JP2003269124A - Variable valve device for internal combustion engine - Google Patents

Variable valve device for internal combustion engine

Info

Publication number
JP2003269124A
JP2003269124A JP2002071226A JP2002071226A JP2003269124A JP 2003269124 A JP2003269124 A JP 2003269124A JP 2002071226 A JP2002071226 A JP 2002071226A JP 2002071226 A JP2002071226 A JP 2002071226A JP 2003269124 A JP2003269124 A JP 2003269124A
Authority
JP
Japan
Prior art keywords
intake
phase
angle
extremely low
engine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002071226A
Other languages
Japanese (ja)
Other versions
JP3912147B2 (en
Inventor
So Miura
創 三浦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP2002071226A priority Critical patent/JP3912147B2/en
Priority to US10/384,632 priority patent/US6840201B2/en
Priority to EP03005820A priority patent/EP1344897B1/en
Priority to DE60300241T priority patent/DE60300241T2/en
Publication of JP2003269124A publication Critical patent/JP2003269124A/en
Application granted granted Critical
Publication of JP3912147B2 publication Critical patent/JP3912147B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D13/00Controlling the engine output power by varying inlet or exhaust valve operating characteristics, e.g. timing
    • F02D13/02Controlling the engine output power by varying inlet or exhaust valve operating characteristics, e.g. timing during engine operation
    • F02D13/0223Variable control of the intake valves only
    • F02D13/0226Variable control of the intake valves only changing valve lift or valve lift and timing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L1/00Valve-gear or valve arrangements, e.g. lift-valve gear
    • F01L1/02Valve drive
    • F01L1/022Chain drive
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L1/00Valve-gear or valve arrangements, e.g. lift-valve gear
    • F01L1/34Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L1/00Valve-gear or valve arrangements, e.g. lift-valve gear
    • F01L1/34Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift
    • F01L1/344Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift changing the angular relationship between crankshaft and camshaft, e.g. using helicoidal gear
    • F01L1/34403Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift changing the angular relationship between crankshaft and camshaft, e.g. using helicoidal gear using helically teethed sleeve or gear moving axially between crankshaft and camshaft
    • F01L1/34406Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift changing the angular relationship between crankshaft and camshaft, e.g. using helicoidal gear using helically teethed sleeve or gear moving axially between crankshaft and camshaft the helically teethed sleeve being located in the camshaft driving pulley
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L13/00Modifications of valve-gear to facilitate reversing, braking, starting, changing compression ratio, or other specific operations
    • F01L13/0015Modifications of valve-gear to facilitate reversing, braking, starting, changing compression ratio, or other specific operations for optimising engine performances by modifying valve lift according to various working parameters, e.g. rotational speed, load, torque
    • F01L13/0021Modifications of valve-gear to facilitate reversing, braking, starting, changing compression ratio, or other specific operations for optimising engine performances by modifying valve lift according to various working parameters, e.g. rotational speed, load, torque by modification of rocker arm ratio
    • F01L13/0026Modifications of valve-gear to facilitate reversing, braking, starting, changing compression ratio, or other specific operations for optimising engine performances by modifying valve lift according to various working parameters, e.g. rotational speed, load, torque by modification of rocker arm ratio by means of an eccentric
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/0002Controlling intake air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L13/00Modifications of valve-gear to facilitate reversing, braking, starting, changing compression ratio, or other specific operations
    • F01L13/0015Modifications of valve-gear to facilitate reversing, braking, starting, changing compression ratio, or other specific operations for optimising engine performances by modifying valve lift according to various working parameters, e.g. rotational speed, load, torque
    • F01L13/0063Modifications of valve-gear to facilitate reversing, braking, starting, changing compression ratio, or other specific operations for optimising engine performances by modifying valve lift according to various working parameters, e.g. rotational speed, load, torque by modification of cam contact point by displacing an intermediate lever or wedge-shaped intermediate element, e.g. Tourtelot
    • F01L2013/0073Modifications of valve-gear to facilitate reversing, braking, starting, changing compression ratio, or other specific operations for optimising engine performances by modifying valve lift according to various working parameters, e.g. rotational speed, load, torque by modification of cam contact point by displacing an intermediate lever or wedge-shaped intermediate element, e.g. Tourtelot with an oscillating cam acting on the valve of the "Delphi" type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L2305/00Valve arrangements comprising rollers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L2800/00Methods of operation using a variable valve timing mechanism
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D13/00Controlling the engine output power by varying inlet or exhaust valve operating characteristics, e.g. timing
    • F02D13/02Controlling the engine output power by varying inlet or exhaust valve operating characteristics, e.g. timing during engine operation
    • F02D2013/0292Controlling the engine output power by varying inlet or exhaust valve operating characteristics, e.g. timing during engine operation in the start-up phase, e.g. for warming-up cold engine or catalyst
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/02Input parameters for engine control the parameters being related to the engine
    • F02D2200/023Temperature of lubricating oil or working fluid
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/02Input parameters for engine control the parameters being related to the engine
    • F02D2200/04Engine intake system parameters
    • F02D2200/0414Air temperature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2250/00Engine control related to specific problems or objectives
    • F02D2250/18Control of the engine output torque
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D37/00Non-electrical conjoint control of two or more functions of engines, not otherwise provided for
    • F02D37/02Non-electrical conjoint control of two or more functions of engines, not otherwise provided for one of the functions being ignition
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/04Introducing corrections for particular operating conditions
    • F02D41/06Introducing corrections for particular operating conditions for engine starting or warming up
    • F02D41/062Introducing corrections for particular operating conditions for engine starting or warming up for starting
    • F02D41/064Introducing corrections for particular operating conditions for engine starting or warming up for starting at cold start
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Output Control And Ontrol Of Special Type Engine (AREA)
  • Valve Device For Special Equipments (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To solve the problem that it is difficult to start an engine well because of high friction of the engine resulting from high viscosity of an engine oil at an extremely low temperature further lower than the temperature of the engine when cooled. <P>SOLUTION: This variable valve device comprises an operating angle changing mechanism 10 for changing an inlet operating angle of an inlet valve, a phase changing mechanism 20 for changing an inlet center phase, and means 36 for estimating the temperature of the engine. In a region of extremely low loading including idling, the inlet operating angle at the extremely low temperature is at least about 180° CA larger than the inlet operating angle with the engine cooled and the inlet center phase is about 90° ATDC. <P>COPYRIGHT: (C)2003,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、吸気弁の作動角
(吸気作動角)を変更可能な作動角変更機構と、吸気弁
の作動角の中心位相(吸気中心位相)を変更可能な位相
変更機構と、の双方を有する内燃機関の可変動弁装置に
関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an operating angle changing mechanism capable of changing an operating angle (intake operating angle) of an intake valve and a phase changing capable of changing a central phase of the operating angle of the intake valve (intake central phase). And a variable valve operating device for an internal combustion engine having both the mechanism and the mechanism.

【0002】[0002]

【従来の技術】内燃機関の出力・燃費の向上や排気エミ
ッションの低減化を図るために、吸気弁や排気弁の開閉
特性(バルブリフト特性)を変更する種々の可変動弁装
置が従来より提案されている。例えば、特開2000−
18056号公報には、吸気弁のバルブリフト量及び作
動角を2段階に変更可能なバルブリフト量変更機構と、
吸気弁の作動角の中心位相を連続的に変更可能なバルブ
タイミング変更機構と、を併用した可変動弁装置が開示
されている。
2. Description of the Related Art Conventionally, various variable valve operating devices for changing the opening / closing characteristics (valve lift characteristics) of intake valves and exhaust valves have been proposed in order to improve the output and fuel consumption of internal combustion engines and reduce exhaust emissions. Has been done. For example, JP 2000-
Japanese Patent No. 18056 discloses a valve lift amount changing mechanism capable of changing a valve lift amount and an operating angle of an intake valve in two steps.
A variable valve operating device is disclosed that uses a valve timing changing mechanism that can continuously change the central phase of the operating angle of an intake valve.

【0003】[0003]

【発明が解決しようとする課題】このような可変動弁装
置において、燃費の向上や排気エミッションの低下を図
る面では、アイドルを含む極低負荷域に吸気作動角を小
さくした方が良い。しかしながら、寒冷地等で機関温度
が−20℃を越えて低下するような極低温時には、主に
エンジンオイルの粘度の増加に起因して機関のフリクシ
ョンが非常に高くなる。従って、上記の極低負荷域で、
かつ極低温時の状況において、仮に上述したように吸気
作動角を小さくすると、上記機関フリクションに抗して
機関を始動するのに充分な機関トルクを得ることができ
ず、機関始動性の低下を招くおそれがある。本発明はこ
のような課題に鑑みてなされたものである。
In order to improve fuel efficiency and reduce exhaust emissions in such a variable valve operating device, it is preferable to reduce the intake working angle in an extremely low load range including idle. However, at an extremely low temperature such as when the engine temperature drops below -20 ° C in a cold region, the friction of the engine becomes extremely high mainly due to the increase in the viscosity of the engine oil. Therefore, in the extremely low load range above,
In addition, if the intake working angle is made small as described above under the condition of extremely low temperature, it is not possible to obtain sufficient engine torque to start the engine against the above-mentioned engine friction, resulting in deterioration of engine startability. May invite. The present invention has been made in view of such problems.

【0004】[0004]

【課題を解決するための手段】本発明に係る内燃機関の
可変動弁装置は、吸気弁の吸気作動角を変更可能な作動
角変更機構と、上記吸気作動角の吸気中心位相を変更可
能な位相変更機構と、機関温度を推定する機関温度推定
手段と、を有している。そして、少なくともアイドルを
含む極低負荷域では、上記機関温度が冷機時よりも更に
低い極低温時の吸気作動角を、少なくとも上記冷機時の
吸気作動角よりも大きくする。典型的には、上記極低負
荷域における上記極低温時に、上記吸気作動角を約18
0°CA(クランク角度)、上記吸気中心位相を約90
°ATDC(上死点後の角度)に設定する。
A variable valve operating system for an internal combustion engine according to the present invention is capable of changing an intake operating angle of an intake valve, and an intake central phase of the intake operating angle. It has a phase changing mechanism and an engine temperature estimating means for estimating the engine temperature. Then, in an extremely low load range including at least the idle, the intake working angle when the engine temperature is extremely low, which is lower than when the engine is cold, is made larger than at least the intake working angle when the engine is cold. Typically, the intake working angle is set to about 18 at the extremely low temperature in the extremely low load range.
0 ° CA (crank angle), the intake center phase is approximately 90
Set to ATDC (angle after top dead center).

【0005】また、同一負荷域からの加速時であって
も、機関回転数又は機関温度に基づいて、優先的に(先
に)駆動する変更機構を切換制御することにより、加速
時におけるトルクの落ち込みを防止して、機関運転性能
の向上を図ることが可能となる。
Even during acceleration from the same load range, the change mechanism that is driven preferentially (previously) is switched based on the engine speed or the engine temperature, so that the torque during acceleration is increased. It is possible to prevent the depression and improve the engine operation performance.

【0006】[0006]

【発明の効果】本発明によれば、極低負荷域には、機関
温度に応じて吸気作動角が適切に調整される。つまり、
極低温時には吸気作動角を相対的に大きくすることによ
り良好な機関始動性を確保する一方、少なくとも冷機時
を含む極低温時以外の状況のときには、吸気作動角を相
対的に小さくすることにより、排気エミッションの改善
や燃費の向上を図ることができる。
According to the present invention, the intake working angle is appropriately adjusted according to the engine temperature in the extremely low load range. That is,
Good engine startability is ensured by making the intake working angle relatively large at extremely low temperatures, while the intake working angle is made relatively small at least in conditions other than extremely cold including cold time. It is possible to improve exhaust emission and fuel efficiency.

【0007】[0007]

【発明の実施の形態】以下、本発明の好ましい実施の形
態を図面を参照して詳細に説明する。
BEST MODE FOR CARRYING OUT THE INVENTION Preferred embodiments of the present invention will now be described in detail with reference to the drawings.

【0008】図1は、本発明の一実施形態に係る可変動
弁装置を示している。各気筒には一対の吸気弁2が設け
られ、これら吸気弁2の上方には中空状の吸気駆動軸3
が気筒列方向に延在している。吸気駆動軸3には、吸気
弁2のバルブリフタ2aに当接して吸気弁2を開閉駆動
する揺動カム4が相対回転可能に外嵌している。
FIG. 1 shows a variable valve operating device according to an embodiment of the present invention. A pair of intake valves 2 is provided in each cylinder, and a hollow intake drive shaft 3 is provided above the intake valves 2.
Extend in the cylinder row direction. A swing cam 4 that abuts on a valve lifter 2a of the intake valve 2 to open / close the intake valve 2 is fitted onto the intake drive shaft 3 so as to be relatively rotatable.

【0009】吸気駆動軸3と揺動カム4との間には、吸
気弁2の作動角である吸気作動角及びバルブリフト量を
連続的に変更する電動式の作動角変更機構10が設けら
れている。吸気駆動軸3の一端部には、図外のクランク
シャフトに対する吸気駆動軸3の位相を変化させること
により、上記吸気作動角の中心位相である吸気中心位相
を連続的に変更する電動式の位相変更機構20が配設さ
れている。
Between the intake drive shaft 3 and the oscillating cam 4, an electric operating angle changing mechanism 10 for continuously changing the operating angle of the intake valve 2 and the valve lift amount is provided. ing. An electric phase at one end of the intake drive shaft 3 for continuously changing the intake center phase, which is the center phase of the intake working angle, by changing the phase of the intake drive shaft 3 with respect to a crankshaft (not shown). A changing mechanism 20 is provided.

【0010】作動角変更機構10は、図1及び図2に示
すように、吸気駆動軸3に偏心して固定的に設けられる
円形の駆動カム11と、この駆動カム11に相対回転可
能に外嵌するリング状リンク12と、吸気駆動軸3と略
平行に気筒列方向へ延びる制御軸13と、この制御軸1
3に偏心して固定的に設けられた円形の制御カム14
と、この制御カム14に相対回転可能に外嵌するととも
に、一端がリング状リンク12の先端に連結されたロッ
カアーム15と、このロッカアーム15の他端と揺動カ
ム4とに連結されたロッド状リンク16と、を有してい
る。制御軸13は、電動アクチュエータ17によりギヤ
列18を介して所定の制御範囲内で回転駆動される。
As shown in FIGS. 1 and 2, the operating angle changing mechanism 10 has a circular drive cam 11 which is eccentrically and fixedly provided on the intake drive shaft 3 and is externally fitted to the drive cam 11 so as to be relatively rotatable. Ring-shaped link 12, a control shaft 13 extending in the cylinder row direction substantially parallel to the intake drive shaft 3, and the control shaft 1
A circular control cam 14 that is eccentrically provided and fixedly provided
And a rocker arm 15 that is fitted to the control cam 14 so as to be relatively rotatable and has one end connected to the tip of the ring-shaped link 12, and a rod shape that is connected to the other end of the rocker arm 15 and the swing cam 4. And a link 16. The control shaft 13 is rotationally driven within a predetermined control range by an electric actuator 17 via a gear train 18.

【0011】上記の構成により、クランクシャフトに連
動して吸気駆動軸3が回転すると、駆動カム11を介し
てリング状リンク12がほぼ並進移動するとともに、ロ
ッカアーム15が制御カム14の軸心周りに揺動し、ロ
ッド状リンク16を介して揺動カム4が揺動して吸気弁
2が開閉駆動される。また、制御軸13の回転角度を変
化させることにより、ロッカアーム15の揺動中心とな
る制御カム14の軸心位置が変化して揺動カム4の姿勢
が変化する。これにより、吸気中心位相が略一定のまま
で、吸気作動角及びバルブリフト量が連続的に変化す
る。
With the above structure, when the intake drive shaft 3 rotates in conjunction with the crankshaft, the ring-shaped link 12 moves substantially in translation through the drive cam 11, and the rocker arm 15 moves around the axis of the control cam 14. The rocking cam 4 rocks and the rocking cam 4 rocks via the rod-shaped link 16 to open and close the intake valve 2. Further, by changing the rotation angle of the control shaft 13, the axial center position of the control cam 14, which is the rocking center of the rocker arm 15, changes, and the attitude of the rocking cam 4 changes. As a result, the intake working angle and the valve lift amount continuously change while the intake center phase remains substantially constant.

【0012】このような作動角変更機構10は、駆動カ
ム11の軸受部分や制御カム14の軸受部分等の各部材
の連結部分が面接触となっているため、潤滑が行い易
く、耐久性,信頼性に優れている。また、吸気弁2を駆
動する揺動カム4が吸気駆動軸3と同軸上に配置されて
いるため、例えば揺動カムを吸気駆動軸3とは異なる別
の支軸で支持するような構成に比して、制御精度に優れ
ているとともに、装置自体がコンパクトなものとなり、
機関搭載性に優れいている。特に直動式の動弁系には、
大きなレイアウトの変更を加えることなく適用すること
ができる。更に、リターンスプリング等の付勢手段を敢
えて必要としないために、動弁系のフリクションも低く
抑制される。
In such an operating angle changing mechanism 10, since the connecting portions of the respective members such as the bearing portion of the drive cam 11 and the bearing portion of the control cam 14 are in surface contact, lubrication is easy and durability, It has excellent reliability. Further, since the swing cam 4 that drives the intake valve 2 is disposed coaxially with the intake drive shaft 3, for example, the swing cam is supported by a support shaft different from the intake drive shaft 3. In comparison, the control accuracy is excellent and the device itself is compact,
It has excellent institutional mountability. Especially for direct acting valve trains,
It can be applied without major layout changes. Furthermore, since a biasing means such as a return spring is not required, friction in the valve train can be suppressed low.

【0013】エンジンコントロールユニットとしてのE
CU30は、角度検出センサ31,32から検出される
吸気駆動軸3及び制御軸13の角度の他、各種センサ等
から検出又は推定されるクランク角度,機関回転数,負
荷,機関温度等の機関運転条件に基づいて、燃料噴射制
御や点火時期制御などの一般的なエンジン制御を行う
他、後述するように吸気弁2の吸気作動角及び吸気中心
位相を変更・制御する。また、ECU30は、周知の水
温センサ34により検出される冷却水温、及び周知の油
温センサ35により検出される油温、の少なくとも一方
に基づいて、機関温度(油水温)を推定する機関温度推
定手段36を含んでおり、この機関温度に基づいて、後
述する機関の暖機状態、すなわち極低温時、冷機時、又
は暖機後であるかを正確に判断することができる。
E as an engine control unit
The CU 30 operates the engine such as the angle of the intake drive shaft 3 and the control shaft 13 detected by the angle detection sensors 31 and 32, as well as the crank angle, engine speed, load, engine temperature, etc. detected or estimated by various sensors. Based on the conditions, general engine control such as fuel injection control and ignition timing control is performed, and the intake working angle and intake center phase of the intake valve 2 are changed and controlled as described later. Further, the ECU 30 estimates the engine temperature (oil water temperature) based on at least one of the cooling water temperature detected by the well-known water temperature sensor 34 and the oil temperature detected by the well-known oil temperature sensor 35. Means 36 are included, and it is possible to accurately determine, based on the engine temperature, whether the engine is warmed up, which will be described later, that is, whether the engine is at a very low temperature, cold, or warmed up.

【0014】図3は、電動式の位相変更機構20を示し
ている。この位相変更機構20は、クランクシャフトと
同期して回転するカムスプロケット25に固定され、こ
のカムスプロケット25と一体的に回転する第1回転体
21と、ボルト22aにより吸気駆動軸3の一端に固定
され、この吸気駆動軸3と一体的に回転する第2回転体
22と、ヘリカルスプライン26により第1回転体21
の内周面と第2回転体22の外周面とに噛合する筒状の
中間ギア23と、を有している。この中間ギア23には
3条ネジ28を介してドラム27が連結されており、こ
のドラム27と中間ギア23との間にねじりスプリング
29が介装されている。中間ギア23は、ねじりスプリ
ング29によって遅角方向(図3の左方向)へ付勢され
ており、電磁リターダ24に電圧を印加して磁力を発生
すると、ドラム27及び3条ネジ28を介して進角方向
(図3の右方向)へ動かされる。この中間ギア23の軸
方向位置に応じて、回転体21,22の相対位相が変化
して、クランクシャフトに対する吸気駆動軸3の位相が
変化する。上記の電磁リターダ24は、上述したECU
30からの制御信号により機関運転状態に応じて駆動制
御される。
FIG. 3 shows an electric phase changing mechanism 20. The phase changing mechanism 20 is fixed to a cam sprocket 25 that rotates in synchronization with the crankshaft, and is fixed to one end of the intake drive shaft 3 by a first rotating body 21 that rotates integrally with the cam sprocket 25 and a bolt 22a. The second rotating body 22 that rotates integrally with the intake drive shaft 3 and the first rotating body 21 by the helical spline 26.
And a cylindrical intermediate gear 23 that meshes with the inner peripheral surface of the first rotating body 22 and the outer peripheral surface of the second rotating body 22. A drum 27 is connected to the intermediate gear 23 via a triple thread 28, and a torsion spring 29 is interposed between the drum 27 and the intermediate gear 23. The intermediate gear 23 is biased in a retard angle direction (leftward in FIG. 3) by a torsion spring 29. When a voltage is applied to the electromagnetic retarder 24 to generate a magnetic force, the intermediate gear 23 passes through the drum 27 and the three-thread screw 28. It is moved in the advance direction (to the right in FIG. 3). Depending on the axial position of the intermediate gear 23, the relative phase of the rotating bodies 21, 22 changes, and the phase of the intake drive shaft 3 with respect to the crankshaft changes. The electromagnetic retarder 24 is the ECU described above.
Drive control is performed according to the engine operating state by a control signal from 30.

【0015】図4は、本実施形態の要部をなす機関始動
時及び極低負荷域における吸気作動角及び吸気中心位相
の設定・制御の流れを示すフローチャートで、このルー
チンはECU30により実行される。S(ステップ)1
において、機関始動時であると判定されるか、あるいは
S2のアイドル判定によりアイドルを含む極低負荷域で
あると判定されると、S3へ進み、機関温度推定手段3
6により推定される機関温度を読み込む。ECU30の
メモリには、後述する図5(a)及び図6(b)(又は
(c))に対応するテーブルやマップが予め記憶されて
おり、S4では、上記の機関温度に基づいて、これらの
テーブルやマップを参照することにより、吸気作動角及
び吸気中心位相の目標値を演算する。S5では、これら
の目標値に対応した制御信号を作動角変更機構10の電
動アクチュエータ17及び位相変更機構20の電磁リタ
ーダ24へ出力する。これらの制御信号に応じて、吸気
作動角及び吸気中心位相が互いに独立して調整される。
S2のアイドル判定が否定されると、S6へ進み、図示
せぬ他のルーチンにより、機関回転数及び機関負荷に応
じた吸気作動角及び吸気中心位相の設定・制御が行われ
る。
FIG. 4 is a flow chart showing the flow of setting / controlling the intake working angle and the intake center phase at the time of starting the engine and in the extremely low load region, which is the main part of this embodiment. This routine is executed by the ECU 30. . S (step) 1
In step S3, if it is determined that the engine is being started, or if it is determined in S2 that the engine is in the extremely low load range including idle, the process proceeds to step S3 and the engine temperature estimation means 3 is used.
The engine temperature estimated by 6 is read. The memory of the ECU 30 stores in advance tables and maps corresponding to FIG. 5 (a) and FIG. 6 (b) (or (c)) described later, and in S4, these tables and maps are stored based on the engine temperature. The target values of the intake working angle and the intake center phase are calculated by referring to the table and the map. In S5, control signals corresponding to these target values are output to the electric actuator 17 of the operating angle changing mechanism 10 and the electromagnetic retarder 24 of the phase changing mechanism 20. The intake working angle and the intake center phase are adjusted independently of each other according to these control signals.
When the idle determination in S2 is denied, the routine proceeds to S6, and another routine (not shown) sets and controls the intake working angle and the intake center phase according to the engine speed and the engine load.

【0016】図5〜図7は、上記機関始動時又はアイド
ルを含む極低負荷域における、機関温度に対する吸気バ
ルブリフト特性を示しており、図5(a)は吸気作動角
の特性、図6(b)は吸気中心位相の特性を示してい
る。なお、本明細書において、「冷機時」とは、周知の
ように、暖機前の常温の状態であり、典型的には機関温
度が20℃程度のときである。「極低温時」とは、寒冷
地等で機関温度が通常の冷機時よりも更に低く、典型的
には−20℃以下のときである。
5 to 7 show the intake valve lift characteristics with respect to the engine temperature in the extremely low load range including the engine startup or idling, and FIG. 5 (a) shows the characteristics of the intake working angle, and FIG. (B) shows the characteristics of the intake center phase. In the present specification, the term "during cold operation" is, as is well known, a room temperature state before warming up, and is typically when the engine temperature is about 20 ° C. The "extremely low temperature" is a time when the engine temperature is lower than that during normal cooling in a cold region or the like, typically -20 ° C or lower.

【0017】極低温時には、冷機時に比して、潤滑油と
してのエンジンオイルの粘度が高く、機関のフリクショ
ンが大きくなるために、このフリクションに抗して少な
くともアイドル回転数を維持し得るだけの大きな機関ト
ルクを発生させる必要がある。そこで本実施形態では、
このような極低温時に、吸気作動角40aを約180°
CA、吸気中心位相40bを約90°ATDCに設定し
ている。つまり、吸気バルブリフト特性40のIVOを
TDC近傍とし、IVCをBDC近傍とする。これによ
り、吸気行程に対応して過不足なく吸気弁が開いた状
態、つまりバルブオーバーラップやマイナスオーバーラ
ップがほとんどない状態となり、上記のフリクションに
抗してアイドル回転数を維持し得る充分な機関トルクを
発生することができる。従って、極低温状態でありなが
ら、良好な機関始動性を確保し、迅速な暖機運転を行う
ことができる。
At an extremely low temperature, the viscosity of the engine oil as the lubricating oil is high and the friction of the engine becomes large as compared with that at the time of cooling, so that it is large enough to maintain at least the idle speed against this friction. It is necessary to generate engine torque. Therefore, in this embodiment,
At such an extremely low temperature, the intake working angle 40a is about 180 °.
CA and the intake center phase 40b are set to about 90 ° ATDC. That is, the IVO of the intake valve lift characteristic 40 is near TDC and the IVC is near BDC. As a result, the intake valve opens without excess or deficiency corresponding to the intake stroke, that is, there is almost no valve overlap or minus overlap, and it is possible to maintain sufficient idle speed against the above friction. Torque can be generated. Therefore, it is possible to ensure good engine startability and perform a quick warm-up operation even in the extremely low temperature state.

【0018】冷機時には、吸気作動角42aを最小作動
角である約80°〜100°CA、好ましくは90°C
Aとし、吸気中心位相42bを最遅角位相である180
°ATDC、つまりBDC近傍に設定し、吸気バルブリ
フト特性42のIVOをTDCよりも大幅に遅角させ
て、点火時期のリタード限界を拡大することにより、排
気温度の上昇を促進し、触媒の昇温時間を短縮して、排
気エミッションの改善を図る。また、吸気作動角の最小
化により、動弁系のフリクションを最小限に抑制しつ
つ、ガス流動を強化して燃料の霧化を促進する。
When the engine is cold, the intake working angle 42a is set to a minimum working angle of about 80 ° to 100 ° CA, preferably 90 ° C.
A, and the intake center phase 42b is 180 degrees which is the most retarded angle phase.
By setting ATDC, that is, in the vicinity of BDC, the IVO of the intake valve lift characteristic 42 is significantly retarded compared to TDC, and the retard limit of the ignition timing is expanded to accelerate the rise in exhaust temperature and raise the catalyst. Shorten the warming time to improve exhaust emission. Further, by minimizing the intake working angle, the friction of the valve operating system is suppressed to the minimum, and the gas flow is strengthened to promote atomization of the fuel.

【0019】暖機後には、吸気作動角44aを冷機時と
同じ最小作動角としたまま、吸気中心位相44bを冷機
時よりも進角し、冷機時に比してポンプ損失を低減して
燃費の改善を図る。
After warming up, the intake operating angle 44a is kept at the same minimum operating angle as during cold cooling, and the intake center phase 44b is advanced more than during cold cooling to reduce pump loss compared to during cold cooling and improve fuel economy. Improve.

【0020】極低温時から冷機時への過渡期には、機関
温度の上昇に伴って、吸気作動角41aを徐々に小さく
するとともに、吸気中心位相41bを徐々に遅角する。
また、冷機時から暖機後への過渡期には、機関温度の上
昇に伴って、吸気中心位相43bを徐々に進角する。従
って、例えば極低温時に機関を始動し、暖機が完了する
までアイドル運転を続けるような場合に、良好な機関始
動性を確保しつつ、機関温度の上昇に伴って吸気作動角
及び吸気中心位相を排気エミッションや燃費に有利な特
性へと滑らかに変化させていくことができる。
During the transition period from the extremely low temperature to the cold state, the intake working angle 41a is gradually reduced and the intake center phase 41b is gradually retarded as the engine temperature rises.
Further, during the transition period from the cold state to the warm-up period, the intake center phase 43b is gradually advanced as the engine temperature rises. Therefore, for example, when the engine is started at a very low temperature and idle operation is continued until the warm-up is completed, while maintaining good engine startability, the intake working angle and the intake center phase are increased as the engine temperature rises. Can be smoothly changed to a characteristic that is advantageous for exhaust emission and fuel efficiency.

【0021】上述した図6(b)に示す吸気中心位相の
設定例は、図3に示すように、応答性に優れるととも可
変量を充分に大きく設定できる電動式の位相変更機構2
0を用いた場合に好適なものである。これに対し、図6
(c)に示す吸気中心位相の設定例は、上記の電動式に
比して応答性や可変量は劣るもののコスト的に有利な油
圧駆動式の位相変更機構を用いた場合などに好適なもの
である。
In the example of setting the intake center phase shown in FIG. 6 (b) described above, as shown in FIG. 3, the electric phase changing mechanism 2 is excellent in response and can set the variable amount sufficiently large.
It is suitable when 0 is used. On the other hand, FIG.
The example of setting the intake center phase shown in (c) is suitable when a hydraulically driven phase changing mechanism, which is less costly but less responsive and variable than the above-mentioned electric type, is used. Is.

【0022】図6(c)の設定では、冷機時における吸
気中心位相の設定値42cを、暖機後の設定値44cと
等しくしている点で、図6(b)の設定と異なってい
る。極低温時及び暖機後の設定値40c,44cは図6
(b)の設定値40b,44bと同じである。図6
(c)の設定によれば、冷機時から暖機後への過渡期
に、吸気中心位相を変更する必要がなく、かつ、極低温
時から冷機時への過渡期にも、吸気中心位相の変更量Δ
Dが非常に少なく済む。このため、上記図6(b)の設
定例に比して、冷機時に吸気中心位相の大幅な遅角化に
よる排気エミッションの改善等を図ることはできない
が、吸気中心位相の変更が少なくて済むために、例えば
極低温時からの機関始動時にも、良好な機関始動性を確
保しつつ、機関温度の上昇に応じて吸気中心位相を適切
に変更することが可能となる。
The setting of FIG. 6 (c) differs from the setting of FIG. 6 (b) in that the set value 42c of the intake center phase during cold engine is set equal to the set value 44c after warming up. . The set values 40c and 44c at extremely low temperature and after warm-up are shown in FIG.
It is the same as the set values 40b and 44b in (b). Figure 6
According to the setting of (c), it is not necessary to change the intake center phase in the transition period from the cold state to the warm-up period, and the intake center phase is not changed in the transition period from the extremely low temperature to the cold state. Change amount Δ
D is very small. Therefore, compared to the setting example of FIG. 6B, it is not possible to improve the exhaust emission due to the significant retardation of the intake center phase during cold engine, but the change of the intake center phase is small. Therefore, for example, even when the engine is started from an extremely low temperature, it is possible to appropriately change the intake center phase according to the rise of the engine temperature while ensuring good engine startability.

【0023】図8は、様々な運転状態における吸気作動
角及び吸気中心位相の一設定例を示している。なお、後
述する吸気中心位相P1〜P5の値は、進角側を正とす
るとP1<P2<P3<P4<P5の関係にある。
FIG. 8 shows examples of setting the intake working angle and the intake center phase in various operating conditions. It should be noted that the values of the intake center phases P1 to P5, which will be described later, have a relationship of P1 <P2 <P3 <P4 <P5 when the advance side is positive.

【0024】先ず、暖機後のバルブリフト特性について
説明する。アイドルを含む極低負荷域(a2)では、吸
気中心位相を所定の遅角位相P2に設定するとともに、
吸気作動角を最小作動角に設定して、吸気弁の開時期を
上死点後、吸気弁の閉時期を下死点近傍とする。これに
より、残留ガスが低減されるとともに、ピストン上面が
上死点から吸気負圧に晒されず、ある程度ピストンが変
位して筒内が負圧となってから吸気弁が開くこととなる
ために、ポンプ損失が低減される。また、吸気作動角が
最小化されているため、フリクションが低減されるとと
もに、ガス流動が強化され、燃料の霧化が促進される。
この結果、燃費及び排気性能の向上が図られる。上記の
最小作動角は、例えば80〜90°CAであり、上記の
遅角位相P2は、少なくとも90°ATDCよりも遅角
側の値である。
First, the valve lift characteristics after warming up will be described. In the extremely low load range (a2) including idle, the intake center phase is set to a predetermined retard angle phase P2, and
The intake working angle is set to the minimum working angle, the opening timing of the intake valve is set to top dead center, and the closing timing of the intake valve is set to near bottom dead center. As a result, the residual gas is reduced, and the upper surface of the piston is not exposed to the intake negative pressure from the top dead center, and the piston is displaced to some extent to cause the negative pressure in the cylinder to open the intake valve. , The pump loss is reduced. Further, since the intake working angle is minimized, friction is reduced, gas flow is strengthened, and fuel atomization is promoted.
As a result, fuel efficiency and exhaust performance are improved. The minimum operating angle is, for example, 80 to 90 ° CA, and the retard phase P2 is a value on the retard side of at least 90 ° ATDC.

【0025】中負荷域(c)では、主に残留ガスの増加
によるポンプ損失低減化及び高温の残留ガスによる燃焼
改善等を図るために、吸気弁開時期を上死点前とし、か
つ、主に吸入空気量(充填効率)の低減化によりポンプ
損失の低減を図るために、吸気弁閉時期を下死点前とす
る。そこで、上記の最小作動角よりも大きい所定の小作
動角に設定するとともに、吸気中心位相を最進角位相P
5に設定する。
In the middle load region (c), the intake valve opening timing is set before the top dead center, mainly in order to reduce the pump loss due to the increase of the residual gas and to improve the combustion due to the high temperature residual gas. Moreover, in order to reduce the pump loss by reducing the intake air amount (filling efficiency), the intake valve closing timing is set to before the bottom dead center. Therefore, a predetermined small operating angle larger than the above minimum operating angle is set, and the intake center phase is set to the most advanced phase P.
Set to 5.

【0026】上記の中負荷域(c)より吸入空気量の少
ない低負荷域(b)では、主に燃焼の改善及び残留ガス
の低減化を図るため、吸気作動角を上記の最小作動角か
ら小作動角の間の値に設定し、かつ、吸気中心位相を所
定の進角位相P4に設定する。これにより、有効圧縮比
の増加に伴うポンプ損失の低減化により燃費向上が図ら
れる。上記の進角位相P4は、上記の最進角位相P5よ
りも遅角側の値であり、かつ、90°ATDCよりも進
角側の値である。
In the low load range (b) in which the intake air amount is smaller than the medium load range (c), the intake working angle is changed from the above-mentioned minimum working angle in order to mainly improve combustion and reduce residual gas. The value is set to a value between the small operating angles, and the intake center phase is set to a predetermined advance phase P4. As a result, the fuel consumption is improved by reducing the pump loss accompanying the increase in the effective compression ratio. The advance phase P4 is a value on the retard side of the maximum advance phase P5, and is a value on the advance side of 90 ° ATDC.

【0027】全開域(d)〜(f)では、主に充填効率
を向上させるため、吸気中心位相を所定の中間位相P3
又はその近傍に設定するとともに、機関回転数の増加に
伴って吸気作動角を増加させる。例えば、全開・低速域
(d)では、吸気弁の開時期(IVO)を略上死点と
し、吸気弁の閉時期(IVC)を下死点後に設定する。
上記の中間位相P3は、例えば約90°ATDCであ
る。
In the full open range (d) to (f), the intake center phase is set to a predetermined intermediate phase P3 in order to mainly improve the filling efficiency.
Alternatively, the intake working angle is increased in accordance with the increase in engine speed. For example, in the full open / low speed range (d), the intake valve opening timing (IVO) is set to approximately top dead center, and the intake valve closing timing (IVC) is set after bottom dead center.
The above-mentioned intermediate phase P3 is, for example, about 90 ° ATDC.

【0028】一方、冷機始動時のように、機関温度が所
定値以下の冷機状態におけるアイドル等の極低負荷域
(a1)では、触媒暖機が不十分のため、燃焼改善によ
る排気清浄化及び排温上昇を図るため、吸気作動角を最
小作動角、吸気中心位相を最遅角位相P1に設定し、I
VOを上死点よりも大幅に遅角させる。このような設定
により、ガス流動強化による燃料の霧化が促進されると
ともに、IVOの遅角化により筒内負圧を十分発達させ
た後に吸気弁が開くこととなり、吸気弁の開時における
ガス流動が更に強化される。
On the other hand, in the extremely low load region (a1) such as idling when the engine temperature is equal to or lower than a predetermined value, such as at the time of cold engine start, catalyst warm-up is insufficient, so exhaust purification by combustion improvement and In order to increase the exhaust temperature, the intake working angle is set to the minimum working angle, and the intake center phase is set to the most retarded phase P1.
The VO is retarded significantly from the top dead center. With such a setting, atomization of fuel by gas flow enhancement is promoted, and the intake valve opens after the negative pressure in the IVO has been sufficiently developed to allow the in-cylinder negative pressure to develop sufficiently. Flow is further enhanced.

【0029】なお、図示していないが、冷機状態におけ
る低・中負荷域では、暖機状態のリフト特性(b),
(c)と同一にすると燃焼が悪化する可能性があるた
め、例えば低速・全開域のリフト特性(d)と略同一の
設定にする等の必要がある。
Although not shown, the lift characteristics (b) in the warm-up state in the low / medium load range in the cold state,
If the same as (c), the combustion may worsen, so it is necessary to set the lift characteristics (d) in the low speed / fully open region to substantially the same setting, for example.

【0030】なお、図8(a2)の設定と異なり、機関
始動時等の極低負荷域における吸気弁の作動角を、機関
冷機時では暖機後よりも小さくなるように設定しても良
い。この場合、冷機始動時には、作動角が暖機時に比し
て小さくなるため、ガス流動が強化されて燃焼が改善さ
れる。一方、暖気始動時には、冷機始動時に比して作動
角が相対的に大きくなり、吸入抵抗が抑制されるため、
燃費性能の向上を図ることができる。
Unlike the setting shown in FIG. 8 (a2), the operating angle of the intake valve in the extremely low load range such as when the engine is started may be set to be smaller when the engine is cold than when it is warmed up. . In this case, the operating angle at the time of cold start is smaller than that at the time of warm-up, so the gas flow is strengthened and combustion is improved. On the other hand, at warm start, the operating angle becomes relatively larger than at cold start, and suction resistance is suppressed.
It is possible to improve fuel efficiency.

【0031】次に、図9〜11を参照して、各運転状態
から加速を行う場合について検討する。なお、図中のL
1は、加速前の運転状態における吸気作動角及び吸気中
心位相の基準設定に対応した基準特性を表している。ま
た、L2は、目標作動角及び目標位相に対応した目標特
性を、L3は、上記の基準特性L1に対して吸気作動角
のみを目標作動角へ向けて所定量変化させた状態の特性
を、L4は、基準特性L1に対して吸気中心位相のみを
目標位相へ向けて所定量変化させた状態の特性を、それ
ぞれ表している。
Next, with reference to FIGS. 9 to 11, the case of accelerating from each operating state will be examined. In addition, L in the figure
Reference numeral 1 represents a reference characteristic corresponding to the reference setting of the intake working angle and the intake center phase in the operating state before acceleration. Further, L2 is a target characteristic corresponding to the target operating angle and the target phase, and L3 is a characteristic in a state where only the intake operating angle is changed by a predetermined amount toward the target operating angle with respect to the reference characteristic L1. L4 represents a characteristic in which only the intake center phase is changed by a predetermined amount with respect to the reference characteristic L1 toward the target phase.

【0032】先ず、図9を参照して、冷機時における極
低負荷域(冷機アイドル状態)からの加速について考察
する。冷機アイドル状態では、上述したように吸気中心
位相が最遅角位相P1に設定されている。従って、極低
負荷域で、吸気作動角のみを増加させた場合、吸気弁閉
時期が過度に遅くなる等の理由で、トルクが一時的に減
少するおそれがある。例えば図9に示す第1の回転数N
1よりも低い回転域では、基準特性L1よりも作動角増
加後の特性L3のトルクが低くなっているため、作動角
のみを変化させるとトルクが一時的に減少することとな
る。
First, referring to FIG. 9, consideration will be given to acceleration from an extremely low load region (cooling idle state) during cooling. In the cold idle state, the intake center phase is set to the most retarded phase P1 as described above. Therefore, when only the intake working angle is increased in the extremely low load region, the torque may be temporarily reduced because the intake valve closing timing is excessively delayed. For example, the first rotation speed N shown in FIG.
In the rotation range lower than 1, the torque of the characteristic L3 after the operating angle is increased is lower than that of the reference characteristic L1. Therefore, if only the operating angle is changed, the torque is temporarily reduced.

【0033】一方、このような極低負荷からの加速時に
吸気中心位相のみを進角させても、確実にトルクが増加
方向へ向かう。従って、このような極低負荷・極低回転
域からの加速時には、位相変更機構20による吸気中心
位相の進角化を優先的に行う。つまり、位相変更機構2
0のみを駆動し、あるいは位相変更機構20による吸気
中心位相の変更量が作動角変更機構10による作動角の
変更量よりも十分に大きくなるように制御する。これに
より、この加速過渡時におけるトルクが確実に増加方向
へ向かうこととなり、過渡時のトルク低下を確実に回避
できる。
On the other hand, even if only the intake center phase is advanced at the time of acceleration from such an extremely low load, the torque surely increases. Therefore, during acceleration from such an extremely low load and extremely low rotation speed range, the phase change mechanism 20 preferentially advances the intake center phase. That is, the phase changing mechanism 2
Only 0 is driven, or the amount of change in the intake center phase by the phase changing mechanism 20 is controlled to be sufficiently larger than the amount of change in the operating angle by the operating angle changing mechanism 10. As a result, the torque during the acceleration transition is reliably increased, and the torque reduction during the transition can be reliably avoided.

【0034】ところで、この冷機アイドル状態の基準設
定(最小作動角及び最遅角位相)L1は、主に燃焼改善
を図る目的で、極低回転域よりも回転数がある程度高い
低回転域でも使用される。しかしながら、機関回転数が
高くなってくると、同一作動角では吸入時間が減少する
ため、吸気中心位相のみを進角させても、全開トルクを
効果的に増加させることができない。従って、極低回転
域(例えば図9に示す作動角増加状態の特性L3と位相
進角状態の特性L4とでトルクが逆転する第2の回転数
N2以下の回転域)では、上述したように吸気中心位相
を優先的に進角させ、低回転域(例えば第2の回転数N
2を越える回転域)では、吸気作動角を優先的に増加さ
せることにより、トルクを最も効率的に増加させること
ができる。
By the way, the reference setting (minimum operating angle and most retarded angle phase) L1 of the cold idling state is used mainly in the low rotation speed range where the rotation speed is higher than the extremely low rotation speed range, mainly for the purpose of improving combustion. To be done. However, as the engine speed increases, the intake time decreases at the same operating angle, and therefore the full-open torque cannot be effectively increased even if only the intake center phase is advanced. Therefore, in the extremely low rotation range (for example, the rotation range of the second rotation speed N2 or less where the torque is reversed between the characteristic L3 in the operating angle increasing state and the characteristic L4 in the phase advance state shown in FIG. 9), as described above. The intake center phase is preferentially advanced to a low rotation speed range (for example, the second rotation speed N
In the rotational range exceeding 2, the torque can be most efficiently increased by preferentially increasing the intake working angle.

【0035】次に、図10を参照して暖機後の状態で極
低負荷域から加速を行う場合について考察する。暖機後
の極低負荷域では、主に吸入抵抗を抑制して燃費向上を
図るために、上述したように吸気中心位相を最遅角位相
P1よりも進角した暖機後遅角位相P2に設定してい
る。つまり、主に有効圧縮比を高めて燃焼の改善を図る
ために、吸気弁閉時期を冷機時よりも進角化させてい
る。従って、仮に吸気中心位相のみを進角させると、有
効圧縮比や充填効率が低下し、有効にトルクを増加させ
ることができないことがある。そこで、このような暖機
後の極低負荷域からの加速時には、吸気作動角を優先的
に増加させることにより、トルクを効率的に増加させる
ことができる。
Next, with reference to FIG. 10, a case of accelerating from an extremely low load region after warming up will be considered. In the extremely low load region after warming up, in order to mainly suppress the intake resistance and improve the fuel consumption, the post-warming retarded phase P2 that advances the intake center phase from the most retarded phase P1 as described above. Is set to. In other words, the intake valve closing timing is advanced more than when it is cold in order to mainly improve the effective compression ratio and improve combustion. Therefore, if only the intake center phase is advanced, the effective compression ratio and the charging efficiency may decrease, and the torque may not be effectively increased. Therefore, during acceleration from such an extremely low load range after warming up, the torque can be efficiently increased by preferentially increasing the intake working angle.

【0036】このように、同一負荷域から加速を行う場
合であっても、機関回転数又は機関温度(冷機又は暖
機)の少なくとも一方に基づいて、作動角変更機構10
又は位相変更機構20の一方を優先的に駆動させること
により、トルクを効率的に増加させることができ、運転
性の向上を図ることができる。
As described above, even when acceleration is performed from the same load range, the operating angle changing mechanism 10 is based on at least one of the engine speed and the engine temperature (cooling or warming up).
Alternatively, by preferentially driving one of the phase changing mechanisms 20, the torque can be efficiently increased, and the drivability can be improved.

【0037】次に、図11を参照して暖機後の状態で低
負荷域から加速を行う場合について考察する。低負荷域
からの加速時には、図11において特性L3及びL4の
双方とも基準特性L1よりトルクが高いことから明らか
なように、作動角を増加させても位相を遅角させてもト
ルクは増加する。しかしながら、図11において、作動
角増加状態の特性L3が位相遅角状態の特性L4よりも
常にトルクが高いことから明らかなように、機関回転数
にかかわらず、作動角変更機構10による吸気作動角の
増加を位相変更機構20による吸気中心位相の遅角化よ
りも優先させることにより、効率的にトルクを増加させ
ることができる。
Next, with reference to FIG. 11, a case where acceleration is performed from a low load region after warming up will be considered. At the time of acceleration from the low load region, as is apparent from the fact that both the characteristics L3 and L4 have higher torques than the reference characteristic L1 in FIG. 11, the torque increases even if the operating angle is increased or the phase is retarded. . However, in FIG. 11, it is clear from the fact that the characteristic L3 in the operating angle increasing state is always higher in torque than the characteristic L4 in the phase retarding state, so that the intake operating angle by the operating angle changing mechanism 10 is irrespective of the engine speed. The torque can be efficiently increased by prioritizing the increase of the torque over the retardation of the intake center phase by the phase changing mechanism 20.

【0038】なお、図示していないが、図8(c)のよ
うな中負荷域からの加速については、作動角の増加を優
先させるとIVOが過度に早くなって吸気弁とピストン
とが非常に近づくおそれがあるので、好ましくは位相変
更機構20による吸気中心位相の遅角化を優先的に行
う。
Although not shown, for acceleration from a medium load range as shown in FIG. 8 (c), prioritizing an increase in the operating angle causes the IVO to become excessively fast and the intake valve and the piston to become extremely urgent. Therefore, it is preferable that the phase change mechanism 20 retard the intake central phase preferentially.

【0039】以上のように、位相変更機構20を電動式
の構成としているため、機関温度(冷機時・高温時)に
かかわらず、吸気中心位相を速やかに変化させることが
可能となる。つまり、冷機時に位相変更遅れを生じやす
い油圧駆動に対して、冷機時にも迅速に位相を変化させ
ることができる。これより、冷機始動時に吸気弁開時期
を大幅に遅角化させてガス流動を強化し、燃焼の改善,
排気清浄化を図ることができる。また、暖機後には吸気
中心位相を少し進角させることにより、吸入抵抗を低減
して燃費の向上を図る。これより、冷機時における排気
の清浄化と暖機後の燃費向上とを高いレベルで両立させ
ることが可能となる。
As described above, since the phase changing mechanism 20 is of the electric type, it is possible to quickly change the intake center phase regardless of the engine temperature (when the engine is cold or when it is hot). That is, the phase can be quickly changed even during cold cooling, as opposed to the hydraulic drive in which a delay in phase change is likely to occur during cold cooling. As a result, the intake valve opening timing is significantly retarded when the cold engine is started to enhance the gas flow and improve combustion.
Exhaust gas purification can be achieved. Further, after warming up, the intake center phase is slightly advanced to reduce intake resistance and improve fuel efficiency. As a result, it becomes possible to achieve a high level of both cleaning the exhaust during cooling and improving the fuel efficiency after warming up.

【0040】また、作動角変更機構10も電動式の構成
としているため、可変幅を例えば80〜280°CAと
充分に大きく設定できるとともに、冷機始動時や極低回
転時においても確実かつ迅速に吸気作動角を変更するこ
とができる。つまり、このような電動式の作動角変更機
構10を採用することにより、例えば低速域でも作動角
変更機構10を優先的に駆動させることが可能となる。
また、機関温度(冷機時又は暖機後)にかかわらず作動
角を迅速に増加させることができる。このため、冷機時
に作動角の増加遅れを生じ易い油圧駆動式の構成に比し
て、最小作動角を十分に小さく設定することが可能で、
これより、冷機始動時におけるガス流動を効果的に強化
させて燃焼を改善し、更なる排気の清浄化を図ることが
可能となる。
Further, since the operating angle changing mechanism 10 is also of an electric type, the variable width can be set to a sufficiently large value, for example, 80 to 280 ° CA, and at the time of cold start and extremely low rotation, it can be surely and quickly performed. The intake working angle can be changed. That is, by adopting such an electric operating angle changing mechanism 10, it becomes possible to drive the operating angle changing mechanism 10 preferentially even in a low speed range, for example.
Further, the operating angle can be rapidly increased regardless of the engine temperature (when the engine is cold or after warming up). Therefore, it is possible to set the minimum operating angle to a sufficiently small value as compared with the hydraulically driven configuration in which an increase in the operating angle is likely to occur when the engine is cold.
As a result, it becomes possible to effectively enhance the gas flow at the time of starting the cold machine to improve the combustion and further purify the exhaust gas.

【0041】このように双方の変更機構10,20を電
動式としているため、上述したように、加速過渡期の途
中であっても、両変更機構10,20の優先度を切り換
えるような制御が可能となる。
Since both of the changing mechanisms 10 and 20 are electrically driven in this way, as described above, even when the acceleration transition period is in progress, control for switching the priority of both changing mechanisms 10 and 20 can be performed. It will be possible.

【0042】ところで、この実施形態のように、吸気駆
動軸3の角度検出センサ31からの検出信号に基づい
て、クランク角度に対する吸気駆動軸3の中心位相の実
測値(実中心位相)を検知する構成の場合、吸気駆動軸
3の1回転毎に吸気中心位相が検知されることとなる。
一方、制御軸13の角度検出センサ32からの検出信号
に基づいて、吸気作動角の実測値(実作動角)を検知す
る構成の場合、その検知間隔は自由であり、任意のタイ
ミングで実作動角を検知することができる。従って、実
吸気位相が検知されるタイミングにあわせて、実作動角
を検知することにより、同時期に検出される実吸気位相
及び実作動角に基づいて吸気作動角,吸気中心位相の目
標値の設定等の制御を行うことができ、その制御精度が
向上する。
By the way, as in this embodiment, the measured value (actual center phase) of the center phase of the intake drive shaft 3 with respect to the crank angle is detected based on the detection signal from the angle detection sensor 31 of the intake drive shaft 3. In the case of the configuration, the intake center phase is detected for each rotation of the intake drive shaft 3.
On the other hand, in the case of a configuration in which the actual measurement value (actual operating angle) of the intake working angle is detected based on the detection signal from the angle detection sensor 32 of the control shaft 13, the detection interval is free and the actual operation is performed at any timing. The corner can be detected. Therefore, by detecting the actual operating angle at the timing at which the actual intake phase is detected, the target values of the intake operating angle and the intake center phase are set based on the actual intake phase and the actual operating angle detected at the same time. Control such as setting can be performed, and the control accuracy is improved.

【0043】このような制御の流れを、図12のフロー
チャートを参照して詳述する。S11において、吸気駆
動軸3の角度検出センサ31からの検出信号に基づいて
実吸気位相が検知されると、S12へ進み、制御軸13
の角度検出センサ32の検出信号に基づいて、実作動角
を検知する。続くS13において、加速状態にあると判
定されると、S14へ進み、機関温度等に基づいて冷機
状態か暖機後かを判定する。冷機時の場合、S16へ進
み、機関回転数に基づいて極低回転域か低回転域かを判
定する。極低回転域の場合、S17へ進み、位相変更機
構20を優先的に駆動する制御を行う。一方、低回転域
の場合にはS18へ進み、作動角変更機構10を優先的
に駆動する制御を行う。
The flow of such control will be described in detail with reference to the flowchart of FIG. In S11, when the actual intake phase is detected based on the detection signal from the angle detection sensor 31 of the intake drive shaft 3, the process proceeds to S12 and the control shaft 13
The actual operating angle is detected based on the detection signal from the angle detection sensor 32. When it is determined in the subsequent S13 that the vehicle is in the acceleration state, the process proceeds to S14, and it is determined whether the engine is in the cold state or after the warm-up based on the engine temperature and the like. When the engine is cold, the process proceeds to S16, and it is determined whether the engine speed is extremely low or low based on the engine speed. If it is in the extremely low rotation speed range, the process proceeds to S17, in which the phase changing mechanism 20 is preferentially driven. On the other hand, in the case of the low rotation speed range, the process proceeds to S18, and the operation angle changing mechanism 10 is preferentially driven.

【0044】また、S14において暖機後と判定された
場合、S15へ進み、吸気弁開時期(IVO)が過度に
早いか否かを判定する。過度に早い場合は、上記のS1
7へ進み、位相変更機構20を優先的に駆動する制御を
行う。比較的遅いと判定された場合、上記のS16へ進
み、機関回転数に応じていずれの変更機構10,20を
優先的に駆動するかを判定する。
If it is determined in S14 that the engine has been warmed up, the process proceeds to S15, in which it is determined whether the intake valve opening timing (IVO) is excessively early. If it is too fast, S1 above
7, the control is performed to preferentially drive the phase changing mechanism 20. If it is determined to be relatively slow, the process proceeds to S16, and it is determined which of the changing mechanisms 10 and 20 is to be driven preferentially according to the engine speed.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施形態に係る可変動弁装置を示す
概略斜視図。
FIG. 1 is a schematic perspective view showing a variable valve operating device according to an embodiment of the present invention.

【図2】上記可変動弁装置の作動角変更機構を示す断面
対応図。
FIG. 2 is a cross-sectional view showing a working angle changing mechanism of the variable valve operating device.

【図3】上記可変動弁装置の位相変更機構を示す断面
図。
FIG. 3 is a sectional view showing a phase changing mechanism of the variable valve operating device.

【図4】吸気作動角及び吸気中心位相の設定・制御の流
れを示すフローチャート。
FIG. 4 is a flowchart showing a flow of setting / controlling an intake working angle and an intake center phase.

【図5】極低負荷域における機関温度に対する吸気バル
ブリフト特性を示す特性図。
FIG. 5 is a characteristic diagram showing intake valve lift characteristics with respect to engine temperature in an extremely low load range.

【図6】極低負荷域における機関温度に対する吸気作動
角を示す特性図。
FIG. 6 is a characteristic diagram showing an intake working angle with respect to an engine temperature in an extremely low load region.

【図7】極低負荷域における機関温度に対する吸気作動
角を示す特性図。
FIG. 7 is a characteristic diagram showing an intake working angle with respect to an engine temperature in an extremely low load range.

【図8】様々な運転状態における吸気バルブリフト特性
の設定を示す説明図。
FIG. 8 is an explanatory view showing setting of intake valve lift characteristics in various operating states.

【図9】冷機アイドル域からの加速時の説明図。FIG. 9 is an explanatory diagram when accelerating from the cold idle region.

【図10】暖機アイドル域からの加速時の説明図。FIG. 10 is an explanatory diagram when accelerating from a warm-up idle region.

【図11】暖機低負荷域からの加速時の説明図。FIG. 11 is an explanatory diagram when accelerating from a warm-up low load region.

【図12】変更機構の優先度の設定・制御の流れを示す
フローチャート。
FIG. 12 is a flowchart showing a flow of setting / controlling the priority of the changing mechanism.

【符号の説明】[Explanation of symbols]

2…吸気弁 3…吸気駆動軸 4…揺動カム 10…作動角変更機構 11…駆動カム 12…リング状リンク 13…制御軸 14…制御カム 15…ロッカアーム 16…ロッド状リンク 20…位相変更機構 2 ... Intake valve 3 ... Intake drive shaft 4 ... rocking cam 10 ... Operating angle changing mechanism 11 ... Drive cam 12 ... Ring-shaped link 13 ... Control axis 14 ... Control cam 15 ... Rocker Arm 16 ... Rod-shaped link 20 ... Phase change mechanism

フロントページの続き Fターム(参考) 3G018 AB02 AB16 BA10 BA19 BA34 DA11 DA75 EA02 EA08 EA12 EA13 EA17 EA21 EA22 FA01 FA06 FA07 FA08 FA16 GA07 GA11 3G092 DA03 DA05 DA09 EA01 EA02 EA03 EA04 EA08 FA24 FA25 FA31 FA41 FA42 GA01 GA02 GA03 GA04 GA05 GA06 GA12 HA11Z HE02Z HE03Z HE08ZContinued front page    F-term (reference) 3G018 AB02 AB16 BA10 BA19 BA34                       DA11 DA75 EA02 EA08 EA12                       EA13 EA17 EA21 EA22 FA01                       FA06 FA07 FA08 FA16 GA07                       GA11                 3G092 DA03 DA05 DA09 EA01 EA02                       EA03 EA04 EA08 FA24 FA25                       FA31 FA41 FA42 GA01 GA02                       GA03 GA04 GA05 GA06 GA12                       HA11Z HE02Z HE03Z HE08Z

Claims (12)

【特許請求の範囲】[Claims] 【請求項1】 吸気弁の吸気作動角を変更可能な作動角
変更機構と、上記吸気作動角の吸気中心位相を変更可能
な位相変更機構と、機関温度を推定する機関温度推定手
段と、を有する内燃機関の可変動弁装置において、 少なくともアイドルを含む極低負荷域では、上記機関温
度が冷機時よりも更に低い極低温時の吸気作動角を、少
なくとも上記冷機時の吸気作動角よりも大きくすること
を特徴とする内燃機関の可変動弁装置。
1. An operating angle changing mechanism capable of changing an intake operating angle of an intake valve, a phase changing mechanism capable of changing an intake center phase of the intake operating angle, and an engine temperature estimating means for estimating an engine temperature. In a variable valve operating device of an internal combustion engine having, in an extremely low load range including at least idle, an intake working angle at an extremely low temperature at which the engine temperature is lower than that at a cold time is at least larger than an intake working angle at a cold time. A variable valve operating device for an internal combustion engine, comprising:
【請求項2】 上記極低負荷域における上記極低温時に
は、上記吸気作動角を約180°CA、上記吸気中心位
相を約90°ATDCに設定することを特徴とする請求
項1に記載の内燃機関の可変動弁装置。
2. The internal combustion engine according to claim 1, wherein the intake working angle is set to about 180 ° CA and the intake center phase is set to about 90 ° ATDC at the extremely low temperature in the extremely low load region. Variable valve operating system for engines.
【請求項3】 上記極低負荷域では、上記冷機時の吸気
中心位相を、上記極低温時の吸気中心位相よりも遅角さ
せることを特徴とする請求項2に記載の内燃機関の可変
動弁装置。
3. The variable operation of the internal combustion engine according to claim 2, wherein, in the extremely low load region, the intake central phase during the cold engine is retarded more than the intake central phase during the extremely low temperature. Valve device.
【請求項4】 上記極低負荷域では、上記暖機後の吸気
中心位相を、上記冷機時の吸気中心位相よりも進角させ
ることを特徴とする請求項1〜3のいずれかに記載の内
燃機関の可変動弁装置。
4. The intake center phase after the warm-up is advanced from the intake center phase after the warm-up in the extremely low load region, as claimed in any one of claims 1 to 3. Variable valve device for internal combustion engine.
【請求項5】 上記極低負荷域における上記冷機時に
は、上記吸気作動角を約90°CA、上記吸気中心位相
を約180°ATDCに設定することを特徴とする請求
項1〜4のいずれかに記載の内燃機関の可変動弁装置。
5. The intake working angle is set to about 90 ° CA and the intake center phase is set to about 180 ° ATDC when the engine is cold in the extremely low load region. 5. A variable valve operating device for an internal combustion engine according to item 1.
【請求項6】 機関加速時には、機関回転数又は機関温
度の少なくとも一方に基づいて、作動角変更機構又は位
相変更機構の一方を優先的に駆動することを特徴とする
請求項1〜5のいずれかに記載の内燃機関の可変動弁装
置。
6. When the engine is accelerated, one of the operating angle changing mechanism and the phase changing mechanism is preferentially driven based on at least one of the engine speed and the engine temperature. A variable valve operating system for an internal combustion engine according to claim 1.
【請求項7】 機関始動時を含む極低負荷・極低回転域
からの加速時において、上記冷機時には位相変更機構を
優先的に駆動し、暖機後には作動角変更機構を優先的に
駆動することを特徴とする請求項6に記載の内燃機関の
可変動弁装置。
7. The phase changing mechanism is preferentially driven during the cold state during acceleration from an extremely low load / extremely low speed range including engine startup, and the operating angle changing mechanism is preferentially driven after warming up. The variable valve operating device for an internal combustion engine according to claim 6, wherein:
【請求項8】 上記冷機時における極低負荷域からの加
速時には、極低回転域では位相変更機構を優先的に駆動
し、低回転域では作動角変更機構を優先的に駆動するこ
とを特徴とする請求項6又は7に記載の内燃機関の可変
動弁装置。
8. The phase changing mechanism is preferentially driven in the extremely low rotation speed range and the operating angle changing mechanism is preferentially driven in the low rotation speed range during acceleration from the extremely low load range in the cold state. The variable valve operating device for an internal combustion engine according to claim 6 or 7.
【請求項9】 上記位相変更機構及び作動角変更機構の
少なくとも一方が電動式であることを特徴とする請求項
1〜8のいずれかに記載の内燃機関の可変動弁装置。
9. The variable valve operating system for an internal combustion engine according to claim 1, wherein at least one of the phase changing mechanism and the operating angle changing mechanism is an electric type.
【請求項10】 上記極低負荷域における吸気弁の作動
角を、冷機時では暖機後よりも小さくすることを特徴と
する請求項1〜9のいずれかに記載の内燃機関の可変動
弁装置。
10. A variable valve operating valve for an internal combustion engine according to claim 1, wherein an operating angle of the intake valve in the extremely low load region is smaller when the engine is cold than when it is warmed up. apparatus.
【請求項11】 上記作動角変更機構が、上記吸気駆動
軸に相対回転可能に外嵌し、吸気弁を開閉駆動する揺動
カムと、上記吸気駆動軸に偏心して設けられた駆動カム
と、この駆動カムに相対回転可能に外嵌するリング状リ
ンクと、上記吸気駆動軸と平行に配設された制御軸と、
この制御軸に偏心して設けられた制御カムと、この制御
カムに相対回転可能に外嵌するとともに、一端が上記リ
ング状リンクに連結されたロッカアームと、このロッカ
アームの他端と上記揺動カムとに連結されたロッド状リ
ンクと、を有することを特徴とする請求項1〜10のい
ずれかに記載の内燃機関の可変動弁装置。
11. A swing cam, wherein the operating angle changing mechanism is fitted onto the intake drive shaft so as to be relatively rotatable, drives the intake valve to open and close, and a drive cam eccentrically provided on the intake drive shaft. A ring-shaped link fitted to the drive cam so as to be relatively rotatable, a control shaft arranged in parallel with the intake drive shaft,
A control cam eccentrically provided on the control shaft, a rocker arm externally fitted to the control cam so as to be relatively rotatable, and one end of which is connected to the ring-shaped link, the other end of the rocker arm and the swing cam. The variable valve operating system for an internal combustion engine according to any one of claims 1 to 10, further comprising:
【請求項12】 上記吸気駆動軸の回転角度を検出する
手段と、 この吸気駆動軸の回転角度に基づいて吸気弁の作動角の
実中心位相を検知する位相検知手段と、 上記制御軸の回転角度を検出する手段と、 この制御軸の回転角度に基づいて吸気弁の実作動角を検
知する作動角検知手段と、を有し、 上記位相検知手段により実中心位相が検知されるタイミ
ングに合わせて、上記作動角検知手段により実作動角を
検知し、これら実中心位相及び実作動角に基づいて、上
記吸気作動角及び吸気中心位相の目標値を設定すること
を特徴とする請求項11に記載の内燃機関の可変動弁装
置。
12. A means for detecting a rotation angle of the intake drive shaft, a phase detection means for detecting an actual center phase of an operating angle of the intake valve based on the rotation angle of the intake drive shaft, and a rotation of the control shaft. An angle detection means and an operation angle detection means for detecting the actual operation angle of the intake valve based on the rotation angle of the control shaft are provided, and the phase detection means adjusts the actual center phase to the timing. The actual operating angle is detected by the operating angle detecting means, and the target values of the intake operating angle and the intake central phase are set based on the actual center phase and the actual operating angle. A variable valve operating device for an internal combustion engine as described above.
JP2002071226A 2002-03-15 2002-03-15 Variable valve operating device for internal combustion engine Expired - Lifetime JP3912147B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2002071226A JP3912147B2 (en) 2002-03-15 2002-03-15 Variable valve operating device for internal combustion engine
US10/384,632 US6840201B2 (en) 2002-03-15 2003-03-11 Variable valve timing control apparatus and method for an internal combustion engine
EP03005820A EP1344897B1 (en) 2002-03-15 2003-03-14 Apparatus and method for variable valve timing control using a temperature signal in an internal combustion engine
DE60300241T DE60300241T2 (en) 2002-03-15 2003-03-14 Device and method for variable valve timing with temperature feedback in an internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002071226A JP3912147B2 (en) 2002-03-15 2002-03-15 Variable valve operating device for internal combustion engine

Publications (2)

Publication Number Publication Date
JP2003269124A true JP2003269124A (en) 2003-09-25
JP3912147B2 JP3912147B2 (en) 2007-05-09

Family

ID=27764545

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002071226A Expired - Lifetime JP3912147B2 (en) 2002-03-15 2002-03-15 Variable valve operating device for internal combustion engine

Country Status (4)

Country Link
US (1) US6840201B2 (en)
EP (1) EP1344897B1 (en)
JP (1) JP3912147B2 (en)
DE (1) DE60300241T2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005068789A1 (en) * 2004-01-20 2005-07-28 Honda Motor Co., Ltd. Valve operating device for internal combustion engine
JP2006090148A (en) * 2004-09-21 2006-04-06 Nissan Motor Co Ltd Engine starter
JP2006348774A (en) * 2005-06-13 2006-12-28 Mazda Motor Corp Intake control device for engine
JP2007127047A (en) * 2005-11-04 2007-05-24 Nissan Motor Co Ltd Control device for internal combustion engine
US7441521B2 (en) 2003-12-18 2008-10-28 Toyota Jidosha Kabushiki Kaisha Variable valve mechanism
US7881856B2 (en) 2008-04-03 2011-02-01 Hitachi, Ltd. Apparatus for and method of controlling fuel injection of engine
KR101684559B1 (en) * 2015-12-11 2016-12-08 현대자동차 주식회사 Engine provided with continuous varible vavle timing apparatus and continuous varible vavle duration apparatus
KR101766034B1 (en) 2015-09-03 2017-08-08 현대자동차주식회사 The controlling method of cvvt

Families Citing this family (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AUPR531501A0 (en) * 2001-05-30 2001-06-21 Bishop Innovation Limited Variable valve timing mechanism for a rotary valve
JP4136926B2 (en) * 2003-12-24 2008-08-20 日産自動車株式会社 Start control device and start control method for internal combustion engine
JP4257227B2 (en) * 2004-02-17 2009-04-22 株式会社日立製作所 Valve operating device for internal combustion engine
JP4400466B2 (en) * 2005-01-25 2010-01-20 トヨタ自動車株式会社 Valve timing adjustment device for start of internal combustion engine
US7172811B2 (en) 2005-03-24 2007-02-06 3M Innovative Properties Company Methods of preparing polymer nanocomposite having surface modified nanoparticles
JP4701871B2 (en) 2005-06-28 2011-06-15 日産自動車株式会社 Engine control device
JP4289364B2 (en) * 2005-12-05 2009-07-01 トヨタ自動車株式会社 Control device for internal combustion engine
JP4643525B2 (en) * 2006-08-31 2011-03-02 トヨタ自動車株式会社 Engine system
JP4300239B2 (en) 2007-01-17 2009-07-22 本田技研工業株式会社 Control device for internal combustion engine
JP4286873B2 (en) * 2007-01-24 2009-07-01 本田技研工業株式会社 Intake control device for internal combustion engine
JP4525698B2 (en) * 2007-04-11 2010-08-18 トヨタ自動車株式会社 Control device and control method for variable valve timing mechanism
WO2009096947A1 (en) * 2008-01-29 2009-08-06 Mack Trucks, Inc. Method for starting an engine, and an engine
US8091345B2 (en) * 2008-02-06 2012-01-10 Cummins Ip, Inc Apparatus, system, and method for efficiently increasing exhaust flow temperature for an internal combustion engine
US8156730B2 (en) 2008-04-29 2012-04-17 Cummins, Inc. Engine performance management during a diesel particulate filter regeneration event
US8302385B2 (en) 2008-05-30 2012-11-06 Cummins Ip, Inc. Apparatus, system, and method for controlling engine exhaust temperature
CN101403326A (en) * 2008-06-16 2009-04-08 奇瑞汽车股份有限公司 Variable air valve lift range mechanism of internal combustion engine
JP4529190B2 (en) * 2008-08-08 2010-08-25 株式会社デンソー Engine stop control device
JP4759622B2 (en) 2009-01-09 2011-08-31 本田技研工業株式会社 Control device for internal combustion engine
US7845335B2 (en) * 2009-03-23 2010-12-07 Gm Global Technology Operations, Inc. Operating strategy for HCCI combustion during engine warm-up
JP2012117376A (en) * 2010-11-29 2012-06-21 Hitachi Automotive Systems Ltd Valve actuation apparatus of internal combustion engine and rockable cam to be used in the same
CA2809298C (en) 2013-03-12 2014-05-13 Westport Power Inc. Fuel injector temperature mitigation
US9133735B2 (en) 2013-03-15 2015-09-15 Kohler Co. Variable valve timing apparatus and internal combustion engine incorporating the same
GB2528087B (en) * 2014-07-09 2018-10-03 Jaguar Land Rover Ltd Vehicle transmission control method for a continuously variable valve lift system
DE102015224758A1 (en) * 2015-12-10 2017-06-14 Bayerische Motoren Werke Aktiengesellschaft Method for starting an internal combustion engine
WO2019105538A1 (en) * 2017-11-29 2019-06-06 Volvo Truck Corporation Method for controlling an internal combustion engine arrangement
DE102019113737A1 (en) * 2019-05-23 2020-11-26 Volkswagen Aktiengesellschaft Internal combustion engine with variable exhaust valve opening and exhaust phaser

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2267310B (en) 1992-05-27 1996-04-24 Fuji Heavy Ind Ltd System for controlling a valve mechanism for an internal combustion engine
JPH08270470A (en) 1995-03-31 1996-10-15 Toyota Motor Corp Valve timing control device for internal combustion engine
JP3347950B2 (en) 1996-08-28 2002-11-20 株式会社ユニシアジェックス Exhaust valve timing controller
JP3164007B2 (en) * 1997-02-14 2001-05-08 トヨタ自動車株式会社 Valve timing adjustment device for internal combustion engine
JP4103180B2 (en) 1998-07-01 2008-06-18 トヨタ自動車株式会社 Variable valve operating device for internal combustion engine
JP4406989B2 (en) * 2000-02-22 2010-02-03 トヨタ自動車株式会社 Valve characteristic control device for internal combustion engine
JP4336444B2 (en) * 2000-06-12 2009-09-30 日産自動車株式会社 Variable valve operating device for internal combustion engine
JP2001355469A (en) * 2000-06-15 2001-12-26 Unisia Jecs Corp Variable valve system for internal combustion engine
US6405706B1 (en) 2000-08-02 2002-06-18 Ford Global Tech., Inc. System and method for mixture preparation control of an internal combustion engine
US6394051B1 (en) 2000-09-01 2002-05-28 Ford Global Technologies, Inc. Spark ignition engine with negative valve-overlap
JP3605354B2 (en) * 2000-11-28 2004-12-22 三菱電機株式会社 Valve timing control device for internal combustion engine

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7441521B2 (en) 2003-12-18 2008-10-28 Toyota Jidosha Kabushiki Kaisha Variable valve mechanism
WO2005068789A1 (en) * 2004-01-20 2005-07-28 Honda Motor Co., Ltd. Valve operating device for internal combustion engine
CN100371573C (en) * 2004-01-20 2008-02-27 本田技研工业株式会社 Valve operating device for internal combustion engine
JP2006090148A (en) * 2004-09-21 2006-04-06 Nissan Motor Co Ltd Engine starter
JP2006348774A (en) * 2005-06-13 2006-12-28 Mazda Motor Corp Intake control device for engine
JP4682713B2 (en) * 2005-06-13 2011-05-11 マツダ株式会社 Engine intake control device
JP2007127047A (en) * 2005-11-04 2007-05-24 Nissan Motor Co Ltd Control device for internal combustion engine
JP4650213B2 (en) * 2005-11-04 2011-03-16 日産自動車株式会社 Control device for internal combustion engine
US7881856B2 (en) 2008-04-03 2011-02-01 Hitachi, Ltd. Apparatus for and method of controlling fuel injection of engine
KR101766034B1 (en) 2015-09-03 2017-08-08 현대자동차주식회사 The controlling method of cvvt
KR101684559B1 (en) * 2015-12-11 2016-12-08 현대자동차 주식회사 Engine provided with continuous varible vavle timing apparatus and continuous varible vavle duration apparatus
US10208680B2 (en) 2015-12-11 2019-02-19 Hyundai Motor Company Engine provided with continuous variable valve timing apparatus and continuous variable valve duration apparatus

Also Published As

Publication number Publication date
DE60300241D1 (en) 2005-02-03
US20030172888A1 (en) 2003-09-18
EP1344897A3 (en) 2003-11-05
EP1344897A2 (en) 2003-09-17
EP1344897B1 (en) 2004-12-29
JP3912147B2 (en) 2007-05-09
US6840201B2 (en) 2005-01-11
DE60300241T2 (en) 2005-06-02

Similar Documents

Publication Publication Date Title
JP3912147B2 (en) Variable valve operating device for internal combustion engine
JP4957611B2 (en) Control method for internal combustion engine
US7191746B2 (en) Engine start control apparatus
JP4336444B2 (en) Variable valve operating device for internal combustion engine
JP4483759B2 (en) Control device for internal combustion engine
JP4275143B2 (en) Ignition timing control device for internal combustion engine
JP4682713B2 (en) Engine intake control device
US20020092488A1 (en) Combustion control system for spark-ignition internal combustion engine with variable piston stroke characteristic mechanism and variable valve operating mechanism
US8205589B2 (en) Engine starting control apparatus
US20200232325A1 (en) Variable operation system for internal combustion engine, and control device therefor
JP4136926B2 (en) Start control device and start control method for internal combustion engine
JP2010138898A (en) Variable valve gear
JP3829629B2 (en) Combustion control device for internal combustion engine
JP2011089467A (en) Control method for internal combustion engine, and internal combustion engine system
JP2001336446A (en) Knocking controller of internal combustion engine
JP4697485B2 (en) Start control device for internal combustion engine
JP4590746B2 (en) Variable valve operating device for internal combustion engine
JP4433591B2 (en) Variable valve operating device for internal combustion engine
JP2007154823A (en) Internal combustion engine controller and vehicle
US7343886B2 (en) Internal combustion engine control apparatus
JP2002089305A (en) Variable valve device for internal combustion engine
JP2007132188A (en) Control device for internal combustion engine
JP2003328791A (en) Variable valve system of internal combustion engine
JP2002303231A (en) Method of starting internal combustion engine having cranking mode change
JP3909299B2 (en) Valve operating device for internal combustion engine

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061003

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061201

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070109

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070122

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 3912147

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110209

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120209

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120209

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130209

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130209

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140209

Year of fee payment: 7

EXPY Cancellation because of completion of term