ° from the 1} plane as the second growth plane 25 was prepared from the first growth crystal 10 and
A second single crystal 20 is produced by growing a SiC single crystal on the second growth surface 25 of the seed crystal 2 (continuous growth step).

【0038】そして,図2及び図3に示すごとく,上記
成膜工程においては,n=2である第2成長結晶20か
ら成膜面35を露出させたSiCウエハ3を作製し,該
SiCウエハ3の上記成膜面35上にエピタキシャル膜
30を成膜する(成膜工程)。
Then, as shown in FIGS. 2 and 3, in the film forming step, a SiC wafer 3 having a film forming surface 35 exposed from the second grown crystal 20 with n = 2 is prepared, and the SiC wafer is prepared. The epitaxial film 30 is formed on the film forming surface 35 of 3 (film forming step).

【0039】以下本例につき詳細に説明する。本例で
は,図1〜5に示すごとく,SiC単結晶よりなる種結
晶上に昇華再析出法によりSiC単結晶を成長させて,
このSiC単結晶からSiCウエハを作製し,このSi
Cウエハ上にエピタキシャル膜を成膜する。なお,本例
においては,上記のごとくN=2,即ち2回の成長工程
を含む例を示す。
This example will be described in detail below. In this example, as shown in FIGS. 1 to 5, by growing a SiC single crystal on a seed crystal made of a SiC single crystal by a sublimation reprecipitation method,
A SiC wafer was prepared from this SiC single crystal and
An epitaxial film is formed on the C wafer. In this example, N = 2, that is, an example including two growth steps as described above.

【0040】まず,昇華再析出法により成長したSiC
単結晶を準備した。図4に示すごとく,SiC単結晶
は,主要な面方位として{0001}面と,{000
1}面に垂直な{1−100}面及び{11−20}面
とを有している。また,{0001}面に垂直な方向が
<0001>方向,{1−100}面に垂直な方向が<
1−100>方向,{11−20}面に垂直な方向が<
11−20>である。図1に示すごとく,上記SiC単
結晶の{1−100}面が第1成長面15として露出す
るように上記SiC単結晶を切断し,さらにこの第1成
長面15を加工,研磨した。また,第1成長面15の表
面を化学洗浄して付着物を除去し,RIE(React
ive Ion Etching),犠牲酸化により,
切断・研磨に伴う加工変質層を除去し,これを第1種結
晶1とした。なお,第1種結晶1の厚みは3mmであ
る。
First, SiC grown by the sublimation reprecipitation method
A single crystal was prepared. As shown in FIG. 4, the SiC single crystal has {0001} planes and {000} planes as main plane orientations.
It has a {1-100} plane and a {11-20} plane perpendicular to the 1} plane. In addition, the direction perpendicular to the {0001} plane is the <0001> direction, and the direction perpendicular to the {1-100} plane is the <0001> direction.
1-100> direction, the direction perpendicular to the {11-20} plane is <
11-20>. As shown in FIG. 1, the SiC single crystal was cut so that the {1-100} plane of the SiC single crystal was exposed as the first growth surface 15, and the first growth surface 15 was further processed and polished. Further, the surface of the first growth surface 15 is chemically cleaned to remove deposits, and RIE (React
iv Ion Etching), by sacrificial oxidation,
The work-affected layer caused by cutting and polishing was removed, and this was designated as the first seed crystal 1. The thickness of the first seed crystal 1 is 3 mm.

【0041】次に,図5に示すごとく,上記第1種結晶
1とSiC原料粉末82とをこれらが対向するように坩
堝8内に配置した。このとき,上記第1種結晶1は坩堝
8の蓋体85の内側面に接着剤を介して固定した。そし
て上記坩堝8を減圧不活性雰囲気中で2100〜240
0℃に加熱した。このとき,SiC原料粉末82側の温
度を第1種結晶1側の温度より20〜200℃高く設定
した。これにより,坩堝8内のSiC原料粉末82が加
熱により昇華し,該SiC原料粉末82より低温の第1
種結晶1上に堆積し,第1成長結晶10を得た(第1成
長工程)。
Next, as shown in FIG. 5, the first seed crystal 1 and the SiC raw material powder 82 were placed in the crucible 8 so that they face each other. At this time, the first seed crystal 1 was fixed to the inner surface of the lid 85 of the crucible 8 with an adhesive. Then, the crucible 8 is set to 2100 to 240 in a reduced pressure inert atmosphere.
Heated to 0 ° C. At this time, the temperature of the SiC raw material powder 82 side was set to be 20 to 200 ° C. higher than the temperature of the first seed crystal 1 side. As a result, the SiC raw material powder 82 in the crucible 8 is sublimated by heating, and the first raw material at a temperature lower than that of the SiC raw material powder 82
A first grown crystal 10 was obtained by depositing on the seed crystal 1 (first growing step).

【0042】次に,図1及び図2に示すごとく,上記第
1成長結晶10から,第1成長面15より90°傾き,
且つ{0001}面より90°傾いた面,即ち{11−
20}面を第2成長面25とする第2種結晶2を第1種
結晶1と同様にして作製した。そして,この第2種結晶
2を第1種結晶1と同様にして成長させ,第2成長結晶
20を得た(連続成長工程)。
Next, as shown in FIGS. 1 and 2, the first grown crystal 10 is tilted by 90 ° from the first grown surface 15,
And a plane inclined by 90 ° from the {0001} plane, that is, {11-
A second seed crystal 2 having a 20} plane as a second growth surface 25 was prepared in the same manner as the first seed crystal 1. Then, this second seed crystal 2 was grown in the same manner as the first seed crystal 1 to obtain a second grown crystal 20 (continuous growth step).

【0043】次に,図2及び図3に示すごとく,上記第
2成長結晶20から,{0001}面からオフセット角
度xの面を成膜面35として露出させたSiCウエハ3
を切り出した。このSiCウエハ3の成膜面35に,上
記第1種結晶の作製時と同様に加工,研磨,化学洗浄,
RIE,犠牲酸化等の表面処理を施した。そして,CV
D法により上記SiCウエハ3の成膜面35上にエピタ
キシャル膜30を成膜し,エピタキシャル膜付きSiC
ウエハ4を作製した(成膜工程)。具体的には,原料ガ
スとしてSiH4ガス及びC38ガスを5ml/min
にて,またキャリアガスとしてH2ガスを10l/mi
nにてそれぞれ反応管に導入し,SiCウエハ3を保持
しているサセプタの温度を1550℃として成膜を行っ
た。なお,本例では,上記オフセット角度xは,5°と
し,雰囲気圧は30kPaとした。
Next, as shown in FIGS. 2 and 3, the SiC wafer 3 in which the plane having the offset angle x from the {0001} plane is exposed as the deposition surface 35 from the second grown crystal 20.
Cut out. On the film-forming surface 35 of this SiC wafer 3, the same processing, polishing, chemical cleaning,
Surface treatment such as RIE and sacrificial oxidation was performed. And CV
The epitaxial film 30 is formed on the film formation surface 35 of the SiC wafer 3 by the D method, and the SiC with the epitaxial film is formed.
Wafer 4 was produced (film forming step). Specifically, SiH 4 gas and C 3 H 8 gas are used as source gases at 5 ml / min.
And H 2 gas as a carrier gas at 10 l / mi
n was introduced into each reaction tube, and the temperature of the susceptor holding the SiC wafer 3 was set to 1550 ° C. to form a film. In this example, the offset angle x was 5 ° and the atmospheric pressure was 30 kPa.

【0044】次に,上記のようにして作製したエピタキ
シャル膜付きSiCウエハ4のエピタキシャル膜30中
に含まれる欠陥密度を調べるために,上記エピタキシャ
ル膜にKOHエッチングを施し,これによって生じたエ
ッチピット数を測定した。その結果,転位に対応するエ
ッチピットの数は,102〜103/cm2であり,非常
に少なかった。
Next, in order to examine the defect density contained in the epitaxial film 30 of the SiC wafer 4 with the epitaxial film manufactured as described above, the epitaxial film was subjected to KOH etching, and the number of etch pits generated by this was performed. Was measured. As a result, the number of etch pits corresponding to dislocations was 10 2 to 10 3 / cm 2 , which was extremely small.

【0045】以下,本例の作用効果につき説明する。本
例の第1成長工程においては,上記{1−100}面を
第1成長面15としている。そのため,上記第1成長結
晶10は第1成長面15と直交する方向に成長し,これ
はいわゆるa面成長に相当する。それ故,上記第1成長
結晶10中には上記マイクロパイプ欠陥及び螺旋転位は
発生しない。しかし,第1種結晶中には,マイクロパイ
プ欠陥,螺旋転位,刃状転位,及びそれらの複合転位な
どの欠陥が存在する。そのため,上記第1成長結晶10
中には,<0001>方向に平行及び直交するバーガー
スベクトルをもつ刃状転位が上記第1成長面の表面から
継承されて存在する。このとき上記刃状転位は,第1成
長結晶の成長方向に平行な方向に伸びるように存在す
る。
The operation and effect of this example will be described below. In the first growth step of this example, the {1-100} plane is the first growth plane 15. Therefore, the first grown crystal 10 grows in the direction orthogonal to the first growth surface 15, which corresponds to so-called a-plane growth. Therefore, the micropipe defect and the screw dislocation do not occur in the first grown crystal 10. However, defects such as micropipe defects, screw dislocations, edge dislocations, and composite dislocations thereof exist in the first seed crystal. Therefore, the first grown crystal 10
Edge dislocations having Burgers vectors parallel and orthogonal to the <0001> direction are present therein, inherited from the surface of the first growth surface. At this time, the edge dislocations are present so as to extend in a direction parallel to the growth direction of the first grown crystal.

【0046】上記連続成長工程においては,第1成長面
15より90°傾き,且つ{0001}面より90°傾
いた面,即ち{11−20}面を第2成長面25とする
第2種結晶2を作製している。そのため,上記第1成長
結晶10に含まれる刃状転位は,上記第2種結晶2の表
面にはほとんど露出されない。それ故,第2成長面25
上にSiC単結晶を成長させても,第2成長結晶20中
には第2種結晶2から継承される刃状転位はほとんど除
外される。また,上記連続成長工程において,上記第2
種結晶2は略a面成長の方向に成長する。そのため,上
記第2成長結晶20中には,マイクロパイプ欠陥及び螺
旋転位は発生しない。
In the above continuous growth step, the second kind in which the second growth surface 25 is a surface inclined by 90 ° with respect to the first growth surface 15 and 90 ° with respect to the {0001} surface, that is, the {11-20} surface. Crystal 2 is produced. Therefore, the edge dislocations contained in the first grown crystal 10 are hardly exposed on the surface of the second seed crystal 2. Therefore, the second growth surface 25
Even if a SiC single crystal is grown on top, edge dislocations inherited from the second seed crystal 2 are almost excluded from the second grown crystal 20. In the continuous growth step, the second
Seed crystal 2 grows in the direction of approximately a-plane growth. Therefore, micropipe defects and screw dislocations do not occur in the second grown crystal 20.

【0047】上記成膜工程においては,上記第2成長結
晶20の{0001}面からオフセット角度5°の面を
露出させたSiCウエハ3を作製している。そのため,
上記SiCウエハ3の成膜面35には,<0001>方
向に平行及び直交するバーガースベクトルをもつ刃状転
位はほとんど存在しない。それ故,上記エピタキシャル
膜30には,<0001>方向に直交するバーガースベ
クトルをもつ転位である刃状転位は発生しない。また,
<0001>方向に平行な方向のバーガースベクトルを
もつ欠陥であるマイクロパイプ欠陥及び螺旋転位も発生
しない。
In the film forming step, the SiC wafer 3 in which the surface having the offset angle of 5 ° is exposed from the {0001} surface of the second grown crystal 20 is manufactured. for that reason,
On the film formation surface 35 of the SiC wafer 3, there is almost no edge dislocation having Burgers vectors parallel and orthogonal to the <0001> direction. Therefore, edge dislocations, which are dislocations having a Burgers vector orthogonal to the <0001> direction, do not occur in the epitaxial film 30. Also,
Micropipe defects and screw dislocations, which are defects having Burgers vectors parallel to the <0001> direction, do not occur.

【0048】また,本例においては,上記第1成長面1
5及び第2成長面25上にSiC単結晶を成長させる
前,又は成膜面35上にエピタキシャル膜30を成膜す
る前に,付着物や加工変質層を取り除いている。そのた
め,上記付着物や加工変質層に起因し各成長面15,2
5又は成膜面35から各成長結晶10,20又はエピタ
キシャル膜35に継承される転位を防ぐことができる。
In the present example, the first growth surface 1
5 and before depositing a SiC single crystal on the second growth surface 25, or before forming the epitaxial film 30 on the film formation surface 35, deposits and work-affected layers are removed. Therefore, due to the above-mentioned deposits and work-affected layers, each growth surface 15, 2
It is possible to prevent dislocations which are inherited from each growth crystal 10, 20 or the epitaxial film 35 from the film formation surface 35 or the film formation surface 35.

【0049】また,上記各種結晶の厚みを1mm以上に
している。そのため,上記各種結晶1,2と種結晶が接
触している蓋体65との熱膨張差による応力によって成
長結晶10,20に生じる転位及び積層欠陥を防止する
ことができる。
Further, the thickness of each of the various crystals is set to 1 mm or more. Therefore, it is possible to prevent dislocations and stacking faults occurring in the grown crystals 10 and 20 due to the stress due to the difference in thermal expansion between the various crystals 1 and 2 and the lid 65 in contact with the seed crystal.

【0050】このように,本例によれば,SiCウエハ
及びエピタキシャル膜中に欠陥及び転位をほとんど含有
しないエピタキシャル膜付きSiCウエハ及びその製造
方法を提供することができる。
As described above, according to this example, it is possible to provide the SiC wafer and the SiC wafer with the epitaxial film, which contains almost no defects and dislocations in the epitaxial film, and the manufacturing method thereof.

【0051】また,本例においてはN=2として,上記
連続成長工程を1回だけ行っているが,複数回繰り返し
て行ってもよい。即ち,本例の連続成長工程において
は,{11−20}面を第2成長面25として第2成長
結晶20を得た。この第2成長結晶20から,上記第2
成長面25より90°傾き,且つ{0001}面より9
0°傾いた面,即ち{1−100}面を第3成長工程に
おける第3成長面とし,この上にSiC単結晶を成長さ
せて,第3成長結晶を作製する。さらに,上記第3成長
結晶から,第4成長工程,第5成長工程,・・・,第
(N−1)工程というように,上記連続成長工程を繰り
返して行うことができる。この場合には,上記連続成長
工程の回数を増やす毎に,ここで得られる成長結晶のい
わゆる転位密度を指数関数的に減少させることができ
る。
In this example, N = 2 and the continuous growth step is performed only once, but it may be repeated a plurality of times. That is, in the continuous growth process of this example, the {11-20} plane was used as the second growth plane 25 to obtain the second growth crystal 20. From this second grown crystal 20, the second
90 ° inclined from the growth plane 25 and 9 from the {0001} plane
A plane inclined by 0 °, that is, a {1-100} plane is used as a third growth plane in the third growth step, and a SiC single crystal is grown on this to produce a third growth crystal. Further, the continuous growth step can be repeated from the third growth crystal to the fourth growth step, the fifth growth step, ..., And the (N−1) th step. In this case, the so-called dislocation density of the grown crystal obtained here can be exponentially reduced each time the number of continuous growth steps is increased.

【0052】(実施例2)本例のエピタキシャル膜付き
SiCウエハの製造方法は,図3,図6〜図8に示すご
とく,SiC単結晶よりなる種結晶上にSiC単結晶を
成長させてバルク状のSiC単結晶を製造し,該SiC
単結晶からSiCウエハを作製して該SiCウエハの成
膜面上にエピタキシャル膜を成膜しエピタキシャル膜付
きSiCウエハを製造する方法である。そして,この製
造方法は,(N+α)回(Nは,N≧2の自然数であ
り,αは自然数)の成長工程と,該成長工程後にエピタ
キシャル膜を成膜する成膜工程とを含み,上記成長工程
における各成長工程を第n成長工程(nは自然数であっ
て1から始まりN+αで終わる序数)として表す。
(Embodiment 2) As shown in FIGS. 3 and 6 to 8, a method for manufacturing an SiC wafer with an epitaxial film according to the present embodiment is carried out by growing a SiC single crystal on a seed crystal made of a SiC single crystal and performing bulk formation. -Shaped SiC single crystal is manufactured, and the SiC
This is a method for producing a SiC wafer from a single crystal and forming an epitaxial film on the film formation surface of the SiC wafer to produce an SiC wafer with an epitaxial film. This manufacturing method includes (N + α) times of growth steps (N is a natural number of N ≧ 2, and α is a natural number), and a film forming step of forming an epitaxial film after the growth step. Each growth step in the growth steps is represented as an nth growth step (n is a natural number and is an ordinal number starting from 1 and ending with N + α).

【0053】まず,図6に示すごとく,n=1である第
1成長工程においては実施例1と同様にして,{1−1
00}面からオフセット角度20°以下の面を第1成長
面15として露出させた第1種結晶1を用いて,上記第
1成長面15上にSiC単結晶を成長させ第1成長結晶
10を作製する(第1成長工程)。
First, as shown in FIG. 6, in the first growth step where n = 1, as in Example 1, {1-1
Using the first seed crystal 1 in which a surface having an offset angle of 20 ° or less from the {00} plane is exposed as the first growth surface 15, a SiC single crystal is grown on the first growth surface 15 to form the first growth crystal 10. Fabricate (first growth step).

【0054】次に,図6及び図7に示すごとく,n=2
である第2成長工程としての第1連続成長工程において
は実施例1と同様にして,第1成長面15より45〜9
0°傾き,且つ{0001}面より60〜90°傾いた
面を第2成長面55とした第2種結晶5を第1成長結晶
10より作製し,該第2種結晶5の上記第2成長面55
上にSiC単結晶を成長させて第2成長結晶50を作製
する(第1連続成長工程)。
Next, as shown in FIGS. 6 and 7, n = 2
In the first continuous growth step as the second growth step, which is the same as in Example 1, 45 to 9 from the first growth surface 15
A second seed crystal 5 having a second growth plane 55 having a plane inclined by 0 ° and 60 to 90 ° from the {0001} plane was prepared from the first growth crystal 10, and the second seed crystal 5 was formed into the second seed crystal 5 described above. Growth surface 55
A SiC single crystal is grown on top to produce a second grown crystal 50 (first continuous growth step).

【0055】次に,図7及び図8に示すごとく,n=3
である第3成長工程としての第2連続成長工程において
は,第2成長面55より0〜45°傾き,且つ{000
1}面より60〜90°傾いた面を第3成長面65とし
た第3種結晶6を第2成長結晶50より作製し,該第3
種結晶6の上記第3成長面65上にSiC単結晶を成長
させて第3成長結晶60を作製する(第2連続成長工
程)。そして,図3及び図7に示すごとく,上記成膜工
程においては,n=3である第3成長結晶60から成膜
面35を露出させたSiCウエハ3を作製し,該SiC
ウエハ3の上記成膜面35上にエピタキシャル膜30を
成膜する(成膜工程)。
Next, as shown in FIGS. 7 and 8, n = 3
In the second continuous growth step as the third growth step, the inclination is 0 to 45 ° from the second growth surface 55, and {000
The third seed crystal 6 having the surface inclined by 60 to 90 ° from the 1} plane as the third growth surface 65 was prepared from the second growth crystal 50, and
A SiC single crystal is grown on the third growth surface 65 of the seed crystal 6 to produce a third growth crystal 60 (second continuous growth step). Then, as shown in FIGS. 3 and 7, in the film forming step, the SiC wafer 3 having the film forming surface 35 exposed from the third growth crystal 60 with n = 3 is manufactured, and the SiC wafer 3 is formed.
The epitaxial film 30 is formed on the film forming surface 35 of the wafer 3 (film forming step).

【0056】以下本例につき詳細に説明する。本例で
は,図3及び図6〜図8に示すごとく,SiC単結晶よ
りなる種結晶上に昇華再析出法によりSiC単結晶を成
長させて,このSiC単結晶からSiCウエハを作製
し,このSiCウエハ上にエピタキシャル膜を成膜す
る。なお,本例においては,上記のごとくN=2及びα
=1の合計3回の成長工程を含む例を示す。
This example will be described in detail below. In this example, as shown in FIGS. 3 and 6 to 8, a SiC single crystal is grown on a seed crystal made of a SiC single crystal by a sublimation reprecipitation method, and a SiC wafer is produced from this SiC single crystal. An epitaxial film is formed on the SiC wafer. In this example, N = 2 and α as described above.
An example including a total of three growth steps of = 1 is shown.

【0057】まず,昇華再析出法により成長したSiC
を準備した。このSiC単結晶の{1−100}面が第
1成長面15として露出するように上記SiC単結晶を
切断し,実施例1と同様にして,厚み3mmの第1種結
晶1を作製した。さらに,実施例1と同様にして,上記
SiC原料粉末をこの第1種結晶1上に堆積させ,第1
成長結晶10を得た(第1成長工程)。
First, SiC grown by the sublimation reprecipitation method
Prepared. The above-mentioned SiC single crystal was cut so that the {1-100} plane of this SiC single crystal was exposed as the first growth surface 15, and in the same manner as in Example 1, a first seed crystal 1 having a thickness of 3 mm was produced. Further, in the same manner as in Example 1, the above SiC raw material powder was deposited on this first seed crystal 1, and
A grown crystal 10 was obtained (first growing step).

【0058】次に,図6及び図7に示すごとく,上記第
1成長結晶10から第1成長面15より90°傾き,且
つ{0001}面より90°傾いた面,即ち{11−2
0}面を第2成長面55とする第2種結晶2を実施例1
と同様にして作製した。そして,さらにこの第2種結晶
5を第1種結晶1と同様にして成長させ,第2成長結晶
50を得た(第1連続成長工程)。ここで,上記第2成
長結晶50は,上記第1成長結晶の約半分の高さまで成
長させた。
Next, as shown in FIGS. 6 and 7, a plane tilted from the first grown crystal 10 by 90 ° from the first growth plane 15 and 90 degrees from the {0001} plane, that is, {11-2
Example 2 of the second seed crystal 2 having the 0} plane as the second growth plane 55
Was prepared in the same manner as in. Then, this second seed crystal 5 was further grown in the same manner as the first seed crystal 1 to obtain a second grown crystal 50 (first continuous growth step). Here, the second grown crystal 50 was grown to about half the height of the first grown crystal.

【0059】次に,図7及び図8に示すごとく,上記第
2成長結晶50から第2成長面55より角度y傾き,且
つ{0001}面より90°傾いた面を第3成長面65
とする第3種結晶6を上記第1及び第2種結晶と同様に
して作製した。そして,さらにこの第3種結晶6を上記
第1及び第2種結晶と同様にして成長させ,第3成長結
晶60を得た(第2連続成長工程)。なお,上記角度y
は,0〜45°の範囲で任意に決定することができ,本
例では0°とした。
Next, as shown in FIG. 7 and FIG. 8, a surface inclined from the second growth crystal 50 by the angle y with respect to the second growth surface 55 and with an angle of 90 ° from the {0001} plane is formed into the third growth surface 65.
The third seed crystal 6 having the following structure was produced in the same manner as the first and second seed crystals. Then, the third seed crystal 6 was further grown in the same manner as the first and second seed crystals to obtain a third grown crystal 60 (second continuous growth step). In addition, the angle y
Can be arbitrarily determined within a range of 0 to 45 °, and is set to 0 ° in this example.

【0060】次に,図3及び図8に示すごとく,上記第
3成長結晶60から,{0001}面からオフセット角
度zの面を成膜面35として露出させたSiCウエハ3
を切り出した。そして,実施例1と同様にして,このS
iCウエハ3の成膜面35上にエピタキシャル膜30を
成膜し,エピタキシャル膜付きSiCウエハ4を作製し
た(成膜工程)。なお,本例では上記オフセット角度z
は,5°とした。
Next, as shown in FIGS. 3 and 8, the SiC wafer 3 in which the surface having the offset angle z from the {0001} plane is exposed as the film formation surface 35 from the third grown crystal 60.
Cut out. Then, as in the first embodiment, this S
The epitaxial film 30 was formed on the film forming surface 35 of the iC wafer 3 to prepare the SiC wafer 4 with the epitaxial film (film forming step). In this example, the offset angle z
Was 5 °.

【0061】上記のようにして作製したエピタキシャル
膜付きSiCウエハ4のエピタキシャル膜30中に含ま
れる欠陥密度を,実施例1と同様にして調べるたとこ
ろ,転位に対応するエッチピットの数は,実施例1で作
製したエピタキシャル膜付きSiCウエハ4と同程度で
あり,非常に少なかった。そして,本例の製造方法によ
っても,同様に欠陥密度が非常に小さいエピタキシャル
膜付きSiCウエハ4を得ることができた。
When the defect density contained in the epitaxial film 30 of the SiC wafer 4 with the epitaxial film produced as described above was examined in the same manner as in Example 1, the number of etch pits corresponding to dislocations was It was about the same as the SiC wafer 4 with the epitaxial film produced in Example 1, and was very small. Also, according to the manufacturing method of this example, similarly, the SiC wafer 4 with the epitaxial film having a very low defect density can be obtained.

【0062】また,本例の第2連続成長工程において
は,第2成長面55より角度y=0°,即ち第2成長面
55と平行で,且つ{0001}面より90°傾いた面
を第3成長面65としている。そのため,上記第2成長
工程においては,第2成長結晶50を高く成長させる必
要がない。それ故,第3種結晶6を短時間及び低コスト
にて作製することができ,最終的に上記エピタキシャル
膜付きSiCウエハ4を作製するための時間及びコスト
を削減することができる。
Further, in the second continuous growth step of this example, an angle y = 0 ° from the second growth surface 55, that is, a plane parallel to the second growth surface 55 and inclined by 90 ° from the {0001} plane is formed. The third growth surface 65 is used. Therefore, it is not necessary to grow the second grown crystal 50 high in the second growth step. Therefore, the third seed crystal 6 can be manufactured in a short time and at low cost, and the time and cost for finally manufacturing the SiC wafer 4 with the epitaxial film can be reduced.

【0063】また,本例においてはN=2,α=1とし
て,上記第1及び第2連続成長工程を1回ずつ行ってい
るが,これらは複数回繰り返して行ってもよい。上記第
1連続成長工程を繰り返し行うと,実施例1の連続成長
工程と同様に,得られる成長結晶のいわゆる転位密度を
指数関数的に減少させることができる。ここで,転位密
度を充分に低減させておくと,第2連続成長工程におい
ては角度yという小さい角度でも,転位密度の非常に少
ない種結晶を得ることができる。
In this example, the first and second continuous growth steps are performed once with N = 2 and α = 1. However, these steps may be repeated a plurality of times. By repeating the first continuous growth step, the so-called dislocation density of the obtained grown crystal can be exponentially reduced, as in the continuous growth step of Example 1. Here, if the dislocation density is sufficiently reduced, a seed crystal with a very low dislocation density can be obtained in the second continuous growth step even with a small angle y.

【0064】(実施例3)本例は,上記成膜面として
{1−100}面を用いて上記エピタキシャル膜付きS
iCウエハを作製した例を示す。まず,実施例1と同様
に第2成長結晶20を作製し,該第2成長結晶20か
ら,{1−100}面を成膜面35として露出させたS
iCウエハ3を切り出した。このSiCウエハ3の上記
成膜面35上に,実施例1と同様に,表面処理を施しC
VD法によりエピタキシャル膜30を成膜して,エピタ
キシャル膜付きSiCウエハ4を作製した。この場合に
も,実施例1と同様に欠陥密度が非常に小さいエピタキ
シャル膜付きSiCウエハ4を得ることができた。
(Embodiment 3) In this embodiment, the {1-100} plane is used as the film formation surface and the S with the epitaxial film is formed.
The example which produced the iC wafer is shown. First, a second grown crystal 20 was prepared in the same manner as in Example 1, and the {1-100} plane was exposed as the film formation surface 35 from the second grown crystal 20.
The iC wafer 3 was cut out. The surface treatment is performed on the film formation surface 35 of the SiC wafer 3 in the same manner as in the first embodiment to form C.
An epitaxial film 30 was formed by the VD method to produce a SiC wafer 4 with an epitaxial film. Also in this case, similarly to Example 1, the SiC wafer 4 with the epitaxial film having a very low defect density could be obtained.

【0065】(実施例4)本例は,上記成膜面として
{11−20}面を用いて上記エピタキシャル膜付きS
iCウエハを作製した例を示す。まず,実施例1と同様
に第2成長結晶20を作製し,該第2成長結晶20か
ら,{11−20}面を成膜面35として露出させたS
iCウエハ3を切り出した。このSiCウエハ3の上記
成膜面35上に,実施例1と同様に,表面処理を施しC
VD法によりエピタキシャル膜30を成膜して,エピタ
キシャル膜付きSiCウエハ4を作製した。この場合に
も,実施例1と同様に欠陥密度が非常に小さいエピタキ
シャル膜付きSiCウエハ4を得ることができた。
(Embodiment 4) In this embodiment, the {11-20} plane is used as the film formation surface and the S with the epitaxial film is formed.
The example which produced the iC wafer is shown. First, the second grown crystal 20 was prepared in the same manner as in Example 1, and the {11-20} plane was exposed as the film formation surface 35 from the second grown crystal 20.
The iC wafer 3 was cut out. The surface treatment is performed on the film formation surface 35 of the SiC wafer 3 in the same manner as in the first embodiment to form C.
An epitaxial film 30 was formed by the VD method to produce a SiC wafer 4 with an epitaxial film. Also in this case, similarly to Example 1, the SiC wafer 4 with the epitaxial film having a very low defect density could be obtained.

【0066】(実施例5)本例は,PVE法により上記
エピタキシャル膜付きSiCウエハを作製した例を示
す。まず,実施例1と同様に,{0001}面からオフ
セット角度5°の面を成膜面35として露出させたSi
Cウエハ3を作製し,該成膜面35に表面処理を施し
た。そして,PVE法により上記SiCウエハ3の成膜
面35上にエピタキシャル膜30を成膜し,エピタキシ
ャル膜付きSiCウエハ4を作製した。具体的には,T
aCコートを施した黒鉛坩堝中に上記SiCウエハ3と
高純度の多結晶SiC板を対峙して配置し,減圧不活性
雰囲気(Ar,雰囲気圧100Pa)中にて坩堝を約1
800℃に昇温した。このとき,上記SiCウエハ3の
温度が多結晶SiC板に比べて低くなるように温度勾配
(5〜10℃/cm)を設定した。この場合にも,実施
例1と同様に欠陥密度が非常に小さいエピタキシャル膜
付きSiCウエハを得ることができた。
(Embodiment 5) This embodiment shows an example in which the SiC wafer with the epitaxial film is manufactured by the PVE method. First, as in the first embodiment, Si having a surface having an offset angle of 5 ° from the {0001} surface exposed as the film formation surface 35
A C wafer 3 was produced, and the film formation surface 35 was surface-treated. Then, the epitaxial film 30 was formed on the film formation surface 35 of the SiC wafer 3 by the PVE method, and the SiC wafer 4 with the epitaxial film was produced. Specifically, T
The SiC wafer 3 and a high-purity polycrystalline SiC plate are placed to face each other in an aC-coated graphite crucible, and the crucible is set to about 1 in a reduced pressure inert atmosphere (Ar, atmospheric pressure 100 Pa).
The temperature was raised to 800 ° C. At this time, a temperature gradient (5 to 10 ° C./cm) was set so that the temperature of the SiC wafer 3 was lower than that of the polycrystalline SiC plate. Also in this case, an SiC wafer with an epitaxial film having a very low defect density could be obtained as in Example 1.

【0067】(実施例6)本例は,LPE法により上記
エピタキシャル膜付きSiCウエハを作製した例を示
す。まず,実施例1と同様に,{0001}面からオフ
セット角度5°の面を成膜面35として露出させたSi
Cウエハ3を作製し,該成膜面35に表面処理を施し
た。そして,LPE法により,上記SiCウエハ3の成
膜面35上にエピタキシャル膜30を成膜し,エピタキ
シャル膜付きSiCウエハ4を作製した。具体的には,
不純物が1ppm未満という高純度の黒鉛坩堝の底部に
上記SiCウエハ3を固定し,坩堝中に不純物が10p
pb未満という高純度のSi粉末を充填し,高圧不活性
雰囲気(Ar,雰囲気圧1.0MPa)中にて1800
℃で加熱した。この場合にも,実施例1と同様に欠陥密
度が非常に小さいエピタキシャル膜付きSiCウエハを
得ることができた。
(Embodiment 6) This embodiment shows an example in which the SiC wafer with the epitaxial film is manufactured by the LPE method. First, as in the first embodiment, Si having a surface having an offset angle of 5 ° from the {0001} surface exposed as the film formation surface 35
A C wafer 3 was produced, and the film formation surface 35 was surface-treated. Then, the epitaxial film 30 was formed on the film formation surface 35 of the SiC wafer 3 by the LPE method to produce the SiC wafer 4 with the epitaxial film. In particular,
The SiC wafer 3 was fixed to the bottom of a high-purity graphite crucible having impurities of less than 1 ppm, and impurities of 10 p were contained in the crucible.
High-purity Si powder of less than pb is filled and 1800 in a high-pressure inert atmosphere (Ar, atmosphere pressure 1.0 MPa).
Heated at ° C. Also in this case, an SiC wafer with an epitaxial film having a very low defect density could be obtained as in Example 1.

【0068】(実施例7)本例は,上記エピタキシャル
膜中に不純物として窒素を含有するエピタキシャル膜付
きSiCウエハを作製した例を示す。まず,実施例1と
同様に,{0001}面を成膜面35として露出させた
SiCウエハ3を作製し,該成膜面35に表面処理を施
した。次に,上記成膜工程において,実施例1と同様に
してCVD法によりエピタキシャル膜を成膜するとき
に,N2ガスを流量0.5ml/min(0.5scc
m)にて導入した。このようにして,エピタキシャル膜
30中に不純物として窒素を含有するエピタキシャル膜
付きSiCウエハ4を作製した。尚,このときエピタキ
シャル膜30中に含まれる不純物の濃度は,1.5×1
16〜1×1018/cm3であった。この場合にも,実
施例1と同様に欠陥密度が非常に小さいエピタキシャル
膜付きSiCウエハを得ることができた。
Example 7 In this example, an SiC wafer with an epitaxial film containing nitrogen as an impurity in the above epitaxial film was produced. First, similarly to Example 1, a SiC wafer 3 having a {0001} plane exposed as a film formation surface 35 was prepared, and the film formation surface 35 was subjected to a surface treatment. Next, in the above film forming step, when an epitaxial film is formed by the CVD method in the same manner as in Example 1, the flow rate of N 2 gas is 0.5 ml / min (0.5 scc).
m). In this way, an SiC wafer 4 with an epitaxial film containing nitrogen as an impurity in the epitaxial film 30 was produced. At this time, the concentration of impurities contained in the epitaxial film 30 is 1.5 × 1.
It was 0 16 to 1 × 10 18 / cm 3 . Also in this case, an SiC wafer with an epitaxial film having a very low defect density could be obtained as in Example 1.

【0069】(実施例8)本例は,上記エピタキシャル
膜中に不純物としてアルミニウムを含有するエピタキシ
ャル膜付きSiCウエハを作製した例を示す。まず,実
施例1と同様に,{0001}面を成膜面35として露
出させたSiCウエハ3を作製し,該成膜面35に表面
処理を施した。次に,上記成膜工程において,実施例1
と同様にしてCVD法によりエピタキシャル膜30を成
膜するときに,(CH33Alガスを流量0.01ml
/min(0.01sccm)にて導入し,エピタキシ
ャル膜30中に不純物としてアルミニウムを含有するエ
ピタキシャル膜付きSiCウエハ4を作製した。この場
合にも,実施例1と同様に欠陥密度が非常に小さいエピ
タキシャル膜付きSiCウエハを得ることができた。
尚,このときエピタキシャル膜30中に含まれる不純物
濃度は,1×1018/cm3〜2×1018/cm3であっ
た。
(Embodiment 8) This example shows an example in which a SiC wafer with an epitaxial film containing aluminum as an impurity in the above epitaxial film was produced. First, similarly to Example 1, a SiC wafer 3 having a {0001} plane exposed as a film formation surface 35 was prepared, and the film formation surface 35 was subjected to a surface treatment. Next, in the film forming step,
(CH 3 ) 3 Al gas at a flow rate of 0.01 ml when forming the epitaxial film 30 by the CVD method in the same manner as
/ Min (0.01 sccm), and a SiC wafer 4 with an epitaxial film containing aluminum as an impurity in the epitaxial film 30 was produced. Also in this case, an SiC wafer with an epitaxial film having a very low defect density could be obtained as in Example 1.
The impurity concentration contained in the epitaxial film 30 at this time was 1 × 10 18 / cm 3 to 2 × 10 18 / cm 3 .

【0070】(実施例9)本例は,上記エピタキシャル
膜中に不純物としてホウ素を含有するエピタキシャル膜
付きSiCウエハを作製した例を示す。まず,実施例1
と同様に,{0001}面を成膜面35として露出させ
たSiCウエハ3を作製し,該成膜面35に表面処理を
施した。次に,上記成膜工程において,実施例1と同様
にしてCVD法によりエピタキシャル膜30を成膜する
ときに,B26ガスを流量0.001ml/min
(0.001sccm)にて導入し,エピタキシャル膜
30中に不純物としてホウ素を含有するエピタキシャル
膜付きSiCウエハ4を作製した。この場合にも,実施
例1と同様に欠陥密度が非常に小さいエピタキシャル膜
付きSiCウエハ4を得ることができた。尚,このとき
エピタキシャル膜30中に含まれる不純物の濃度は,2
×1018〜3×1018/cm3であった。
Example 9 In this example, an SiC wafer with an epitaxial film containing boron as an impurity in the above epitaxial film was produced. First, Example 1
Similarly to, the SiC wafer 3 in which the {0001} plane was exposed as the film formation surface 35 was produced, and the film formation surface 35 was subjected to a surface treatment. Next, in the film forming step, when the epitaxial film 30 is formed by the CVD method in the same manner as in Example 1, the flow rate of B 2 H 6 gas is 0.001 ml / min.
(0.001 sccm) was introduced, and a SiC wafer 4 with an epitaxial film containing boron as an impurity in the epitaxial film 30 was produced. Also in this case, similarly to Example 1, the SiC wafer 4 with the epitaxial film having a very low defect density could be obtained. At this time, the concentration of impurities contained in the epitaxial film 30 is 2
It was × 10 18 to 3 × 10 18 / cm 3 .

【0071】(実施例10)本例は,実施例1において
得られたエピタキシャル膜付きSiCウエハ上にショッ
トキーバリアダイオードを作製した例を示す。まず,実
施例1と同様にしてエピタキシャル膜付きSiCウエハ
4を作製した。このSiCウエハ4上に,ショットキー
バリアダイオードを作製した。具体的には,オーミック
電極としてNiを蒸着し,真空雰囲気900℃にて熱処
理した後に,ショットキー電極を蒸着するという手順で
行った。次に,このショットキーバリアダイオードの逆
方向及び順方向の電流−電圧特性を測定した。その結果
を図9及び図10に示す。尚,図9は,逆方向の電流−
電圧特性を示し,図10は順方向のものを示す。
Example 10 This example shows an example in which a Schottky barrier diode is formed on the SiC wafer with an epitaxial film obtained in Example 1. First, a SiC wafer 4 with an epitaxial film was prepared in the same manner as in Example 1. A Schottky barrier diode was produced on this SiC wafer 4. Specifically, Ni was vapor-deposited as an ohmic electrode, heat-treated in a vacuum atmosphere at 900 ° C., and then a Schottky electrode was vapor-deposited. Next, the reverse-direction and forward-direction current-voltage characteristics of this Schottky barrier diode were measured. The results are shown in FIGS. 9 and 10. Note that FIG. 9 shows the reverse current −
FIG. 10 shows a voltage characteristic, and FIG.

【0072】図9より知られるごとく,上記ショットキ
ーバリアダイオードにおいて,逆方向リーク電流I
Rは,10-7A/cm-2以下(VR<200V)であり,
非常に少ない。また,図10より知られるごとく,順方
向電流IFの立ち上がりは非常に急峻であり,即ちオン
抵抗が非常に小さい。このように,上記エピタキシャル
膜付きSiCウエハを用いると高性能な電子デバイスを
提供することができる。
As is known from FIG. 9, in the Schottky barrier diode, the reverse leakage current I
R is 10 −7 A / cm −2 or less (V R <200 V),
Very few. Further, as is known from FIG. 10, the rising of the forward current I F is very steep, that is, the on-resistance is very small. As described above, a high-performance electronic device can be provided by using the SiC wafer with the epitaxial film.

【図面の簡単な説明】[Brief description of drawings]

【図1】実施例1にかかる,第1成長工程を示す説明
図。
FIG. 1 is an explanatory diagram showing a first growth step according to Example 1.

【図2】実施例1にかかる,連続成長工程を示す説明
図。
FIG. 2 is an explanatory view showing a continuous growth process according to the first embodiment.

【図3】実施例1及び実施例2にかかる,成膜工程を示
す説明図。
FIG. 3 is an explanatory view showing a film forming process according to the first and second embodiments.

【図4】実施例1にかかる,SiC単結晶の主要な面方
位を示す説明図。
FIG. 4 is an explanatory view showing main plane orientations of a SiC single crystal according to Example 1.

【図5】実施例1にかかる,昇華再結晶法によるSiC
単結晶の成長方法を示す説明図。
5 is a SiC according to Example 1 by a sublimation recrystallization method. FIG.
Explanatory drawing which shows the growth method of a single crystal.

【図6】実施例2にかかる,第1成長工程を示す説明
図。
FIG. 6 is an explanatory diagram showing a first growth step according to Example 2.

【図7】実施例2にかかる,第1連続成長工程を示す説
明図。
FIG. 7 is an explanatory diagram showing a first continuous growth step according to Example 2.

【図8】実施例2にかかる,第2連続成長工程を示す説
明図。
FIG. 8 is an explanatory view showing a second continuous growth step according to Example 2.

【図9】実施例10にかかる,エピタキシャル膜付きS
iCウエハを用いた電子デバイスにおける逆方向の電流
−電圧特性を示す説明図。
9 is an S with an epitaxial film according to Example 10. FIG.
Explanatory drawing which shows the electric current-voltage characteristic of the reverse direction in the electronic device which used the iC wafer.

【図10】実施例10にかかる,エピタキシャル膜付き
SiCウエハを用いた電子デバイスにおける順方向の電
流−電圧特性を示す説明図。
FIG. 10 is an explanatory diagram showing forward current-voltage characteristics in an electronic device using an SiC wafer with an epitaxial film according to Example 10.

【符号の説明】[Explanation of symbols]

1...第1種結晶, 15...第1成長面, 10...第1成長結晶, 2...第2種結晶(連続成長工程), 25...第2成長面(連続成長工程), 20...第2成長結晶(連続成長工程), 3...SiCウエハ, 35...成膜面, 30...エピタキシャル膜, 4...エピタキシャル膜付きSiCウエハ, 5...第2種結晶(第1連続成長工程), 55...第2成長面(第1連続成長工程), 50...第2成長結晶(第1連続成長工程), 6...第3種結晶(第2連続成長工程), 65...第3成長面(第2連続成長工程), 60...第3成長結晶(第2連続成長工程), 1. . . First seed crystal, 15. . . First growth plane, 10. . . First grown crystal, 2. . . Second seed crystal (continuous growth process), 25. . . Second growth surface (continuous growth process), 20. . . Second growth crystal (continuous growth step), 3. . . SiC wafer, 35. . . Deposition surface, 30. . . Epitaxial film, 4. . . SiC wafer with epitaxial film, 5. . . Second seed crystal (first continuous growth step), 55. . . Second growth surface (first continuous growth step), 50. . . Second grown crystal (first continuous growth step), 6. . . Third seed crystal (second continuous growth step), 65. . . Third growth surface (second continuous growth step), 60. . . Third growth crystal (second continuous growth step),

───────────────────────────────────────────────────── フロントページの続き (72)発明者 伊藤 忠 愛知県愛知郡長久手町大字長湫字横道41番 地の1 株式会社豊田中央研究所内 (72)発明者 内藤 正美 愛知県刈谷市昭和町1丁目1番地 株式会 社デンソー内 Fターム(参考) 4G077 AA02 BE08 DA02 DB04 DB07 EA02 ED04 ED05 FG11 HA06 HA12    ─────────────────────────────────────────────────── ─── Continued front page    (72) Inventor Tadashi Ito             Aichi Prefecture Nagachite Town Aichi District             Ground 1 Toyota Central Research Institute Co., Ltd. (72) Inventor Masami Naito             1-1, Showa-cho, Kariya city, Aichi stock market             Inside the company DENSO F term (reference) 4G077 AA02 BE08 DA02 DB04 DB07                       EA02 ED04 ED05 FG11 HA06                       HA12

Claims (10)

【特許請求の範囲】[Claims] 【請求項1】 SiC単結晶よりなる種結晶上にSiC
単結晶を成長させてバルク状のSiC単結晶を製造し,
該SiC単結晶からSiCウエハを作製して該SiCウ
エハの成膜面上にエピタキシャル膜を成膜しエピタキシ
ャル膜付きSiCウエハを製造する方法において,該製
造方法は,N回(Nは,N≧2の自然数)の成長工程
と,該成長工程後にエピタキシャル膜を成膜する成膜工
程とを含み,上記成長工程における各成長工程を第n成
長工程(nは自然数であって1から始まりNで終わる序
数)として表した場合,n=1である第1成長工程にお
いては,{1−100}面からオフセット角度20°以
下の面,または{11−20}面からオフッセット角度
20°以下の面を第1成長面として露出させた第1種結
晶を用いて,上記第1成長面上にSiC単結晶を成長さ
せ第1成長結晶を作製し,n=2,3,...,N回目
である連続成長工程においては,第(n−1)成長面よ
り45〜90°傾き,且つ{0001}面より60〜9
0°傾いた面を第n成長面とした第n種結晶を第(n−
1)成長結晶より作製し,該第n種結晶の上記第n成長
面上にSiC単結晶を成長させて第n成長結晶を作製
し,上記成膜工程においては,n=Nである第N成長結
晶から成膜面を露出させたSiCウエハを作製し,該S
iCウエハの上記成膜面上にエピタキシャル膜を成膜す
ることを特徴とするエピタキシャル膜付きSiCウエハ
の製造方法。
1. SiC on a seed crystal made of SiC single crystal
A single crystal is grown to produce a bulk SiC single crystal,
In a method for producing a SiC wafer from the SiC single crystal and forming an epitaxial film on the film formation surface of the SiC wafer to produce an SiC wafer with an epitaxial film, the producing method is performed N times (N is N ≧ N 2 growth step and a film forming step of forming an epitaxial film after the growth step, and each growth step in the growth step is performed by n-th growth step (n is a natural number and starts from 1 Ordinal number that ends), in the first growth step where n = 1, a surface having an offset angle of 20 ° or less from the {1-100} plane or a surface having an offset angle of 20 ° or less from the {11-20} plane. Using the exposed first seed crystal as the first growth surface, a SiC single crystal is grown on the first growth surface to prepare a first growth crystal, and n = 2, 3 ,. . . , N-th continuous growth step, the inclination is 45 to 90 ° from the (n−1) th growth plane and 60 to 9 from the {0001} plane.
The n-th seed crystal having the surface inclined at 0 ° as the n-th growth surface is designated as (n-
1) A grown single crystal is grown, and a SiC single crystal is grown on the nth growth surface of the nth seed crystal to form an nth grown crystal. A SiC wafer having a film-forming surface exposed from a grown crystal is prepared, and the S
A method of manufacturing an SiC wafer with an epitaxial film, comprising forming an epitaxial film on the above-mentioned film formation surface of an iC wafer.
【請求項2】 SiC単結晶よりなる種結晶上にSiC
単結晶を成長させてバルク状のSiC単結晶を製造し,
該SiC単結晶からSiCウエハを作製して該SiCウ
エハの成膜面上にエピタキシャル膜を成膜しエピタキシ
ャル膜付きSiCウエハを製造する方法において,該製
造方法は,(N+α)回(Nは,N≧2の自然数であ
り,αは自然数)の成長工程と,該成長工程後にエピタ
キシャル膜を成膜する成膜工程とを含み,上記成長工程
における各成長工程を第n成長工程(nは自然数であっ
て1から始まりN+αで終わる序数)として表した場
合,n=1である第1成長工程においては,{1−10
0}面からオフセット角度20°以下の面,または{1
1−20}面からオフッセット角度20°以下の面を第
1成長面として露出させた第1種結晶を用いて,上記第
1成長面上にSiC単結晶を成長させ第1成長結晶を作
製し,n=2,3,...,N回目である第1連続成長
工程においては,第(n−1)成長面より45〜90°
傾き,且つ{0001}面より60〜90°傾いた面を
第n成長面とした第n種結晶を第(n−1)成長結晶よ
り作製し,該第n種結晶の上記第n成長面上にSiC単
結晶を成長させて第n成長結晶を作製し,n=N+1,
N+2,...,N+α回目である第2連続成長工程に
おいては,第(n−1)成長面より0〜45°傾き,且
つ{0001}面より60〜90°傾いた面を第n成長
面とした第n種結晶を第(n−1)成長結晶より作製
し,該第n種結晶の上記第n成長面上にSiC単結晶を
成長させて第n成長結晶を作製し,上記成膜工程におい
ては,n=N+αである第(N+α)成長結晶から成膜
面を露出させたSiCウエハを作製し,該SiCウエハ
の上記成膜面上にエピタキシャル膜を成膜することを特
徴とするエピタキシャル膜付きSiCウエハの製造方
法。
2. SiC on a seed crystal made of SiC single crystal
A single crystal is grown to produce a bulk SiC single crystal,
In a method for producing an SiC wafer from the SiC single crystal and forming an epitaxial film on the film formation surface of the SiC wafer to produce an SiC wafer with an epitaxial film, the producing method is (N + α) times (N is N is a natural number of 2 and α is a natural number, and includes a growth step of forming an epitaxial film after the growth step, and each growth step in the growth steps is the n-th growth step (n is a natural number). And an ordinal number starting from 1 and ending at N + α), in the first growth step where n = 1, {1-10
A plane with an offset angle of 20 ° or less from the 0 plane, or {1
The first seed crystal was grown on the first growth surface by using a first seed crystal in which a surface having an offset angle of 20 ° or less from the 1-20} plane was exposed as the first growth surface. , N = 2, 3 ,. . . , Nth first continuous growth step, the angle is 45 to 90 ° from the (n-1) th growth surface.
An n-th seed crystal having a plane inclined at an angle of 60 to 90 ° from the {0001} plane as the n-th growth surface was prepared from the (n-1) -th growth crystal, and the n-th growth surface of the n-th seed crystal was formed. A SiC single crystal is grown on the nth grown crystal to produce n = N + 1,
N + 2 ,. . . , N + α times, in the second continuous growth step, a surface inclined at an angle of 0 to 45 ° from the (n−1) th growth surface and at an angle of 60 to 90 ° from the {0001} plane is defined as the nth growth surface. A seed crystal is produced from the (n-1) th growth crystal, and a SiC single crystal is grown on the nth growth surface of the nth seed crystal to produce the nth growth crystal. A SiC wafer with an epitaxial film, characterized in that a SiC wafer having a film formation surface exposed from a (N + α) th growth crystal in which n = N + α is formed, and an epitaxial film is formed on the film formation surface of the SiC wafer. Wafer manufacturing method.
【請求項3】 請求項1または2において,上記各種結
晶上でのSiC単結晶の成長には昇華再析出法を用いる
ことを特徴とするエピタキシャル膜付きSiCウエハの
製造方法。
3. The method for producing an SiC wafer with an epitaxial film according to claim 1, wherein a sublimation reprecipitation method is used for growing the SiC single crystal on the various crystals.
【請求項4】 請求項1〜3のいずれか1項において,
上記各種結晶の厚みは1mm以上であることを特徴とす
るエピタキシャル膜付きSiCウエハの製造方法。
4. The method according to claim 1, wherein
The method for producing a SiC wafer with an epitaxial film, wherein the thickness of each of the various crystals is 1 mm or more.
【請求項5】 請求項1〜4のいずれか1項において,
上記成膜面は,{0001}面からオフセット角度0.
5°〜20°の面,{1−100}面からオフセット角
度20°以下の面,又は{11−20}面からオフセッ
ト角度20°以下の面であることを特徴とするエピタキ
シャル膜付きSiCウエハの製造方法。
5. The method according to any one of claims 1 to 4,
The film-forming surface has an offset angle of 0.
A SiC wafer with an epitaxial film, which is a surface having an angle of 5 ° to 20 °, a surface having an offset angle of 20 ° or less from a {1-100} plane, or a surface having an offset angle of 20 ° or less from a {11-20} plane. Manufacturing method.
【請求項6】 請求項1〜5のいずれか1項において,
上記エピタキシャル膜の成膜には,CVD法,PVE
法,又はLPE法を用いることを特徴とするエピタキシ
ャル膜付きSiCウエハの製造方法。
6. The method according to any one of claims 1 to 5,
The epitaxial film is formed by CVD method, PVE
Method, or a method for manufacturing an SiC wafer with an epitaxial film, characterized by using the LPE method.
【請求項7】 請求項1〜6のいずれか1項において,
上記エピタキシャル膜に1×1013〜1×1020/cm
3の不純物を含有させることを特徴とするエピタキシャ
ル膜付きSiCウエハの製造方法。
7. The method according to any one of claims 1 to 6,
1 × 10 13 to 1 × 10 20 / cm in the above epitaxial film
A method for producing a SiC wafer with an epitaxial film, which comprises containing the impurity of 3 .
【請求項8】 請求項7において,上記不純物はその構
成元素として,窒素,ホウ素又はアルミニウムを1種以
上含有することを特徴とするエピタキシャル膜付きSi
Cウエハの製造方法。
8. The Si with an epitaxial film according to claim 7, wherein the impurity contains at least one of nitrogen, boron and aluminum as a constituent element thereof.
C wafer manufacturing method.
【請求項9】 請求項1〜8のいずれか1項に記載の製
造方法により作製されたことを特徴とするエピタキシャ
ル膜付きSiCウエハ。
9. A SiC wafer with an epitaxial film, which is manufactured by the manufacturing method according to any one of claims 1 to 8.
【請求項10】 請求項9に記載のエピタキシャル膜付
きSiCウエハを用いて製造されたことを特徴とするS
iC電子デバイス。
10. An S manufactured by using the SiC wafer with an epitaxial film according to claim 9.
iC electronic device.
JP2002080295A 2001-10-12 2002-03-22 SiC wafer with epitaxial film, manufacturing method thereof, and SiC electronic device Expired - Lifetime JP3750622B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2002080295A JP3750622B2 (en) 2002-03-22 2002-03-22 SiC wafer with epitaxial film, manufacturing method thereof, and SiC electronic device
DE10247017A DE10247017B4 (en) 2001-10-12 2002-10-09 SiC single crystal, a method of producing a SiC single crystal, SiC wafers with an epitaxial film, and a method of producing a SiC wafer having an epitaxial film
US10/268,103 US6890600B2 (en) 2001-10-12 2002-10-10 SiC single crystal, method for manufacturing SiC single crystal, SiC wafer having an epitaxial film, method for manufacturing SiC wafer having an epitaxial film, and SiC electronic device
SE0202992A SE523917C2 (en) 2001-10-12 2002-10-10 Single crystal of SiC, method of producing a single crystal of SiC, SiC disc with epitaxial layer, method of producing SiC disc with epitaxial layer and electronic device based on SiC

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002080295A JP3750622B2 (en) 2002-03-22 2002-03-22 SiC wafer with epitaxial film, manufacturing method thereof, and SiC electronic device

Publications (2)

Publication Number Publication Date
JP2003277193A true JP2003277193A (en) 2003-10-02
JP3750622B2 JP3750622B2 (en) 2006-03-01

Family

ID=29229387

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002080295A Expired - Lifetime JP3750622B2 (en) 2001-10-12 2002-03-22 SiC wafer with epitaxial film, manufacturing method thereof, and SiC electronic device

Country Status (1)

Country Link
JP (1) JP3750622B2 (en)

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003321298A (en) * 2002-04-30 2003-11-11 Toyota Central Res & Dev Lab Inc SiC SINGLE CRYSTAL AND METHOD FOR PRODUCING THE SAME, SiC WAFER WITH EPITAXIAL FILM AND METHOD FOR PRODUCING THE SAME, AND SiC ELECTRONIC DEVICE
JP2005324994A (en) * 2004-05-14 2005-11-24 Tsunenobu Kimoto METHOD FOR GROWING SiC SINGLE CRYSTAL AND SiC SINGLE CRYSTAL GROWN BY THE SAME
KR100738440B1 (en) 2005-09-29 2007-07-11 네오세미테크 주식회사 GROWING METHOD OF SEMI-CONDUCTING SiC SINGLE CRYSTAL WITH LOW RESITIVITY
JP2007320790A (en) * 2006-05-30 2007-12-13 Nippon Steel Corp Method for producing silicon carbide single crystal, silicon carbide single crystal ingot, and silicon carbide single crystal substrate
EP1978137A1 (en) * 2006-01-24 2008-10-08 Toyota Jidosha Kabushiki Kaisha PROCESS FOR PRODUCING SiC SINGLE CRYSTAL
JP2010184833A (en) * 2009-02-12 2010-08-26 Denso Corp Silicon carbide single crystal substrate and silicon carbide single crystal epitaxial wafer
JP2011168453A (en) * 2010-02-19 2011-09-01 Denso Corp Method for producing silicon carbide substrate
JP2012046377A (en) * 2010-08-26 2012-03-08 Toyota Central R&D Labs Inc METHOD FOR MANUFACTURING SiC SINGLE CRYSTAL
JP2012116676A (en) * 2010-11-29 2012-06-21 Toyota Central R&D Labs Inc Method of manufacturing silicon carbide single crystal
WO2013081164A1 (en) * 2011-12-02 2013-06-06 株式会社豊田中央研究所 SiC SINGLE CRYSTAL, SiC WAFER, AND SEMICONDUCTOR DEVICE
US8470698B2 (en) 2008-01-29 2013-06-25 Toyota Jidosha Kabushiki Kaisha Method for growing p-type SiC semiconductor single crystal and p-type SiC semiconductor single crystal
JP2014031313A (en) * 2013-09-26 2014-02-20 Denso Corp Single crystal substrate made of silicon carbide, and single crystal epitaxial wafer made of silicon carbide
WO2014034081A1 (en) * 2012-08-26 2014-03-06 国立大学法人名古屋大学 Crystal production device, production method for sic single crystals, and sic single crystal
JP2016121059A (en) * 2010-12-27 2016-07-07 住友電気工業株式会社 Semiconductor device silicon carbide substrate and semiconductor device
JP2016188174A (en) * 2016-08-02 2016-11-04 住友電気工業株式会社 Silicon carbide substrate and silicon carbide ingot
US9512540B2 (en) 2010-11-09 2016-12-06 Nippon Steel & Sumitomo Metal Corporation Method for manufacturing N-type SiC single crystal by solution growth using a mixed gas atmosphere
US10087549B2 (en) 2013-09-13 2018-10-02 Toyota Jidosha Kabushiki Kaisha Method for producing sic single crystal having low defects by solution process
US10428440B2 (en) 2012-04-20 2019-10-01 Toyota Jidosha Kabushiki Kaisha SiC single crystal and production method thereof

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08143396A (en) * 1994-11-21 1996-06-04 Nippon Steel Corp Method for growing silicon carbide single crystal
JPH10182297A (en) * 1996-12-24 1998-07-07 Sumitomo Metal Mining Co Ltd Method for growing sic single crystal
JP2001144292A (en) * 1999-11-17 2001-05-25 Denso Corp Silicon carbide semiconductor device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08143396A (en) * 1994-11-21 1996-06-04 Nippon Steel Corp Method for growing silicon carbide single crystal
JPH10182297A (en) * 1996-12-24 1998-07-07 Sumitomo Metal Mining Co Ltd Method for growing sic single crystal
JP2001144292A (en) * 1999-11-17 2001-05-25 Denso Corp Silicon carbide semiconductor device

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003321298A (en) * 2002-04-30 2003-11-11 Toyota Central Res & Dev Lab Inc SiC SINGLE CRYSTAL AND METHOD FOR PRODUCING THE SAME, SiC WAFER WITH EPITAXIAL FILM AND METHOD FOR PRODUCING THE SAME, AND SiC ELECTRONIC DEVICE
JP2005324994A (en) * 2004-05-14 2005-11-24 Tsunenobu Kimoto METHOD FOR GROWING SiC SINGLE CRYSTAL AND SiC SINGLE CRYSTAL GROWN BY THE SAME
JP4694144B2 (en) * 2004-05-14 2011-06-08 住友電気工業株式会社 Method for growing SiC single crystal and SiC single crystal grown thereby
KR100738440B1 (en) 2005-09-29 2007-07-11 네오세미테크 주식회사 GROWING METHOD OF SEMI-CONDUCTING SiC SINGLE CRYSTAL WITH LOW RESITIVITY
EP1978137A1 (en) * 2006-01-24 2008-10-08 Toyota Jidosha Kabushiki Kaisha PROCESS FOR PRODUCING SiC SINGLE CRYSTAL
EP1978137A4 (en) * 2006-01-24 2010-04-07 Toyota Motor Co Ltd PROCESS FOR PRODUCING SiC SINGLE CRYSTAL
JP2007320790A (en) * 2006-05-30 2007-12-13 Nippon Steel Corp Method for producing silicon carbide single crystal, silicon carbide single crystal ingot, and silicon carbide single crystal substrate
US8470698B2 (en) 2008-01-29 2013-06-25 Toyota Jidosha Kabushiki Kaisha Method for growing p-type SiC semiconductor single crystal and p-type SiC semiconductor single crystal
JP2010184833A (en) * 2009-02-12 2010-08-26 Denso Corp Silicon carbide single crystal substrate and silicon carbide single crystal epitaxial wafer
JP2011168453A (en) * 2010-02-19 2011-09-01 Denso Corp Method for producing silicon carbide substrate
JP2012046377A (en) * 2010-08-26 2012-03-08 Toyota Central R&D Labs Inc METHOD FOR MANUFACTURING SiC SINGLE CRYSTAL
US9512540B2 (en) 2010-11-09 2016-12-06 Nippon Steel & Sumitomo Metal Corporation Method for manufacturing N-type SiC single crystal by solution growth using a mixed gas atmosphere
JP2012116676A (en) * 2010-11-29 2012-06-21 Toyota Central R&D Labs Inc Method of manufacturing silicon carbide single crystal
JP2016121059A (en) * 2010-12-27 2016-07-07 住友電気工業株式会社 Semiconductor device silicon carbide substrate and semiconductor device
WO2013081164A1 (en) * 2011-12-02 2013-06-06 株式会社豊田中央研究所 SiC SINGLE CRYSTAL, SiC WAFER, AND SEMICONDUCTOR DEVICE
US10428440B2 (en) 2012-04-20 2019-10-01 Toyota Jidosha Kabushiki Kaisha SiC single crystal and production method thereof
WO2014034081A1 (en) * 2012-08-26 2014-03-06 国立大学法人名古屋大学 Crystal production device, production method for sic single crystals, and sic single crystal
US10087549B2 (en) 2013-09-13 2018-10-02 Toyota Jidosha Kabushiki Kaisha Method for producing sic single crystal having low defects by solution process
JP2014031313A (en) * 2013-09-26 2014-02-20 Denso Corp Single crystal substrate made of silicon carbide, and single crystal epitaxial wafer made of silicon carbide
JP2016188174A (en) * 2016-08-02 2016-11-04 住友電気工業株式会社 Silicon carbide substrate and silicon carbide ingot

Also Published As

Publication number Publication date
JP3750622B2 (en) 2006-03-01

Similar Documents

Publication Publication Date Title
US6890600B2 (en) SiC single crystal, method for manufacturing SiC single crystal, SiC wafer having an epitaxial film, method for manufacturing SiC wafer having an epitaxial film, and SiC electronic device
US10260166B2 (en) Method of growing high quality, thick SiC epitaxial films by eliminating silicon gas phase nucleation and suppressing parasitic deposition
JP3750622B2 (en) SiC wafer with epitaxial film, manufacturing method thereof, and SiC electronic device
EP1751329B1 (en) Method of sic single crystal growth and sic single crystal
EP2065491B1 (en) Gallium nitride semiconductor crystal substrate and semiconductor device
US9903046B2 (en) Reduction of carrot defects in silicon carbide epitaxy
US8936682B2 (en) Method of manufacturing homogeneous silicon carbide single crystal with low potential of generating defects
JP3776374B2 (en) Method for producing SiC single crystal and method for producing SiC wafer with epitaxial film
JP2006225232A (en) Method for producing silicon carbide single crystal, silicon carbide single crystal ingot, silicon carbide single crystal substrate, silicon carbide epitaxial wafer and thin film epitaxial wafer
KR20050088437A (en) Growth of planar, non-polar a-plane gallium nitride by hydride vapor phase epitaxy
WO2009091067A1 (en) Silicon carbide single crystal ingot, and substrate and epitaxial wafer obtained from the silicon carbide single crystal ingot
JP2003119097A (en) SiC SINGLE CRYSTAL, METHOD OF PRODUCING THE SAME, SiC SEED CRYSTAL AND METHOD OF PRODUCING THE SAME
JP2006032655A (en) Manufacturing method of silicon carbide substrate
US6461944B2 (en) Methods for growth of relatively large step-free SiC crystal surfaces
Ho et al. MOVPE of AlN and GaN by using novel precursors
Davis et al. Conventional and pendeo-epitaxial growth of GaN (0 0 0 1) thin films on Si (1 1 1) substrates
JP4690906B2 (en) Seed crystal for growing silicon carbide single crystal, method for producing the same, and method for producing silicon carbide single crystal
Xie et al. DPBs-free and polytype controlled growth of SiC via surface etching on on-axis 6H-SiC (0 0 0 1)
JP2006052097A (en) Seed crystal for growing silicon carbide single crystal, silicon carbide single crystal ingot and method for manufacturing the ingot
JP2004253751A (en) Method of cvd epitaxial growth
KR101041659B1 (en) A Method Of Manfacturing GaN Epitaxial Layer Using ZnO Buffer Layer
JP4236121B2 (en) Manufacturing method of semiconductor substrate
CN110670138A (en) Composite seed crystal for aluminum nitride single crystal growth and preparation method thereof
WO2021210397A1 (en) Method for manufacturing semiconductor substrate, semiconductor substrate, and method for suppressing introduction of displacement to growth layer
Detchprohm et al. Heteroepitaxy and Characterization of Low-Dislocation-Density GaN on Periodically Grooved Substrates

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041007

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20041203

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20041203

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20050615

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20050706

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050719

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050830

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20051115

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20051128

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 3750622

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091216

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091216

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101216

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111216

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121216

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131216

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term