JP2003250794A - Tumor region-detecting method and x-ray ct apparatus - Google Patents

Tumor region-detecting method and x-ray ct apparatus

Info

Publication number
JP2003250794A
JP2003250794A JP2002057277A JP2002057277A JP2003250794A JP 2003250794 A JP2003250794 A JP 2003250794A JP 2002057277 A JP2002057277 A JP 2002057277A JP 2002057277 A JP2002057277 A JP 2002057277A JP 2003250794 A JP2003250794 A JP 2003250794A
Authority
JP
Japan
Prior art keywords
region
tumor
blood vessel
ray
value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002057277A
Other languages
Japanese (ja)
Other versions
JP4091318B2 (en
Inventor
Akihiko Nishide
明彦 西出
Yasuhiro Imai
靖浩 今井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
GE Medical Systems Global Technology Co LLC
Original Assignee
GE Medical Systems Global Technology Co LLC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by GE Medical Systems Global Technology Co LLC filed Critical GE Medical Systems Global Technology Co LLC
Priority to JP2002057277A priority Critical patent/JP4091318B2/en
Publication of JP2003250794A publication Critical patent/JP2003250794A/en
Application granted granted Critical
Publication of JP4091318B2 publication Critical patent/JP4091318B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Apparatus For Radiation Diagnosis (AREA)
  • Image Processing (AREA)
  • Image Analysis (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To highly accurately detect a tumor region. <P>SOLUTION: The X-ray CT apparatus 100 is equipped with a scanner apparatus 1, a processing apparatus 2, a large capacity storage apparatus 3, a display monitor 4, and an inputting apparatus 5. The processing apparatus 2 is equipped with a data-obtaining unit 2a, a blood vessel candidate region-extracting unit 2b, a blood vessel region-extracting unit 2c, a tumor candidate region-extracting unit 2d, and a tumor region-detecting unit 2e. In this case, the data-obtaining unit 2a inputs a plurality of continuous CT tomographic images which are obtained by performing an X-ray scanning for a subject at different tomographic locations. The blood vessel candidate region-extracting unit 2b extracts blood vessel candidate regions in a plurality of the continuous CT tomographic images based on CT values. The blood vessel region-extracting unit 2c determines a region wherein the volume of an external contact rectangular parallelepiped is larger as a blood vessel region from among blood vessel candidate regions. The tumor candidate region-extracting unit 2d applies a contracting process to the blood vessel region, and determines an isolated region as a tumor candidate region. The tumor region-detecting unit 2e detects a tumor region based on three-dimensional characteristics of the tumor candidate region. <P>COPYRIGHT: (C)2003,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、腫瘍領域検出方法
およびX線CT装置に関し、さらに詳しくは、CT断層
像(アキシャルスキャン断層像およびヘリカルスキャン
断層像を含む)を画像処理・測定して腫瘍領域を高精度
に検出する腫瘍領域検出方法およびX線CT装置に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for detecting a tumor region and an X-ray CT apparatus, and more specifically, it processes and measures a CT tomographic image (including an axial scan tomographic image and a helical scan tomographic image) to measure a tumor. The present invention relates to a tumor area detection method and an X-ray CT apparatus that detect an area with high accuracy.

【0002】[0002]

【従来の技術】従来、次のようにして肺野領域の腫瘍領
域を検出している。まず、図14に示すように、被検体
hをX線走査して肺LのCT断層像Aiを取得する。
2. Description of the Related Art Conventionally, a tumor area in a lung field area is detected as follows. First, as shown in FIG. 14, the subject h is X-ray scanned to obtain a CT tomographic image Ai of the lung L.

【0003】次に、図15に示すように、腫瘍領域を含
むようなCT値の範囲を「1」とし、それ以外を「0」
とする2値化処理を行う。そして、「1」の領域を腫瘍
候補領域Caとする。2値化処理を行うCT値範囲は、
腫瘍領域だけでなく、血管領域も含むため、腫瘍候補領
域Caには、腫瘍領域だけでなく、血管領域も含まれ
る。ここで、腫瘍は略球形であるため、断面形状は円形
になる。一方、血管はアキシャル断面に斜めに交差する
ように走行していることが多いため、CT断層像Ai上
での断面形状は長円形になることが多い。そこで、各腫
瘍候補領域Caの円形度αを計算し、円形度αが「1」
に近い腫瘍候補領域Caを腫瘍候補と判断する。なお、
一般に知られているように、円形度αは、腫瘍候補領域
Caの面積をSとし、周囲長をLとするとき、 α=4・π・S/L2 である。但し、0<α≦1となる。
Next, as shown in FIG. 15, the range of CT values including the tumor area is set to "1", and the others are set to "0".
Binarization processing is performed. And the area | region of "1" is made into the tumor candidate area Ca. The CT value range for binarization is
Since the tumor candidate region Ca includes not only the tumor region but also the blood vessel region, not only the tumor region but also the blood vessel region is included. Here, since the tumor has a substantially spherical shape, the sectional shape is circular. On the other hand, since the blood vessel often travels so as to cross the axial cross section at an angle, the cross-sectional shape on the CT tomographic image Ai is often an ellipse. Therefore, the circularity α of each tumor candidate region Ca is calculated, and the circularity α is “1”.
A tumor candidate region Ca close to is determined to be a tumor candidate. In addition,
As is generally known, the circularity α is α = 4 · π · S / L 2, where S is the area of the tumor candidate region Ca and L is the perimeter. However, 0 <α ≦ 1.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、血管が
アキシャル断面に直交するように走行している場合は、
血管領域の円形度αも「1」に近くなる。このため、腫
瘍領域と血管領域とを間違えてしまう。すなわち、従来
の腫瘍領域検出方法では、腫瘍領域を検出する精度が低
い問題点があった。そこで、本発明の目的は、CT画像
を画像処理・測定して腫瘍領域を高精度に検出すること
が出来る腫瘍領域検出方法およびX線CT装置を提供す
ることにある。
However, when the blood vessel is running so as to be orthogonal to the axial section,
The circularity α of the blood vessel region is also close to “1”. Therefore, the tumor area and the blood vessel area are mistaken. That is, the conventional tumor area detection method has a problem that the accuracy of detecting a tumor area is low. Therefore, an object of the present invention is to provide a tumor area detecting method and an X-ray CT apparatus capable of detecting a tumor area with high accuracy by image-processing and measuring a CT image.

【0005】[0005]

【課題を解決するための手段】第1の観点では、本発明
は、被検体を連続した異なる断層像位置でX線走査して
取得した複数のCT断層像を画像処理・測定し、腫瘍候
補領域の3次元形状特徴パラメータを基に腫瘍領域を検
出することを特徴とする腫瘍領域検出方法を提供する。
上記第1の観点による腫瘍領域検出方法では、従来のよ
うに1枚のCT断層像中の腫瘍候補領域の円形度(2次
元的特徴)により腫瘍領域を検出するのではなく、複数
の連続CT断層像中の腫瘍候補領域の3次元形状特徴を
基に腫瘍領域を検出する。3次元的に見ると、腫瘍は略
球形であるが、血管は柱状であるため、アキシャル断面
に直交するように走行している血管とでも腫瘍をより容
易に区別しやすい。よって、腫瘍領域を高精度に検出す
ることが出来る。
According to a first aspect of the present invention, according to the present invention, a plurality of CT tomographic images obtained by X-ray scanning a subject at consecutive different tomographic image positions are image-processed and measured to obtain a tumor candidate. Provided is a tumor area detection method characterized by detecting a tumor area based on a three-dimensional shape feature parameter of the area.
In the tumor area detection method according to the first aspect, the tumor area is not detected by the circularity (two-dimensional feature) of the tumor candidate area in one CT tomographic image as in the prior art, but a plurality of consecutive CTs are detected. The tumor region is detected based on the three-dimensional shape feature of the tumor candidate region in the tomographic image. When viewed three-dimensionally, the tumor has a substantially spherical shape, but since the blood vessel has a columnar shape, it is easy to distinguish the tumor even from the blood vessel running so as to be orthogonal to the axial cross section. Therefore, the tumor area can be detected with high accuracy.

【0006】第2の観点では、本発明は、上記構成の腫
瘍領域検出方法において、3次元形状特徴パラメータ
が、少なくとも球体度を含むことを特徴とする腫瘍領域
検出方法を提供する。上記第2の観点による腫瘍領域検
出方法では、3次元形状特徴パラメータとして、少なく
とも球体度を用いる。ここで、球体度βまたはβ’は、
表面積をSとし,体積をVとするとき、 β=6・π1/2・V/S3/2 β’=β2=36・π・V2/S3 である。球体度βまたはβ’が「1」に近いほど腫瘍で
ある確率が高い。
In a second aspect, the present invention provides a tumor area detecting method having the above-mentioned structure, wherein the three-dimensional shape characteristic parameter includes at least sphericity. In the tumor area detecting method according to the second aspect, at least the sphericity is used as the three-dimensional shape feature parameter. Here, the sphericity β or β ′ is
When the surface area is S and the volume is V, β = 6 · π 1/2 · V / S 3/2 β ′ = β 2 = 36 · π · V 2 / S 3 . The closer the sphericity β or β ′ is to “1”, the higher the probability of being a tumor.

【0007】第3の観点では、本発明は、上記構成の腫
瘍領域検出方法において、腫瘍領域か否かの判断基準と
して腫瘍領域候補の平均CT値をも用いることを特徴と
する腫瘍領域検出方法を提供する。上記第3の観点によ
る腫瘍領域検出方法では、腫瘍領域候補の平均CT値を
も用いて腫瘍か否かを判断する。複数の判断基準を用い
ることで検出精度を向上できる。
According to a third aspect of the present invention, in the method for detecting a tumor area having the above-mentioned structure, the average CT value of the candidate tumor areas is also used as a criterion for determining whether or not the area is a tumor area. I will provide a. In the tumor area detection method according to the third aspect, whether or not the tumor is a tumor area is also determined using the average CT value of the tumor area candidates. The detection accuracy can be improved by using a plurality of judgment criteria.

【0008】第4の観点では、本発明は、上記構成の腫
瘍領域検出方法において、被検体を連続した異なる断層
像位置でX線走査して取得した複数のCT断層像中の血
管候補領域をCT値に基づいて抽出し、該血管候補領域
の内で外接直方体の体積が大きい領域を血管領域として
ノイズ領域と区別し、該血管領域に対して収縮処理を施
して孤立した領域を腫瘍候補領域とすることを特徴とす
る腫瘍領域検出方法を提供する。腫瘍は、次の性質を持
っている。 (1)腫瘍は、栄養摂取するため、血管に接続してい
る。 (2)腫瘍は、自身に接続している血管よりも太くな
る。 そこで、上記第4の観点による腫瘍領域検出方法では、
まず、血管領域を抽出すると、上記性質(1)から、こ
の血管領域に腫瘍が含まれている。次に、血管の太さだ
け収縮させると、上記性質(2)から、腫瘍が孤立して
残る。かくして、腫瘍候補領域を取り出すことが出来
る。
According to a fourth aspect of the present invention, in the method for detecting a tumor region having the above-mentioned structure, a candidate blood vessel region in a plurality of CT tomographic images acquired by X-ray scanning an object at consecutive different tomographic image positions is selected. A region having a large volume of a circumscribed rectangular parallelepiped is extracted as a blood vessel region in the blood vessel candidate region from the CT value to distinguish it from a noise region, and a contraction process is performed on the blood vessel region to isolate an isolated region as a tumor candidate region. A method for detecting a tumor area is provided. Tumors have the following properties. (1) Tumors are connected to blood vessels for nutrition. (2) The tumor becomes thicker than the blood vessels connecting to itself. Therefore, in the tumor area detection method according to the fourth aspect,
First, when a blood vessel region is extracted, a tumor is included in this blood vessel region because of the above property (1). Next, when the blood vessel is contracted by the thickness of the blood vessel, the tumor remains isolated due to the property (2). Thus, the tumor candidate region can be extracted.

【0009】第5の観点では、本発明は、上記構成の腫
瘍領域検出方法において、腫瘍検出の閾値レベルを2つ
以上の領域ごとに設け、それぞれ別個に収縮処理を施す
ことを特徴とする腫瘍領域検出方法を提供する。血管の
太さだけ収縮させると言っても、血管の太さは一様では
ない。すなわち、基幹部では太く、末梢部では細い。そ
こで、上記第5の観点による腫瘍領域検出方法では、例
えば、血管の主幹部と末端部近傍の2カ所あるいは2カ
所以上の領域毎に腫瘍検出の閾値レベルを設け、それぞ
れ別個に収縮処理を施す。これにより、基幹部の腫瘍
と、末梢部の腫瘍とを、見落し及び過検出をより少なく
して検出できる。
According to a fifth aspect of the present invention, in the method for detecting a tumor region having the above-mentioned structure, a threshold level for tumor detection is provided for each of two or more regions, and the contraction process is performed separately for each tumor. An area detection method is provided. Even if we say that only the thickness of blood vessels is contracted, the thickness of blood vessels is not uniform. That is, it is thick at the trunk and thin at the periphery. Therefore, in the tumor area detecting method according to the fifth aspect, for example, a threshold level for tumor detection is set for each of two or more areas near the main and distal ends of a blood vessel, and contraction processing is performed separately. . As a result, the tumor of the main part and the tumor of the peripheral part can be detected with less oversight and overdetection.

【0010】第6の観点では、本発明は、上記構成の腫
瘍領域検出方法において、複数のアキシャルCT画像か
ら、肺野部分をCT値に基づいて検出し、その後に、そ
の肺野部分内で血管候補領域をCT値に基づいて抽出す
ることを特徴とする腫瘍領域検出方法を提供する。上記
第6の観点による腫瘍領域検出方法では、まず、肺野部
分を検出し、その肺野部分内で血管候補領域を抽出する
ので、ノイズ領域を好適に除去できる。
According to a sixth aspect of the present invention, in the method for detecting a tumor area having the above-mentioned structure, a lung field portion is detected from a plurality of axial CT images based on a CT value, and thereafter, in the lung field portion. A method for detecting a tumor region, which is characterized by extracting a blood vessel candidate region based on a CT value. In the tumor area detecting method according to the sixth aspect, first, the lung field portion is detected and the blood vessel candidate area is extracted within the lung field portion, so that the noise area can be suitably removed.

【0011】第7の観点では、本発明は、上記構成の腫
瘍領域検出方法において、肺野部分内の血管部分を埋め
て形を成形した領域内の血管候補領域をCT値に基づい
て抽出することを特徴とする腫瘍領域検出方法を提供す
る。上記第7の観点による腫瘍領域検出方法では、肺野
部分内で血管部分を整形してから血管候補領域を抽出す
るので、血管候補領域を好適に抽出できる。
According to a seventh aspect of the present invention, in the method for detecting a tumor region having the above-mentioned structure, a blood vessel candidate region in a region in which a blood vessel portion in a lung field portion is filled and shaped is extracted based on a CT value. A method for detecting a tumor region is provided. In the tumor area detection method according to the seventh aspect, since the blood vessel candidate area is extracted after shaping the blood vessel portion in the lung field portion, the blood vessel candidate area can be suitably extracted.

【0012】第8の観点では、本発明は、上記構成の腫
瘍領域検出方法において、肺野部分を3次元画像処理に
基づいて成形した領域内の血管候補領域をCT値に基づ
いて抽出することを特徴とする腫瘍領域検出方法を提供
する。上記第8の観点による腫瘍領域検出方法では、肺
野部分内で3次元画像処理による整形を行ってから血管
候補領域を抽出するので、血管候補領域を好適に抽出で
きる。
According to an eighth aspect of the present invention, in the method for detecting a tumor region having the above-mentioned structure, a blood vessel candidate region within a region formed by three-dimensional image processing of a lung field portion is extracted based on a CT value. A method for detecting a tumor area is provided. In the tumor area detecting method according to the eighth aspect, since the blood vessel candidate area is extracted after performing the shaping by the three-dimensional image processing in the lung field portion, the blood vessel candidate area can be suitably extracted.

【0013】第9の観点では、本発明は、被検体を連続
した異なる断層像位置でX線走査して複数のCT断層像
を取得する撮影手段と、複数のCT断層像を画像処理・
測定して腫瘍候補領域の3次元形状特徴パラメータを基
に腫瘍領域を検出する腫瘍領域検出手段とを具備したこ
とを特徴とするX線CT装置を提供する。上記第9の観
点によるX線CT装置では、上記第1の観点による腫瘍
領域検出方法を好適に実施できる。
According to a ninth aspect, the present invention provides a photographing means for X-ray scanning an object at consecutive different tomographic image positions to obtain a plurality of CT tomographic images, and image processing of the plurality of CT tomographic images.
There is provided an X-ray CT apparatus characterized by comprising a tumor region detecting means for measuring and detecting a tumor region based on a three-dimensional shape characteristic parameter of a tumor candidate region. In the X-ray CT apparatus according to the ninth aspect, the tumor area detecting method according to the first aspect can be suitably implemented.

【0014】第10の観点では、本発明は、上記構成の
X線CT装置において、3次元形状特徴パラメータが、
少なくとも球体度を含むことを特徴とするX線CT装置
を提供する。上記第10の観点によるX線CT装置で
は、上記第2の観点による腫瘍領域検出方法を好適に実
施できる。
According to a tenth aspect of the present invention, in the X-ray CT apparatus having the above structure, the three-dimensional shape feature parameter is
An X-ray CT apparatus including at least a sphericity is provided. The X-ray CT apparatus according to the tenth aspect can suitably implement the tumor area detection method according to the second aspect.

【0015】第11の観点では、本発明は、上記構成の
X線CT装置において、腫瘍領域か否かの判断基準とし
て腫瘍領域候補の平均CT値をも用いることを特徴とす
るX線CT装置を提供する。上記第11の観点によるX
線CT装置では、上記第3の観点による腫瘍領域検出方
法を好適に実施できる。
In an eleventh aspect, the present invention is an X-ray CT apparatus having the above-mentioned structure, wherein the average CT value of a tumor area candidate is also used as a criterion for determining whether or not a tumor area is present. I will provide a. X according to the eleventh aspect
In the line CT apparatus, the tumor area detecting method according to the third aspect can be suitably implemented.

【0016】第12の観点では、本発明は、上記構成の
X線CT装置において、被検体を連続した異なる断層像
位置でX線走査して取得した複数のCT断層像中の血管
候補領域をCT値に基づいて抽出する血管候補領域抽出
手段と、前記血管候補領域の内で外接直方体の体積が大
きい領域を血管領域とする血管領域抽出手段と、前記血
管領域に対して収縮処理を施して孤立した領域を腫瘍候
補領域とする腫瘍候補領域抽出手段とを具備したことを
特徴とするX線CT装置を提供する。上記第12の観点
によるX線CT装置では、上記第4の観点による腫瘍領
域検出方法を好適に実施できる。
In a twelfth aspect of the present invention, in the X-ray CT apparatus having the above-mentioned structure, a candidate blood vessel region in a plurality of CT tomographic images acquired by X-ray scanning a subject at consecutive different tomographic image positions is obtained. A blood vessel candidate region extracting means for extracting based on a CT value, a blood vessel region extracting means for making a region of the blood vessel candidate region having a large volume of a circumscribing rectangular parallelepiped a blood vessel region, and performing a contraction process on the blood vessel region. There is provided an X-ray CT apparatus characterized by comprising a tumor candidate area extracting unit that uses an isolated area as a tumor candidate area. The X-ray CT apparatus according to the twelfth aspect can suitably implement the tumor area detecting method according to the fourth aspect.

【0017】第13の観点では、本発明は、上記構成の
X線CT装置において、腫瘍検出の閾値レベルを2つ以
上の領域ごとに設け、それぞれ別個に収縮処理を施すこ
とを特徴とするX線CT装置を提供する。上記第13の
観点によるX線CT装置では、上記第5の観点による腫
瘍領域検出方法を好適に実施できる。
In a thirteenth aspect, the present invention is characterized in that, in the X-ray CT apparatus having the above-mentioned configuration, a threshold level for tumor detection is provided for each of two or more regions, and contraction processing is performed separately for each X. A line CT apparatus is provided. The X-ray CT apparatus according to the thirteenth aspect can suitably implement the tumor area detection method according to the fifth aspect.

【0018】第14の観点では、本発明は、上記構成の
X線CT装置において、複数のアキシャルCT画像か
ら、肺野部分をCT値に基づいて検出し、その後に、そ
の肺野部分内で血管候補領域をCT値に基づいて抽出す
ることを特徴とするX線CT装置を提供する。上記第1
4の観点によるX線CT装置では、上記第6の観点によ
る腫瘍領域検出方法を好適に実施できる。
According to a fourteenth aspect of the present invention, in the X-ray CT apparatus having the above structure, the lung field portion is detected from a plurality of axial CT images based on the CT value, and thereafter, in the lung field portion. There is provided an X-ray CT apparatus characterized by extracting a blood vessel candidate region based on a CT value. First above
The X-ray CT apparatus according to the fourth aspect can preferably implement the tumor area detection method according to the sixth aspect.

【0019】第15の観点では、本発明は、上記構成の
X線CT装置において、肺野部分内の血管部分を埋めて
形を成形した領域内の血管候補領域をCT値に基づいて
抽出することを特徴とするX線CT装置を提供する。上
記第15の観点によるX線CT装置では、上記第7の観
点による腫瘍領域検出方法を好適に実施できる。
According to a fifteenth aspect of the present invention, in the X-ray CT apparatus having the above-mentioned configuration, a blood vessel candidate region in a region in which a blood vessel portion in the lung field portion is filled and shaped is extracted based on the CT value. An X-ray CT apparatus characterized by the above. The X-ray CT apparatus according to the fifteenth aspect can suitably implement the tumor area detecting method according to the seventh aspect.

【0020】第16の観点では、本発明は、上記構成の
X線CT装置において、肺野部分を3次元画像処理に基
づいて成形した領域内の血管候補領域をCT値に基づい
て抽出することを特徴とするX線CT装置を提供する。
上記第16の観点によるX線CT装置では、上記第8の
観点による腫瘍領域検出方法を好適に実施できる。
In a sixteenth aspect, the present invention is, in the X-ray CT apparatus having the above-mentioned configuration, extracting a blood vessel candidate region within a region formed by three-dimensional image processing of a lung field portion based on a CT value. An X-ray CT apparatus is provided.
The X-ray CT apparatus according to the sixteenth aspect can suitably implement the tumor area detection method according to the eighth aspect.

【0021】[0021]

【発明の実施の形態】以下、図に示す本発明の実施形態
により本発明をさらに詳細に説明する。なお、これによ
り本発明が限定されるものではない。
BEST MODE FOR CARRYING OUT THE INVENTION The present invention will now be described in more detail with reference to the embodiments of the present invention shown in the drawings. The present invention is not limited to this.

【0022】図1は、本発明の一実施形態にかかるX線
CT装置を示す構成図である。このX線CT装置100
は、スキャナ装置1と,処理装置2と,大容量記憶装置
3と,表示モニタ4と,キーボードやマウスなどの入力
装置5とを具備して構成されている。
FIG. 1 is a block diagram showing an X-ray CT apparatus according to an embodiment of the present invention. This X-ray CT apparatus 100
Includes a scanner device 1, a processing device 2, a mass storage device 3, a display monitor 4, and an input device 5 such as a keyboard and a mouse.

【0023】スキャナ装置1は、被検体に対してX線管
および検出器を被検体の体軸に沿って相対移動し、所望
の断層像位置で止め、体軸の周りにX線管および検出器
を回転させてCT断層像の作成に必要な複数回転ビュー
のデータを収集する。なお、X線管のみ回転させ、検出
器を回転させない第4世代のX線CT装置の場合もあ
る。
The scanner device 1 moves the X-ray tube and the detector relative to the subject along the body axis of the subject, stops them at a desired tomographic image position, and moves the X-ray tube and the detector around the body axis. The instrument is rotated to collect data for multiple rotation views required to create a CT tomographic image. Note that there may be a fourth-generation X-ray CT apparatus in which only the X-ray tube is rotated and the detector is not rotated.

【0024】処理装置2は、被検体を連続した異なる断
層像位置でX線走査して取得した複数のCT断層像を入
力するデータ取得部2aと、複数のCT断層像中の血管
候補領域をCT値に基づいて抽出する血管候補領域抽出
部2bと、血管候補領域の内で外接直方体の体積が大き
い領域を血管領域とする血管領域抽出部2cと、血管領
域に対して収縮処理を施して孤立した領域を腫瘍候補領
域とする腫瘍候補領域抽出部2dと、腫瘍候補領域の3
次元形状特徴パラメータを基に腫瘍領域を検出する腫瘍
領域検出部2eとを具備している。
The processing apparatus 2 stores a data acquisition unit 2a for inputting a plurality of CT tomographic images obtained by scanning the subject at consecutive different tomographic image positions by X-rays, and a blood vessel candidate region in the plurality of CT tomographic images. A blood vessel candidate region extraction unit 2b that extracts based on the CT value, a blood vessel region extraction unit 2c that uses a region of the blood vessel candidate region having a large volume of a circumscribed rectangular parallelepiped as a blood vessel region, and performs contraction processing on the blood vessel region. A tumor candidate area extraction unit 2d that uses an isolated area as a tumor candidate area, and a tumor candidate area 3
A tumor area detection unit 2e for detecting a tumor area based on the three-dimensional shape characteristic parameter is provided.

【0025】図2は、X線CT装置100による腫瘍領
域検出処理を示すフローチャートである。なお、腫瘍検
出対象の臓器として肺を想定する。ステップP1では、
図3に示すように、被検体hを連続した異なる断層像位
置でX線走査して取得した複数のCT断層像Siを入力
する。
FIG. 2 is a flowchart showing the tumor area detection processing by the X-ray CT apparatus 100. Note that the lung is assumed as the organ for tumor detection. In step P1,
As shown in FIG. 3, a plurality of CT tomographic images Si acquired by X-ray scanning the subject h at different continuous tomographic image positions are input.

【0026】ステップP2では、肺の全体を抽出できる
ようなCT値範囲(例えば−200以下)を「1」と
し、それ以外を「0」とするような2値化処理を行う。
これにより、図4に示すように、肺Lおよび背景(空
気)Aの領域が「1」となり、それ以外が「0」とな
る。なお、図4では、「1」の領域をハッチングで示し
ている。図4で、入り江Laというのは、肺Lへ入る太
い血管の部分である。
In step P2, a binarization process is performed so that the CT value range (for example, -200 or less) capable of extracting the entire lung is set to "1" and the other values are set to "0".
As a result, as shown in FIG. 4, the area of the lung L and the background (air) A becomes "1", and the other areas become "0". In FIG. 4, the area of “1” is hatched. In FIG. 4, the inlet La is a thick blood vessel portion that enters the lung L.

【0027】ステップP3では、「1」の領域に対し3
次元または2次元論理フィルタによりN画素収縮処理お
よびN画素膨張処理を行い、ノイズとなる微小領域を取
り除く(例えば、N=5。但し、Nの値は、1画素サイ
ズに依存して変化させる。)。次に、3次元または2次
元ラベリング処理により「1」の領域を区分し、背景
(空気)と推定できる区分を除去する。図5に示すよう
に、肺だけが「1」の領域となる。
At step P3, 3 is added to the area of "1".
N-pixel contraction processing and N-pixel expansion processing are performed by a two-dimensional or two-dimensional logical filter to remove a minute area that becomes noise (for example, N = 5. However, the value of N is changed depending on one pixel size. ). Next, the area of "1" is divided by the three-dimensional or two-dimensional labeling processing, and the division that can be estimated as the background (air) is removed. As shown in FIG. 5, only the lung becomes the area of “1”.

【0028】ステップP4では、「1」の領域に対し3
次元または2次元論理フィルタによりM画素拡大処理お
よびM画素収縮処理を行い、不要領域である入り江La
を埋める(例えば、M=10。但し、Mの値は、1画素
サイズに依存して変化させる。)。図6に示すように、
肺Lから入り江Laがなくなる。
At step P4, 3 is added to the area of "1".
M pixel expansion processing and M pixel contraction processing are performed by a two-dimensional or two-dimensional logical filter, and an unnecessary area La
(For example, M = 10. However, the value of M is changed depending on the size of one pixel). As shown in FIG.
The inlet La disappears from the lung L.

【0029】ステップP5では、上記ステップP4で
「1」になった領域を各CT断層像Siから画素間演算
の論理積AND処理で切り出し、その切り出した領域
(マスク領域)について血管を抽出できるようなCT値
範囲(造影された血管のCT値はおよそ100〜20
0、造影されてない血管のCT値はおよそ40〜50な
ので、例えば−500〜+1000)を「1」とし、そ
れ以外を「0」とするような2値化処理を行う。これに
より、図7に示すように、肺Lの血管候補領域Vaが
「1」となり、それ以外が「0」となる。ここで、肺L
の血管候補領域Vaを3次元モデル化する。
In step P5, the area which has become "1" in step P4 is cut out from each CT tomographic image Si by the AND operation of the inter-pixel operations, and the blood vessel can be extracted from the cut out area (mask area). CT value range (CT value of contrasted blood vessel is about 100 to 20)
Since the CT value of a blood vessel that is not 0 and is not contrasted is approximately 40 to 50, the binarization processing is performed so that, for example, −500 to +1000) is set to “1” and the other values are set to “0”. As a result, as shown in FIG. 7, the blood vessel candidate region Va of the lung L becomes "1" and the other regions become "0". Where the lung L
The blood vessel candidate region Va of 3 is modeled three-dimensionally.

【0030】ステップP6では、肺Lの血管候補領域V
aに対し3次元論理フィルタによりL画素膨張処理およ
びL画素収縮処理を行い、データ上では切れていた血管
候補領域v1,v2,v3,…を図8に示すように接続
修復する(例えば、L=1〜3。但し、Lの値は、1画
素サイズに依存して変化させる。)。
In step P6, the blood vessel candidate region V of the lung L
L pixel expansion processing and L pixel contraction processing are performed on a by a three-dimensional logical filter, and the blood vessel candidate regions v1, v2, v3, ... Which have been cut off in the data are connected and repaired as shown in FIG. 8 (for example, L = 1 to 3. However, the value of L is changed depending on the one pixel size.).

【0031】ステップP7では、3次元ラベリング処理
により血管候補領域Vaを図9に示すような血管候補V
bに区分する。
In step P7, the blood vessel candidate region Va is converted into the blood vessel candidate V as shown in FIG. 9 by the three-dimensional labeling process.
Divide into b.

【0032】ステップP8では、図9に示すように、各
血管候補Vbに対する血管候補領域の全画素を含む xm
in<x<xmax 且つ ymin<y<ymax 且つ zmin<z
<zmax の直方体の領域である外接直方体Bの体積を計
算し、最も体積の大きい血管候補Vbを血管Vと判定す
る。他のラベル領域は、ノイズ領域として除去する。図
10に、血管Vを示す。なお、図9において、血管候補
Vbは、外接直方体Bの上面AP,底面BP,側面CP
〜FPに、点Ca〜Cfで接している
At step P8, as shown in FIG. 9, xm including all pixels of the blood vessel candidate region for each blood vessel candidate Vb
in <x <xmax and ymin <y <ymax and zmin <z
The volume of the circumscribed rectangular parallelepiped B, which is a rectangular parallelepiped region of <zmax, is calculated, and the blood vessel candidate Vb having the largest volume is determined as the blood vessel V. Other label areas are removed as noise areas. FIG. 10 shows the blood vessel V. In FIG. 9, the blood vessel candidates Vb are the upper surface AP, the bottom surface BP, and the side surface CP of the circumscribed rectangular parallelepiped B.
To FP at points Ca to Cf

【0033】ステップP9では、血管Vに対して3次元
論理フィルタによりP画素収縮処理を行い、末梢部の血
管を消去する。Pは、末梢部の血管の太さに1〜2画素
を加えた値とする(例えば、P=4〜5。但し、Pの値
は、1画素サイズに依存して変化させる。)。これによ
り、図11に示すように、血管Vの末梢部に孤立した腫
瘍候補領域Caが残る。次に、その腫瘍候補領域Caの
球体度βを計算する。また、腫瘍候補領域Caと複数の
連続CT断層像Siとを基に腫瘍候補領域Caの3次元
データを抽出し、その平均CT値を計算する。そして、
腫瘍候補領域Caの球体度βと平均CT値とを基に末梢
部腫瘍領域を検出する。ここで、図12の(a)に示す
ように腫瘍Cは略球形状であり、図12の(b)に示す
ように血管Vは略柱状である。そこで、例えば、球体度
βが0.8より大きく且つ平均CT値が0〜+200な
らば腫瘍領域と判断し、そうでないなら腫瘍領域でない
判断する。
In step P9, P-pixel contraction processing is performed on the blood vessel V by a three-dimensional logical filter to erase the blood vessel in the peripheral portion. Let P be a value obtained by adding 1 to 2 pixels to the thickness of the peripheral blood vessel (for example, P = 4 to 5; however, the value of P is changed depending on the 1 pixel size). As a result, as shown in FIG. 11, the isolated tumor candidate region Ca remains in the peripheral portion of the blood vessel V. Next, the sphericity β of the tumor candidate area Ca is calculated. Also, three-dimensional data of the tumor candidate region Ca is extracted based on the tumor candidate region Ca and the plurality of continuous CT tomographic images Si, and the average CT value thereof is calculated. And
The peripheral tumor region is detected based on the sphericity β of the tumor candidate region Ca and the average CT value. Here, the tumor C has a substantially spherical shape as shown in FIG. 12 (a), and the blood vessel V has a substantially columnar shape as shown in FIG. 12 (b). Therefore, for example, if the sphericity β is larger than 0.8 and the average CT value is 0 to +200, it is determined to be a tumor region, and if not, it is determined to be not a tumor region.

【0034】ステップP10では、上記ステップP9の
後に収縮処理して残った血管Vに対して3次元論理フィ
ルタによりQ画素収縮処理を行い、主幹部の血管を消去
する。Qは、主幹部の血管の太さに1〜2画素を加えP
を減算した値とする(例えば、Q=7〜8。但し、Qの
値は、1画素サイズに依存して変化させる。)。これに
より、図13に示すように、血管Vの主幹部に孤立した
腫瘍候補領域Cbが残る。次に、その腫瘍候補領域Cb
の球体度βを計算する。また、腫瘍候補領域Cbと複数
の連続CT断層像Siとを基に腫瘍候補領域Cbの3次
元データを抽出し、その平均CT値を計算する。そし
て、腫瘍候補領域Cbの球体度βと平均CT値とを基に
主幹部腫瘍領域を検出する。
In step P10, Q-pixel contraction processing is performed on the blood vessel V remaining after the contraction processing after step P9 by a three-dimensional logical filter to erase the blood vessel in the main trunk. Q is 1 to 2 pixels added to the thickness of the blood vessel of the main trunk P
Is subtracted (for example, Q = 7 to 8. However, the value of Q is changed depending on the size of one pixel). As a result, as shown in FIG. 13, an isolated tumor candidate region Cb remains in the main trunk of the blood vessel V. Next, the tumor candidate region Cb
Calculate the sphericity β of. Also, three-dimensional data of the tumor candidate region Cb is extracted based on the tumor candidate region Cb and the plurality of continuous CT tomographic images Si, and the average CT value thereof is calculated. Then, the main trunk tumor region is detected based on the sphericity β of the tumor candidate region Cb and the average CT value.

【0035】以上により、腫瘍領域を高精度に検出する
ことが出来る。
As described above, the tumor area can be detected with high accuracy.

【0036】上記説明では、ステップP5までの処理を
2次元処理とし、ステップP6以降を3次元処理とした
が、ステップP2以降を全て3次元処理としてもよい。
この場合には、ステップP1で、複数のCT断層像Si
から3次元データを構築しておけばよい。
In the above description, the processing up to step P5 is a two-dimensional processing and the processing after step P6 is a three-dimensional processing, but all the processing after step P2 may be a three-dimensional processing.
In this case, in step P1, a plurality of CT tomographic images Si
3D data should be constructed from.

【0037】また、上記説明では、血管を末梢部と主幹
部の2段階の太さに分けて腫瘍領域の検出閾値を設定し
たが、3段階以上の太さに血管の領域を分けて腫瘍領域
を検出してもよい。
Further, in the above description, the blood vessel is divided into the peripheral portion and the main portion in two stages of the thickness, and the detection threshold of the tumor region is set. However, the region of the blood vessel is divided into the thicknesses of three stages or more and the tumor region is divided. May be detected.

【0038】また、上記ステップP6を省略してもよ
い。
The step P6 may be omitted.

【0039】[0039]

【発明の効果】本発明の腫瘍領域検出方法およびX線C
T装置によれば、腫瘍領域を高精度に検出することが出
来る。
INDUSTRIAL APPLICABILITY The tumor area detecting method and X-ray C of the present invention
The T-apparatus can detect the tumor area with high accuracy.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施形態にかかるX線CT装置の構
成図である。
FIG. 1 is a configuration diagram of an X-ray CT apparatus according to an embodiment of the present invention.

【図2】本発明の一実施形態にかかる腫瘍領域検出処理
を示すフローチャートである。
FIG. 2 is a flowchart showing a tumor area detection process according to the embodiment of the present invention.

【図3】複数のCT断層像の例示図である。FIG. 3 is an exemplary view of a plurality of CT tomographic images.

【図4】肺の全体を抽出する2値化処理の説明図であ
る。
FIG. 4 is an explanatory diagram of binarization processing for extracting the entire lung.

【図5】背景を削除する処理の説明図である。FIG. 5 is an explanatory diagram of a process of deleting a background.

【図6】不要領域を埋める処理の説明図である。FIG. 6 is an explanatory diagram of a process of filling an unnecessary area.

【図7】血管候補領域の説明図である。FIG. 7 is an explanatory diagram of blood vessel candidate regions.

【図8】血管候補領域の接続修復処理の説明図である。FIG. 8 is an explanatory diagram of connection repair processing of a blood vessel candidate region.

【図9】血管候補に外接する直方体を示す説明図であ
る。
FIG. 9 is an explanatory diagram showing a rectangular parallelepiped circumscribing a blood vessel candidate.

【図10】抽出した血管の説明図である。FIG. 10 is an explanatory diagram of extracted blood vessels.

【図11】末梢部の腫瘍候補領域の説明図である。FIG. 11 is an explanatory diagram of a peripheral tumor candidate region.

【図12】腫瘍と血管の形状の違いを示す説明図であ
る。
FIG. 12 is an explanatory diagram showing a difference in shape between a tumor and a blood vessel.

【図13】主幹部の腫瘍候補領域の説明図である。FIG. 13 is an explanatory diagram of a tumor candidate region of the main trunk.

【図14】CT断層像の例示図である。FIG. 14 is a view showing an example of a CT tomographic image.

【図15】従来の腫瘍候補領域の説明図である。FIG. 15 is an explanatory diagram of a conventional tumor candidate area.

【符号の説明】[Explanation of symbols]

100 X線CT装置 1 スキャナ装置 2 処理装置 2a データ取得部 2b 血管候補領域抽出部 2c 血管領域抽出部 2d 腫瘍候補領域抽出部 2e 腫瘍領域検出部 3 大容量記憶装置 4 表示モニタ 5 入力装置 100 X-ray CT system 1 Scanner device 2 processing equipment 2a Data acquisition unit 2b Blood vessel candidate area extraction unit 2c blood vessel region extraction unit 2d Tumor candidate region extraction unit 2e Tumor area detector 3 Mass storage 4 Display monitor 5 Input device

───────────────────────────────────────────────────── フロントページの続き (72)発明者 西出 明彦 東京都日野市旭ケ丘4丁目7番地の127 ジーイー横河メディカルシステム株式会社 内 (72)発明者 今井 靖浩 東京都日野市旭ケ丘4丁目7番地の127 ジーイー横河メディカルシステム株式会社 内 Fターム(参考) 4C093 AA22 DA02 DA10 FD03 FD05 FD09 FF17 FF19 FF20 FF21 FF42 5B057 AA09 BA03 CA13 CB13 CH01 CH12 DA08 DA16 DB03 DC16 5L096 AA09 BA06 BA13 DA01 EA02 FA06 GA51 JA11    ─────────────────────────────────────────────────── ─── Continued front page    (72) Inventor Akihiko Nishide             127, 4-7 Asahigaoka, Hino City, Tokyo             GE Yokogawa Medical System Co., Ltd.             Within (72) Inventor Yasuhiro Imai             127, 4-7 Asahigaoka, Hino City, Tokyo             GE Yokogawa Medical System Co., Ltd.             Within F term (reference) 4C093 AA22 DA02 DA10 FD03 FD05                       FD09 FF17 FF19 FF20 FF21                       FF42                 5B057 AA09 BA03 CA13 CB13 CH01                       CH12 DA08 DA16 DB03 DC16                 5L096 AA09 BA06 BA13 DA01 EA02                       FA06 GA51 JA11

Claims (16)

【特許請求の範囲】[Claims] 【請求項1】 被検体を連続した異なる断層像位置でX
線走査して取得した複数のCT断層像を画像処理・測定
し、腫瘍候補領域の3次元形状特徴パラメータを基に腫
瘍領域を検出することを特徴とする腫瘍領域検出方法。
1. X-rays of a subject are measured at consecutive different tomographic image positions.
A method for detecting a tumor region, which comprises image-processing and measuring a plurality of CT tomographic images obtained by line scanning, and detecting the tumor region based on a three-dimensional shape characteristic parameter of the tumor candidate region.
【請求項2】 請求項1に記載の腫瘍領域検出方法にお
いて、3次元形状特徴パラメータが、少なくとも球体度
を含むことを特徴とする腫瘍領域検出方法。
2. The tumor area detecting method according to claim 1, wherein the three-dimensional shape feature parameter includes at least a sphericity.
【請求項3】 請求項1または請求項2に記載の腫瘍領
域検出方法において、腫瘍領域か否かの判断基準として
腫瘍領域候補の平均CT値をも用いることを特徴とする
腫瘍領域検出方法。
3. The tumor area detecting method according to claim 1, wherein the average CT value of the tumor area candidates is also used as a criterion for determining whether the tumor area is a tumor area or not.
【請求項4】 請求項1から請求項3のいずれかに記載
の腫瘍領域検出方法において、被検体を連続した異なる
断層像位置でX線走査して取得した複数のCT断層像中
の血管候補領域をCT値に基づいて抽出し、該血管候補
領域の内で外接直方体の体積が大きい領域を血管領域と
してノイズ領域と区別し、該血管領域に対して収縮処理
を施して孤立した領域を腫瘍候補領域とすることを特徴
とする腫瘍領域検出方法。
4. The tumor region detection method according to claim 1, wherein blood vessel candidates in a plurality of CT tomographic images obtained by X-ray scanning the subject at consecutive different tomographic image positions. A region is extracted based on the CT value, a region having a large volume of a circumscribed rectangular parallelepiped in the blood vessel candidate region is distinguished from a noise region as a blood vessel region, and the blood vessel region is subjected to contraction processing to isolate an isolated region as a tumor. A method for detecting a tumor region, which comprises using a candidate region.
【請求項5】 請求項4に記載の腫瘍領域検出方法にお
いて、腫瘍検出の閾値レベルを2つ以上の領域ごとに設
け、それぞれ別個に収縮処理を施すことを特徴とする腫
瘍領域検出方法。
5. The tumor area detection method according to claim 4, wherein a threshold level for tumor detection is provided for each of two or more areas, and contraction processing is performed separately.
【請求項6】 請求項4または請求項5に記載の腫瘍領
域検出方法において、複数のアキシャルCT画像から、
肺野部分をCT値に基づいて検出し、その後に、その肺
野部分内で血管候補領域をCT値に基づいて抽出するこ
とを特徴とする腫瘍領域検出方法。
6. The method for detecting a tumor region according to claim 4 or 5, wherein a plurality of axial CT images are used,
A method for detecting a tumor region, which comprises detecting a lung field portion based on a CT value, and then extracting a blood vessel candidate region within the lung field portion based on the CT value.
【請求項7】 請求項6に記載の腫瘍領域検出方法にお
いて、肺野部分内の血管部分を埋めて形を成形した領域
内の血管候補領域をCT値に基づいて抽出することを特
徴とする腫瘍領域検出方法。
7. The tumor region detecting method according to claim 6, wherein a blood vessel candidate region in a region in which a blood vessel portion in the lung field portion is filled and shaped is extracted based on the CT value. Tumor area detection method.
【請求項8】 請求項6または請求項7に記載の腫瘍領
域検出方法において、肺野部分を3次元画像処理に基づ
いて成形した領域内の血管候補領域をCT値に基づいて
抽出することを特徴とする腫瘍領域検出方法。
8. The method for detecting a tumor region according to claim 6 or 7, wherein the blood vessel candidate region in the region formed by three-dimensional image processing of the lung field portion is extracted based on the CT value. A characteristic tumor area detection method.
【請求項9】 被検体を連続した異なる断層像位置でX
線走査して複数のCT断層像を取得する撮影手段と、複
数のCT断層像を画像処理・測定して腫瘍候補領域の3
次元形状特徴パラメータを基に腫瘍領域を検出する腫瘍
領域検出手段とを具備したことを特徴とするX線CT装
置。
9. An X-ray image of a subject is taken at consecutive different tomographic image positions.
An image capturing unit that linearly scans to obtain a plurality of CT tomographic images, and a plurality of CT candidate regions for image processing and measurement of the CT tomographic images.
An X-ray CT apparatus, comprising: a tumor area detecting unit that detects a tumor area based on a three-dimensional shape characteristic parameter.
【請求項10】 請求項9に記載のX線CT装置におい
て、3次元形状特徴パラメータが、少なくとも球体度を
含むことを特徴とするX線CT装置。
10. The X-ray CT apparatus according to claim 9, wherein the three-dimensional shape feature parameter includes at least a sphericity.
【請求項11】 請求項9または請求項10に記載のX
線CT装置において、腫瘍領域か否かの判断基準として
腫瘍領域候補の平均CT値をも用いることを特徴とする
X線CT装置。
11. X according to claim 9 or 10.
An X-ray CT apparatus characterized in that, in the X-ray CT apparatus, an average CT value of tumor area candidates is also used as a criterion for determining whether or not it is a tumor area.
【請求項12】 請求項9から請求項11のいずれかに
記載のX線CT装置において、被検体を連続した異なる
断層像位置でX線走査して取得した複数のCT断層像中
の血管候補領域をCT値に基づいて抽出する血管候補領
域抽出手段と、前記血管候補領域の内で外接直方体の体
積が大きい領域を血管領域とする血管領域抽出手段と、
前記血管領域に対して収縮処理を施して孤立した領域を
腫瘍候補領域とする腫瘍候補領域抽出手段とを具備した
ことを特徴とするX線CT装置。
12. The X-ray CT apparatus according to claim 9, wherein blood vessel candidates in a plurality of CT tomographic images acquired by X-ray scanning the subject at different continuous tomographic image positions. A blood vessel candidate region extracting means for extracting a region based on a CT value;
An X-ray CT apparatus comprising: a tumor candidate region extracting unit that performs a contraction process on the blood vessel region and uses an isolated region as a tumor candidate region.
【請求項13】 請求項12に記載のX線CT装置にお
いて、腫瘍検出の閾値レベルを2つ以上の領域ごとに設
け、それぞれ別個に収縮処理を施すことを特徴とするX
線CT装置。
13. The X-ray CT apparatus according to claim 12, wherein a threshold level for tumor detection is provided for each of two or more regions, and contraction processing is performed separately.
X-ray CT equipment.
【請求項14】 請求項12または請求項13に記載の
X線CT装置において、複数のアキシャルCT画像か
ら、肺野部分をCT値に基づいて検出し、その後に、そ
の肺野部分内で血管候補領域をCT値に基づいて抽出す
ることを特徴とするX線CT装置。
14. The X-ray CT apparatus according to claim 12 or 13, wherein a lung field portion is detected from a plurality of axial CT images based on a CT value, and then a blood vessel is detected in the lung field portion. An X-ray CT apparatus characterized by extracting a candidate region based on a CT value.
【請求項15】 請求項14に記載のX線CT装置にお
いて、肺野部分内の血管部分を埋めて形を成形した領域
内の血管候補領域をCT値に基づいて抽出することを特
徴とするX線CT装置。
15. The X-ray CT apparatus according to claim 14, wherein a blood vessel candidate region in a region in which a blood vessel portion in a lung field portion is filled and shaped is extracted based on a CT value. X-ray CT system.
【請求項16】 請求項14または請求項15に記載の
X線CT装置において、肺野部分を3次元画像処理に基
づいて成形した領域内の血管候補領域をCT値に基づい
て抽出することを特徴とするX線CT装置。
16. The X-ray CT apparatus according to claim 14 or 15, wherein extraction of a blood vessel candidate region in a region formed by performing three-dimensional image processing on a lung field portion is performed based on a CT value. Characteristic X-ray CT device.
JP2002057277A 2002-03-04 2002-03-04 X-ray CT system Expired - Fee Related JP4091318B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002057277A JP4091318B2 (en) 2002-03-04 2002-03-04 X-ray CT system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002057277A JP4091318B2 (en) 2002-03-04 2002-03-04 X-ray CT system

Publications (2)

Publication Number Publication Date
JP2003250794A true JP2003250794A (en) 2003-09-09
JP4091318B2 JP4091318B2 (en) 2008-05-28

Family

ID=28667588

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002057277A Expired - Fee Related JP4091318B2 (en) 2002-03-04 2002-03-04 X-ray CT system

Country Status (1)

Country Link
JP (1) JP4091318B2 (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005296348A (en) * 2004-04-12 2005-10-27 Canon Inc Image processing apparatus and its method, and program
NL1031359C2 (en) * 2005-03-14 2008-04-07 Gen Electric Methods and systems for monitoring tumor burden.
JP2008529640A (en) * 2005-02-11 2008-08-07 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ Imaging method and computer tomography apparatus for computed tomography
NL1034066C2 (en) 2006-06-29 2009-03-24 Ge Med Sys Global Tech Co Llc X-ray CT equipment.
JP2009178517A (en) * 2008-02-01 2009-08-13 Ge Medical Systems Global Technology Co Llc Image processor and x-ray ct system
JP2009268741A (en) * 2008-05-08 2009-11-19 Toshiba Corp Mri image diagnostic apparatus and mr image forming method
US7929739B2 (en) 2006-04-17 2011-04-19 Fujifilm Corporation Image processing method, apparatus, and program
JP2012024404A (en) * 2010-07-26 2012-02-09 Hitachi Ltd Image processor
JP2014204720A (en) * 2004-10-07 2014-10-30 チャクラバルティ、アナンダ Cupredoxin derived transport agents and methods of use thereof
US20150036909A1 (en) * 2012-03-15 2015-02-05 Agfa Health Care NV Method, apparatus and system for localizing a spine
JP2018175343A (en) * 2017-04-12 2018-11-15 富士フイルム株式会社 Medical image processing apparatus, method, and program

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4549093B2 (en) * 2004-04-12 2010-09-22 キヤノン株式会社 Image processing apparatus and method, and program
JP2005296348A (en) * 2004-04-12 2005-10-27 Canon Inc Image processing apparatus and its method, and program
JP2014204720A (en) * 2004-10-07 2014-10-30 チャクラバルティ、アナンダ Cupredoxin derived transport agents and methods of use thereof
JP2008529640A (en) * 2005-02-11 2008-08-07 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ Imaging method and computer tomography apparatus for computed tomography
US8229200B2 (en) 2005-03-14 2012-07-24 General Electric Company Methods and systems for monitoring tumor burden
NL1031359C2 (en) * 2005-03-14 2008-04-07 Gen Electric Methods and systems for monitoring tumor burden.
US7929739B2 (en) 2006-04-17 2011-04-19 Fujifilm Corporation Image processing method, apparatus, and program
NL1034066C2 (en) 2006-06-29 2009-03-24 Ge Med Sys Global Tech Co Llc X-ray CT equipment.
JP2009178517A (en) * 2008-02-01 2009-08-13 Ge Medical Systems Global Technology Co Llc Image processor and x-ray ct system
JP2009268741A (en) * 2008-05-08 2009-11-19 Toshiba Corp Mri image diagnostic apparatus and mr image forming method
JP2012024404A (en) * 2010-07-26 2012-02-09 Hitachi Ltd Image processor
US20150036909A1 (en) * 2012-03-15 2015-02-05 Agfa Health Care NV Method, apparatus and system for localizing a spine
US9406122B2 (en) * 2012-03-15 2016-08-02 Agfa Healthcare Nv Method, apparatus and system for localizing a spine
JP2018175343A (en) * 2017-04-12 2018-11-15 富士フイルム株式会社 Medical image processing apparatus, method, and program

Also Published As

Publication number Publication date
JP4091318B2 (en) 2008-05-28

Similar Documents

Publication Publication Date Title
US7916918B2 (en) Diagnostic system for multimodality mammography
US9098935B2 (en) Image displaying apparatus, image displaying method, and computer readable medium for displaying an image of a mammary gland structure without overlaps thereof
US8139836B2 (en) Automatic segmentation of the heart and aorta in medical 3-D scans without contrast media injections
US8233692B2 (en) Method of suppressing obscuring features in an image
JP4708362B2 (en) Computer-implemented method
Wiemker et al. Computer-aided lung nodule detection on high-resolution CT data
JP4717585B2 (en) Medical image determination apparatus, medical image determination method and program thereof
US20040184647A1 (en) System, method and apparatus for small pulmonary nodule computer aided diagnosis from computed tomography scans
US20060062447A1 (en) Method for simple geometric visualization of tubular anatomical structures
JP2008253293A (en) Method of extracting lung field area from ct image
US8059900B2 (en) Method and apparatus to facilitate visualization and detection of anatomical shapes using post-processing of 3D shape filtering
JP2004180932A (en) Computer aided diagnostic apparatus
Pu et al. An automated CT based lung nodule detection scheme using geometric analysis of signed distance field
JP2005526583A (en) Lung nodule detection using wheel-like projection analysis
US7689018B2 (en) Anomaly detection in volume data structure information
JP2003250794A (en) Tumor region-detecting method and x-ray ct apparatus
US6744911B1 (en) Tomographic segmentation
US20060157069A1 (en) Identification method and computer readable medium
JP4408863B2 (en) Medical image processing apparatus and method
CN111311626A (en) Skull fracture automatic detection method based on CT image and electronic medium
JP2004174241A (en) Image forming method
CN1707523A (en) Method for medical 3D image display and processing, computed tomograph, workstation and computer program product
Blaffert et al. Comparison of different follow-up lung registration methods with and without segmentation
Dijkers et al. Segmentation and size measurement of polyps in CT colonography
Fiebich et al. Improvement of method for computer-assisted detection of pulmonary nodules in CT of the chest

Legal Events

Date Code Title Description
A625 Written request for application examination (by other person)

Free format text: JAPANESE INTERMEDIATE CODE: A625

Effective date: 20041014

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060420

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061024

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070123

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071030

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080129

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080226

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080228

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110307

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110307

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110307

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110307

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees