JP2003266072A - Membrane filtration method - Google Patents

Membrane filtration method

Info

Publication number
JP2003266072A
JP2003266072A JP2002074550A JP2002074550A JP2003266072A JP 2003266072 A JP2003266072 A JP 2003266072A JP 2002074550 A JP2002074550 A JP 2002074550A JP 2002074550 A JP2002074550 A JP 2002074550A JP 2003266072 A JP2003266072 A JP 2003266072A
Authority
JP
Japan
Prior art keywords
membrane
filtration
raw water
backwashing
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002074550A
Other languages
Japanese (ja)
Inventor
Chikakazu Murata
周和 村田
Hiroyuki Koide
博幸 小出
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Organo Corp
Original Assignee
Organo Corp
Japan Organo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Organo Corp, Japan Organo Co Ltd filed Critical Organo Corp
Priority to JP2002074550A priority Critical patent/JP2003266072A/en
Publication of JP2003266072A publication Critical patent/JP2003266072A/en
Pending legal-status Critical Current

Links

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To keep a cleaning effect although the amount of water and a time for backward washing of a membrane module are curtailed. <P>SOLUTION: Treatment water from a raw water tank 1 is supplied to the membrane module 4 by a pressure pump 2. After a filtration process for supplying filtrate to a filtrate tank 6, the filtrate of the filtrate tank 6 is supplied to the membrane module by a backward wash pump 7. A first backward washing process for discharging backward washing wastewater from a valve 9 and a second backward washing process for discharging backward washing wastewater from a valve 10 are repeated alternately. <P>COPYRIGHT: (C)2003,JPO

Description

【発明の詳細な説明】 【0001】 【発明の属する技術分野】本発明は、精密ろ過膜や限外
ろ過膜などのろ過膜を使用し、ろ過膜を透過したろ過水
を得る膜ろ過方法に関する。 【0002】 【従来の技術】膜ろ過装置は、操作の簡便性や処理水の
安定性などの利点から、各種産業用水処理や排水処理、
浄水処理などへ多数導入されている。 【0003】このような膜ろ過装置では、精密ろ過膜や
限外ろ過膜により原水室と透過水室とに区分されたろ過
膜モジュールによりろ過処理を行うが、そのろ過処理を
継続する過程で被処理水中の不溶解性物質や溶解性物質
がろ過膜面に堆積してろ過水量(処理水量)が低下して
いく。このため、膜ろ過装置では、ろ過膜における圧力
損失(膜間差圧)が所定以上となったときや、一定時間
のろ過を行った場合に、ろ過膜モジュールの逆洗工程を
実施する。これによって、膜ろ過装置のろ過能力が回復
し、安定したろ過処理を継続することができる。 【0004】このろ過膜モジュールの逆洗は、膜ろ過処
理水などの清澄水をろ過通水方向とは逆方向に膜モジュ
ールへ導入し、ろ過膜面に堆積した目詰まり物質を膜モ
ジュール外へ排出する方法を採用する。 【0005】ここで、膜モジュールの逆洗方法には、膜
モジュール内から効率的に目詰まり物質を排出する目的
で、多くの方法が提案されている。例えば、特許272
4673号公報や特開平8−299767号公報では、
膜モジュール全体の目詰まり物質をモジュール外へ排出
するために、膜モジュールの両端面より交互に逆洗排水
を排出する方法が提案されている。また、特開2001
−54789号公報では、膜モジュールへの被処理水の
供給と膜モジュールの逆洗を同時に行う逆洗方法が提案
されている。 【0006】 【発明が解決しようとする課題】上述のように、各種の
逆洗方法が提案されているが、これらの方法は、いずれ
も1回の逆洗により膜面に堆積した目詰まり物質をでき
るだけ完全にモジュール外へ排出する目的でなされたも
のである。 【0007】しかしながら、これらの方法では洗浄に使
用する水量が多くなり、さらに洗浄に費やす時間が長く
なってしまい、結果的に水回収率が低くなり、装置の稼
働効率が低下し、造水コストが増大する問題がある。 【0008】本発明は膜モジュールの逆洗にかかる水量
や時間を削減し、従来と同程度の膜モジュール洗浄効果
を得る膜ろ過方法を提案する。 【0009】 【課題を解決するための手段】本発明者らは、膜モジュ
ールの逆洗に関して種々の検討を実施した結果、膜モジ
ュール全体の半分を交互に逆洗することにより、一度に
膜モジュール全体の目詰まり物質を排出する従来の逆洗
方法と同様の効果が得られることを知見し、さらに1回
の逆洗水使用量は、膜モジュール全体を洗浄する場合の
半量で十分であることを知見し、本発明に到った。 【0010】すなわち、本発明は、膜によって原水室と
透過水室に仕切られた膜モジュールの原水室に被処理水
を導入し、膜を透過した処理水を透過水室から得る膜ろ
過方法であって、前記原水室の両端部に被処理水を導入
または排出する一対の原水側開口部が設けられ、前記透
過水室に逆洗水を導入し、原水室の前記原水側開口部の
いずれからでも逆洗排水を排出することが可能であり、
所定期間のろ過工程終了後、前記原水室の一方の原水側
開口部を開、他方の原水側開口部を閉として、一方の原
水側開口部から逆洗排水を排出して第1逆洗工程を実施
し、この第1逆洗工程の終了後、ろ過工程に戻り、所定
期間のろ過工程終了後、前記原水室の前記他方の原水側
開口部を開、前記一方の開口部を閉として、前記他方の
原水側開口部から逆洗排水を排出して第2逆洗工程を実
施し、この第2逆洗工程の終了後、ろ過工程に戻り、ろ
過工程を挟んで、第1逆洗工程と、第2逆洗工程を繰り
返すことを特徴とする。 【0011】このように、本発明によれば、膜モジュー
ルの一方の原水側開口部から逆洗排水を排出する第1逆
洗と、膜モジュールの他方の原水側開口部から逆洗排水
を排出する第2逆洗を、ろ過工程を間に挟んで交互に実
施する。これによって、一度の逆洗によって確実に洗浄
できる膜面積は若干少なくなるが、かなりの逆洗効果が
得られる。そして、2つの逆洗を切り替えて交互に実施
することにより、一度の逆洗によって膜モジュール全体
の洗浄を実施する従来の方法に比較して、逆洗使用水
量、逆洗時間を半分にすることができる。従って、装置
全体の回収率と稼働効率が向上し、結果的に膜ろ過装置
の造水コストや設備費を削減することが可能となる。 【0012】 【発明の実施の形態】以下に、図面を参照して本発明の
実施の形態を詳細に説明する。 【0013】図1〜図3は、本発明の実施の形態を説明
するための膜ろ過装置の概略図であり、図1はろ過工
程、図2は第1逆洗工程、図3は第2逆洗工程を示して
いる。 【0014】原水槽1は、被処理水を貯留するタンクで
あり、河川水、地下水、排水など各種の被処理水が流入
貯留される。原水槽1には、加圧ポンプ2の吸い込み側
が接続され、加圧ポンプ2の吐き出し側は、バルブ3を
介し、膜モジュール4に接続されている。この膜モジュ
ール4は、いわゆる内圧式中空糸膜モジュールを模式的
に示したもので、内部の中空糸状ろ過膜41によって原
水室42と透過水室43とに仕切られている。なお、図
1〜図3においては、便宜上、中空糸状ろ過膜41を1
本だけ示してあるが、実際のモジュールにおいては中空
糸状ろ過膜が多数本装着されている。さらに、原水室4
2には、膜モジュール4の一端側(図における下端側)
の第1の原水側開口部44と、他端側(図における上端
側)の第2原水側開口部45が設けられており、加圧ポ
ンプ2からの配管は、バルブ3を介し、第1原水側開口
部44に接続されている。透過水室43には透過水側開
口46が設けられており、この透過水側開口46は、バ
ルブ5を介してろ過水槽6が接続されている。また、ろ
過水槽6には、逆洗ポンプ7の吸い込み側が接続されて
おり、逆洗ポンプ7の吐き出し側は、膜モジュール4の
透過水側開口46と、バルブ5の中間部の配管に接続さ
れている。また、膜モジュール4の原水側開口部44と
バルブ3との中間部の配管には、逆洗排水排出用のバル
ブ9が接続されており、膜モジュール4の原水側開口部
45には、逆洗排水排出用のバルブ10が接続されてい
る。 【0015】なお、図示は省略したが、バルブ3、5、
8、9、10、加圧ポンプ2、逆洗ポンプ7を制御する
制御装置を有しており、制御装置がろ過工程、第1、2
逆洗工程への移行を制御する。 【0016】図1は、ろ過工程時のフローを示したもの
で、太線によって、ろ過工程時のフローチャートを示し
ている。このろ過工程では、図において白抜きで示され
ているバルブ3、5が開、黒塗りで示されているバルブ
8、9、10が閉、加圧ポンプ2が運転、逆洗ポンプ7
が停止状態である。 【0017】被処理水は、原水槽1から、加圧ポンプ2
によりバルブ3を介して、膜モジュール4の原水室42
へ供給される。膜モジュール4の中空糸状ろ過膜41を
透過した透過水は、透過水室43の透過水側開口46か
らバルブ5を介し、ろ過水槽6へ送られる。なお、図1
において矢印は中空糸状ろ過膜41を透過した透過水の
流れを示している。 【0018】このろ過工程を一定時間実施した場合に
は、第1逆洗工程(下部逆洗)に入る。第1逆洗工程に
おけるフローを図2に示す。図2の第1逆洗工程では、
加圧ポンプ2は停止し、バルブ3、5、10が閉、バル
ブ8、バルブ9が開となる。 【0019】この状態で、逆洗用ポンプ7が起動し、ろ
過水をろ過水槽6からバルブ8を介して、膜モジュール
4の透過水室43へ逆流させ、中空糸状ろ過膜41に透
過室43側から原水室42側に逆洗水を透過させ、中空
糸状ろ過膜41の逆洗を行う。逆洗排水は膜モジュール
下端よりバルブ9を介して排出される。なお、図2にお
いて矢印は逆洗水の流れを示している。この図2の逆洗
状態では、中空糸状ろ過膜41を透過して中空糸の内部
に流入した逆洗水は、すべて下端に設けられた原水側開
口部44から排出される。従って、中空糸状ろ過膜41
の内部では、中空糸の下側ほど流速が大きくなってい
る。従って、中空糸状ろ過膜41の内部表面上の固形物
は、下側ほど除去されやすい状態になっている。従っ
て、膜モジュール4の下部分が十分洗浄されるが、上部
分には十分洗浄が行われない部分が生じやすい。 【0020】図2の第1逆洗工程が終了した後、図1の
ろ過運転工程へ復帰し、ろ過運転を行う。そして、所定
時間が経過した場合には、第2逆洗工程(上部逆洗)に
入る。この第2逆洗工程のフローを図3に示す。第2逆
洗工程では、加圧ポンプ2は停止し、バルブ3、バルブ
5、バルブ9が閉、バルブ8、バルブ10が開とする。 【0021】この状態で、逆洗用ポンプ7が起動し、ろ
過水をろ過水槽6からバルブ8を介して、膜モジュール
4の透過水室43へ逆流させ、中空糸状ろ過膜41に透
過室43側から原水室42側に逆洗水を透過させ、中空
糸状ろ過膜41の逆洗を行う。逆洗排水は膜モジュール
上端よりバルブ10を介して排出される。なお、図3に
おいて、矢印は図2の場合と同じく逆洗水の流れを示し
ている。この図3の逆洗状態では、中空糸状ろ過膜41
を透過した逆洗水は、すべて上端に設けられた原水側開
口部45から排出される。従って、中空糸状ろ過膜41
の内部では、中空糸の上側ほど流速が大きくなってい
る。従って、中空糸状ろ過膜41の内部表面上の固形物
は、上側ほど除去されやすい状態になっている。従っ
て、膜モジュール4の上部分が十分洗浄されるが、下部
分には十分洗浄が行われない部分が生じやすい。図3の
第2逆洗工程が終了した後、図1のろ過運転工程へ復帰
し、ろ過運転を行う。 【0022】本実施形態では、このようなろ過工程→第
1逆洗工程(下部逆洗)→ろ過工程→第2逆洗工程(上
部逆洗)→・・・・・という工程を繰り返す。このよう
な逆洗によって、中空糸状ろ過膜41の各端部は、2回
の逆洗工程の中の1回は、十分に洗浄される。そこで、
従来のように毎回両方向の逆洗を行うのと同等の逆洗効
果を得ることができる。 【0023】そして、一度に膜モジュール全体の洗浄を
実施する従来の方法に比較して、逆洗使用水量、逆洗時
間を半分にして安定運転をすることができる。従って、
装置全体の回収率と稼働効率が向上し、結果的に膜ろ過
装置の造水コストや設備費を削減することが可能とな
る。 【0024】なお、図に示した装置は本発明の実施の形
態の一例を示すものであって、本発明はその要旨を越え
ない限り、図示の形態に限定されるものではない。 【0025】膜モジュール4の形状には、中空糸膜、管
状膜、モノリス型、プリーツ型、平膜などがあり、逆洗
可能な分離膜であれば、いずれの形状のものでも用いる
ことができるが、好ましくは逆洗の容易である中空糸
膜、モノリス型、管状膜が適用される。 【0026】ろ過膜41の素材には、ポリアクリロニト
リル、ポリスルフォン、ポリフッ化ビニリデン、ポリプ
ロピレン、ポリエチレン、酢酸セルロース、セラミッ
ク、金属など分離膜に用いられているあらゆる素材が使
用可能である。 【0027】膜の分離孔径はその処理用途によって、様
々なものが使用可能であるが、通常は分画分子量数万程
度から分離孔径数μmの分離膜が適用され、好ましくは
分画分子量13,000から分離孔径3μmの範囲の分
離膜が適用される。 【0028】本発明の被処理水は、特に限定されるもの
ではなく、河川水、湖沼水、地下水、工業用水、上水、
各種排水に適用可能である。 【0029】本発明の実施の形態では、分離膜を一つの
単体として図示したが、本発明は分離膜を複数本並列で
並べ一組とするような分離膜ユニットとした装置にも適
用可能である。 【0030】膜モジュール4の通水方式は、実施の形態
ではデッドエンドろ過として示したが、クロスフローろ
過への適用も可能である。例えば、ろ過工程において、
バルブ10を開として、第1原水側開口部44から流入
した原水の一部を第2原水側開口部45から流出させて
原水槽1に戻すことによって、クロスフローろ過が行
え、第1、第2逆洗工程は上述の通りでよい。 【0031】膜モジュール4のろ過工程から逆洗工程へ
の移行は、一般に時間設定されていることが多いが、膜
モジュール4の膜間差圧上昇や原水濁度負荷、積算ろ過
水量などいかなる指標も逆洗工程への移行条件に適用す
ることができる。 【0032】また、本発明の実施形態では膜モジュール
4への送水や逆洗を加圧ポンプによるものとして図示し
たが、水頭圧などを利用して送水することも可能であ
る。 【0033】さらに、膜モジュール4からの逆洗排水の
排出は、膜モジュール下部、上部に設置した連通管とバ
ルブを介して実施するものとして図示したが、膜モジュ
ール4から効率的に排水ができる手法で、発明の主旨に
合えばいかなる方法も採用可能である。 【0034】 【実施例】以下に実施例および比較のための従来例を挙
げて本発明をより具体的に説明する。 【0035】本発明の実施の形態で述べた装置を3台用
いて、河川表流水より上水を得る目的で、従来の逆洗方
法(従来例)と本発明による逆洗方法(実施例)で同時
並列運転を実施し、膜モジュールの運転安定性、回収
率、稼働率を比較した。 【0036】実施例の装置では、発明の実施の形態で述
べた図2、図3に示した第1、第2の逆洗工程を図1の
ろ過工程を挟んで交互に行う運転を実施した。すなわ
ち、運転状況はろ過(図1)→第1逆洗(図2)→ろ過
(図1)→第2逆洗(図3)→ろ過(図1)→第1逆洗
(図2)→ろ過(図1)→第2逆洗(図3)→・・・・
・の工程を繰り返した。 【0037】従来例の装置では、発明の実施の形態で述
べた図1のろ過工程の完了後に図2、図3で述べた逆洗
工程を続けて行う運転を実施した。運転状態は、ろ過
(図1)→第1逆洗(図2)→第2逆洗(図3)→ろ過
(図1)→第1逆洗(図2)→第2逆洗(図3)→ろ過
(図1)・・・・・の工程を繰り返した。 【0038】両装置のろ過膜には、酢酸セルロース製、
UF中空糸膜、分画分子量150,000、有効膜面積
5mの製品を用いた。 【0039】両装置の運転条件は、それぞれ表1に示す
ごとく設定した。 【表1】【0040】表1に示すように、従来例の運転条件は2
条件とした。すなわち、従来例1では第1逆洗および第
2逆洗の時間を実施例の条件と同様にし、従来例2で
は、実施例の運転条件と回収率が同じになるように第1
逆洗および第2逆洗の時間を半分とした。 【0041】図4に運転結果を示す。実施例、従来例1
を比較すると、約6ヶ月の運転期間で両方ともに、膜モ
ジュールの膜間差圧上昇などはみられず、安定した運転
を維持できた。一方、実施例による運転の方が水回収率
と運転時間に占めるろ過時間の割合が高く、ランニング
コスト低減に効果があることが確認された。 【0042】次に、実施例と、従来例2とを比較する
と、従来例2では、運転当初から膜モジュールの膜間差
圧上昇が認められ、約3ヶ月の運転期間で、連続運転が
不可能となるまで、膜モジュールの閉塞が進んでしまっ
た。この結果から、実施例によれば水回収率を従来例2
と同一としながら、逆洗効果を上昇して、安定運転期間
を延長できることが確認された。 【0043】 【発明の効果】本発明によれば、2種類の逆洗を連続し
て行うことで一度に膜モジュール全体の洗浄を実施する
従来の方法に比較して、逆洗使用水量、逆洗時間を半分
にして同様の逆洗効果を得て安定して運転を継続するこ
とができる。従って、装置全体の回収率と稼働効率が向
上し、結果的に膜ろ過装置の造水コストや設備費を削減
することが可能となる。
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a membrane filtration method using a filtration membrane such as a microfiltration membrane or an ultrafiltration membrane to obtain filtered water that has passed through the filtration membrane. . 2. Description of the Related Art Membrane filtration devices are used for various industrial water treatments and wastewater treatments because of their advantages such as easy operation and stability of treated water.
Many have been introduced for water purification and other purposes. [0003] In such a membrane filtration device, filtration is performed by a filtration membrane module divided into a raw water chamber and a permeated water chamber by a microfiltration membrane or an ultrafiltration membrane. Insoluble and soluble substances in the treated water accumulate on the filter membrane surface, and the amount of filtered water (treated water) decreases. For this reason, in the membrane filtration device, the backwashing step of the filtration membrane module is performed when the pressure loss (the transmembrane pressure difference) in the filtration membrane is equal to or more than a predetermined value or when the filtration is performed for a certain period of time. As a result, the filtration capacity of the membrane filtration device is restored, and stable filtration processing can be continued. [0004] In this backwashing of the filtration membrane module, clear water such as treated water for membrane filtration is introduced into the membrane module in a direction opposite to the direction of filtration water flow, and clogging substances deposited on the surface of the filtration membrane are discharged outside the membrane module. Adopt the method of discharging. [0005] Many methods have been proposed for backwashing the membrane module for the purpose of efficiently discharging clogged substances from inside the membrane module. For example, Patent 272
No. 4673 and JP-A-8-299767,
In order to discharge clogging substances from the entire membrane module to the outside of the module, a method of alternately discharging backwash wastewater from both end faces of the membrane module has been proposed. Also, Japanese Patent Application Laid-Open
In JP-A-54789, there is proposed a backwashing method in which the supply of the water to be treated to the membrane module and the backwashing of the membrane module are performed at the same time. [0006] As described above, various backwashing methods have been proposed. In each of these methods, a clogging substance deposited on the film surface by one backwashing is proposed. The purpose of this is to discharge as much as possible out of the module. [0007] However, in these methods, the amount of water used for cleaning is increased, and the time spent for cleaning is further increased. As a result, the water recovery rate is reduced, the operation efficiency of the apparatus is reduced, and the cost of fresh water is reduced. There is a problem that increases. The present invention proposes a membrane filtration method which reduces the amount of water and time required for backwashing a membrane module and achieves a membrane module cleaning effect comparable to the conventional one. Means for Solving the Problems The inventors of the present invention have conducted various studies on backwashing of a membrane module. As a result, half of the entire membrane module is alternately backwashed so that the membrane module can be washed at a time. It was found that the same effect as the conventional backwash method of discharging the entire clogging substance was obtained, and that the amount of backwash water used at one time was sufficient for half the amount required to wash the entire membrane module. And arrived at the present invention. That is, the present invention relates to a membrane filtration method in which water to be treated is introduced into a raw water chamber of a membrane module partitioned into a raw water chamber and a permeated water chamber by a membrane, and treated water permeated through the membrane is obtained from the permeated water chamber. A pair of raw water side openings for introducing or discharging treated water are provided at both ends of the raw water chamber, and backwash water is introduced into the permeated water chamber, and any of the raw water side openings of the raw water chamber is provided. It is possible to discharge backwash wastewater from
After the filtration step for a predetermined period, one raw water side opening of the raw water chamber is opened, the other raw water side opening is closed, and backwash drainage is discharged from one raw water side opening to perform a first backwashing step. After the completion of the first backwash step, return to the filtration step, after the filtration step for a predetermined period, open the other raw water side opening of the raw water chamber, close the one opening, The backwash drainage is discharged from the other raw water side opening to perform a second backwashing step. After the second backwashing step is completed, the process returns to the filtration step, and after the filtration step, the first backwashing step is performed. And repeating the second backwashing step. As described above, according to the present invention, the first backwash for discharging backwash wastewater from one raw water side opening of the membrane module, and the backwash wastewater discharge from the other raw water side opening of the membrane module. The second backwashing is performed alternately with a filtration step interposed therebetween. As a result, although the film area that can be reliably washed by one backwashing is slightly reduced, a considerable backwashing effect can be obtained. By alternately performing two backwashing steps, the amount of water used for backwashing and the time required for backwashing are reduced by half compared to the conventional method in which the entire membrane module is washed by one backwashing operation. Can be. Accordingly, the recovery rate and operation efficiency of the entire apparatus are improved, and as a result, it is possible to reduce fresh water production costs and equipment costs of the membrane filtration apparatus. Embodiments of the present invention will be described below in detail with reference to the drawings. 1 to 3 are schematic diagrams of a membrane filtration device for explaining an embodiment of the present invention. FIG. 1 shows a filtration step, FIG. 2 shows a first backwashing step, and FIG. The backwash process is shown. The raw water tank 1 is a tank for storing the water to be treated, and receives and stores various kinds of water to be treated such as river water, groundwater, and drainage. A suction side of a pressure pump 2 is connected to the raw water tank 1, and a discharge side of the pressure pump 2 is connected to a membrane module 4 via a valve 3. The membrane module 4 schematically shows a so-called internal pressure type hollow fiber membrane module, and is divided into a raw water chamber 42 and a permeated water chamber 43 by an internal hollow fiber filtration membrane 41. 1 to 3, for convenience, the hollow fiber filter membrane 41 is
Although only a book is shown, in an actual module, many hollow fiber filter membranes are mounted. In addition, raw water room 4
2 is one end side of the membrane module 4 (the lower end side in the figure)
A first raw water side opening 44 and a second raw water side opening 45 at the other end (upper end side in the figure) are provided. The piping from the pressure pump 2 is It is connected to the raw water side opening 44. The permeated water chamber 43 is provided with a permeated water side opening 46, and the permeated water side opening 46 is connected to the filtered water tank 6 via the valve 5. Further, the suction side of the backwash pump 7 is connected to the filtered water tank 6, and the discharge side of the backwash pump 7 is connected to the permeated water side opening 46 of the membrane module 4 and a pipe in the middle of the valve 5. ing. A backwash drain discharge valve 9 is connected to a pipe at an intermediate portion between the raw water side opening 44 of the membrane module 4 and the valve 3. A valve 10 for washing and draining is connected. Although not shown, the valves 3, 5,
8, 9 and 10, a control device for controlling the pressurizing pump 2 and the backwashing pump 7;
Control the transition to the backwash step. FIG. 1 shows a flow at the time of the filtration step, and a thick line shows a flowchart at the time of the filtration step. In this filtration step, the valves 3 and 5 shown in white in the figure are opened, the valves 8, 9 and 10 shown in black are closed, the pressure pump 2 is operated, and the backwash pump 7 is operated.
Is in a stopped state. The water to be treated is supplied from a raw water tank 1 to a pressure pump 2
Through the valve 3 and the raw water chamber 42 of the membrane module 4
Supplied to The permeated water that has passed through the hollow fiber filtration membrane 41 of the membrane module 4 is sent from the permeated water side opening 46 of the permeated water chamber 43 to the filtered water tank 6 via the valve 5. FIG.
In, arrows indicate the flow of permeated water that has passed through the hollow fiber filtration membrane 41. If this filtration step has been performed for a certain period of time, a first backwashing step (lower backwashing) is started. FIG. 2 shows a flow in the first backwashing step. In the first backwashing step of FIG.
The pressurizing pump 2 stops, the valves 3, 5, and 10 are closed, and the valves 8 and 9 are opened. In this state, the backwashing pump 7 is started, and the filtered water is returned from the filtered water tank 6 through the valve 8 to the permeated water chamber 43 of the membrane module 4, and the hollow fiber filter membrane 41 is passed through the permeated chamber 43. The backwash water is transmitted from the side to the raw water chamber 42 side to backwash the hollow fiber filtration membrane 41. The backwash drainage is discharged from the lower end of the membrane module via the valve 9. In FIG. 2, arrows indicate the flow of backwash water. In the backwashing state of FIG. 2, all the backwash water that has passed through the hollow fiber filtration membrane 41 and flowed into the hollow fibers is discharged from the raw water side opening 44 provided at the lower end. Therefore, the hollow fiber filtration membrane 41
Inside, the flow velocity becomes higher toward the lower side of the hollow fiber. Therefore, the solid matter on the inner surface of the hollow fiber filtration membrane 41 is in a state where it is easily removed toward the lower side. Therefore, the lower part of the membrane module 4 is sufficiently cleaned, but the upper part is likely to have a part that is not sufficiently cleaned. After the first backwashing step of FIG. 2 is completed, the process returns to the filtering operation step of FIG. 1 to perform the filtering operation. Then, when a predetermined time has elapsed, a second backwashing step (upper backwashing) is started. FIG. 3 shows the flow of the second backwashing step. In the second backwashing step, the pressurizing pump 2 stops, the valves 3, 5, and 9 are closed, and the valves 8 and 10 are opened. In this state, the backwashing pump 7 is started, and the filtered water is returned from the filtered water tank 6 to the permeated water chamber 43 of the membrane module 4 via the valve 8, and the hollow fiber filter membrane 41 is passed through the permeated chamber 43. The backwash water is transmitted from the side to the raw water chamber 42 side to backwash the hollow fiber filtration membrane 41. The backwash drainage is discharged from the upper end of the membrane module via the valve 10. Note that, in FIG. 3, the arrows indicate the flow of the backwash water as in the case of FIG. In the backwashing state shown in FIG.
All of the backwash water that has passed through is discharged from the raw water side opening 45 provided at the upper end. Therefore, the hollow fiber filtration membrane 41
Inside, the flow velocity is higher toward the upper side of the hollow fiber. Therefore, the solid matter on the inner surface of the hollow fiber membrane 41 is more easily removed upward. Therefore, the upper part of the membrane module 4 is sufficiently cleaned, but the lower part is likely to have a part that is not sufficiently cleaned. After the second backwashing step in FIG. 3 is completed, the process returns to the filtration operation step in FIG. 1 and the filtration operation is performed. In the present embodiment, the steps of such a filtration step → first backwash step (lower backwash) → filtration step → second backwash step (upper backwash) →... Are repeated. By such backwashing, each end of the hollow fiber filtration membrane 41 is sufficiently washed once in two backwashing steps. Therefore,
It is possible to obtain the same backwashing effect as performing the backwashing in both directions each time as in the related art. [0023] Compared with the conventional method in which the entire membrane module is washed at once, the amount of water used for backwashing and the backwashing time can be reduced to half, and stable operation can be performed. Therefore,
The recovery rate and operation efficiency of the entire apparatus are improved, and as a result, it is possible to reduce fresh water production costs and equipment costs of the membrane filtration apparatus. The apparatus shown in the drawings is an example of an embodiment of the present invention, and the present invention is not limited to the illustrated form unless it exceeds the gist. The shape of the membrane module 4 includes a hollow fiber membrane, a tubular membrane, a monolith type, a pleated type, a flat membrane, and the like. Any separation membrane that can be backwashed can be used. However, a hollow fiber membrane, a monolith type, or a tubular membrane, which is easily backwashed, is preferably used. As the material of the filtration membrane 41, any material used for the separation membrane such as polyacrylonitrile, polysulfone, polyvinylidene fluoride, polypropylene, polyethylene, cellulose acetate, ceramic, metal, etc. can be used. The separation pore diameter of the membrane may be various depending on the application of the treatment. Usually, a separation membrane having a fractionation molecular weight of about tens of thousands to several μm is applied. A separation membrane having a separation pore diameter of 000 to 3 μm is applied. The water to be treated of the present invention is not particularly limited, and may be river water, lake water, groundwater, industrial water, clean water, or the like.
Applicable to various wastewater. In the embodiment of the present invention, the separation membrane is shown as a single unit, but the present invention is also applicable to an apparatus having a separation membrane unit in which a plurality of separation membranes are arranged in parallel to form one set. is there. Although the water flow system of the membrane module 4 is shown as dead-end filtration in the embodiment, it can be applied to cross-flow filtration. For example, in the filtration process,
By opening the valve 10 and letting a part of the raw water flowing from the first raw water side opening 44 flow out of the second raw water side opening 45 and returning it to the raw water tank 1, cross flow filtration can be performed. 2 The backwashing step may be as described above. The transition from the filtration step to the backwashing step of the membrane module 4 is generally set for a long time, but any index such as an increase in the transmembrane pressure of the membrane module 4, a raw water turbidity load, and an integrated filtered water amount is set. This can also be applied to the conditions for shifting to the backwashing step. In the embodiment of the present invention, the water supply and the backwash to the membrane module 4 are illustrated as being performed by the pressurized pump. However, the water can be supplied using the head pressure or the like. Further, the backwash drainage from the membrane module 4 is shown to be discharged through communication pipes and valves installed at the lower and upper portions of the membrane module, but the drainage can be efficiently performed from the membrane module 4. Any method can be adopted as long as it is in accordance with the gist of the invention. The present invention will be described more specifically below with reference to examples and conventional examples for comparison. A conventional backwashing method (conventional example) and a backwashing method according to the present invention (example) for the purpose of obtaining clean water from river surface water using three apparatuses described in the embodiment of the present invention. , The operation stability, the recovery rate and the operation rate of the membrane module were compared. In the apparatus of the embodiment, an operation was performed in which the first and second backwashing steps shown in FIGS. 2 and 3 described in the embodiment of the present invention were alternately performed with the filtration step of FIG. 1 interposed therebetween. . That is, the operation status is filtration (FIG. 1) → first backwash (FIG. 2) → filtration (FIG. 1) → second backwash (FIG. 3) → filtration (FIG. 1) → first backwash (FIG. 2) → Filtration (Fig. 1) → Second backwash (Fig. 3) →
Steps were repeated. In the conventional apparatus, an operation was carried out in which the backwashing step described with reference to FIGS. 2 and 3 was continued after the completion of the filtering step of FIG. 1 described in the embodiment of the invention. The operating conditions are as follows: filtration (FIG. 1) → first backwash (FIG. 2) → second backwash (FIG. 3) → filtration (FIG. 1) → first backwash (FIG. 2) → second backwash (FIG. 3) ) → filtration (FIG. 1). The filtration membranes of both devices were made of cellulose acetate,
A product having a UF hollow fiber membrane, a molecular weight cut off of 150,000, and an effective membrane area of 5 m was used. The operating conditions for both devices were set as shown in Table 1. [Table 1] As shown in Table 1, the operating conditions of the conventional example are 2
Conditions. That is, in the first conventional example, the first backwashing and the second backwashing time are set to be the same as the conditions of the embodiment, and in the second conventional example, the first backwashing and the second backwashing are performed so that the recovery rate is the same as that of the embodiment.
The time for the backwash and the second backwash was halved. FIG. 4 shows the operation results. Example, Conventional Example 1
In both cases, no increase in the transmembrane pressure of the membrane module and the like were observed during the operation period of about 6 months, and stable operation was maintained. On the other hand, it was confirmed that the operation according to the example had a higher water recovery rate and the ratio of the filtration time to the operation time, and was effective in reducing the running cost. Next, when the example and the conventional example 2 are compared, in the conventional example 2, an increase in the transmembrane pressure of the membrane module was recognized from the beginning of the operation, and continuous operation was not performed in the operation period of about 3 months. Until it became possible, the blocking of the membrane module had progressed. From these results, according to the embodiment, the water recovery rate was reduced by the conventional example 2.
It has been confirmed that the backwashing effect can be increased and the stable operation period can be extended while maintaining the same condition. According to the present invention, the amount of water used for backwashing and the amount of backwashing can be reduced as compared with the conventional method in which the whole membrane module is washed at once by continuously performing two types of backwashing. By reducing the washing time to half, the same backwash effect is obtained, and the operation can be continued stably. Accordingly, the recovery rate and operation efficiency of the entire apparatus are improved, and as a result, it is possible to reduce fresh water production costs and equipment costs of the membrane filtration apparatus.

【図面の簡単な説明】 【図1】 実施形態に係る膜ろ過装置の概略構成であっ
て、ろ過工程を示す図である。 【図2】 実施形態に係る膜ろ過装置の概略構成であっ
て、第1逆洗工程を示す図である。 【図3】 実施形態に係る膜ろ過装置の概略構成であっ
て、第2逆洗工程を示す図である。 【図4】 運転時間の経過に伴う膜間差圧の変化状態を
示す図である。 【符号の説明】 1 原水槽、2 加圧ポンプ、3,5,8,9,10
バルブ、4 膜モジュール、6 ろ過水槽、7 逆洗ポ
ンプ。
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a schematic configuration of a membrane filtration device according to an embodiment, showing a filtration step. FIG. 2 is a schematic configuration of a membrane filtration device according to an embodiment, showing a first backwashing step. FIG. 3 is a schematic configuration of a membrane filtration device according to an embodiment, showing a second backwashing step. FIG. 4 is a diagram showing a change state of a transmembrane pressure with a lapse of operation time. [Description of Signs] 1 Raw water tank, 2 Pressurizing pump, 3, 5, 8, 9, 10
Valve, 4 membrane module, 6 filtered water tank, 7 backwash pump.

フロントページの続き Fターム(参考) 4D006 GA06 GA07 HA02 KA61 KC03 KE24Q MA01 MA02 MA03 MA04 MC02 MC03 MC18 MC22 MC23 MC29 MC39 MC62 PB04 PB05 PB08 Continuation of front page    F term (reference) 4D006 GA06 GA07 HA02 KA61 KC03                       KE24Q MA01 MA02 MA03                       MA04 MC02 MC03 MC18 MC22                       MC23 MC29 MC39 MC62 PB04                       PB05 PB08

Claims (1)

【特許請求の範囲】 【請求項1】 膜によって原水室と透過水室に仕切られ
た膜モジュールの原水室に被処理水を導入し、膜を透過
した処理水を透過水室から得る膜ろ過方法であって、 前記原水室の両端部に被処理水を導入または排出する一
対の原水側開口部が設けられ、前記透過水室に逆洗水を
導入し、原水室の前記原水側開口部のいずれからでも逆
洗排水を排出することが可能であり、 所定期間のろ過工程終了後、前記原水室の一方の原水側
開口部を開、他方の原水側開口部を閉として、一方の原
水側開口部から逆洗排水を排出して第1逆洗工程を実施
し、 この第1逆洗工程の終了後、ろ過工程に戻り、 所定期間のろ過工程終了後、前記原水室の前記他方の原
水側開口部を開、前記一方の開口部を閉として、前記他
方の原水側開口部から逆洗排水を排出して第2逆洗工程
を実施し、 この第2逆洗工程の終了後、ろ過工程に戻り、 ろ過工程を挟んで、第1逆洗工程と、第2逆洗工程を繰
り返すことを特徴とする膜ろ過方法。
Claims: 1. A membrane filter for introducing treated water into a raw water chamber of a membrane module partitioned by a membrane into a raw water chamber and a permeated water chamber, and obtaining treated water that has passed through the membrane from the permeated water chamber. A method, wherein a pair of raw water side openings for introducing or discharging treated water is provided at both ends of the raw water chamber, and backwash water is introduced into the permeated water chamber, and the raw water side opening of the raw water chamber is provided. It is possible to discharge the backwash wastewater from any of the following. After the filtration step for a predetermined period of time, one raw water side opening of the raw water chamber is opened, the other raw water side opening is closed, and one raw water The first backwashing step is performed by discharging the backwash wastewater from the side opening. After the first backwashing step is completed, the process returns to the filtration step. After the filtration step is completed for a predetermined period, the other of the raw water chamber is removed. Open the raw water side opening, close the one opening, and open the other raw water side opening. The second backwashing step is performed by discharging the backwash wastewater. After the second backwashing step is completed, the process returns to the filtration step. With the filtration step interposed, the first backwashing step and the second backwashing step are performed. A membrane filtration method characterized by repeating.
JP2002074550A 2002-03-18 2002-03-18 Membrane filtration method Pending JP2003266072A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002074550A JP2003266072A (en) 2002-03-18 2002-03-18 Membrane filtration method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002074550A JP2003266072A (en) 2002-03-18 2002-03-18 Membrane filtration method

Publications (1)

Publication Number Publication Date
JP2003266072A true JP2003266072A (en) 2003-09-24

Family

ID=29203920

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002074550A Pending JP2003266072A (en) 2002-03-18 2002-03-18 Membrane filtration method

Country Status (1)

Country Link
JP (1) JP2003266072A (en)

Cited By (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006029456A1 (en) * 2004-09-14 2006-03-23 Siemens Water Technologies Corp. Methods and apparatus for removing solids from a membrane module
US8182687B2 (en) 2002-06-18 2012-05-22 Siemens Industry, Inc. Methods of minimising the effect of integrity loss in hollow fibre membrane modules
US8268176B2 (en) 2003-08-29 2012-09-18 Siemens Industry, Inc. Backwash
US8287743B2 (en) 2007-05-29 2012-10-16 Siemens Industry, Inc. Membrane cleaning with pulsed airlift pump
US8293098B2 (en) 2006-10-24 2012-10-23 Siemens Industry, Inc. Infiltration/inflow control for membrane bioreactor
US8318028B2 (en) 2007-04-02 2012-11-27 Siemens Industry, Inc. Infiltration/inflow control for membrane bioreactor
US8377305B2 (en) 2004-09-15 2013-02-19 Siemens Industry, Inc. Continuously variable aeration
US8382981B2 (en) 2008-07-24 2013-02-26 Siemens Industry, Inc. Frame system for membrane filtration modules
US8496828B2 (en) 2004-12-24 2013-07-30 Siemens Industry, Inc. Cleaning in membrane filtration systems
US8512568B2 (en) 2001-08-09 2013-08-20 Siemens Industry, Inc. Method of cleaning membrane modules
US8518256B2 (en) 2001-04-04 2013-08-27 Siemens Industry, Inc. Membrane module
US8758622B2 (en) 2004-12-24 2014-06-24 Evoqua Water Technologies Llc Simple gas scouring method and apparatus
US8758621B2 (en) 2004-03-26 2014-06-24 Evoqua Water Technologies Llc Process and apparatus for purifying impure water using microfiltration or ultrafiltration in combination with reverse osmosis
US8790515B2 (en) 2004-09-07 2014-07-29 Evoqua Water Technologies Llc Reduction of backwash liquid waste
US8808540B2 (en) 2003-11-14 2014-08-19 Evoqua Water Technologies Llc Module cleaning method
US8858796B2 (en) 2005-08-22 2014-10-14 Evoqua Water Technologies Llc Assembly for water filtration using a tube manifold to minimise backwash
US8956464B2 (en) 2009-06-11 2015-02-17 Evoqua Water Technologies Llc Method of cleaning membranes
US9022224B2 (en) 2010-09-24 2015-05-05 Evoqua Water Technologies Llc Fluid control manifold for membrane filtration system
US9533261B2 (en) 2012-06-28 2017-01-03 Evoqua Water Technologies Llc Potting method
US9604166B2 (en) 2011-09-30 2017-03-28 Evoqua Water Technologies Llc Manifold arrangement
US9675938B2 (en) 2005-04-29 2017-06-13 Evoqua Water Technologies Llc Chemical clean for membrane filter
WO2017135162A1 (en) * 2016-02-05 2017-08-10 水ing株式会社 Water treatment device, method for operating water treatment device, and water treatment method
US9764288B2 (en) 2007-04-04 2017-09-19 Evoqua Water Technologies Llc Membrane module protection
US9764289B2 (en) 2012-09-26 2017-09-19 Evoqua Water Technologies Llc Membrane securement device
US9815027B2 (en) 2012-09-27 2017-11-14 Evoqua Water Technologies Llc Gas scouring apparatus for immersed membranes
US9914097B2 (en) 2010-04-30 2018-03-13 Evoqua Water Technologies Llc Fluid flow distribution device
US9925499B2 (en) 2011-09-30 2018-03-27 Evoqua Water Technologies Llc Isolation valve with seal for end cap of a filtration system
US9962865B2 (en) 2012-09-26 2018-05-08 Evoqua Water Technologies Llc Membrane potting methods
US10322375B2 (en) 2015-07-14 2019-06-18 Evoqua Water Technologies Llc Aeration device for filtration system
US10427102B2 (en) 2013-10-02 2019-10-01 Evoqua Water Technologies Llc Method and device for repairing a membrane filtration module

Cited By (46)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8518256B2 (en) 2001-04-04 2013-08-27 Siemens Industry, Inc. Membrane module
US8512568B2 (en) 2001-08-09 2013-08-20 Siemens Industry, Inc. Method of cleaning membrane modules
US8182687B2 (en) 2002-06-18 2012-05-22 Siemens Industry, Inc. Methods of minimising the effect of integrity loss in hollow fibre membrane modules
US8268176B2 (en) 2003-08-29 2012-09-18 Siemens Industry, Inc. Backwash
US8808540B2 (en) 2003-11-14 2014-08-19 Evoqua Water Technologies Llc Module cleaning method
US8758621B2 (en) 2004-03-26 2014-06-24 Evoqua Water Technologies Llc Process and apparatus for purifying impure water using microfiltration or ultrafiltration in combination with reverse osmosis
US8790515B2 (en) 2004-09-07 2014-07-29 Evoqua Water Technologies Llc Reduction of backwash liquid waste
WO2006029456A1 (en) * 2004-09-14 2006-03-23 Siemens Water Technologies Corp. Methods and apparatus for removing solids from a membrane module
US8506806B2 (en) 2004-09-14 2013-08-13 Siemens Industry, Inc. Methods and apparatus for removing solids from a membrane module
US8377305B2 (en) 2004-09-15 2013-02-19 Siemens Industry, Inc. Continuously variable aeration
US8496828B2 (en) 2004-12-24 2013-07-30 Siemens Industry, Inc. Cleaning in membrane filtration systems
US8758622B2 (en) 2004-12-24 2014-06-24 Evoqua Water Technologies Llc Simple gas scouring method and apparatus
US9675938B2 (en) 2005-04-29 2017-06-13 Evoqua Water Technologies Llc Chemical clean for membrane filter
US8894858B1 (en) 2005-08-22 2014-11-25 Evoqua Water Technologies Llc Method and assembly for water filtration using a tube manifold to minimize backwash
US8858796B2 (en) 2005-08-22 2014-10-14 Evoqua Water Technologies Llc Assembly for water filtration using a tube manifold to minimise backwash
US8293098B2 (en) 2006-10-24 2012-10-23 Siemens Industry, Inc. Infiltration/inflow control for membrane bioreactor
US8623202B2 (en) 2007-04-02 2014-01-07 Siemens Water Technologies Llc Infiltration/inflow control for membrane bioreactor
US8318028B2 (en) 2007-04-02 2012-11-27 Siemens Industry, Inc. Infiltration/inflow control for membrane bioreactor
US9764288B2 (en) 2007-04-04 2017-09-19 Evoqua Water Technologies Llc Membrane module protection
US8372276B2 (en) 2007-05-29 2013-02-12 Siemens Industry, Inc. Membrane cleaning with pulsed airlift pump
US8840783B2 (en) 2007-05-29 2014-09-23 Evoqua Water Technologies Llc Water treatment membrane cleaning with pulsed airlift pump
US8622222B2 (en) 2007-05-29 2014-01-07 Siemens Water Technologies Llc Membrane cleaning with pulsed airlift pump
US8287743B2 (en) 2007-05-29 2012-10-16 Siemens Industry, Inc. Membrane cleaning with pulsed airlift pump
US10507431B2 (en) 2007-05-29 2019-12-17 Evoqua Water Technologies Llc Membrane cleaning with pulsed airlift pump
US9206057B2 (en) 2007-05-29 2015-12-08 Evoqua Water Technologies Llc Membrane cleaning with pulsed airlift pump
US9573824B2 (en) 2007-05-29 2017-02-21 Evoqua Water Technologies Llc Membrane cleaning with pulsed airlift pump
US9023206B2 (en) 2008-07-24 2015-05-05 Evoqua Water Technologies Llc Frame system for membrane filtration modules
US8382981B2 (en) 2008-07-24 2013-02-26 Siemens Industry, Inc. Frame system for membrane filtration modules
US8956464B2 (en) 2009-06-11 2015-02-17 Evoqua Water Technologies Llc Method of cleaning membranes
US10441920B2 (en) 2010-04-30 2019-10-15 Evoqua Water Technologies Llc Fluid flow distribution device
US9914097B2 (en) 2010-04-30 2018-03-13 Evoqua Water Technologies Llc Fluid flow distribution device
US9022224B2 (en) 2010-09-24 2015-05-05 Evoqua Water Technologies Llc Fluid control manifold for membrane filtration system
US9630147B2 (en) 2010-09-24 2017-04-25 Evoqua Water Technologies Llc Fluid control manifold for membrane filtration system
US10391432B2 (en) 2011-09-30 2019-08-27 Evoqua Water Technologies Llc Manifold arrangement
US9604166B2 (en) 2011-09-30 2017-03-28 Evoqua Water Technologies Llc Manifold arrangement
US11065569B2 (en) 2011-09-30 2021-07-20 Rohm And Haas Electronic Materials Singapore Pte. Ltd. Manifold arrangement
US9925499B2 (en) 2011-09-30 2018-03-27 Evoqua Water Technologies Llc Isolation valve with seal for end cap of a filtration system
US9533261B2 (en) 2012-06-28 2017-01-03 Evoqua Water Technologies Llc Potting method
US9962865B2 (en) 2012-09-26 2018-05-08 Evoqua Water Technologies Llc Membrane potting methods
US9764289B2 (en) 2012-09-26 2017-09-19 Evoqua Water Technologies Llc Membrane securement device
US9815027B2 (en) 2012-09-27 2017-11-14 Evoqua Water Technologies Llc Gas scouring apparatus for immersed membranes
US10427102B2 (en) 2013-10-02 2019-10-01 Evoqua Water Technologies Llc Method and device for repairing a membrane filtration module
US11173453B2 (en) 2013-10-02 2021-11-16 Rohm And Haas Electronic Materials Singapores Method and device for repairing a membrane filtration module
US10322375B2 (en) 2015-07-14 2019-06-18 Evoqua Water Technologies Llc Aeration device for filtration system
JPWO2017135162A1 (en) * 2016-02-05 2018-12-06 水ing株式会社 Water treatment apparatus and water treatment method
WO2017135162A1 (en) * 2016-02-05 2017-08-10 水ing株式会社 Water treatment device, method for operating water treatment device, and water treatment method

Similar Documents

Publication Publication Date Title
JP2003266072A (en) Membrane filtration method
JP4883329B2 (en) Liquid filtration systems and methods
KR100860955B1 (en) Membrane filter cleaning method and installation for implementing same
JPH06277664A (en) Method and apparatus for clarifying surface flowing water with membrane
CN102123784A (en) Improved membrane system backwash energy efficiency
JPH03154620A (en) Membrane separating device
US6692786B1 (en) Beer clarification process by crossflow microfiltration
JP2007296500A (en) Membrane separation apparatus and membrane filtration method
JP5437278B2 (en) Water purifier and operation method thereof
JP6618708B2 (en) Method for operating hollow fiber membrane module and filtration device
JP3488535B2 (en) Chemical solution cleaning method for membrane in immersion type membrane filtration device and chemical solution cleaning device
JP2012176343A (en) Membrane filtering device
JP4454922B2 (en) Control method of filtration apparatus using hollow fiber type separation membrane
JP3943748B2 (en) Cleaning method for membrane filtration equipment
JP6653154B2 (en) Cleaning method and filtration device for hollow fiber membrane module
JP3358300B2 (en) Filtration method and filtration device
JP3264794B2 (en) Solid-liquid separation device and its cleaning method
JPH0724265A (en) Membrane filtration method
JP4678757B2 (en) Water treatment apparatus and operation method thereof
JP2014188469A (en) Filtration method, and filtration apparatus and water treatment system using the same
JP2003245665A (en) Water treatment device
JP2002126460A (en) Membrane filter apparatus
WO2017126348A1 (en) Filtration apparatus operation method and filtration apparatus
JP3514821B2 (en) Operating method of water purification system
JP4423525B2 (en) Hollow fiber type selectively permeable membrane element

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20041007

Free format text: JAPANESE INTERMEDIATE CODE: A621

RD04 Notification of resignation of power of attorney

Effective date: 20041007

Free format text: JAPANESE INTERMEDIATE CODE: A7424

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060628

A131 Notification of reasons for refusal

Effective date: 20060711

Free format text: JAPANESE INTERMEDIATE CODE: A131

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20061121