JP2003243054A - Photo-electrode for photoelectric transducing element - Google Patents

Photo-electrode for photoelectric transducing element

Info

Publication number
JP2003243054A
JP2003243054A JP2002040594A JP2002040594A JP2003243054A JP 2003243054 A JP2003243054 A JP 2003243054A JP 2002040594 A JP2002040594 A JP 2002040594A JP 2002040594 A JP2002040594 A JP 2002040594A JP 2003243054 A JP2003243054 A JP 2003243054A
Authority
JP
Japan
Prior art keywords
transparent conductive
film
conductive film
oxide semiconductor
photoelectric conversion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2002040594A
Other languages
Japanese (ja)
Inventor
Hiroshi Matsui
浩志 松井
Nobuo Tanabe
信夫 田辺
Kenichi Okada
顕一 岡田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujikura Ltd
Original Assignee
Fujikura Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujikura Ltd filed Critical Fujikura Ltd
Priority to JP2002040594A priority Critical patent/JP2003243054A/en
Publication of JP2003243054A publication Critical patent/JP2003243054A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/542Dye sensitized solar cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Photovoltaic Devices (AREA)
  • Hybrid Cells (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a photo-electrode for a photoelectric transducing element of such a structure that a direct touch of its transparent conductive film with an electrolyte layer or hole conveying layer can be avoided and that the output characteristic of the transducing element is prevented from dropping. <P>SOLUTION: The photo-electrode has a transparent base board 1, the transparent conductive film 2 formed on its one surface, and an oxide semiconductor porous film 3 formed on the transparent conductive film 2, and an insulating film 11 is formed on the transparent conductive film 2 in the region A in which oxide semiconductor particulates 33 constituting the oxide semiconductor porous film 3 are not in direct touch with the transparent conductive film 2. The insulating film 11 should favorably consist of a polymeride produced through electrolytic polymerization of monomers having two or more mercapt radicals in one molecule. <P>COPYRIGHT: (C)2003,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】この発明は、色素増感太陽電
池などの光電変換素子に用いられる光電極に関する。
TECHNICAL FIELD The present invention relates to a photoelectrode used for a photoelectric conversion element such as a dye-sensitized solar cell.

【0002】[0002]

【従来の技術】色素増感太陽電池は、スイスのグレツェ
ルらが開発したもので、光電変換効率が高く、製造コス
トが安いなどの利点があり、新しいタイプの太陽電池と
して注目を集めている。図2は、この色素増感太陽電池
の一例(特公平8−15097号公報)を示すものであ
る。
2. Description of the Related Art Dye-sensitized solar cells have been developed by Gretzell et al. In Switzerland and have advantages such as high photoelectric conversion efficiency and low manufacturing cost, and have been attracting attention as a new type of solar cell. FIG. 2 shows an example of this dye-sensitized solar cell (Japanese Patent Publication No. 8-15097).

【0003】図中符号1は、ガラス板などの透明基板で
あり、この透明基板1の一面にはスズドープ酸化インジ
ュウム(ITO)、フッ素ドープ酸化スズ(FTO)な
どの透明導電膜2が形成されている。この透明導電膜2
上には、酸化チタン、酸化ニオジムなどの酸化物半導体
微粒子からなり、光増感色素が坦持された酸化物半導体
多孔質膜3が形成され、光電極4となっている。
In the figure, reference numeral 1 is a transparent substrate such as a glass plate, and a transparent conductive film 2 such as tin-doped indium oxide (ITO) or fluorine-doped tin oxide (FTO) is formed on one surface of the transparent substrate 1. There is. This transparent conductive film 2
An oxide semiconductor porous film 3 made of oxide semiconductor fine particles such as titanium oxide and niodymium oxide and having a photosensitizing dye carried thereon is formed on the upper side, and serves as a photoelectrode 4.

【0004】また、図中符号5は、対極となる導電性ガ
ラス基板であり、上記光電極4と対極5との間には、ヨ
ウ素/ヨウ素イオンなどのレドックス対を含む非水溶液
からなる電解液が満たされ、電解質層6となっている。
また、電解質層6に代えて、ヨウ化銅などのp型半導体
からなるホール輸送層を設けるものもある。この色素増
感太陽電池においては、太陽光などの光が透明基板1側
から入射されると、透明導電膜2と対極5との間に起電
力が生じる。
Further, reference numeral 5 in the drawing is a conductive glass substrate serving as a counter electrode, and between the photoelectrode 4 and the counter electrode 5, an electrolytic solution made of a non-aqueous solution containing a redox couple such as iodine / iodine ion. Are filled, and the electrolyte layer 6 is formed.
Also, instead of the electrolyte layer 6, there is also one in which a hole transport layer made of a p-type semiconductor such as copper iodide is provided. In this dye-sensitized solar cell, when light such as sunlight enters from the transparent substrate 1 side, an electromotive force is generated between the transparent conductive film 2 and the counter electrode 5.

【0005】このような色素増感太陽電池では、酸化物
半導体多孔質膜3は光増感色素の坦持量を高めるために
多孔質となっており、上記金属酸化物微粒子を分散した
分散液を塗布し焼結するなどの方法によって作製されて
いる。
In such a dye-sensitized solar cell, the oxide semiconductor porous film 3 is porous in order to increase the amount of the photosensitizing dye carried, and a dispersion liquid in which the above metal oxide fine particles are dispersed. It is produced by a method such as coating and sintering.

【0006】しかし、このような酸化物半導体微粒子の
焼結体の多孔質膜3では、図3に示すように、多孔質膜
3をなす微粒子33が透明導電膜2に直接接触しない領
域Aが必然的に生じることになる。この領域Aでは、し
たがって透明導電膜2が直接電解質層6と接することに
なり、これにより逆電子移動や短絡などの電流、電圧の
損失が生じる不都合を招く。
However, in the porous film 3 of such a sintered body of oxide semiconductor fine particles, as shown in FIG. 3, there is an area A where the fine particles 33 forming the porous film 3 do not directly contact the transparent conductive film 2. It will inevitably occur. In this region A, therefore, the transparent conductive film 2 is in direct contact with the electrolyte layer 6, which causes a disadvantage such as current loss and voltage loss such as reverse electron transfer and short circuit.

【0007】ところで、上記透明送電膜2がITO、F
TOなどからなり、電解質がヨウ素/ヨウ素イオンなど
のレドックス対である場合には、ヨウ素−ヨウ素イオン
の酸化還元反応が遅いとされ、透明導電膜2が電解質層
6と接触しても、致命的な出力損失に至ることはない
が、光電効率の低下を考慮すれば無視できるものではな
い。
By the way, the transparent power transmission film 2 is made of ITO or F.
When the electrolyte is made of TO or the like and the electrolyte is a redox couple such as iodine / iodine ion, it is considered that the redox reaction of iodine-iodine ion is slow, and even if the transparent conductive film 2 comes into contact with the electrolyte layer 6, it is fatal. However, in consideration of the decrease in photoelectric efficiency, it cannot be ignored.

【0008】しかしながら、ヨウ化銅などのp型半導体
からなるホール輸送層を電解質層6と置き換えて構成し
た固体型の色素増感太陽電池では、p型半導体の一方の
端部が透明導電膜2に、他方の端部が対極5に直接接す
ることになるため、多数の部分短絡箇所が生じ、これに
より著しい電圧、電流損失による致命的な出力低下につ
ながる。
However, in the solid-state dye-sensitized solar cell in which the hole transport layer made of a p-type semiconductor such as copper iodide is replaced with the electrolyte layer 6, one end of the p-type semiconductor is transparent conductive film 2 In addition, since the other end is in direct contact with the counter electrode 5, a large number of partial short-circuit points occur, which leads to a fatal output reduction due to significant voltage and current loss.

【0009】このような透明導電膜2と電解質層6また
はホール輸送層との直接接触を回避する手段として、薄
く緻密な酸化物半導体膜を透明導電膜2の全面に設けて
遮蔽層として機能させるものが提案されている。しか
し、この方法では、酸化物半導体多孔質膜3を形成する
以前に、透明導電膜2の上に上記遮蔽層を被覆するた
め、酸化物半導体多孔質膜3と透明導電膜2との間の全
体にこの遮蔽層が存在することになり、遮蔽層が酸化物
半導体多孔質膜3から透明導電膜2への電子移動を妨げ
ることになって、出力特性を低下させることになる。
As a means for avoiding such direct contact between the transparent conductive film 2 and the electrolyte layer 6 or the hole transport layer, a thin and dense oxide semiconductor film is provided on the entire surface of the transparent conductive film 2 to function as a shielding layer. Things have been proposed. However, in this method, since the transparent conductive film 2 is covered with the shielding layer before the oxide semiconductor porous film 3 is formed, a space between the oxide semiconductor porous film 3 and the transparent conductive film 2 is formed. Since the shielding layer is present on the whole, the shielding layer hinders the electron transfer from the oxide semiconductor porous film 3 to the transparent conductive film 2, thus deteriorating the output characteristics.

【0010】[0010]

【発明が解決しようとする課題】よって、本発明におけ
る課題は、光電変換素子用光電極の透明導電膜と電解質
層あるいはホール輸送層との直接接触を回避することが
でき、しかも光電変換素子の出力特性に低下を来さない
ようにすることにある。
Therefore, the object of the present invention is to avoid direct contact between the transparent conductive film of the photoelectrode for a photoelectric conversion element and the electrolyte layer or the hole transport layer, and further This is to prevent the output characteristics from deteriorating.

【0011】[0011]

【課題を解決するための手段】かかる課題を解決するた
め、請求項1にかかる発明は、透明基板と、この透明基
板の一面に形成された透明導電膜と、この透明導電膜上
に形成された酸化物半導体多孔質膜を有し、酸化物半導
体多孔質膜を構成する酸化物半導体微粒子が直接透明導
電膜に接していない領域の透明導電膜上に絶縁膜を形成
したことを特徴とする光電変換素子用光電極である。
In order to solve the above problems, the invention according to claim 1 provides a transparent substrate, a transparent conductive film formed on one surface of the transparent substrate, and a transparent conductive film formed on the transparent conductive film. A porous oxide semiconductor film, and an oxide film is formed on the transparent conductive film in a region where the oxide semiconductor fine particles forming the oxide semiconductor porous film are not in direct contact with the transparent conductive film. It is a photoelectrode for a photoelectric conversion element.

【0012】請求項2にかかる発明は、絶縁膜が、分子
内に2以上のメルカプト基を有するモノマーの重合体か
らなることを特徴とする請求項1記載の光電変換素子用
光電極である。請求項3にかかる発明は、絶縁膜が、分
子内に2以上のメルカプト基を有するモノマーの電解重
合で得られた重合体からなることを特徴とする請求項1
または2記載の光電変換素子用光電極である。
The invention according to claim 2 is the photoelectrode for a photoelectric conversion element according to claim 1, wherein the insulating film is made of a polymer of a monomer having two or more mercapto groups in the molecule. The invention according to claim 3 is characterized in that the insulating film is made of a polymer obtained by electrolytic polymerization of a monomer having two or more mercapto groups in the molecule.
Alternatively, it is the photoelectrode for a photoelectric conversion element described in 2.

【0013】請求項4にかかる発明は、透明導電膜と酸
化物半導体多孔質膜を形成した透明基板を、分子内に2
以上のメルカプト基を有するモノマーの非水溶液からな
る電解液中で電解重合を行うことを特徴とする光電変換
素子用光電極の製法である。請求項5にかかる発明は、
請求項1ないし3のいずれかに記載の光電極と対極との
間に、レドックス対を含む電解質層を設けてなる光電変
換素子である。
According to a fourth aspect of the present invention, a transparent substrate on which a transparent conductive film and a porous oxide semiconductor film are formed has a molecular structure of 2
The method for producing a photoelectrode for a photoelectric conversion element is characterized in that electrolytic polymerization is carried out in an electrolytic solution containing a non-aqueous solution of the above-mentioned monomer having a mercapto group. The invention according to claim 5 is
A photoelectric conversion element comprising an electrolyte layer containing a redox pair provided between the photoelectrode according to any one of claims 1 to 3 and the counter electrode.

【0014】請求項6にかかる発明は、請求項1ないし
3のいずれかに記載の光電極と対極との間に、p型半導
体からなるホール輸送層を設けてなる光電変換素子であ
る。請求項7にかかる発明は、請求項5または6記載の
光電変換素子であって、その酸化物半導体多孔質膜に光
増感色素が坦持されてなる色素増感太陽電池である。
The invention according to claim 6 is a photoelectric conversion element comprising a hole transport layer made of a p-type semiconductor between the photoelectrode according to any one of claims 1 to 3 and the counter electrode. The invention according to claim 7 is the photoelectric conversion element according to claim 5 or 6, which is a dye-sensitized solar cell in which a photosensitizing dye is carried on the oxide semiconductor porous film.

【0015】[0015]

【発明の実施の形態】以下、実施の形態に基づいて、本
発明を詳しく説明する。図1は、本発明の光電変換素子
用光電極の一例を模式的に説明するもので、この光電極
を用いた光電変換素子を示すものである。図中符号1は
透明基板である。この透明基板1は、ガラスシ板、ポリ
エチレンテレフタレート、ポリエチレンナフタレート、
ポリカーボネイト、ポリエチレンスルフィドなどのプラ
スチックシートからなるもので、光透過性が良好なもの
が好ましい。
BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, the present invention will be described in detail based on the embodiments. FIG. 1 schematically illustrates an example of a photoelectrode for a photoelectric conversion element of the present invention, and shows a photoelectric conversion element using this photoelectrode. Reference numeral 1 in the figure is a transparent substrate. The transparent substrate 1 includes a glass plate, polyethylene terephthalate, polyethylene naphthalate,
It is preferably made of a plastic sheet such as polycarbonate or polyethylene sulfide and has good light transmittance.

【0016】透明基板1の一面には、透明導電膜2が形
成されている。この透明導電膜2は、酸化スズ、IT
O、FTOなどからなる導電性透明薄膜であって、蒸
着、スパッタ、CVDなどの手段により形成されたもの
である。透明基板1と透明導電膜2との間には、必要に
応じて透明性を損ねない程度の厚みの金属、炭素からな
る導電性薄膜を間挿しても良い。
A transparent conductive film 2 is formed on one surface of the transparent substrate 1. This transparent conductive film 2 is made of tin oxide, IT
A conductive transparent thin film made of O, FTO, or the like, which is formed by means of vapor deposition, sputtering, CVD, or the like. Between the transparent substrate 1 and the transparent conductive film 2, a conductive thin film made of metal or carbon having a thickness that does not impair transparency may be inserted if necessary.

【0017】この透明導電膜2の上には、酸化物半導体
多孔質膜3が形成されている。この酸化物半導体多孔質
膜3は、酸化チタン、酸化スズ、酸化タングステン、酸
化亜鉛、酸化ジルコニウム、酸化ニオブなどの半導性を
示す金属酸化物微粒子33が結合されて構成され、内部
に無数の微細な空孔を有し、表面に微細な凹凸を有する
多孔質膜であって、その厚みが150μm程度ものであ
る。
An oxide semiconductor porous film 3 is formed on the transparent conductive film 2. The oxide semiconductor porous film 3 is formed by combining metal oxide fine particles 33 having semiconductivity, such as titanium oxide, tin oxide, tungsten oxide, zinc oxide, zirconium oxide, and niobium oxide, which are innumerable inside. It is a porous film having fine pores and fine irregularities on the surface, and its thickness is about 150 μm.

【0018】酸化物半導体多孔質膜3の形成は、上記金
属酸化物の平均粒径1〜1000nmの微粒子を分散し
たコロイド液や分散液等を透明基板1の透明導電膜2の
表面に、スクリーンプリント、インクジェットプリン
ト、ロールコート、ドクターコート、スピンコート、ス
プレーコートなどの塗布手段により塗布し、焼結する方
法などで行われる。
The oxide semiconductor porous film 3 is formed by applying a colloidal solution or dispersion in which fine particles of the metal oxide having an average particle size of 1 to 1000 nm are dispersed on the surface of the transparent conductive film 2 of the transparent substrate 1. It is carried out by a method of applying by a coating means such as printing, inkjet printing, roll coating, doctor coating, spin coating, spray coating, and sintering.

【0019】また、これ以外に、上記コロイド液、分散
液に発泡剤を添加したものを塗布し、焼結する方法、上
記金属酸化物微粒子とポリマーマイクロビーズとを混合
して分散液とし、この分散液を塗布し、焼結して、ポリ
マーマイクロビーズを焼却、あるいは溶解して除去する
方法なども採用することができる。
In addition to the above, a method of applying the above colloidal solution or dispersion to which a foaming agent has been added and sintering, and mixing the above metal oxide fine particles and polymer microbeads to form a dispersion, It is also possible to employ a method in which the dispersion liquid is applied and sintered to incinerate the polymer microbeads or to dissolve and remove the polymer microbeads.

【0020】さらに、図中符号11は、絶縁膜である。
この絶縁膜11は、図示したように透明導電膜2の表面
の酸化物半導体微粒子33で被覆されていない領域A、
換言すれば、電解質層6と直接接触している領域Aを被
覆し、透明導電膜2と電解質層6との直接の接触を回避
するためのものである。この絶縁膜11を設けたもの
が、この例の光電極4となっている。
Further, reference numeral 11 in the drawing is an insulating film.
As shown in the figure, the insulating film 11 has a region A on the surface of the transparent conductive film 2 which is not covered with the oxide semiconductor fine particles 33,
In other words, it is for covering the region A in direct contact with the electrolyte layer 6 and avoiding direct contact between the transparent conductive film 2 and the electrolyte layer 6. The photoelectrode 4 of this example is provided with the insulating film 11.

【0021】この例における絶縁膜11は、分子内に2
以上のメルカプト基を有するモノマーを電解酸化重合す
ることで、透明導電膜2の領域Aのみに、これのポリマ
ーを析出、堆積して領域Aを選択的に被覆したものであ
る。
The insulating film 11 in this example has 2 molecules in the molecule.
By subjecting the above-mentioned monomer having a mercapto group to electrolytic oxidation polymerization, the polymer is deposited and deposited only on the region A of the transparent conductive film 2 to selectively cover the region A.

【0022】一般に、分子内に2以上のメルカプト基を
有する分子(モノマー)は、酸化反応によってジスルフ
ィド結合を持つ重合体を形成することが知られている。
この酸化反応は、化学的手法のみならず、電気化学的手
法によっても進行する。また、このようにして得られた
大部分の重合体は、電子伝導性を有しないことが知られ
ている。
It is generally known that a molecule (monomer) having two or more mercapto groups in the molecule forms a polymer having a disulfide bond by an oxidation reaction.
This oxidation reaction proceeds not only by a chemical method but also by an electrochemical method. It is also known that most of the polymers thus obtained do not have electronic conductivity.

【0023】このようなモノマーを電気化学的に酸化し
て重合した場合、その重合体が溶媒に溶解不能な状態ま
で重合が進むと、作用電極上に絶縁膜として析出する性
質があり、この性質を利用して、上述のように透明導電
膜2の領域Aにのみ選択的に重合体を析出して絶縁膜1
1を形成することができる。
When such a monomer is electrochemically oxidized and polymerized, when the polymer progresses to a state where it cannot be dissolved in a solvent, it has a property of depositing as an insulating film on the working electrode. By utilizing the above, the polymer is selectively deposited only in the region A of the transparent conductive film 2 as described above, and the insulating film 1
1 can be formed.

【0024】分子内に2以上のメルカプト基を有するモ
ノマーとしては、下記化学式に示される化合物(1)な
いし(3)の他、これら化合物のメルカプト基の水素を
ナトリウムなどのアルカリ金属に置換した化合物などが
使用できる。また、分子内に3以上のメルカプト基を有
するモノマーでは、電解重合して得られる重合体が三次
元構造を有する強固なものとなるので、絶縁膜11とし
て好適になり、このタイプのモノマーを選択することが
望ましい。
Examples of the monomer having two or more mercapto groups in the molecule include compounds (1) to (3) represented by the following chemical formulas, and compounds obtained by substituting an alkali metal such as sodium for hydrogen in the mercapto group of these compounds. Etc. can be used. Further, in the case of a monomer having 3 or more mercapto groups in the molecule, the polymer obtained by electrolytic polymerization becomes a strong one having a three-dimensional structure, and therefore it is suitable as the insulating film 11, and a monomer of this type is selected. It is desirable to do.

【0025】[0025]

【化1】 [Chemical 1]

【0026】また、このようなモノマーは、電解重合時
の電解浴の溶媒に溶解できる範囲で二量体以上のオリゴ
マーとしても用いることができ、予め化学的な方法でオ
リゴマーに酸化重合しておき、このオリゴマーを溶媒に
溶解して電解重合に供するようにしても良い。
Further, such a monomer can be used as an oligomer of a dimer or more as long as it can be dissolved in a solvent of an electrolytic bath at the time of electrolytic polymerization, and is previously oxidatively polymerized into an oligomer by a chemical method. Alternatively, this oligomer may be dissolved in a solvent and subjected to electrolytic polymerization.

【0027】上記モノマーの具体的な電解重合は、例え
ば次のようにして行われる。上記モノマーをアセトニト
リル、テトラヒドロフラン、プロピレンカーボネイトな
どの溶媒に溶解し、これに支持電解質として過塩素酸リ
チウム、テトラフルオロホウ酸リチウム、過塩素酸テト
ラブチルアンモニウムなどの塩類を添加して、電解浴を
作製する。ついで、透明導電膜2と酸化物半導体多孔質
膜3を形成した透明基板1をこの電解浴に浸し、透明導
電膜2を作用電極として、直流電解する方法で行われ
る。
The specific electrolytic polymerization of the above-mentioned monomer is carried out, for example, as follows. The above monomer is dissolved in a solvent such as acetonitrile, tetrahydrofuran, propylene carbonate, and salts such as lithium perchlorate, lithium tetrafluoroborate, and tetrabutylammonium perchlorate as a supporting electrolyte are added to this to prepare an electrolytic bath. To do. Then, the transparent substrate 1 on which the transparent conductive film 2 and the oxide semiconductor porous film 3 are formed is immersed in this electrolytic bath, and direct current electrolysis is performed using the transparent conductive film 2 as a working electrode.

【0028】電解浴中のモノマーの濃度は、0,1〜1
00ミリモル/リットル程度が好適とされ、支持電解質
濃度は、0.1〜2モル/リットル程度が好適とされ
る。電解電圧、電解電流、電解時間等の条件は、使用す
る材料によって左右されるため、適宜定められる。
The concentration of the monomer in the electrolytic bath is 0, 1 to 1
About 100 mmol / l is suitable, and the supporting electrolyte concentration is preferably about 0.1 to 2 mol / l. Conditions such as electrolysis voltage, electrolysis current, and electrolysis time depend on the material to be used, and are accordingly determined.

【0029】また、符号5は、対極である。この対極5
には、金属板などの導電性基板あるいはガラス板などの
非伝導性基板上に白金、金、炭素などの導電膜を形成し
たものが用いられる。また、p型半導体をホール輸送層
とする場合には、p型半導体が固体であるため、この上
に直接白金などの導電薄膜を蒸着、スパッタなどにより
形成してこの導電薄膜を対極5とすることもできる。
Reference numeral 5 is a counter electrode. This counter electrode 5
For this, a conductive substrate such as a metal plate or a non-conductive substrate such as a glass plate on which a conductive film of platinum, gold, carbon or the like is formed is used. When the p-type semiconductor is used as the hole transport layer, since the p-type semiconductor is solid, a conductive thin film of platinum or the like is directly formed on the p-type semiconductor by vapor deposition, sputtering, etc., and this conductive thin film is used as the counter electrode 5. You can also

【0030】この対極5と光電極4との間には電解液が
充填されて電解質層6となっている。この電解液として
は、レドックス対を含む非水系電解液であれば、特に限
定されるものではない。溶媒としては、例えばアセトニ
トリル、メトキシアセトニトリル、プロピオニトリル、
炭酸エチレン、炭酸プロピレン、γ−ブチロラクトンな
どが用いられる。
An electrolyte solution is filled between the counter electrode 5 and the photoelectrode 4 to form an electrolyte layer 6. The electrolytic solution is not particularly limited as long as it is a non-aqueous electrolytic solution containing a redox couple. Examples of the solvent include acetonitrile, methoxyacetonitrile, propionitrile,
Ethylene carbonate, propylene carbonate, γ-butyrolactone, etc. are used.

【0031】レドックス対としては、例えばヨウ素/ヨ
ウ素イオン、臭素/臭素イオンなどの組み合わせを選ぶ
ことができ、これを塩として添加する場合の対イオンと
しては、上記レドックス対にリチウムイオン、テトラア
ルキルイオン、イミダゾリウムイオンなどを用いること
ができる。また、必要に応じてヨウ素などを添加しても
よい。また、このような電解液を適当なゲル化剤により
ゲル化させた固体状のものを用いてもよい。
As the redox pair, for example, a combination of iodine / iodine ion, bromine / bromine ion and the like can be selected. When adding this as a salt, the counter ion is a lithium ion or tetraalkyl ion in addition to the above redox pair. , Imidazolium ions, etc. can be used. Further, iodine or the like may be added if necessary. Alternatively, a solid electrolyte obtained by gelling such an electrolytic solution with a suitable gelling agent may be used.

【0032】また、電解質層6に代えて、p型半導体か
らなるホール輸送層を用いてもよい。このp型半導体に
は、例えばヨウ化銅、チオシアン銅などの1価銅化合物
やポリピロールなどの導電性高分子を用いることがで
き、なかでもヨウ化銅が好ましい。
Further, instead of the electrolyte layer 6, a hole transport layer made of a p-type semiconductor may be used. For this p-type semiconductor, for example, a monovalent copper compound such as copper iodide or copper thiocyanate or a conductive polymer such as polypyrrole can be used, and among them, copper iodide is preferable.

【0033】また、このような光電変換素子を色素増感
太陽電池とする場合には、酸化物半導体多孔質膜3に
は、光増感色素が坦持される。この光増感色素には、ビ
ピリジン構造、ターピリジン構造などの配位子を含むル
テニウム錯体、ポルフィリン、フタロシアニンなどの金
属錯体、エオシン、ローダミン、メロシアニンなどの有
機色素などが用いられ、用途、金属酸化物の種類等に応
じて適宜選択することができる。
When such a photoelectric conversion element is used as a dye-sensitized solar cell, a photosensitizing dye is carried on the oxide semiconductor porous film 3. As the photosensitizing dye, ruthenium complexes containing ligands such as bipyridine structure and terpyridine structure, metal complexes such as porphyrin and phthalocyanine, and organic dyes such as eosin, rhodamine, and merocyanine are used. Can be appropriately selected according to the type of

【0034】このような光電変換素子用光電極4にあっ
ては、透明導電膜2の領域Aに選択的にメルカプト化合
物からなる重合体の絶縁膜11が形成され、透明導電膜
2の領域Aにおける電解質層6あるいはホール輸送層と
の直接接触が妨げられ、短絡が防止される。また、領域
A以外では、透明導電膜2と酸化物半導体多孔質膜3の
酸化物半導体の微粒子33とが直接接触しているので、
両者間の電子の移動が阻害されることがない。
In such a photoelectric conversion element photoelectrode 4, the polymer insulating film 11 made of a mercapto compound is selectively formed in the region A of the transparent conductive film 2, and the region A of the transparent conductive film 2 is formed. The direct contact with the electrolyte layer 6 or the hole transport layer in the above is prevented, and a short circuit is prevented. Further, in areas other than the region A, since the transparent conductive film 2 and the oxide semiconductor fine particles 33 of the oxide semiconductor porous film 3 are in direct contact,
Electron transfer between the two is not hindered.

【0035】したがって、この光電極4を用いて作られ
た色素増感太陽電池などの光電変換素子では、開放電
圧、短絡電流等の出力特性の低下が抑えられ,光電変換
効率が高いものとなる。また、絶縁膜11の形成を、分
子内に2以上のメルカプト基を有するモノマーの電解重
合で行うものでは、領域Aへの絶縁膜11の選択的な形
成を能率よく行うことができる。
Therefore, in the photoelectric conversion element such as the dye-sensitized solar cell made by using the photoelectrode 4, the deterioration of the output characteristics such as the open circuit voltage and the short circuit current is suppressed, and the photoelectric conversion efficiency becomes high. . Further, when the insulating film 11 is formed by electrolytic polymerization of a monomer having two or more mercapto groups in the molecule, the insulating film 11 can be selectively formed in the region A efficiently.

【0036】また、本発明においては、上記絶縁膜11
をなす絶縁材料として、先に挙げたもの以外に、アミノ
ピロール酸、アミノピリジン酸、ビニルピリジン酸など
を電解重合することで、領域Aに選択的に絶縁膜11を
形成することができる。
In the present invention, the insulating film 11 is also used.
In addition to the above-listed insulating materials for forming, the insulating film 11 can be selectively formed in the region A by electrolytically polymerizing aminopyrrole acid, aminopyridine acid, vinylpyridine acid and the like.

【0037】以下、具体例を示す。 (実施例1)FTO蒸着ガラス板上に酸化チタン微粒子
(平均粒径25nm)の分散液を塗布し、80℃のホッ
トプレート上にて溶媒を乾燥させた後、450℃にて6
0分間焼成して酸化チタン多孔質膜を得た。上記化合物
(1)を1mM,LiClO4を0.1M含むアセトニ
トリル溶液を電解浴とし、これに作成したチタン多孔質
膜を作用極として電解重合により絶縁膜の形成を行っ
た。
Specific examples will be shown below. (Example 1) A dispersion liquid of titanium oxide fine particles (average particle size 25 nm) was applied onto an FTO vapor-deposited glass plate, and the solvent was dried on a hot plate at 80 ° C, and then at 450 ° C, 6
It was baked for 0 minutes to obtain a titanium oxide porous film. An insulating solution was formed by electrolytic polymerization using an acetonitrile solution containing 1 mM of the above compound (1) and 0.1 M of LiClO 4 as an electrolytic bath, and using the titanium porous film formed thereon as a working electrode.

【0038】電解重合は、1.70Vvs.Ag/Ag
Clの定電位電解とし、電流値が初期値の10%となっ
た時点で終了した。この重合処理は、アルゴン置換した
バキュームグローブボッツクス内にて行った。重合処理
前のチタン多孔質膜では、10mMのフェロセンを含む
アセトニトリル溶液中にてフェロセン(Fc/Fc+
のレドックス応答を確認できたのに対し、重合処理後の
チタン多孔質膜からはかかるレドックス応答は観察され
なかった。重合処理後の半導体電極をルテニウムビビリ
ジン錯体を溶解したエタノール溶液中に約8時間浸漬
し、増感色素を担持させて、光電極とした。
Electropolymerization is performed at 1.70 V vs. Ag / Ag
A constant potential electrolysis of Cl was performed, and the process was terminated when the current value reached 10% of the initial value. This polymerization treatment was carried out in a vacuum glove bots, which had been replaced with argon. For the titanium porous membrane before the polymerization treatment, ferrocene (Fc / Fc + ) in an acetonitrile solution containing 10 mM ferrocene was used.
Although the redox response was confirmed, the redox response was not observed from the titanium porous membrane after the polymerization treatment. The semiconductor electrode after the polymerization treatment was dipped in an ethanol solution in which a ruthenium bipyridine complex was dissolved for about 8 hours to carry a sensitizing dye, thereby forming a photoelectrode.

【0039】対極として、白金をスパッタしたITO蒸
着ガラス板を用い、両極を重ね合わせ、その間に毛細管
現象により電解液を充填して試験セル1とした。ここ
で、電解液には、0.1Mヨウ化リチウム、0.3M四
級化イミダゾールのヨウ素塩、0.05Mヨウ素を含む
メトキシアセトニトリル溶液を用いた。
As a counter electrode, an ITO vapor-deposited glass plate on which platinum was sputtered was used. Both electrodes were superposed, and an electrolytic solution was filled between them by a capillary phenomenon to obtain a test cell 1. Here, a methoxyacetonitrile solution containing 0.1 M lithium iodide, an iodine salt of 0.3 M quaternized imidazole, and 0.05 M iodine was used as the electrolytic solution.

【0040】(実施例2)上記化合物(3)を1mM,
LiClO4を0.1M含むアセトニトリル溶液中、作
成したチタン多孔質膜を作用極として電解重合により絶
縁膜形成を行った。電解重合は、1.85Vvs.Ag
/AgClの定電位とし、電流値が初期値の10%とな
った時点で終了した。また、この多孔質膜を形成した光
電極を用いて実施例1と同様の試験セル2を作成した。
Example 2 The above compound (3) was added to 1 mM,
An insulating film was formed by electrolytic polymerization using the prepared titanium porous film as a working electrode in an acetonitrile solution containing 0.1 M of LiClO 4 . Electropolymerization is 1.85 V vs. Ag
/ AgCl was set to a constant potential, and the process was terminated when the current value reached 10% of the initial value. Further, a test cell 2 similar to that of Example 1 was prepared using the photoelectrode having this porous film formed.

【0041】(実施例3)実施例1と同様の手法で、化
合物(1)による絶縁膜を作成し、チタン多孔質膜に同
様の色素担持を行った。ヨウ化銅(CuI)を飽和させ
たアセトニトリル溶液を作成し、これを作成した色素担
持チタン多孔膜に少量ずつキャストすることによりCu
I膜を析出させた。この操作は80℃に加温したホット
プレート上にて行った。風乾後、ガラス板上のFTO膜
の端子部をマスキングテープでマスキングを施した上で
白金対極をスパッタして試験セル3とした。
(Example 3) An insulating film made of the compound (1) was prepared in the same manner as in Example 1, and the same dye was carried on the titanium porous film. Cu was prepared by preparing an acetonitrile solution saturated with copper iodide (CuI) and casting it little by little on the prepared dye-supporting titanium porous film.
The I film was deposited. This operation was performed on a hot plate heated to 80 ° C. After air-drying, the terminal portion of the FTO film on the glass plate was masked with a masking tape, and a platinum counter electrode was sputtered to obtain a test cell 3.

【0042】(比較例1)実施例1と同様の構造の試験
セル4を作成した。但し、ここでは化合物(1)による
絶縁膜処理は施さなかった。 (比較例2)実施例3と同様の構造の試験セル5を作成
した。但し、ここでは化合物(1)による絶縁膜処理は
施さなかった。各試験セルについて、疑似太陽光(エネ
ルギー密度100mW/cm2、AM1.5)を照射し
た際の光電特性を評価した。各セルにおける開放電圧、
短絡電流値は表1の通りとなった。
(Comparative Example 1) A test cell 4 having the same structure as in Example 1 was prepared. However, the insulating film treatment with the compound (1) was not performed here. (Comparative Example 2) A test cell 5 having the same structure as in Example 3 was prepared. However, the insulating film treatment with the compound (1) was not performed here. Each test cell was evaluated for photoelectric characteristics when irradiated with pseudo sunlight (energy density 100 mW / cm 2 , AM 1.5). Open circuit voltage in each cell,
The short-circuit current values are shown in Table 1.

【0043】[0043]

【表1】 [Table 1]

【0044】表1に示されるように、電解液を充填した
電解液系の試験セル1、2は試験セル4と比較して短絡
電流、開放電圧の向上が見られた。また、p型半導体を
用いたホール輸送層を有する固体系の試験セル3と試験
セル5とを比較すると、試験セル3は試験セル5に比べ
てその出力特性が電流、電圧共に著しく向上しているこ
とがわかる。なお、固体型の試験セル3の出力特性は、
電解液系試験セルに比べて劣っているが、これは固体型
電池に固有の種々の理由、例えばヨウ化銅の析出結晶サ
イズなどによるものである。
As shown in Table 1, in the electrolytic solution type test cells 1 and 2 filled with the electrolytic solution, the short circuit current and the open circuit voltage were improved as compared with the test cell 4. Further, comparing the solid test cell 3 having the hole transport layer using the p-type semiconductor with the test cell 5, the output characteristics of the test cell 3 are significantly improved in both current and voltage as compared with the test cell 5. You can see that The output characteristics of the solid test cell 3 are
Although it is inferior to the electrolyte solution test cell, this is due to various reasons peculiar to the solid-state battery, for example, the deposited crystal size of copper iodide.

【0045】[0045]

【発明の効果】以上説明したように、本発明の光電変換
素子用光電極は、透明導電膜と電解質層あるいはホール
輸送層とが直接接触している領域を選択的に絶縁膜で被
覆したものであるので、これら透明導電膜と電解質層あ
るいはホール輸送層との直接接触が阻止され、これら層
間での電子の移動が防止できる。
As described above, the photoelectrode for a photoelectric conversion element of the present invention is one in which the region where the transparent conductive film is in direct contact with the electrolyte layer or the hole transport layer is selectively covered with an insulating film. Therefore, direct contact between the transparent conductive film and the electrolyte layer or the hole transport layer is prevented, and transfer of electrons between these layers can be prevented.

【0046】このため、この光電極を用いた光電変換素
子では、開放電圧、短絡電流などの出力特性が向上す
る。特に、p型半導体からなるホール輸送層を使用した
固体型の光電変換素子では、出力特性の改善効果が顕著
となる。
Therefore, in the photoelectric conversion element using this photoelectrode, the output characteristics such as open circuit voltage and short circuit current are improved. In particular, in the solid-state photoelectric conversion element using the hole transport layer made of the p-type semiconductor, the effect of improving the output characteristics becomes remarkable.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の光電極の一例の要部を示す概略断面図
である。
FIG. 1 is a schematic cross-sectional view showing a main part of an example of a photoelectrode of the present invention.

【図2】色素増感太陽電池の例を示す概略断面図であ
る。
FIG. 2 is a schematic sectional view showing an example of a dye-sensitized solar cell.

【図3】従来の光電極の要部を示す概略断面図である。FIG. 3 is a schematic sectional view showing a main part of a conventional photoelectrode.

【符号の説明】[Explanation of symbols]

1・・透明基板、2・・透明導電膜、3・・酸化物半導
体多孔質膜、33・・酸化物半導体微粒子、4・・光電
極、5・・対極、6・・電解液層、A・・領域
1 ... Transparent substrate, 2 ... Transparent conductive film, 3 ... Oxide semiconductor porous film, 33 ... Oxide semiconductor fine particles, 4 ... Photoelectrode, 5 ... Counter electrode, 6 ... Electrolyte layer, A ··region

───────────────────────────────────────────────────── フロントページの続き (72)発明者 岡田 顕一 東京都江東区木場一丁目5番1号 株式会 社フジクラ内 Fターム(参考) 5F051 AA07 AA14 AA20 CB13 CB30 FA03 FA04 FA06 FA18 FA30 GA03 5H032 AA06 AS06 AS16 BB07 EE04 EE07 EE16    ─────────────────────────────────────────────────── ─── Continued front page    (72) Inventor Kenichi Okada             1-5-1 Kiba Stock Market, Koto-ku, Tokyo             Inside Fujikura F term (reference) 5F051 AA07 AA14 AA20 CB13 CB30                       FA03 FA04 FA06 FA18 FA30                       GA03                 5H032 AA06 AS06 AS16 BB07 EE04                       EE07 EE16

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】透明基板と、この透明基板の一面に形成さ
れた透明導電膜と、この透明導電膜上に形成された酸化
物半導体多孔質膜を有し、 酸化物半導体多孔質膜を構成する酸化物半導体微粒子が
直接透明導電膜に接していない領域の透明導電膜上に絶
縁膜を形成したことを特徴とする光電変換素子用光電
極。
1. A transparent substrate, a transparent conductive film formed on one surface of the transparent substrate, and an oxide semiconductor porous film formed on the transparent conductive film, to form an oxide semiconductor porous film. A photoelectrode for a photoelectric conversion element, characterized in that an insulating film is formed on the transparent conductive film in a region where the oxide semiconductor fine particles are not in direct contact with the transparent conductive film.
【請求項2】絶縁膜が、分子内に2以上のメルカプト基
を有するモノマーの重合体からなることを特徴とする請
求項1記載の光電変換素子用光電極。
2. The photoelectrode for a photoelectric conversion element according to claim 1, wherein the insulating film is made of a polymer of a monomer having two or more mercapto groups in the molecule.
【請求項3】絶縁膜が、分子内に2以上のメルカプト基
を有するモノマーの電解重合で得られた重合体からなる
ことを特徴とする請求項1または2記載の光電変換素子
用光電極。
3. The photoelectrode for a photoelectric conversion element according to claim 1, wherein the insulating film is made of a polymer obtained by electrolytic polymerization of a monomer having two or more mercapto groups in the molecule.
【請求項4】透明導電膜と酸化物半導体多孔質膜を形成
した透明基板を、分子内に2以上のメルカプト基を有す
るモノマーの非水溶液からなる電解液中で電解重合を行
うことを特徴とする光電変換素子用光電極の製法。
4. A transparent substrate on which a transparent conductive film and a porous oxide semiconductor film are formed is subjected to electrolytic polymerization in an electrolytic solution containing a non-aqueous solution of a monomer having two or more mercapto groups in the molecule. A method of manufacturing a photoelectrode for a photoelectric conversion element.
【請求項5】請求項1ないし3のいずれかに記載の光電
極と対極との間に、レドックス対を含む電解質層を設け
てなる光電変換素子。
5. A photoelectric conversion element comprising an electrolyte layer containing a redox pair between the photoelectrode according to claim 1 and a counter electrode.
【請求項6】請求項1ないし3のいずれかに記載の光電
極と対極との間に、p型半導体からなるホール輸送層を
設けてなる光電変換素子。
6. A photoelectric conversion device comprising a hole transport layer made of a p-type semiconductor between the photoelectrode according to claim 1 and a counter electrode.
【請求項7】請求項5または6記載の光電変換素子であ
って、その酸化物半導体多孔質膜に光増感色素が坦持さ
れてなる色素増感太陽電池。
7. The photoelectric conversion device according to claim 5, wherein the dye-sensitized solar cell comprises a porous oxide semiconductor film carrying a photosensitizing dye.
JP2002040594A 2002-02-18 2002-02-18 Photo-electrode for photoelectric transducing element Withdrawn JP2003243054A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002040594A JP2003243054A (en) 2002-02-18 2002-02-18 Photo-electrode for photoelectric transducing element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002040594A JP2003243054A (en) 2002-02-18 2002-02-18 Photo-electrode for photoelectric transducing element

Publications (1)

Publication Number Publication Date
JP2003243054A true JP2003243054A (en) 2003-08-29

Family

ID=27781300

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002040594A Withdrawn JP2003243054A (en) 2002-02-18 2002-02-18 Photo-electrode for photoelectric transducing element

Country Status (1)

Country Link
JP (1) JP2003243054A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010050575A1 (en) 2008-10-29 2010-05-06 富士フイルム株式会社 Dye, photoelectric conversion element and photoelectrochemical cell each comprising the dye, and process for producing dye
EP2302650A2 (en) 2009-09-28 2011-03-30 Fujifilm Corporation Method of producing photoelectric conversion element, photoelectric conversion element, and photoelectrochemical cell
EP2306479A2 (en) 2009-09-28 2011-04-06 Fujifilm Corporation Method of producing photoelectric conversion element, photoelectric conversion element, and photoelectrochemical cell
US8952372B2 (en) 2011-12-28 2015-02-10 Panasonic Corporation Photoelectric element and method for producing the same
JP2021145106A (en) * 2020-03-13 2021-09-24 東洋インキScホールディングス株式会社 Photoelectric conversion element and composition for forming photoelectric conversion layer

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010050575A1 (en) 2008-10-29 2010-05-06 富士フイルム株式会社 Dye, photoelectric conversion element and photoelectrochemical cell each comprising the dye, and process for producing dye
EP2845882A2 (en) 2008-10-29 2015-03-11 Fujifilm Corporation Dye, Photoelectric Conversion Element and Photoelectrochemical Cell
EP2302650A2 (en) 2009-09-28 2011-03-30 Fujifilm Corporation Method of producing photoelectric conversion element, photoelectric conversion element, and photoelectrochemical cell
EP2306479A2 (en) 2009-09-28 2011-04-06 Fujifilm Corporation Method of producing photoelectric conversion element, photoelectric conversion element, and photoelectrochemical cell
US8952372B2 (en) 2011-12-28 2015-02-10 Panasonic Corporation Photoelectric element and method for producing the same
JP2021145106A (en) * 2020-03-13 2021-09-24 東洋インキScホールディングス株式会社 Photoelectric conversion element and composition for forming photoelectric conversion layer
JP7439585B2 (en) 2020-03-13 2024-02-28 artience株式会社 Composition for forming photoelectric conversion elements and photoelectric conversion layers

Similar Documents

Publication Publication Date Title
KR101024876B1 (en) Photovoltaic cells utilizing mesh electrodes
EP1659600B1 (en) Electrode for a dye-senstitized solar cell
JP4503226B2 (en) Electrode substrate, photoelectric conversion element, and dye-sensitized solar cell
US7220914B2 (en) Zwitterionic compounds and photovoltaic cells containing same
US8377504B2 (en) Method for producing electroconductive polymer electrode, and dye-sensitized solar cell equipped with the same
US20050016578A1 (en) Photoelectric conversion device fabrication method, photoelectric conversion device, electronic apparatus manufacturing method, electronic apparatus, metal film formation method and layer structure, and semiconductor fine particle layer and layer structure
EP2530779B1 (en) Electrolyte solution for dye sensitized solar cell, and dye sensitized solar cell using same
US20090078307A1 (en) Three-Pole Two-Layer Photo-Rechargeable Battery
US20050092359A1 (en) Photovoltaic device
US20230104362A1 (en) Dye sensitized photovoltaic cells
JP4280020B2 (en) Oxide semiconductor electrode for photoelectric conversion and dye-sensitized solar cell
KR101058101B1 (en) Electrolytic solution composition and solar cell using same
JP2009076369A (en) Dye-sensitized solar cell
EP2256764A2 (en) Dye-sensitized solar cell and organic solvent-free electrolyte for dye-sensitized solar cell
JP2003317814A (en) Photovoltaic cell
JP4356865B2 (en) Method for producing metal-metal oxide composite electrode, photoelectric conversion element and photovoltaic cell
JP2004010403A (en) Titanium oxide fine particle with multiple structure, method of producing the same, photoelectric conversion element and photoelectric cell comprising the same
JP2003243054A (en) Photo-electrode for photoelectric transducing element
JP4050535B2 (en) Method for producing dye-sensitized solar cell
JP2003243681A (en) Electric charge transfer film
EP2696372A1 (en) Metal oxide semiconductor electrode having porous thin film, dye-sensitized solar cell using same, and method for manufacturing same
JP2004124124A (en) Method for manufacturing metal-metal oxide compound electrode, photoelectric transducer, and photoelectric cell
JP4072891B2 (en) Method for manufacturing photoelectric conversion element and photovoltaic cell
JP4776871B2 (en) Semiconductor fine particle film, photoelectric conversion element and photovoltaic cell
JP4804050B2 (en) Photoelectric conversion element

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20050510