JP2003255288A - Optical attenuator modulator - Google Patents

Optical attenuator modulator

Info

Publication number
JP2003255288A
JP2003255288A JP2002054692A JP2002054692A JP2003255288A JP 2003255288 A JP2003255288 A JP 2003255288A JP 2002054692 A JP2002054692 A JP 2002054692A JP 2002054692 A JP2002054692 A JP 2002054692A JP 2003255288 A JP2003255288 A JP 2003255288A
Authority
JP
Japan
Prior art keywords
magnetic field
electromagnet
optical attenuator
yoke
rotation angle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002054692A
Other languages
Japanese (ja)
Other versions
JP4093533B2 (en
Inventor
Teruhisa Sahashi
輝久 佐橋
Isao Kojima
功 児島
Tsugio Tokumasu
次雄 徳増
Kiyoto Ono
清人 小野
Yoshio Matsuo
良夫 松尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
FDK Corp
Original Assignee
FDK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by FDK Corp filed Critical FDK Corp
Priority to JP2002054692A priority Critical patent/JP4093533B2/en
Priority to PCT/JP2003/002150 priority patent/WO2003073156A1/en
Publication of JP2003255288A publication Critical patent/JP2003255288A/en
Application granted granted Critical
Publication of JP4093533B2 publication Critical patent/JP4093533B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/09Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on magneto-optical elements, e.g. exhibiting Faraday effect
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2203/00Function characteristic
    • G02F2203/48Variable attenuator

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a magneto-optical device which has a variable attenuation function and a light modulation function and is capable of modulation with an electric signal of ≥10 kHz frequency. <P>SOLUTION: An optical attenuator modulator is provided with: a Faraday rotation angle varying device 18 which varies the rotation angle of the plane of polarization of light transmitting a Faraday element 14 by a variable magnetic field generated by an electromagnetic 16; and a polarizer 12 and an analyzer 20 which are arranged before and after of the device 18 on the optical axis, and the electromagnet has a yoke 24 made of a soft magnetic ferrite, and a high frequency modulation signal is supplied to a coil 26 wound around the yoke. It is preferable that a fixed magnetic field generated by permanent magnets 10 and 22 is applied to the Faraday element in a direction different from that of the variable magnetic field together with the variable magnetic field generated by the electromagnet. <P>COPYRIGHT: (C)2003,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、ファラデー回転角
可変装置の光軸上に偏光子を配置した可変光アッテネー
タ構造の磁気光学デバイスに関し、更に詳しく述べる
と、ファラデー素子の回転角を制御する電磁石のヨーク
に高飽和磁束密度フェライトを使用し、可変光減衰機能
を備え且つ高周波の電気的信号によって任意の光減衰状
態で透過光信号強度を変調可能とした光アッテネータ変
調器に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a magneto-optical device having a variable optical attenuator structure in which a polarizer is arranged on the optical axis of a Faraday rotation angle varying device, and more specifically, an electromagnet for controlling the rotation angle of a Faraday element. The present invention relates to an optical attenuator modulator which uses a high saturation magnetic flux density ferrite for the yoke, has a variable optical attenuation function, and is capable of modulating the transmitted optical signal intensity in an arbitrary optical attenuation state by a high frequency electric signal.

【0002】[0002]

【従来の技術】光アッテネータは、光通信システムある
いは光計測システムなどにおいて透過光量を制御するデ
バイスであり、ファラデー回転角可変装置の光軸上の前
後(入力側と出力側)に偏光子と検光子を配置する構成
が一般的である。組み込まれているファラデー回転角可
変装置は、ファラデー素子(ファラデー効果を有する磁
性ガーネット単結晶膜など)に電磁石などにより外部磁
界を印加し、その外部印加磁界を変化させることによ
り、ファラデー素子を透過する光ビームの偏波面のファ
ラデー回転角を制御するものである。光アッテネータで
は、このファラデー回転角の制御によって、光の減衰量
を可変制御する。
2. Description of the Related Art An optical attenuator is a device for controlling the amount of transmitted light in an optical communication system or an optical measurement system. It is common to arrange photons. The built-in variable Faraday rotation angle device applies an external magnetic field to a Faraday element (such as a magnetic garnet single crystal film having the Faraday effect) by an electromagnet and changes the externally applied magnetic field to transmit the Faraday element. It controls the Faraday rotation angle of the polarization plane of the light beam. The optical attenuator variably controls the light attenuation amount by controlling the Faraday rotation angle.

【0003】ここで電磁石は、珪素鋼からなるC型のヨ
ークにコイルを巻装した構造となっており、ヨークの空
隙部にファラデー素子が挿入される。ヨークに珪素鋼を
用いているのは、それが直流電流において飽和磁束密度
が高く、小型で高磁界が得られる材料だからである。
Here, the electromagnet has a structure in which a coil is wound around a C-shaped yoke made of silicon steel, and a Faraday element is inserted in the void portion of the yoke. The reason why the silicon steel is used for the yoke is that it is a material that has a high saturation magnetic flux density in a direct current, is small, and can obtain a high magnetic field.

【0004】他方、光変調器は、透過する光ビームを電
気的信号によって変調する(電気的信号と同じ形の光信
号に制御する)デバイスである。変調方式には、電気光
学変調、磁気光学変調、音響光学変調などがあるが、高
周波変調が必要な場合に現在一般に利用されているのは
ポッケルス効果やカー効果を利用する電気光学変調方式
である。
On the other hand, an optical modulator is a device that modulates a transmitted light beam by an electrical signal (controls the optical signal into the same optical signal as the electrical signal). Modulation methods include electro-optic modulation, magneto-optic modulation, acousto-optic modulation, etc., but when high frequency modulation is required, the electro-optic modulation method that currently uses the Pockels effect or Kerr effect is commonly used. .

【0005】ところで磁気光学変調方式の光変調器とし
て、光アイソレータを利用する構成が提案されている。
ここで、光アイソレータの可変磁界発生器としては電磁
石が用いられる。電磁石に通電したときはアイソレータ
を光ビームが通過し、電磁石への電流を遮断したときは
光ビームの通過が阻止される。このようにして、電気的
信号のオン/オフにより、光信号もオン/オフされてデ
ジタル的な光変調がなされる。可変磁界発生器として、
可動構造の永久磁石を用いる場合もある。
By the way, a configuration utilizing an optical isolator has been proposed as a magneto-optical modulation type optical modulator.
Here, an electromagnet is used as the variable magnetic field generator of the optical isolator. The light beam passes through the isolator when the electromagnet is energized, and is blocked when the current to the electromagnet is cut off. In this way, by turning on / off the electrical signal, the optical signal is also turned on / off, and digital optical modulation is performed. As a variable magnetic field generator,
In some cases, a permanent magnet having a movable structure is used.

【0006】[0006]

【発明が解決しようとする課題】従来のファラデー回転
角可変装置では、前記のように、電磁石のヨークに珪素
鋼を使用している。可変光アッテネータでは、通常、電
磁石コイルの駆動電流には直流に近い電流変化しか要求
されないので、このヨーク材が好ましく、この構造で何
ら支障なく動作する。光アイソレータを利用する光変調
器の場合も、高周波領域では電気光学変調方式が採用さ
れることもあって、ごく低周波領域での変調が試みられ
ているにすぎない。
As described above, the conventional Faraday rotation angle varying device uses silicon steel for the yoke of the electromagnet. In the variable optical attenuator, since the driving current of the electromagnet coil generally requires only a current change close to direct current, this yoke material is preferable, and this structure can be operated without any trouble. Also in the case of an optical modulator using an optical isolator, the electro-optic modulation method is adopted in the high frequency region, so that the modulation in the very low frequency region is only attempted.

【0007】しかし、これら従来の磁気光学デバイスで
は、高周波領域(例えば10kHz以上)でファラデー
回転角を高速可変しようとしても、動作が困難であっ
た。その理由は、供給する交流駆動電流の周波数を高く
していくと、1kHz程度から損失(渦電流損失)が増
加しはじめ、B−H特性が急激に劣化し、インダクタン
スが減少して変調特性が低下するためである。また、周
波数が高くなるにつれてインピーダンスが増加し、消費
電力が急激に増えるためである。
However, these conventional magneto-optical devices are difficult to operate even if the Faraday rotation angle is changed at a high speed in a high frequency region (for example, 10 kHz or more). The reason is that as the frequency of the AC drive current to be supplied is increased, the loss (eddy current loss) starts to increase from about 1 kHz, the B-H characteristic is rapidly deteriorated, the inductance is decreased, and the modulation characteristic is reduced. This is because it will decrease. Also, as the frequency becomes higher, the impedance increases and the power consumption sharply increases.

【0008】本発明の目的は、可変減衰機能と光変調機
能を併せ持ち、周波数10kHz以上の電気的信号でも
変調できる光アッテネータ変調器を提供することであ
る。本発明の他の目的は、磁気光学方式で可動部が無い
ため信頼性が高く、特に高信頼性が要求される海底光通
信用の可変減衰器及び変調器として有用な光アッテネー
タ変調器を提供することである。
An object of the present invention is to provide an optical attenuator modulator which has both a variable attenuation function and an optical modulation function and which can modulate even an electric signal having a frequency of 10 kHz or more. Another object of the present invention is to provide an optical attenuator modulator useful as a variable attenuator and modulator for submarine optical communication that is highly reliable because it has no moving parts in a magneto-optical system, and particularly requires high reliability. It is to be.

【0009】[0009]

【課題を解決するための手段】本発明は、ファラデー素
子を透過する光の偏波面の回転角を電磁石による可変磁
界によって可変するファラデー回転角可変装置と、その
光軸上の前後に配置した偏光子及び検光子を具備し、前
記電磁石は、そのヨークが軟磁性フェライトからなり、
該ヨークに巻装したコイルに高周波変調信号を供給する
光アッテネータ変調器である。
SUMMARY OF THE INVENTION The present invention is directed to a Faraday rotation angle varying device for varying the rotation angle of the plane of polarization of light passing through a Faraday element by a variable magnetic field by an electromagnet, and polarizations arranged in front of and behind the optical axis. And an electromagnet, the yoke of the electromagnet is made of soft magnetic ferrite,
An optical attenuator modulator for supplying a high frequency modulation signal to a coil wound around the yoke.

【0010】また本発明は、ファラデー素子を透過する
光の偏波面の回転角を電磁石による可変磁界によって可
変するファラデー回転角可変装置と、その光軸上の前後
に配置した偏光子及びミラーを具備し、前記電磁石は、
そのヨークが軟磁性フェライトからなり、該ヨークに巻
装したコイルに高周波変調信号を供給する光アッテネー
タ変調器である。このような反射型でもよく、その場合
に偏光子が反射光に対しては検光子として機能すること
になる。
Further, the present invention comprises a Faraday rotation angle varying device for varying the rotation angle of the plane of polarization of the light transmitted through the Faraday element by a variable magnetic field by an electromagnet, and a polarizer and a mirror arranged in front of and behind the optical axis. However, the electromagnet is
The yoke is made of soft magnetic ferrite, and is an optical attenuator modulator that supplies a high frequency modulation signal to a coil wound around the yoke. Such a reflection type may be used, in which case the polarizer functions as an analyzer for reflected light.

【0011】上記の構成において、更に固定磁界印加手
段を付設し、ファラデー素子に対して前記可変磁界と異
なる方向に固定磁界を印加して磁気飽和させておくのが
好ましい。
In the above structure, it is preferable that a fixed magnetic field applying means is further provided and a fixed magnetic field is applied to the Faraday element in a direction different from the variable magnetic field to cause magnetic saturation.

【0012】更に本発明は、第1の永久磁石と、複屈折
結晶板からなる偏光子と、ファラデー素子を透過する光
の偏波面の回転角を電磁石による可変磁界によって可変
するファラデー回転角可変装置と、複屈折結晶板からな
る検光子と、第2の永久磁石を具備し、前記電磁石は、
そのヨークが軟磁性フェライトからなり、該ヨークに巻
装したコイルに高周波変調信号を供給する光アッテネー
タ変調器である。第1及び第2の永久磁石は、例えばリ
ング状で高さ方向に着磁されているものとし、光軸上の
前後に同じ向きに配置してファラデー素子に光軸方向の
固定磁界を印加する構成とする。
Further, according to the present invention, a Faraday rotation angle varying device for varying the rotation angle of the polarization plane of the light transmitted through the first permanent magnet, the birefringent crystal plate and the Faraday element by the variable magnetic field of the electromagnet. And an analyzer comprising a birefringent crystal plate and a second permanent magnet, wherein the electromagnet is
The yoke is made of soft magnetic ferrite, and is an optical attenuator modulator that supplies a high frequency modulation signal to a coil wound around the yoke. The first and second permanent magnets are, for example, ring-shaped and magnetized in the height direction, and are arranged in the same direction in the front and rear on the optical axis to apply a fixed magnetic field in the optical axis direction to the Faraday element. The configuration.

【0013】これらの電磁石のコイルには、減衰量制御
用の直流バイアス信号に高周波変調信号を重畳した電気
的信号を供給する。勿論、複数の電磁石を組み合わせた
り、複数のコイルを組み込んでもよいが、大型化したり
構造が複雑になるため、前記のように信号を重畳する構
成の方が好ましい。
To the coils of these electromagnets, an electric signal in which a high frequency modulation signal is superimposed on a DC bias signal for controlling the attenuation amount is supplied. Of course, a plurality of electromagnets may be combined or a plurality of coils may be incorporated, but since the size becomes large and the structure becomes complicated, the configuration in which signals are superimposed as described above is preferable.

【0014】電磁石のヨークとなる軟磁性フェライト
は、Mn−Zn系、Ni−Zn系、あるいはMg−Zn
系のいずれかの高飽和磁束密度材である。これらの高飽
和磁束密度フェライトは、周波数10kHzにおいても
未飽和域ではB−H特性の直線性がよく高周波での応答
性に優れている。またインピーダンス(Rs)が安定し
ており、小電力で駆動できる。
The soft magnetic ferrite used as the yoke of the electromagnet is Mn-Zn type, Ni-Zn type, or Mg-Zn type.
Any high saturation flux density material of the system. These high saturation magnetic flux density ferrites have good linearity of B-H characteristics in the unsaturated region even at a frequency of 10 kHz and excellent responsiveness at high frequencies. Further, the impedance (Rs) is stable, and it can be driven with a small electric power.

【0015】電磁石は、それぞれの先端面がファラデー
素子に当接するように対称的に配置された一対のL型コ
アと、それらの後端面が当接するI型コアとの組み合わ
せからなるヨークを有し、前記L型コアにコイルが巻装
されている構造が好ましい。ヨークとファラデー素子と
の間に0.1mmを超えるギャップが存在すると、所望の
特性が得られない恐れがあるが、上記のような構造とす
ることにより、組立精度及び作業性が向上し、特性低下
を防止できる。特に、L型コアの先端近傍部分を、比較
的大きな断面形状からファラデー素子の外形に向かって
先細となるようなテーパ形状にすると、前記ファラデー
素子に磁界を集中できるため更に好ましい。
The electromagnet has a yoke which is a combination of a pair of L-shaped cores symmetrically arranged so that their front end surfaces contact the Faraday element, and an I-shaped core whose rear end surfaces contact. A structure in which a coil is wound around the L-shaped core is preferable. If there is a gap of more than 0.1 mm between the yoke and the Faraday element, the desired characteristics may not be obtained, but with the above structure, the assembly accuracy and workability are improved, and the characteristics are improved. It can prevent the deterioration. In particular, it is further preferable that the portion near the tip of the L-shaped core has a tapered shape that tapers from the relatively large cross-sectional shape toward the outer shape of the Faraday element, because the magnetic field can be concentrated on the Faraday element.

【0016】軟磁性フェライトは、FR25/15/5
(外径/内径/高さ)の標準リングコアによる測定で、
1000A/mの磁界に対して飽和磁束密度が400m
T以上、周波数100kHz以下における初透磁率の低
下が10%以下、周波数100kHzにおける相対損失
係数( tanδ/μi)が1×10-4以下であるものが好
ましい。
Soft magnetic ferrite is FR25 / 15/5
(Outer diameter / inner diameter / height) measured with a standard ring core,
Saturation magnetic flux density is 400m for magnetic field of 1000A / m
It is preferable that the initial magnetic permeability is 10% or less at a frequency of T or more and 100 kHz or less, and the relative loss coefficient (tan δ / μi) at a frequency of 100 kHz is 1 × 10 −4 or less.

【0017】またファラデー回転角可変装置は、周波数
10kHzにおいて電流値40mA以下では磁気飽和が
生じないものが好ましい。一般に光アッテネータでは、
20dB以上のアッテネーション(減衰)が得られる駆
動電流値が約40mA付近となるように設計されてい
る。これは、駆動電流に対してアッテネーションを制御
し易くするためである。よって、光アッテネータに対し
て、駆動電流値40mA以下ではフェライトヨークが磁
気飽和しないような材質とすることが好ましいのであ
る。
Further, it is preferable that the Faraday rotation angle varying device does not cause magnetic saturation at a current value of 40 mA or less at a frequency of 10 kHz. Generally in optical attenuators,
It is designed so that the drive current value with which attenuation (attenuation) of 20 dB or more is obtained is around 40 mA. This is because it is easy to control the attenuation with respect to the drive current. Therefore, it is preferable that the ferrite yoke is made of a material that is not magnetically saturated at a drive current value of 40 mA or less with respect to the optical attenuator.

【0018】[0018]

【実施例】図1は本発明に係る光アッテネータ変調器の
一実施例を示す説明図であり、Aは全体構成を、Bはフ
ァラデー回転角可変装置の部分を示している。光アッテ
ネータ変調器は、第1の永久磁石10と、偏光子12
と、ファラデー素子14を透過する光の偏波面の回転角
を電磁石16による可変磁界によって可変するファラデ
ー回転角可変装置18と、検光子20と、第2の永久磁
石22を有している。
FIG. 1 is an explanatory view showing an embodiment of an optical attenuator modulator according to the present invention, in which A is the entire structure and B is the Faraday rotation angle varying device. The optical attenuator modulator includes a first permanent magnet 10 and a polarizer 12
The Faraday rotation angle varying device 18 for varying the rotation angle of the plane of polarization of the light passing through the Faraday element 14 by the variable magnetic field generated by the electromagnet 16, the analyzer 20, and the second permanent magnet 22.

【0019】ここで偏光子12と検光子20は、ファラ
デー回転角可変装置18の光軸(破線で示す)上の前後
(入力側と出力側)に配置される。これら偏光子12及
び検光子20は、ルチルなどの複屈折結晶板からなる。
ファラデー素子14は、例えばBi置換希土類鉄ガーネ
ットLPE結晶膜などからなる。第1及び第2の永久磁
石10,22は、リング状で高さ方向(図では光軸方
向)に着磁されているものであり、光軸上の前後に同じ
磁化方向で配置することでファラデー素子14に光軸方
向の固定磁界を印加する構成とする。
Here, the polarizer 12 and the analyzer 20 are arranged in front of and behind (on the input side and the output side) on the optical axis (shown by the broken line) of the Faraday rotation angle varying device 18. The polarizer 12 and the analyzer 20 are made of a birefringent crystal plate such as rutile.
The Faraday element 14 is made of, for example, a Bi-substituted rare earth iron garnet LPE crystal film. The first and second permanent magnets 10 and 22 are ring-shaped and are magnetized in the height direction (optical axis direction in the figure), and by arranging them in the same magnetization direction before and after on the optical axis. The Faraday element 14 is configured to apply a fixed magnetic field in the optical axis direction.

【0020】電磁石16は、ファラデー素子14に磁界
を集中して印加するC型状のヨーク24と、該ヨーク2
4に巻装したコイル26からなる。本発明では、そのヨ
ーク24が高飽和磁束密度の軟磁性フェライトからな
り、該ヨーク24に巻装したコイル26に、変調駆動回
路28から直流電流に重畳した高周波変調信号が供給さ
れる構造をなしている。本実施例で使用しているフェラ
イトは、Mn−Zn系の材料であり、標準リングコア
(FR25/15/5:外径/内径/高さ)で、100
0A/mの磁界に対して飽和磁束密度が400mT以上
あり、周波数100kHzにおいて相対損失係数( tan
δ/μi)が1×10-4以下のものである。
The electromagnet 16 includes a C-shaped yoke 24 for applying a magnetic field to the Faraday element 14 in a concentrated manner, and the yoke 2
The coil 26 is wound around 4. In the present invention, the yoke 24 is made of soft magnetic ferrite having a high saturation magnetic flux density, and the coil 26 wound around the yoke 24 is supplied with the high frequency modulation signal superimposed on the direct current from the modulation drive circuit 28. ing. The ferrite used in this example is a Mn—Zn-based material, and has a standard ring core (FR25 / 15/5: outer diameter / inner diameter / height) of 100.
The saturation magnetic flux density is 400 mT or more for a magnetic field of 0 A / m, and the relative loss coefficient (tan
δ / μi) is 1 × 10 −4 or less.

【0021】図1に示す光アッテネータ変調器におい
て、その基本となる光アッテネータ機能は、前後の永久
磁石10,22による光軸方向の固定磁界によって磁気
飽和しているファラデー素子14を、電磁石16による
横方向(光軸に垂直な方向)の可変磁界で磁化方向を変
化することによって得ているため、ファラデー素子14
には必要十分な可変磁界が作用する必要がある。もしヨ
ーク24が磁気飽和すると、ファラデー素子14に印加
される横磁界(電磁石による可変磁界)が不十分となり
ファラデー回転角可変量が頭打ちしてしまい、それ以上
のアッテネーションは得られなくなる。ヨークが珪素鋼
の場合、飽和磁束密度は1000mT以上あり直流駆動
では十分であるが、もし変調器として1kHz以上の周
波数で交流駆動すると渦電流損失が増加するため機能し
ない。他方、ヨークがフェライトの場合、飽和磁束密度
が低いために珪素鋼に比べて磁気飽和し易く材料特性を
十分考慮する必要があるが、反面、10kHz以上の周
波数の交流駆動でも相対損失係数が低いために応答速度
は劣化しない。
In the optical attenuator modulator shown in FIG. 1, the basic optical attenuator function is that the Faraday element 14 magnetically saturated by the fixed magnetic field in the optical axis direction by the front and rear permanent magnets 10 and 22 is replaced by the electromagnet 16. The Faraday element 14 is obtained by changing the magnetization direction with a variable magnetic field in the lateral direction (direction perpendicular to the optical axis).
Requires a sufficient and sufficient variable magnetic field to act. If the yoke 24 is magnetically saturated, the lateral magnetic field (variable magnetic field by the electromagnet) applied to the Faraday element 14 becomes insufficient, and the variable amount of the Faraday rotation angle reaches its peak, and further attenuation cannot be obtained. When the yoke is made of silicon steel, the saturation magnetic flux density is 1000 mT or more, and DC driving is sufficient, but if AC driving is performed as a modulator at a frequency of 1 kHz or more, eddy current loss increases and it does not function. On the other hand, when the yoke is ferrite, since the saturation magnetic flux density is low, magnetic saturation tends to occur more easily than in silicon steel, and it is necessary to fully consider the material characteristics, but on the other hand, the relative loss coefficient is low even with AC drive at a frequency of 10 kHz or higher. Therefore, the response speed does not deteriorate.

【0022】従来用いられている珪素鋼と本発明で用い
るMn−Zn系フェライトの周波数特性を図2に示す。
珪素鋼は、1kHz近傍からインピーダンスRs(渦電
流損失に対応)が増加し、インダクタンスLsが低下す
るため、それ以上の周波数ではそれらの特性が急激に劣
化することが分かる。他方、フェライトは、100kH
zまでインダクタンスLsがほぼ一定で、インピーダン
スRsの増加もごく僅かである。また、10kHzにお
けるB−H特性を観察すると、珪素鋼では磁束密度B=
1Tでも磁気飽和が生じていないが、B−Hループが太
く磁気損失が大きい。それに対して、フェライトでは磁
束密度B=500mTで磁気飽和が生じるが、未飽和域
ではB−H曲線の直線性が良好である。
The frequency characteristics of the conventionally used silicon steel and the Mn-Zn type ferrite used in the present invention are shown in FIG.
Since the impedance Rs (corresponding to the eddy current loss) of silicon steel increases from around 1 kHz and the inductance Ls decreases, it is understood that those characteristics rapidly deteriorate at frequencies higher than that. On the other hand, ferrite is 100kH
The inductance Ls is almost constant up to z, and the increase of the impedance Rs is very small. Further, when observing the B-H characteristics at 10 kHz, the magnetic flux density B =
Although magnetic saturation does not occur even at 1T, the B-H loop is thick and the magnetic loss is large. On the other hand, in ferrite, magnetic saturation occurs at a magnetic flux density B of 500 mT, but the linearity of the BH curve is good in the unsaturated region.

【0023】本発明で用いるファラデー回転角可変装置
の好ましい一例を図3に示す。Aは主としてヨークを各
要素に分解した状態を表しており、Bは組立後の状態を
表している。軟磁性フェライトからなるヨークは、寸法
精度及び加工・組立作業の容易性などを考慮してL型と
I型の組み合わせとする。即ち、この電磁石は、それぞ
れの先端面がファラデー素子に当接するように対称的に
配置された一対のL型コア32,34と、それらの後端
面が側面に当接するI型コア34との組み合わせからな
るヨークを有し、前記の両方のL型コア30.32にそ
れぞれコイル36,38が巻装されている構造である。
これらのコイル36,38は直列となるように連続的に
巻線するか、個々に巻線後に接続する。そしてコイル3
0,32に、直流電流に重畳した高周波変調信号を生じ
る変調駆動回路28を接続する。L型コアとI型コアの
接合面、及びL型コアの先端面(ファラデー素子との対
向面)には、研磨を施す。通常、ヨークとファラデー素
子とのギャップは0.1mm以内とすることが望ましいの
で、L型コアの先端面をファラデー素子に密着させ、そ
の状態で両方のL型コアの後端面をI型コアに接着す
る。従って、I型コアはL型コアの変位量を考慮して若
干長めに設定する。また、フェライトの場合、飽和磁束
密度が低いために、L型コアの断面積をある程度大きく
しておき、先端近傍部分を、ファラデー素子の外形に向
かって先細となるテーパ形状に加工するのが望ましい。
それによってファラデー素子に磁界が集中し、電磁石磁
界を効率よく印加できる。なお、フェライトヨークに直
接コイルを巻線した図を示しているが、コイルはボビン
に巻線したものでよく、容易にL型コアに装着できる。
試作した電磁石ヨークは、縦横が19.5mm×3.8m
m、脚幅1mm、厚さ1.5mmであり、コイルは680タ
ーン×2である。
A preferred example of the Faraday rotation angle varying device used in the present invention is shown in FIG. A shows a state where the yoke is mainly disassembled into each element, and B shows a state after assembly. The yoke made of soft magnetic ferrite is a combination of L-type and I-type considering the dimensional accuracy and the ease of processing and assembling work. That is, this electromagnet is a combination of a pair of L-shaped cores 32 and 34 symmetrically arranged so that their front end surfaces contact the Faraday element, and an I-shaped core 34 whose rear end surfaces contact the side surfaces. And the coils 36 and 38 are respectively wound around both the L-shaped cores 30.32.
These coils 36 and 38 may be continuously wound so as to be in series, or may be individually wound and then connected. And coil 3
A modulation drive circuit 28 for generating a high frequency modulation signal superimposed on a direct current is connected to 0 and 32. The joint surface between the L-shaped core and the I-shaped core and the tip end surface of the L-shaped core (the surface facing the Faraday element) are polished. Normally, it is desirable that the gap between the yoke and the Faraday element be within 0.1 mm. To glue. Therefore, the I-shaped core is set slightly longer in consideration of the displacement amount of the L-shaped core. Further, in the case of ferrite, since the saturation magnetic flux density is low, it is desirable to make the cross-sectional area of the L-shaped core large to some extent and process the portion near the tip into a tapered shape that tapers toward the outer shape of the Faraday element. .
Thereby, the magnetic field is concentrated on the Faraday element, and the electromagnet magnetic field can be efficiently applied. Although the drawing shows the coil wound directly on the ferrite yoke, the coil may be wound on a bobbin and can be easily mounted on the L-shaped core.
The prototype electromagnet yoke has a length and width of 19.5 mm x 3.8 m.
m, leg width 1 mm, thickness 1.5 mm, coil is 680 turns × 2.

【0024】測定に使用した変調駆動回路の例を図4に
示す。2個のアンプA1 ,A2 を組み合わせ、コイルL
の位置に電磁石のコイルを接続し、トランジスタQで駆
動する。減衰量調整はB(バイアス)端子に印加する電
圧で制御し、変調はAC端子への交流信号の印加で行
う。そして、一定強度の連続した光ビームを光アッテネ
ータ変調器に供給し、その透過出力光を光電変換器で電
圧変換し、オシロスコープによって減衰量と出力変動を
観測した。
An example of the modulation drive circuit used for the measurement is shown in FIG. Combine the two amplifiers A 1 and A 2 into a coil L
The coil of the electromagnet is connected to the position of and is driven by the transistor Q. The attenuation amount adjustment is controlled by the voltage applied to the B (bias) terminal, and the modulation is performed by applying an AC signal to the AC terminal. Then, a continuous light beam with a constant intensity was supplied to the optical attenuator modulator, the transmitted output light was voltage-converted by a photoelectric converter, and the attenuation and output fluctuation were observed by an oscilloscope.

【0025】変調信号を入力しないで(0Vに維持
し)、B端子に印加する電圧のみ可変して減衰特性を求
めたのが図5である。使用波長は1550nm、測定温度
は25℃である。図示のように、この光アッテネータ変
調器は、通常の可変光アッテネータと同様、減衰量の駆
動電流依存性がある。
FIG. 5 shows the attenuation characteristics obtained by varying only the voltage applied to the B terminal without inputting a modulation signal (maintaining 0 V). The wavelength used is 1550 nm and the measurement temperature is 25 ° C. As shown in the figure, this optical attenuator modulator has a drive current dependency of the amount of attenuation like a normal variable optical attenuator.

【0026】次に、減衰量が6dBとなるようにB端子
に印加する電圧を調整して固定し、周波数100kHz
の正弦波電圧を変調信号としてAC端子に印加し、変調
度が±5%となるように変調信号の振幅を調整して観測
した。オシロスコープの画面を図6に示す。CH2(チ
ャンネル2)は変調電気信号波形であり、CH1(チャ
ンネル1)は6dB減衰時の±5%光変調波形である。
この図6から、変調周波数100kHzの低電圧駆動信
号に対して、完全に追従して変調された透過出力光が得
られることが分かる。
Next, the voltage applied to the B terminal is adjusted and fixed so that the attenuation becomes 6 dB, and the frequency is 100 kHz.
The sine wave voltage of was applied as a modulation signal to the AC terminal, and the amplitude of the modulation signal was adjusted so that the modulation degree was ± 5%. The screen of the oscilloscope is shown in FIG. CH2 (channel 2) is a modulated electric signal waveform, and CH1 (channel 1) is a ± 5% optical modulation waveform when attenuated by 6 dB.
It can be seen from FIG. 6 that the transmitted output light that is modulated by completely following the low-voltage drive signal having the modulation frequency of 100 kHz can be obtained.

【0027】図7は本発明に係る光アッテネータ変調器
の他の実施例を示す説明図であり、ファイバ入出力型の
構造である。本体部分は図1に示すものと同様であって
よいので、対応する部分に同一符号を付し、それらにつ
いての説明は省略する。入力側にはフェルール付きの光
ファイバ40が位置し、コリメータレンズ42で平行光
となって本体部分に入力する。本体部分からの減衰光
は、コリメータレンズ44で集光され、出力側に位置す
るフェルール付きの光ファイバ46を通って出力する。
FIG. 7 is an explanatory view showing another embodiment of the optical attenuator modulator according to the present invention, which is a fiber input / output type structure. Since the main body portion may be the same as that shown in FIG. 1, corresponding portions are designated by the same reference numerals, and description thereof will be omitted. An optical fiber 40 with a ferrule is located on the input side, and collimated by a collimator lens 42 into parallel light, which is input to the main body. The attenuated light from the main body is condensed by the collimator lens 44, and is output through the optical fiber 46 with the ferrule located on the output side.

【0028】上記の実施例において、永久磁石は光軸方
向に固定磁界が印加されるような配置となっているが、
光軸に直交する方向(但し、電磁石による可変磁界の印
加方向とも直交する方向)に固定磁界が印加されるよう
な配置でもよい。あるいは、電磁石による可変磁界の印
加方向と異なる方向であれば、永久磁石による固定磁界
の印加方向は任意であってもよい。光アッテネータの構
成によっては、永久磁石を用いることなく電磁石による
可変磁界のみが印加されるようにすることも可能であ
る。
In the above embodiment, the permanent magnets are arranged so that a fixed magnetic field is applied in the optical axis direction.
The arrangement may be such that the fixed magnetic field is applied in a direction orthogonal to the optical axis (however, it is also orthogonal to the direction in which the variable magnetic field is applied by the electromagnet). Alternatively, the application direction of the fixed magnetic field by the permanent magnet may be arbitrary as long as it is different from the application direction of the variable magnetic field by the electromagnet. Depending on the configuration of the optical attenuator, it is possible to apply only the variable magnetic field by the electromagnet without using the permanent magnet.

【0029】なお、電磁石ヨークは、機能的にはC型形
状で、その空隙部分にファラデー素子が配置可能な構成
であればよい。従って、フェライトコアの形状・組み合
わせ方などは、図3に示す構造のみに限られるものでは
なく、自由な変形が可能である。
The electromagnet yoke may be functionally C-shaped so that the Faraday element can be arranged in the void portion. Therefore, the shape and combination of the ferrite cores are not limited to the structure shown in FIG. 3 and can be freely modified.

【0030】本発明は、ファラデー素子を透過する光の
偏波面の回転角を電磁石による可変磁界によって可変す
るファラデー回転角可変装置と、その光軸上の前後に配
置した偏光子及びミラーを具備し、光ビームをミラーで
反射させる構成でもよい。勿論、電磁石は、そのヨーク
が軟磁性フェライトからなり、該ヨークに巻装したコイ
ルに高周波変調信号を供給するように構成する。この場
合も、永久磁石によって、可変磁界と異なる方向に固定
磁界を印加するのが好ましい。
The present invention comprises a Faraday rotation angle changing device for changing the rotation angle of the plane of polarization of light passing through the Faraday element by a variable magnetic field by an electromagnet, and a polarizer and a mirror arranged on the front and rear of the optical axis. Alternatively, the light beam may be reflected by a mirror. Of course, the electromagnet is configured such that its yoke is made of soft magnetic ferrite and the high frequency modulation signal is supplied to the coil wound around the yoke. Also in this case, it is preferable to apply the fixed magnetic field in the direction different from the variable magnetic field by the permanent magnet.

【0031】[0031]

【発明の効果】本発明では上記のように、ファラデー回
転角可変装置の電磁石ヨークに軟磁性フェライトを用い
ており、これによって周波数10kHz以上の領域でも
ファラデー回転角を高速で、低電圧で、効率よく可変す
ることが可能となる。従って、このようなファラデー回
転角可変装置の光軸上の前後に偏光子と検光子を配置し
て光アッテネータを構成し、電磁石ヨークに巻装したコ
イルに高周波変調信号を供給することにより、可変減衰
特性を発現させると共に光変調機能を付加することが可
能となる。本発明に係る光アッテネータ変調器は、磁気
光学方式であり本質的に可動部を持たないために信頼性
が高く、そのため特に高信頼性が要求される海底光通信
用の可変減衰及び変調デバイスとして有用である。
As described above, according to the present invention, the soft magnetic ferrite is used for the electromagnet yoke of the Faraday rotation angle varying device, whereby the Faraday rotation angle can be increased at high speed, low voltage, and efficiency even in the frequency range of 10 kHz or more. It is possible to change it well. Therefore, by arranging a polarizer and an analyzer on the front and rear of the optical axis of such a Faraday rotation angle varying device to form an optical attenuator and supplying a high frequency modulation signal to a coil wound around an electromagnet yoke, It is possible to develop an attenuation characteristic and add a light modulation function. The optical attenuator modulator according to the present invention is highly reliable because it is a magneto-optical system and has essentially no moving parts, and as a variable attenuation and modulation device for submarine optical communication that requires particularly high reliability. It is useful.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に係る光アッテネータ変調器の一実施例
を示す説明図。
FIG. 1 is an explanatory diagram showing an embodiment of an optical attenuator modulator according to the present invention.

【図2】フェライトと珪素鋼の周波数特性を示すグラ
フ。
FIG. 2 is a graph showing frequency characteristics of ferrite and silicon steel.

【図3】ファラデー回転角可変装置の一例を示す説明
図。
FIG. 3 is an explanatory diagram showing an example of a Faraday rotation angle varying device.

【図4】変調駆動回路の回路図。FIG. 4 is a circuit diagram of a modulation drive circuit.

【図5】減衰特性を示すグラフ。FIG. 5 is a graph showing attenuation characteristics.

【図6】光変調出力の観測波形図。FIG. 6 is an observed waveform diagram of an optical modulation output.

【図7】本発明に係る光アッテネータ変調器の他の実施
例を示す説明図。
FIG. 7 is an explanatory diagram showing another embodiment of the optical attenuator modulator according to the present invention.

【符号の説明】[Explanation of symbols]

10 第1の永久磁石 12 偏光子 14 ファラデー素子 16 電磁石 18 ファラデー回転角可変装置 20 検光子 22 第2の永久磁石 24 ヨーク 26 コイル 28 変調駆動回路 10 First permanent magnet 12 Polarizer 14 Faraday element 16 Electromagnet 18 Faraday rotation angle variable device 20 Analyzer 22 Second permanent magnet 24 York 26 coils 28 Modulation drive circuit

───────────────────────────────────────────────────── フロントページの続き (72)発明者 徳増 次雄 東京都港区新橋5丁目36番11号 エフ・デ ィー・ケイ株式会社内 (72)発明者 小野 清人 東京都港区新橋5丁目36番11号 エフ・デ ィー・ケイ株式会社内 (72)発明者 松尾 良夫 東京都港区新橋5丁目36番11号 エフ・デ ィー・ケイ株式会社内 Fターム(参考) 2H079 AA03 AA13 BA02 CA24 DA12 EB18 KA05 KA14    ─────────────────────────────────────────────────── ─── Continued front page    (72) Inventor Tsukio Tokumasu             F-de, 5-36-1 Shimbashi, Minato-ku, Tokyo             K.K Co., Ltd. (72) Inventor Kiyoto Ono             F-de, 5-36-1 Shimbashi, Minato-ku, Tokyo             K.K Co., Ltd. (72) Inventor Yoshio Matsuo             F-de, 5-36-1 Shimbashi, Minato-ku, Tokyo             K.K Co., Ltd. F term (reference) 2H079 AA03 AA13 BA02 CA24 DA12                       EB18 KA05 KA14

Claims (12)

【特許請求の範囲】[Claims] 【請求項1】 ファラデー素子を透過する光の偏波面の
回転角を電磁石による可変磁界によって可変するファラ
デー回転角可変装置と、その光軸上の前後に配置した偏
光子及び検光子を具備し、前記電磁石は、そのヨークが
軟磁性フェライトからなり、該ヨークに巻装したコイル
に高周波変調信号を供給するようにしたことを特徴とす
る光アッテネータ変調器。
1. A Faraday rotation angle varying device for varying a rotation angle of a plane of polarization of light passing through a Faraday element by a variable magnetic field by an electromagnet, and a polarizer and an analyzer arranged in front of and behind the optical axis, An optical attenuator modulator, wherein a yoke of the electromagnet is made of soft magnetic ferrite, and a high frequency modulation signal is supplied to a coil wound around the yoke.
【請求項2】 ファラデー素子を透過する光の偏波面の
回転角を電磁石による可変磁界によって可変するファラ
デー回転角可変装置と、その光軸上の前後に配置した偏
光子及びミラーを具備し、前記電磁石は、そのヨークが
軟磁性フェライトからなり、該ヨークに巻装したコイル
に高周波変調信号を供給するようにしたことを特徴とす
る光アッテネータ変調器。
2. A Faraday rotation angle varying device for varying a rotation angle of a plane of polarization of light passing through a Faraday element by a variable magnetic field by an electromagnet, and a polarizer and a mirror arranged in front of and behind the optical axis, An optical attenuator modulator, wherein a yoke of the electromagnet is made of soft magnetic ferrite, and a high frequency modulation signal is supplied to a coil wound around the yoke.
【請求項3】 前記可変磁界と異なる方向に固定磁界を
印加する固定磁界印加手段を具備している請求項1又は
2記載の光アッテネータ変調器。
3. The optical attenuator modulator according to claim 1, further comprising fixed magnetic field applying means for applying a fixed magnetic field in a direction different from the variable magnetic field.
【請求項4】 第1の永久磁石と、複屈折結晶板からな
る偏光子と、ファラデー素子を透過する光の偏波面の回
転角を電磁石による可変磁界によって可変するファラデ
ー回転角可変装置と、複屈折結晶板からなる検光子と、
第2の永久磁石を具備し、両永久磁石によって固定磁界
が印加され、前記電磁石は、そのヨークが軟磁性フェラ
イトからなり、該ヨークに巻装したコイルに高周波変調
信号を供給するようにしたことを特徴とする光アッテネ
ータ変調器。
4. A first permanent magnet, a polarizer made of a birefringent crystal plate, a Faraday rotation angle varying device for varying a rotation angle of a plane of polarization of light passing through a Faraday element by a variable magnetic field by an electromagnet, An analyzer consisting of a refraction crystal plate,
A second permanent magnet is provided, a fixed magnetic field is applied by both permanent magnets, the yoke of the electromagnet is made of soft magnetic ferrite, and a high frequency modulation signal is supplied to a coil wound around the yoke. An optical attenuator modulator.
【請求項5】 電磁石のコイルに、減衰量制御用の直流
バイアス信号に高周波変調信号を重畳した電気的信号を
供給する請求項1乃至4のいずれかに記載の光アッテネ
ータ変調器。
5. The optical attenuator modulator according to claim 1, wherein an electric signal obtained by superposing a high frequency modulation signal on a DC bias signal for controlling the attenuation amount is supplied to the coil of the electromagnet.
【請求項6】 電磁石は、それぞれの先端面がファラデ
ー素子に当接するように対称的に配置された一対のL型
コアと、それらの後端面が当接するI型コアとの組み合
わせからなるヨークを有し、前記各L型コアにそれぞれ
コイルが巻装され直列に組み合わされている請求項1乃
至5のいずれかに記載の光アッテネータ変調器。
6. The electromagnet includes a yoke composed of a pair of L-shaped cores symmetrically arranged so that their front end surfaces contact the Faraday element, and an I-shaped core whose rear end surfaces contact each other. 6. The optical attenuator modulator according to claim 1, further comprising a coil wound around each of the L-shaped cores and combined in series.
【請求項7】 L型コアは、その先端近傍部分がファラ
デー素子の外形に向かって先細のテーパ形状となってい
て、前記ファラデー素子に磁界を集中する構造である請
求項6記載の光アッテネータ変調器。
7. The optical attenuator modulation according to claim 6, wherein the L-shaped core has a structure in which a portion near its tip is tapered toward the outer shape of the Faraday element, and a magnetic field is concentrated on the Faraday element. vessel.
【請求項8】 軟磁性フェライトが、Mn−Zn系、N
i−Zn系、あるいはMg−Zn系のいずれかの高飽和
磁束密度材からなる請求項1乃至7のいずれかに記載の
光アッテネータ変調器。
8. The soft magnetic ferrite is Mn—Zn based, N
8. The optical attenuator modulator according to claim 1, which is made of a high saturation magnetic flux density material of either i-Zn system or Mg-Zn system.
【請求項9】 軟磁性フェライトが、FR25/15/
5の標準リングコアによる測定で、1000A/mの磁
界に対して飽和磁束密度が400mT以上の特性を呈す
るものである請求項8記載の光アッテネータ変調器。
9. The soft magnetic ferrite is FR25 / 15 /
9. The optical attenuator modulator according to claim 8, which has a saturation magnetic flux density of 400 mT or more for a magnetic field of 1000 A / m as measured by the standard ring core of No. 5.
【請求項10】 軟磁性フェライトが、FR25/15
/5の標準リングコアによる測定で、周波数100kH
z以下における初透磁率の低下が10%以下である特性
を呈するものである請求項8記載の光アッテネータ変調
器。
10. The soft magnetic ferrite is FR25 / 15.
/ 5 standard ring core, frequency 100kHz
9. The optical attenuator modulator according to claim 8, exhibiting a characteristic that a decrease in initial permeability at z or less is 10% or less.
【請求項11】 軟磁性フェライトが、FR25/15
/5の標準リングコアによる測定で、周波数100kH
zにおける相対損失係数( tanδ/μi)が1×10-4
以下である特性を呈するものである請求項8記載の光ア
ッテネータ変調器。
11. The soft magnetic ferrite is FR25 / 15.
/ 5 standard ring core, frequency 100kHz
The relative loss coefficient (tan δ / μi) at z is 1 × 10 -4
The optical attenuator modulator according to claim 8, which exhibits the following characteristics.
【請求項12】 ファラデー回転角可変装置が、周波数
10kHzにおいて電流値40mA以下では磁気飽和が
生じない特性を呈するものである請求項8記載の光アッ
テネータ変調器。
12. The optical attenuator modulator according to claim 8, wherein the Faraday rotation angle varying device has a characteristic that magnetic saturation does not occur at a current value of 40 mA or less at a frequency of 10 kHz.
JP2002054692A 2002-02-28 2002-02-28 Optical attenuator modulator Expired - Fee Related JP4093533B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2002054692A JP4093533B2 (en) 2002-02-28 2002-02-28 Optical attenuator modulator
PCT/JP2003/002150 WO2003073156A1 (en) 2002-02-28 2003-02-26 Optical attenuator modulator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002054692A JP4093533B2 (en) 2002-02-28 2002-02-28 Optical attenuator modulator

Publications (2)

Publication Number Publication Date
JP2003255288A true JP2003255288A (en) 2003-09-10
JP4093533B2 JP4093533B2 (en) 2008-06-04

Family

ID=27764408

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002054692A Expired - Fee Related JP4093533B2 (en) 2002-02-28 2002-02-28 Optical attenuator modulator

Country Status (2)

Country Link
JP (1) JP4093533B2 (en)
WO (1) WO2003073156A1 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007047359A (en) * 2005-08-09 2007-02-22 Sumitomo Metal Mining Co Ltd Optical device
JP2007114746A (en) * 2005-09-21 2007-05-10 Fdk Corp Faraday rotational angle varying device and variable optical attenuator using same
JP4900525B1 (en) * 2011-03-09 2012-03-21 パナソニック株式会社 Non-contact charging module, transmitting-side non-contact charging device and receiving-side non-contact charging device provided with the same
US9607757B2 (en) 2011-11-02 2017-03-28 Panasonic Corporation Non-contact wireless communication coil, transmission coil, and portable wireless terminal
US9667086B2 (en) 2012-06-28 2017-05-30 Panasonic Intellectual Property Management Co., Ltd. Mobile terminal
US9735606B2 (en) 2012-06-28 2017-08-15 Panasonic Intellectual Property Management Co., Ltd. Mobile terminal including charging coil and wireless communication coil, wireless charging module including charging coil and wireless communication coil
US9935481B2 (en) 2012-02-17 2018-04-03 Panasonic Intellectual Property Management Co., Ltd. Mobile terminal including wireless charging module and battery pack
US9954396B2 (en) 2011-06-14 2018-04-24 Panasonic Corporation Electronic device including non-contact charging module
US10204734B2 (en) 2011-11-02 2019-02-12 Panasonic Corporation Electronic device including non-contact charging module and near field communication antenna
US10218222B2 (en) 2011-01-26 2019-02-26 Panasonic Intellectual Property Management Co., Ltd. Non-contact charging module having a wireless charging coil and a magnetic sheet

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117950124A (en) * 2022-10-28 2024-04-30 华为技术有限公司 Optical power adjusting device, optical assembly, optical module and optical network equipment

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2784896B2 (en) * 1995-02-02 1998-08-06 富士電気化学株式会社 Polarization plane switch and optical switch using the same
JP3667827B2 (en) * 1995-08-29 2005-07-06 富士通株式会社 Faraday rotator
JP2001154148A (en) * 1999-11-26 2001-06-08 Tokin Corp Optical circuit element and method of manufacturing the same

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007047359A (en) * 2005-08-09 2007-02-22 Sumitomo Metal Mining Co Ltd Optical device
JP2007114746A (en) * 2005-09-21 2007-05-10 Fdk Corp Faraday rotational angle varying device and variable optical attenuator using same
US10218222B2 (en) 2011-01-26 2019-02-26 Panasonic Intellectual Property Management Co., Ltd. Non-contact charging module having a wireless charging coil and a magnetic sheet
JP4900525B1 (en) * 2011-03-09 2012-03-21 パナソニック株式会社 Non-contact charging module, transmitting-side non-contact charging device and receiving-side non-contact charging device provided with the same
US9954396B2 (en) 2011-06-14 2018-04-24 Panasonic Corporation Electronic device including non-contact charging module
US10468913B2 (en) 2011-06-14 2019-11-05 Sovereign Peak Ventures, Llc Electronic device including non-contact charging module
US10044225B2 (en) 2011-06-14 2018-08-07 Panasonic Corporation Electronic device including non-contact charging module
US10003219B1 (en) 2011-06-14 2018-06-19 Panasonic Corporation Electronic device including non-contact charging module
US9634515B2 (en) 2011-11-02 2017-04-25 Panasonic Corporation Non-contact wireless communication coil, transmission coil, and portable wireless terminal
US9941048B2 (en) 2011-11-02 2018-04-10 Panasonic Corporation Non-contact wireless communication coil, transmission coil, and portable wireless terminal
US10204734B2 (en) 2011-11-02 2019-02-12 Panasonic Corporation Electronic device including non-contact charging module and near field communication antenna
US9607757B2 (en) 2011-11-02 2017-03-28 Panasonic Corporation Non-contact wireless communication coil, transmission coil, and portable wireless terminal
US9991735B1 (en) 2012-02-17 2018-06-05 Panasonic Intellectual Property Management Co., Ltd. Electronic device including non-contact charging module and battery
US9997952B2 (en) 2012-02-17 2018-06-12 Panasonic Intellectual Property Management Co., Ltd. Wireless charging module and mobile terminal including the same
US9935481B2 (en) 2012-02-17 2018-04-03 Panasonic Intellectual Property Management Co., Ltd. Mobile terminal including wireless charging module and battery pack
US10020673B2 (en) 2012-02-17 2018-07-10 Panasonic Intellectual Property Management Co., Ltd. Electronic device including non-contact charging module and battery
US11070075B2 (en) 2012-02-17 2021-07-20 Sovereign Peak Ventures, Llc Electronic device including non-contact charging module and battery
US10574082B2 (en) 2012-02-17 2020-02-25 Sovereign Peak Ventures, Llc Electronic device including non-contact charging module and battery
US9735606B2 (en) 2012-06-28 2017-08-15 Panasonic Intellectual Property Management Co., Ltd. Mobile terminal including charging coil and wireless communication coil, wireless charging module including charging coil and wireless communication coil
US10291069B2 (en) 2012-06-28 2019-05-14 Panasonic Intellectual Property Management Co., Ltd. Mobile terminal and chargeable communication module
US10230272B2 (en) 2012-06-28 2019-03-12 Panasonic Intellectual Property Management Co., Ltd. Mobile terminal including wireless charging coil and magnetic sheet having inwardly receding portion
US10574090B2 (en) 2012-06-28 2020-02-25 Sovereign Peak Ventures, Llc Mobile terminal including wireless charging coil and magnetic sheet having inwardly receding portion
US9667086B2 (en) 2012-06-28 2017-05-30 Panasonic Intellectual Property Management Co., Ltd. Mobile terminal
US11616395B2 (en) 2012-06-28 2023-03-28 Sovereign Peak Ventures, Llc Mobile terminal and chargeable communication module

Also Published As

Publication number Publication date
WO2003073156A1 (en) 2003-09-04
JP4093533B2 (en) 2008-06-04

Similar Documents

Publication Publication Date Title
JP3739471B2 (en) Variable optical attenuator
US6542647B2 (en) Optical signal transmission system and magneto-optical modulator designed to establish modulation over wide range for use in the same
US6580546B2 (en) Faraday rotator
RU2000114830A (en) OPTICAL ATTENUATOR USING AN OPTICAL VALVE AND THE OPTICAL COMMUNICATION SYSTEM INCLUDING SUCH AN OPTICAL ATTENUATOR
JP4093533B2 (en) Optical attenuator modulator
US6912080B2 (en) Magneto-optic modulator and optical communication system using the same
US6927909B2 (en) Integrated magneto-optical modulator with optical isolator, method of manufacturing the same and optical communication system using the same
EP1640790B1 (en) Magneto-optical modulator
JPS63113405A (en) Optical polarization adjustor
US3038131A (en) Microwave switching device
US7535616B2 (en) Polarization controlling apparatus and polarization operation apparatus
JPH0961772A (en) Polarization controller
JP2784896B2 (en) Polarization plane switch and optical switch using the same
JPH03142415A (en) Light intensity modulating element
JP4275974B2 (en) Magneto-optic modulator and optical communication system using the same
JPH0961771A (en) Polarization scrambling device
US20050117218A1 (en) Switchable latching-type faraday rotator
JP2004029766A (en) Magnetooptical modulator with optical isolator built therein, manufacturing method therefor, and optical communication system using the same
JP3936451B2 (en) Optical attenuator module
RU2046465C1 (en) S h f polarization change-over switch
JPH11281722A (en) Optical fiber sensor
JPH0497215A (en) Optical modulator
JPH0933872A (en) Optical fiber polarization controller
JP2007264671A (en) Variable optical attenuator
JPH02201420A (en) Faraday rotation element and optical switch using it

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040929

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070703

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070831

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080228

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080303

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110314

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4093533

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110314

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120314

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120314

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130314

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130314

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140314

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees