JP2003235561A - Method for converting glycoprotein having plant type sugar chain into glycoprotein having animal type sugar chain - Google Patents

Method for converting glycoprotein having plant type sugar chain into glycoprotein having animal type sugar chain

Info

Publication number
JP2003235561A
JP2003235561A JP2002045486A JP2002045486A JP2003235561A JP 2003235561 A JP2003235561 A JP 2003235561A JP 2002045486 A JP2002045486 A JP 2002045486A JP 2002045486 A JP2002045486 A JP 2002045486A JP 2003235561 A JP2003235561 A JP 2003235561A
Authority
JP
Japan
Prior art keywords
sugar chain
glycoprotein
plant
type sugar
animal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2002045486A
Other languages
Japanese (ja)
Inventor
Akira Misaki
亮 三崎
Kazuhito Fujiyama
和仁 藤山
Tatsuji Seki
達治 関
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2002045486A priority Critical patent/JP2003235561A/en
Publication of JP2003235561A publication Critical patent/JP2003235561A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Peptides Or Proteins (AREA)
  • Breeding Of Plants And Reproduction By Means Of Culturing (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for simply and rapidly producing a glycoprotein which is stable in vivo, retains an essential physiological activity and has an animal type sugar chain structure. <P>SOLUTION: The method is to convert a glycoprotein having a plant type sugar chain into the glycoprotein having the animal type sugar chain. The method comprises a step of making an enzyme capable of carrying out a transfer reaction of a nonreducing terminal acetylglucosamine residue into a galactose residue act on the glycoprotein having the plant type sugar chain. The glycoprotein having the plant type sugar chain is produced by a plant cell and can be a foreign glycoprotein. The glycoprotein having the animal type sugar chain comprises a core sugar chain and an external sugar chain. The core sugar chain consists essentially of a plurality of mannoses and acetylglycosamines. The external sugar chain contains terminal sugar chain moiety comprising nonreducing terminal galactose. Fucose or xylose is preferably not contained in the glycoprotein having the animal type sugar chain. <P>COPYRIGHT: (C)2003,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、植物型糖鎖を持つ
糖タンパク質を動物型糖鎖を持つ糖タンパク質に変換す
る方法に関する。
TECHNICAL FIELD The present invention relates to a method for converting a glycoprotein having a plant type sugar chain into a glycoprotein having an animal type sugar chain.

【0002】[0002]

【従来の技術】異種タンパク質を生産するための宿主の
1つとして、植物培養細胞が利用可能である。例えば、
タバコ培養細胞を用いて以下のヒト有用タンパク質の産
生が試みられている:GM−CSF(James E
A、Wang C、Wang Z、Reeves R、
Shin JH、Magnuson NS、Lee J
M、Production and characte
rization of biologically
active human GM−CSF secre
tedby genetically modifie
d plant cells.Protein Exp
r Purif.19、131−138(200
0))、IL−2およびIL−4(Magnuson
NS、Linzmaier PM、Reeves R、
An G、HayGlass K、Lee JM、Se
cretion of biologically a
ctive humaninterleukin−2
and interleukin−4 from ge
netically modified tobacc
o cellsin suspension cult
ure.Protein ExprPurif.13、
45−52(1998))、免疫グロブリン(Magn
uson NS、Linzmaier PM、Gao
JW、Reeves R、An G、Lee JM、E
nhanced recovery of a sec
reted mammalian protein f
rom suspension culture of
genetically modifiedtoba
cco cells.Protein Expr Pu
rif. 7、220−228(1996))、エリス
ロポエチン(Matsumoto S、Ishii
A、Ikura K、Ueda M、Sasaki
R、Expression of human ery
thropoietin in cultured t
obacco cells、Biosci.Biote
chnol.Biochem.57、1249−125
2(1993))、α1−アンチトリプシン(Tera
shima M、Murai Y、Kawamura
M、Nakanishi S、Stoltz T、Ch
en L、Drohan W、Rodriguez R
L、Katoh S、Productionof fu
nctional human alpha 1−an
titrypsin by plant cell c
ulture.Appl Microbiol Bio
technol.52、516−523(1999))
など。
2. Description of the Related Art Plant culture cells can be used as one of hosts for producing heterologous proteins. For example,
Attempts have been made to produce the following useful human proteins using cultured tobacco cells: GM-CSF (James E)
A, Wang C, Wang Z, Reeves R,
Shin JH, Magnuson NS, Lee J
M, Production and characte
Rization of Biologically
active human GM-CSF secre
tedby genetically modify
d plant cells. Protein Exp
r Purif. 19, 131-138 (200
0)), IL-2 and IL-4 (Magnuson)
NS, Linzmaier PM, Reeves R,
An G, HayGlass K, Lee JM, Se
CREATION OF BILOGICALLY a
ctive humaninterleukin-2
and interleukin-4 fromge
netly modified tobacc
o cellsin suspension cult
ure. Protein ExprPurif. 13,
45-52 (1998)), immunoglobulin (Magn)
uson NS, Linzmaier PM, Gao
JW, Reeves R, An G, Lee JM, E
enhanced recovery of a sec
reted mammalian protein f
rom suspension culture of
genetically modified toba
cco cells. Protein Expr Pu
rif. 7, 220-228 (1996)), erythropoietin (Matsumoto S, Ishii).
A, Ikura K, Ueda M, Sasaki
R, Expression of human ery
thropoietin in cultured t
obacco cells, Biosci. Biote
chnol. Biochem. 57, 1249-125
2 (1993)), α1-antitrypsin (Tera)
Shima M, Murai Y, Kawamura
M, Nakanishi S, Stoltz T, Ch
en L, Drohan W, Rodriguez R
L, Katoh S, Production of fu
nctional human alpha 1-an
titrypsin by plant cell c
culture. Appl Microbiol Bio
technology. 52, 516-523 (1999)).
Such.

【0003】その一方、植物培養細胞は、多くのタンパ
ク質あるいは糖タンパク質を細胞外に分泌することが報
告されている(Sturm A、Heterogene
ity of the complex N−link
ed oligosaccharides at sp
ecific glycosylation site
s of two secreted carrot
glycoproteins Eur J Bioch
em.199、169−179(1991);Okus
hima Y、Koizumi N、Kusano
T、Sano H、Secreted protein
s of tobacco cultured BY2
cells: identification of
a new member of pathogen
esis−related proteins. Pl
ant Mol Biol.42、479−488(2
000);およびOkushima Y、Koizum
i N、Kusano T、Sano H、Glyco
sylation and its adequate
processing is critical f
or proteinsecretion in to
bacco BY2 cells.J.Plant P
hysiolo.154、623−627(199
9))。例えば、タバコBY2株培養細胞では、2種の
ペルオキシダ−ゼがその培養液から精製され、それらの
遺伝子のクロ−ニングを可能にした(Narita
H、Asaka Y、Ikura K、Matsumo
to S、Sasaki R、Isolation、c
haracterization and expre
ssion of cationic peroxid
ase isozymes released int
o the medium of cultured
tobacco cells.Eur J Bioch
em.228、855−862 (1995))。植物
細胞の培養培地にポリビニルピロリドン(PVP)を添
加すると、培地に分泌されるタンパク質濃度が上昇した
(Magnuson NS、Linzmaier P
M、Gao JW、ReevesR、An G、Lee
JM、Enhanced recovery of
asecreted mammalian prote
in from suspension cultur
e of genetically modified
tobacco cells、Protein Ex
pr Purif7、220−228(1996))。
Okushima Yら(1999、前述)は、タバコ
BY2株培養細胞が、数百種ものタンパク質を細胞外に
分泌していることを報告した。これらタンパク質は高マ
ンノ−ス型糖鎖を認識するレクチン(コンカナバリン
A)と反応したことから糖タンパク質も細胞外に多量に
分泌されていることが示された(Okushima Y
ら、1999、前述)。
On the other hand, plant cultured cells have been reported to secrete many proteins or glycoproteins extracellularly (Sturm A, Heterogene).
ity of the complex N-link
ed oligosaccharides at sp
specific glycosylation site
s of two secreted carrot
Glycoproteins Eur J Bioch
em. 199, 169-179 (1991); Okus
Hima Y, Koizumi N, Kusano
T, Sano H, Secreted protein
s of tobacco cultured BY2
cells: identification of
a new member of pathogen
sis-related proteins. Pl
ant Mol Biol. 42, 479-488 (2
000); and Okushima Y, Koizum
i N, Kusano T, Sano H, Glyco
sylation and it's adquire
processing is critical f
or protein security in to
bacco BY2 cells. J. Plant P
hysiolo. 154, 623-627 (199
9)). For example, in tobacco BY2 cell culture cells, two peroxidases were purified from the culture, allowing cloning of their genes (Narita).
H, Asaka Y, Ikura K, Matsumo
to S, Sasaki R, Isolation, c
harmonization and expre
session of national peroxid
ase isozymes released int
o the medium of culture
tobacco cells. Eur J Bioch
em. 228, 855-862 (1995)). When polyvinylpyrrolidone (PVP) was added to the culture medium of plant cells, the concentration of proteins secreted into the medium increased (Magnuson NS, Linzmaier P).
M, Gao JW, ReevesR, An G, Lee
JM, Enhanced recovery of
assured mammalian prote
in from suspension culture
e of genetically modified
tobacco cells, Protein Ex
pr Purif7, 220-228 (1996)).
Okushima Y et al. (1999, supra) reported that cultured cells of the BY2 strain of tobacco secrete hundreds of proteins extracellularly. Since these proteins reacted with a lectin (concanavalin A) that recognizes a high-mannose type sugar chain, it was shown that the glycoprotein was also secreted in a large amount outside the cell (Okushima Y).
Et al., 1999, supra).

【0004】上記のような、植物細胞内で生産させたタ
ンパク質(特に免疫グロブリン、インタ−ロイキン、G
M−CSF)は、それら自身の持つ固有のシグナルペプ
チドが植物細胞内の分泌機構によっても認識され、そし
て成熟タンパク質が培養液中に分泌された(James
EAら、前述;Magnuson NSら、199
8、前述;Magnuson NSら、1996、前
述)。これらタンパク質の多くは糖鎖を含む糖タンパク
質であり、これらいずれの糖タンパク質においても、そ
の糖鎖が、血中半減期、タンパク質分解酵素への感受
性、および安定性に関与することが示唆されている。し
かし、実際に、植物細胞内で生産された組換えタンパク
質の糖鎖構造は、抗体(Cabanes−Machet
eau M、Fitchette−Laine AC、
Loutelier−BourhisC、Lange
C、Vine ND、MaJK、Lerouge P、
Faye L.N−Glycosylation of
a mouse IgG expressed in
transgenic tobacco plant
s.Glycobiology(1999)9、365
−372;BakkerH、Bardor M、Mol
thoff JW、Gomord V、Elbers
I、Stevens LH、Jordi W、Lomm
en A、Faye L、Lerouge P、Bos
ch D.Galactose−extended g
lycans of antibodies prod
ucedby transgenic plants.
Proc Natl AcadSci USA(200
1)98、2899−2904)を除いて調べられてお
らず、組換えタンパク質は植物型糖鎖構造を持つと推測
されている。Raskinらは、植物の根からGFP、
ヒト胎盤アルカリホスファターゼなどのタンパク質を分
泌させる方法を記載している(Borisjuk N
V、Borisjuk LG、Logendra S、
Petersen F、Gleba Y、Raskin
I.Production of recombina
nt proteins in plant root
exudates.Nat Biotechnol
1999;17:466−469;Gleba D、B
orisjuk NV、Borisjuk LG、Kn
eer R、PoulevA、Skarzhinska
ya M、Dushenkov S、Longendr
a S、Gleba YY、Raskin I.Use
of plantroots for phytor
emediation and molecular
farming.Proc Natl Acad Sc
i USA1999;96:5973−5977)。
Proteins produced in plant cells as described above (especially immunoglobulin, interleukin, G
M-CSF) has its own unique signal peptide recognized by the secretory mechanism in plant cells, and the mature protein was secreted into the culture medium (James).
EA et al., Supra; Magnuson NS et al., 199.
8, supra; Magnuson NS et al., 1996, supra). Many of these proteins are glycoproteins containing sugar chains, and it has been suggested that the sugar chains are involved in blood half-life, sensitivity to proteolytic enzymes, and stability in any of these glycoproteins. There is. However, in reality, the sugar chain structure of the recombinant protein produced in plant cells is different from that of the antibody (Cabanes-Machet)
eau M, Fitchette-Laine AC,
Loutier-BourhisC, Lange
C, Vine ND, MaJK, Lerouge P,
Faye L. N-Glycosylation of
a mouse IgG expressed in
transgenic tobacco plant
s. Glycobiology (1999) 9, 365
-372; Baker H, Bardor M, Mol.
thoff JW, Gomord V, Elbers
I, Stevens LH, Jordi W, Lomm
en A, Face L, Lerouge P, Bos
ch D. Galactose-extended g
lycans of antibiotics prod
UCEDBY TRANSGENIC PLANTS.
Proc Natl AcadSci USA (200
1) 98, 2899-2904) has not been investigated, and the recombinant protein is presumed to have a plant type sugar chain structure. Raskin et al.
A method for secreting proteins such as human placental alkaline phosphatase has been described (Borisjuk N.
V, Borisjuk LG, Logendra S,
Petersen F, Gleba Y, Raskin
I. Production of recombina
nt proteins in plant root
exudates. Nat Biotechnol
1999; 17: 466-469; Gleba D, B.
orisjuk NV, Borisjuk LG, Kn
er R, Poulev A, Skarzhinska
ya M, Dushenkov S, Longendr
a S, Gleba YY, Raskin I.D. Use
of plants for phytor
education and molecular
farming. Proc Natl Acad Sc
i USA 1999; 96: 5973-5977).

【0005】タバコ植物体で生産された分泌型抗体分子
sIgAの糖鎖構造解析は、この分泌型抗体分子が、植
物型糖鎖を持つことを明らかにした(Cabanes−
Macheteau M、Fitchette−Lai
ne AC、Loutelier−Bourhis
C、Lange C、Vine ND、Ma JK、L
erouge P、Faye L、N−Glycosy
lation of amouse IgG expr
essed in transgenic tobac
co plants.Glycobiology.9、
365−372.(1999))。また、同じくタバコ植
物体で生産した異種抗体分子は、タンパク質分解酵素に
よる分解を受け易く、不安定であることが示された(S
tevens LH、Stoopen GM、Elbe
rs IJ、MolthoffJW、Bakker H
A、Lommen A、Bosch D、Jordi
W、Effect of climate condi
tions and plant developme
ntal stage on the stabili
ty of antibodies expresse
d in transgenic tobacco.
Plant Physiol.124,173−18
2.(2000))。抗植物型糖鎖抗体を用いたウェスタ
ン法により、この抗体には植物型糖鎖が付加しているこ
とが確認された。ヒトやマウスなどで生産された抗体分
子の糖鎖に存在するβ1,4結合したガラクト−ス残基
が、抗体タンパク質の安定化に寄与していることが報告
されているが、植物細胞で生産された抗体分子にはこの
糖残基が存在しない。このため、タバコ植物体で生産さ
れた抗体はタンパク質分解酵素による分解を受けやすく
なったと考えられている。
Analysis of the sugar chain structure of the secretory antibody molecule sIgA produced in tobacco plants revealed that this secretory antibody molecule has a plant sugar chain (Cabanes-
Macheteau M, Fitchette-Lai
ne AC, Loutier-Bourhis
C, Range C, Vine ND, Ma JK, L
error P, Face L, N-Glycosy
relation of mouse IgG expr
essed in transgenic tobac
co plants. Glycobiology. 9,
365-372. (1999)). It was also shown that the heterologous antibody molecule also produced in the tobacco plant is susceptible to degradation by proteolytic enzymes and is unstable (S
sevens LH, Stoopen GM, Elbe
rs IJ, Molthoff JW, Baker H
A, Lommen A, Bosch D, Jordi
W, Effect of climate condi
tions and plant developme
ntal stage on the stabili
ty of antibodies express
d in transgenic tobacco.
Plant Physiol. 124,173-18
2. (2000)). By the Western method using an anti-plant type sugar chain antibody, it was confirmed that a plant type sugar chain was added to this antibody. It has been reported that β1,4-linked galactose residues present in sugar chains of antibody molecules produced in humans, mice, etc. contribute to stabilization of antibody proteins, but are produced in plant cells. This sugar residue is absent in the isolated antibody molecule. For this reason, it is considered that the antibody produced in the tobacco plant became susceptible to the degradation by the proteolytic enzyme.

【0006】エリスロポイエチンをタバコ培養細胞で生
産させた場合、インビトロでの生物学的活性は認められ
たが、インビボでの活性を検出できなかった(Mats
umoto S、Ikura K、Ueda M、Sa
saki R Characterization o
f a human glycoprotein (e
rythropoietin) produced i
n culturedtobacco cells.
Plant Mol Biol. 27、1163−1
172(1995))。これもまた、エリスロポイエチン
において、糖鎖が生物学的活性に大きく関わり、植物細
胞で生産された場合に糖鎖構造が大きく異なることが原
因であると結論付けられた。
When erythropoietin was produced in cultured tobacco cells, in vitro biological activity was observed but in vivo activity could not be detected (Mats).
umoto S, Ikura K, Ueda M, Sa
saki R Characterization o
f a human glycoprotein (e
rythropoietin) produced i
n culturedtobacco cells.
Plant Mol Biol. 27, 1163-1
172 (1995)). It was also concluded that this is also due to the fact that sugar chains are greatly involved in biological activity in erythropoietin, and that sugar chain structures differ greatly when produced in plant cells.

【0007】このように、上記を含め、糖タンパク質の
糖鎖は、i)インビボにおける血中クリアランスなどの
際に受けるタンパク質分解からの保護、ii)タンパク
質フォ−ルディングおよび生理活性への関与、iii)
細胞間接着への寄与、iv)ウイルス、病原菌による細
胞表面の認識の媒介など、種々の役割を演じていると考
えられている。
Thus, including the above, the sugar chains of glycoproteins are i) protected from proteolytic degradation, such as during in vivo blood clearance, ii) involved in protein folding and physiological activity, iii. )
It is considered to play various roles such as contribution to cell-cell adhesion, iv) mediation of cell surface recognition by viruses and pathogens.

【0008】図1に、動物細胞と植物細胞に存在する代
表的な糖鎖(N−結合型糖鎖)の構造を示す。図1に示
されるように、動物型および植物型糖鎖は、複数のマン
ノ−スおよびアセチルグルコサミンから本質的になるコ
ア糖鎖、およびマンノースを介してコア糖鎖に結合する
外部糖鎖からなる。動物型糖鎖(図1の下)の外部糖鎖
には、植物型糖鎖(図1の上)では見られないβ1,4
結合ガラクト−ス残基およびシアル酸が存在している。
その一方、植物型糖鎖のコア糖鎖には、動物細胞にはな
いβ1,2結合キシロ−ス残基およびα1,3結合残基
フコ−スが存在している。
FIG. 1 shows the structures of typical sugar chains (N-linked sugar chains) present in animal cells and plant cells. As shown in FIG. 1, animal-type and plant-type sugar chains consist of a core sugar chain consisting essentially of a plurality of mannoses and acetylglucosamine, and an external sugar chain that is bound to the core sugar chain via mannose. . The outer sugar chains of animal-type sugar chains (bottom of FIG. 1) do not have β1,4 that are not found in plant-type sugar chains (top of FIG. 1)
There are bound galactose residues and sialic acid.
On the other hand, the core sugar chain of a plant type sugar chain has β1,2-bonded xyrose residues and α1,3-bonded residue fucoses that are not found in animal cells.

【0009】さらに、植物型糖鎖はヒトを含む哺乳類動
物においてアレルゲンとなる可能性も示唆されている。
すなわち、哺乳類の糖タンパク質糖鎖に見られない植物
特有の糖鎖構造であるβ1,2−キシロ−ス残基あるい
は α1,3−フコ−ス残基がアレルゲンとなることが
報告されている(Fotisch K、Altmann
F、Haustein D、Vieths S、In
volvementof carbohydrate
epitopes in the IgErespon
se of celery−allergic pat
ients. Int Arch Allergy I
mmunol.120、30−42(1999);Wi
lson IB、Harthill JE、Mulli
nNP、Ashford DA、Altmann F、
Core alpha1,3−fucose is a
key part of the epitope
recognized by antibodies
reactingagainst plant N−l
inked oligosaccharides an
d is present in a wide va
rietyof plant extracts.Gl
ycobiology.8、651−661(199
8);およびvan Ree R、Cabanes−M
acheteau M、Akkerdaas J、Mi
lazzo JP、Loutelier−Bourhi
s C、Rayon C、Villalba M、Ko
ppelman S、Aalberse R、Rodr
iguez R、Faye L、Lerouge P、
Beta(1,2)−xylose andalpha
(1,3)−fucose residues hav
e a strong contribution i
n IgE binding toplant gly
coallergens.J Biol Chem.2
000 Apr 14;275(15):11451−
11458)。このため、医療用タンパク質において
は、β1,2−キシロ−ス残基あるいはα1,3−フコ
−ス残基を持たない糖鎖構造であることが所望されてい
る。
Furthermore, it has been suggested that plant type sugar chains may serve as allergens in mammals including humans.
That is, it has been reported that a β1,2-xyrose residue or an α1,3-fucose residue, which is a plant-specific sugar chain structure that is not found in mammalian glycoprotein sugar chains, serves as an allergen ( Fotisch K, Altmann
F, Haustain D, Vieths S, In
volvementof carbohydrate
epitopes in the IgErespon
se of celery-allergic pat
ients. Int Arch Allergy I
mmunol. 120, 30-42 (1999); Wi
lson IB, Harthill JE, Mulli
nNP, Ashford DA, Altmann F,
Core alpha1,3-fucose is a
key part of the epitope
recognized by antibodies
reacting again plant N-1
inked oligosaccharides an
dis is present in a wide va
riety of plant extracts. Gl
ycobiology. 8, 651-661 (199
8); and van Ree R, Cabanes-M.
acheteau M, Akkerdaas J, Mi
lazzo JP, Loutier-Bourhi
s C, Rayon C, Villalba M, Ko
ppelman S, Aalberse R, Rodr
iguez R, Face L, Lerouge P,
Beta (1,2) -xylose andalpha
(1,3) -fucose residues hav
e a strong contribution i
n IgE binding top plant gly
callergens. J Biol Chem. Two
000 Apr 14; 275 (15): 11451-.
11458). Therefore, it is desired that the medical protein has a sugar chain structure having no β1,2-xyloose residue or α1,3-fucose residue.

【0010】[0010]

【発明が解決しようとする課題】本発明は、上記従来の
課題を解決し、インビボで安定であって本来の生理活性
を保持し、かつアレルゲンとならない糖鎖構造を持つ糖
タンパク質を、簡便かつ迅速に生産する方法を提供する
ことを目的とする。
DISCLOSURE OF THE INVENTION The present invention solves the above-mentioned conventional problems and provides a glycoprotein having a sugar chain structure that is stable in vivo, retains its original physiological activity, and does not become an allergen. The purpose is to provide a method for rapid production.

【0011】[0011]

【課題を解決するための手段】図2に、動物細胞および
植物細胞における糖鎖の合成経路の一部を示す。本発明
者らは、植物型糖鎖は、β1,2結合したキシロ−ス残
基およびα1,3結合したフコ−ス残基が存在する点を
除けば、植物型糖鎖は動物型糖鎖の前駆体となり得、イ
ンビトロで植物型糖鎖の非還元末端にβ1,4結合する
ガラクト−スおよびシアル酸を付加すれば動物型糖鎖が
得られることを示し、本発明を完成するに至った。
Means for Solving the Problems FIG. 2 shows a part of the synthetic pathway of sugar chains in animal cells and plant cells. The present inventors have found that plant-type sugar chains are animal-type sugar chains except that there are β1,2-linked xylose residues and α1,3-bonded fucose residues. The present invention shows that an animal-type sugar chain can be obtained by adding galactose and sialic acid capable of binding β1,4 to the non-reducing end of a plant-type sugar chain in vitro, thus completing the present invention. It was

【0012】本発明は、植物型糖鎖を持つ糖タンパク質
を動物型糖鎖を持つ糖タンパク質に変換する方法に関
し、この方法は、植物型糖鎖を持つ糖タンパク質に、非
還元末端アセチルグルコサミン残基へのガラクト−ス残
基の転移反応を行い得る酵素を作用させる工程を包含す
る。
The present invention relates to a method for converting a glycoprotein having a plant-type sugar chain into a glycoprotein having an animal-type sugar chain, which comprises adding a non-reducing terminal acetylglucosamine residue to a glycoprotein having a plant-type sugar chain. The step of reacting with an enzyme capable of performing a transfer reaction of a galactose residue to a group is included.

【0013】好ましくは、上記植物型糖鎖を持つ糖タン
パク質は、植物細胞によって産生される糖タンパク質で
あり得る。
[0013] Preferably, the glycoprotein having a plant type sugar chain may be a glycoprotein produced by a plant cell.

【0014】好ましくは、上記植物細胞によって産生さ
れる糖タンパク質は、異種糖タンパク質であり得る。
[0014] Preferably, the glycoprotein produced by the plant cell may be a heterologous glycoprotein.

【0015】好ましくは、上記異種タンパク質は、異種
タンパク質をコードする遺伝子で植物細胞を形質転換す
る工程、および得られた形質転換体を培養する工程を包
含する方法によって得られ得る。
Preferably, the above heterologous protein can be obtained by a method including a step of transforming a plant cell with a gene encoding the heterologous protein, and a step of culturing the obtained transformant.

【0016】好ましくは、上記方法は、上記形質転換体
の培養液を回収する工程をさらに包含し得る。
[0016] Preferably, the above method may further include a step of collecting a culture solution of the above transformant.

【0017】好ましくは、上記動物型糖鎖を持つ糖タン
パク質は、コア糖鎖および外部糖鎖を含み、該コア糖鎖
が複数のマンノ−スおよびアセチルグルコサミンから本
質的になり、該外部糖鎖が非還元末端ガラクト−スを含
む末端糖鎖部分を含み得る。
Preferably, the glycoprotein having an animal type sugar chain comprises a core sugar chain and an outer sugar chain, and the core sugar chain essentially consists of a plurality of mannoses and acetylglucosamine, and the outer sugar chain is May contain a terminal sugar chain moiety containing a non-reducing terminal galactose.

【0018】好ましくは、上記動物型糖鎖を持つ糖タン
パク質は、フコ−スまたはキシロ−スを含まない。
[0018] Preferably, the glycoprotein having an animal type sugar chain does not contain fucose or xylose.

【0019】本発明はまた、上記の方法によって得られ
た動物型糖鎖を持つ糖タンパク質に関する。
The present invention also relates to a glycoprotein having an animal type sugar chain obtained by the above method.

【0020】[0020]

【発明の実施の形態】以下、本発明を詳細に説明する。BEST MODE FOR CARRYING OUT THE INVENTION The present invention will be described in detail below.

【0021】本発明においては、他に特定されない限
り、当該分野で公知である、タンパク質の分離および分
析法、ならびに免疫学的手法が採用され得る。これらの
手法は、市販のキット、抗体、標識物質などを使用して
行い得る。
In the present invention, unless otherwise specified, protein separation and analysis methods and immunological methods known in the art can be employed. These techniques can be performed using commercially available kits, antibodies, labeling substances and the like.

【0022】本発明の方法は、植物型糖鎖を持つ糖タン
パク質を動物型糖鎖を持つ糖タンパク質に変換する方法
に関し、この方法は、植物型糖鎖を持つ糖タンパク質
に、非還元末端アセチルグルコサミン残基へのガラクト
−ス残基の転移反応を行い得る酵素を作用させる工程を
包含する。代表的には、上記植物型糖鎖を持つ糖タンパ
ク質は、培養された植物細胞によって生産される。
The method of the present invention relates to a method for converting a glycoprotein having a plant-type sugar chain into a glycoprotein having an animal-type sugar chain. The step of reacting with an enzyme capable of carrying out a transfer reaction of a galactose residue to a glucosamine residue is included. Typically, the glycoprotein having a plant type sugar chain is produced by cultured plant cells.

【0023】本明細書において、「動物型糖鎖」とは、
N−アセチルグルコサミン残基と結合したガラクト−ス
残基を有する糖鎖をいう。動物型糖鎖におけるガラクト
−ス残基は糖鎖の末端であってもよいし、ガラクト−ス
残基のさらに外側にシアル酸残基が結合していてもよ
い。本発明の糖タンパク質は、動物型糖鎖のコア糖鎖部
分、分岐糖鎖部分、および末端糖鎖部分からなる1つ以
上の部分において、キシロ−スおよびフコ−スの少なく
とも一方が結合していないことが好ましく、動物型糖鎖
のいずれの部分においてもキシロ−スおよびフコ−スの
少なくとも一方が結合していないことがより好ましく、
最も好ましくは動物型糖鎖中にキシロ−スおよびフコ−
スのいずれも含まないことがさらにより好ましい。
In the present specification, the "animal type sugar chain" means
It refers to a sugar chain having a galactose residue bonded to an N-acetylglucosamine residue. The galactose residue in the animal type sugar chain may be at the end of the sugar chain, or a sialic acid residue may be bound further outside the galactose residue. In the glycoprotein of the present invention, at least one of xylose and fucose is bound in one or more portions consisting of a core sugar chain portion, a branched sugar chain portion, and a terminal sugar chain portion of an animal type sugar chain. It is more preferable that at least one of xylose and fucose is not bound to any part of the animal type sugar chain,
Most preferably, xylose and fuco-in the animal type sugar chain.
It is even more preferred that it does not contain any of these.

【0024】植物細胞とは、任意の植物細胞であり得
る。植物細胞は、培養細胞、培養組織、培養器官、また
は植物体のいずれの形態であってもよい。好ましくは、
培養細胞、培養組織、または培養器官であり、より好ま
しくは培養細胞である。本発明の生産方法に使用され得
る植物種は、遺伝子導入を行い得る任意の植物種であり
得る。 本発明の生産方法に使用され得る植物種の例と
しては、ナス科、イネ科、アブラナ科、バラ科、マメ
科、ウリ科、シソ科、ユリ科、アカザ科、セリ科の植物
が挙げられる。
The plant cell can be any plant cell. The plant cells may be in the form of cultured cells, cultured tissues, cultured organs, or plant bodies. Preferably,
It is a cultured cell, a cultured tissue, or a cultured organ, more preferably a cultured cell. The plant species that can be used in the production method of the present invention can be any plant species capable of gene transfer. Examples of plant species that can be used in the production method of the present invention include plants of Solanaceae, Gramineae, Brassicaceae, Rosaceae, Leguminaceae, Cucurbitaceae, Lamiaceae, Liliaceae, Acalyptaceae, and Seriaceae. .

【0025】ナス科の植物の例としては、Nicoti
ana、Solanum、Datura、Lycope
rsion、またはPetuniaに属する植物が挙げ
られ、例えば、タバコ、ナス、ジャガイモ、トマト、ト
ウガラシ、ペチュニアなどを含む。
As an example of a plant of the Solanaceae family, Nicoti
ana, Solanum, Dataura, Lycope
Examples include plants belonging to rsion or Petunia, and examples thereof include tobacco, eggplant, potato, tomato, capsicum, petunia, and the like.

【0026】イネ科の植物の例としては、Oryza、
Hordenum、Secale、Scccharu
m、Echinochloa、またはZeaに属する植
物が挙げられ、例えば、イネ、オオムギ、ライムギ、ヒ
エ、モロコシ、トウモロコシなどを含む。
Examples of plants of the family Gramineae include Oryza,
Hordenum, Scale, Scccharu
m, Echinochloa, or Zea. Examples thereof include rice, barley, rye, millet, sorghum, and corn.

【0027】アブラナ科の植物の例としては、Raph
anus、Brassica、Arabidopsi
s、Wasabia、またはCapsellaに属する
植物が挙げられ、例えば、大根、アブラナ、シロイヌナ
ズナ、ワサビ、ナズナなどを含む。
Raph is an example of a plant of the Brassicaceae family.
anus, Brassica, Arabidopsi
plants belonging to s, Wasabia, or Capsella are included, and examples thereof include radish, rape, Arabidopsis, wasabi, and cod.

【0028】バラ科の植物の例としては、Orunu
s、Malus、Pynus、Fragaria、また
はRosaに属する植物が挙げられ、例えば、ウメ、モ
モ、リンゴ、ナシ、オランダイチゴ、バラなどを含む。
As an example of the plant of the family Rosaceae, Orunu
Examples thereof include plants belonging to s, Malus, Pynus, Fragaria, or Rosa, and include, for example, plums, peaches, apples, pears, Dutch strawberries, and roses.

【0029】マメ科の植物の例としては、Glycin
e、Vigna、Phaseolus、Pisum、V
icia、Arachis、Trifolium、Al
phalfa、またはMedicagoに属する植物が
挙げられ、例えば、ダイズ、アズキ、インゲンマメ、エ
ンドウ、ソラマメ、ラッカセイ、クローバ、ウマゴヤシ
などを含む。
As an example of a leguminous plant, Glycin
e, Vigna, Phaseolus, Pisum, V
icia, Arachis, Trifolium, Al
Phalfa or plants belonging to Medicago are mentioned, and examples thereof include soybean, adzuki bean, kidney bean, pea, broad bean, peanut, clover, horse mackerel and the like.

【0030】ウリ科の植物の例としては、Luffa、
Cucurbita、またはCucumisに属する植
物が挙げられ、例えば、ヘチマ、カボチャ、キュウリ、
メロンなどを含む。
Examples of plants of the family Cucurbitaceae include Luffa,
Examples include plants belonging to Cucurbita or Cucumis, such as loofah, pumpkin, cucumber,
Including melon etc.

【0031】シソ科の植物の例としては、Lavand
ula、Mentha、またはPerillaに属する
植物が挙げられ、例えば、ラベンダー、ハッカ、シソな
どを含む。
As an example of the Lamiaceae plant, Lavand
Examples thereof include plants belonging to ula, Mentha, or Perilla, and include, for example, lavender, peppermint, and perilla.

【0032】ユリ科に属する植物の例としては、All
ium、Lilium、またはTulipaに属する植
物が挙げられ、例えば、ネギ、ニンニク、ユリ、チュー
リップなどを含む。
Examples of plants belonging to the family Liliaceae include All
Examples include plants belonging to ium, lilium, or Tulipa, and include, for example, leek, garlic, lily, tulip, and the like.

【0033】アカザ科の植物の例としては、Spina
ciaに属する植物が挙げられ、例えば、ホウレンソウ
を含む。
As an example of a plant of the family Rhinoceros, Spina
Examples of plants belonging to cia include spinach.

【0034】セリ科の植物の例としては、Angeli
ca、Daucus、Cryptotaenia、また
はApitumに属する植物が挙げられ、例えば、シシ
ウド、ニンジン、ミツバ、セロリなどを含む。
As an example of the plant of the family Apiaceae, Angeli
Examples thereof include plants belonging to ca, Daucus, Cryptotaenia, or Apitum, and include, for example, sardines, carrots, honeywort, and celery.

【0035】本発明の生産方法に用いられる植物は、好
ましくはタバコ、トマト、ジャガイモ、イネ、トウモロ
コシ、ダイコン、ダイズ、エンドウ、ウマゴヤシ、およ
びホウレンソウであり、より好ましくは、タバコ、トマ
ト、ジャガイモ、トウモロコシ、およびダイズである。
The plants used in the production method of the present invention are preferably tobacco, tomato, potato, rice, corn, radish, soybean, pea, horse mackerel, and spinach, and more preferably tobacco, tomato, potato and corn. , And soybean.

【0036】本発明で用いる用語「非還元末端アセチル
グルコサミン残基へのガラクト−ス残基の転移反応を行
い得る酵素」は、非還元末端アセチルグルコサミン残基
へガラクト−ス残基を転移し得る酵素を意味する。この
ような酵素の例としては、ガラクトシルトランスフェラ
−ゼ、ラクト−スシンタ−ゼ、β−ガラクトシダ−ゼが
挙げられる。このような酵素は、任意の生物種に由来し
得るが、哺乳動物に由来することが好ましく、ヒトに由
来することがより好ましい。
The term "enzyme capable of transferring a galactose residue to a non-reducing terminal acetylglucosamine residue" used in the present invention can transfer a galactose residue to a non-reducing terminal acetylglucosamine residue. Means enzyme. Examples of such enzymes include galactosyl transferase, lactoscinase and β-galactosidase. Such an enzyme may be derived from any species, but is preferably derived from mammals, and more preferably derived from humans.

【0037】「非還元末端アセチルグルコサミン残基へ
のガラクト−ス残基の転移反応を行い得る酵素」とし
て、市販の酵素を利用し得る。これは、例えば、Toy
obo株式会社(大阪)から入手可能である。あるい
は、動物細胞などの供給源から単離してもよいし、この
酵素をコ−ドする公知のヌクレオチド配列を用い当業者
に公知の遺伝子工学的手法を用いて発現して得てもよ
い。
A commercially available enzyme can be used as the “enzyme capable of transferring the galactose residue to the acetylglucosamine residue at the non-reducing end”. This is, for example, Toy
It is available from obo, Inc. (Osaka). Alternatively, it may be isolated from a source such as an animal cell, or may be obtained by expression using a known nucleotide sequence encoding the enzyme using a genetic engineering technique known to those skilled in the art.

【0038】本明細書では、「遺伝子」とは、構造遺伝
子部分をいう。遺伝子には、植物での発現に適切なよう
に、プロモ−タ−、オペレ−タ−、およびタ−ミネ−タ
−などの制御配列が連結され得る。
As used herein, the term "gene" refers to a structural gene portion. The gene may be linked with regulatory sequences such as promoter, operator, and terminator, as appropriate for expression in plants.

【0039】本発明で用いる用語「異種糖タンパク質」
は、用いる宿主、代表的には植物細胞または植物体にお
いて本来生産されない糖タンパク質をいう。異種糖タン
パク質の例としては、酵素、ホルモン、サイトカイン、
抗体、ワクチン、レセプタ−、血清タンパク質などが挙
げられる。酵素の例としては、西洋ワサビペルオキシダ
ーゼ、キナーゼ、グルコセレブロシダーゼ(gluco
cerebrosidase)、アルファ−ガラクトシ
ダーゼ、フィターゼ、TPA(tissue−type
plasminogen activator)、H
MG−CoAレダクターゼ(HMG−CoA redu
ctase)などが挙げられる。ホルモンおよびサイト
カインの例としては、エンケファリン、インターフェロ
ンアルファ、GM−CSF、G−CSF、絨毛性性腺刺
激ホルモン、インターロイキン−2、インターフェロン
−ベータ、インターフェロン−ガンマ、エリスロポイエ
チン、血管内皮細胞増殖因子(vascular en
dothelial growth factor)、
ヒト絨毛性ゴナドトロピン(HCG)、黄体形成ホルモ
ン(LH)、甲状腺刺激ホルモン(TSH)、プロラク
チン、卵胞刺激ホルモンなどが挙げられる。抗体の例と
しては、IgG、scFv、分泌型IgAなどが挙げら
れる。ワクチンの例としては、B型肝炎表面抗原、ロタ
ウイルス抗原、大腸菌エンテロトキシン、マラリア抗
原、狂犬病ウイルスrabies virusのGタン
パク質、HIVウイルス糖タンパク質(例えば、gp1
20)などが挙げられる。レセプターおよびマトリック
スタンパク質の例としては、EGFレセプター、フィブ
ロネクチン、α1−アンチトリプシン、凝固因子VII
Iなどが挙げられる。血清タンパク質の例としては、ア
ルブミン、補体系タンパク質、プラスミノーゲン、コル
チコステロイド結合グロブリン(corticoste
roid−binding globulin)、スロ
キシン結合グロブリン(Throxine−bindi
ng globulin)、プロテインC(prote
in C)などが挙げられる。
The term “heterologous glycoprotein” used in the present invention
Refers to a glycoprotein that is not originally produced in the host used, typically a plant cell or plant. Examples of heterologous glycoproteins are enzymes, hormones, cytokines,
Antibodies, vaccines, receptors, serum proteins and the like. Examples of enzymes include horseradish peroxidase, kinase, glucocerebrosidase (gluco).
cerebrosidase), alpha-galactosidase, phytase, TPA (issue-type)
Plasminogen activator), H
MG-CoA reductase (HMG-CoA redu
ctase) and the like. Examples of hormones and cytokines include enkephalin, interferon alpha, GM-CSF, G-CSF, chorionic gonadotropin, interleukin-2, interferon-beta, interferon-gamma, erythropoietin, vascular endothelial growth factor ( Vascular en
dothelial growth factor),
Examples include human chorionic gonadotropin (HCG), luteinizing hormone (LH), thyroid stimulating hormone (TSH), prolactin, follicle stimulating hormone and the like. Examples of the antibody include IgG, scFv, secretory IgA and the like. Examples of vaccines include hepatitis B surface antigen, rotavirus antigen, Escherichia coli enterotoxin, malaria antigen, G protein of rabies virus rabies virus, HIV viral glycoprotein (eg, gp1).
20) and the like. Examples of receptors and matrix proteins are EGF receptor, fibronectin, α1-antitrypsin, coagulation factor VII
I etc. are mentioned. Examples of serum proteins include albumin, complement system proteins, plasminogen, corticosteroid binding globulin (corticoster).
liquid-binding globulin, throxine-binding globulin
ng globulin), protein C (prote
in C) and the like.

【0040】「異種糖タンパク質の遺伝子」は、目的の
異種糖タンパク質をコードすることが知られるヌクレオ
チド配列を用いて任意の細胞から単離してもよいし、市
販のものを購入してもよいし、これらを植物での発現に
適切なように改変して用いてもよい。
The "gene of heterologous glycoprotein" may be isolated from any cell using a nucleotide sequence known to encode the heterologous glycoprotein of interest, or may be purchased commercially. Alternatively, these may be modified and used as appropriate for expression in plants.

【0041】異種糖タンパク質の遺伝子は、当該分野で
公知の方法により、植物細胞へ導入される。これらの遺
伝子は、別々に導入してもよいし、同時に導入してもよ
い。植物細胞への遺伝子の導入方法の例としては、上記
のように、アグロバクテリウム法、エレクトロポレ−シ
ョン法、金粒子法などが挙げられる。
The gene for the heterologous glycoprotein is introduced into plant cells by a method known in the art. These genes may be introduced separately or simultaneously. Examples of methods for introducing a gene into plant cells include the Agrobacterium method, electroporation method, and gold particle method, as described above.

【0042】上記遺伝子が導入された植物細胞によって
発現および分泌される遺伝子産物は、発現および分泌さ
れる遺伝子産物に応じて、当該分野で公知の方法により
確認され得る。このような確認方法としては、銀染色、
ウェスタンブロッティング、ノザンハイブリダイゼ−シ
ョン、酵素活性の検出などが挙げられる。
The gene product expressed and secreted by the plant cell into which the above-mentioned gene has been introduced can be confirmed by a method known in the art depending on the gene product expressed and secreted. Such confirmation methods include silver staining,
Western blotting, Northern hybridization, detection of enzyme activity and the like can be mentioned.

【0043】異種糖タンパク質を発現する形質転換細胞
は、植物型の糖鎖を持つ異種糖タンパク質を発現および
分泌する。この形質転換細胞を培養することにより、植
物型の糖タンパク質が発現され、そして植物細胞中に蓄
積または培養液中に大量に分泌され得る。
The transformed cell expressing the heterologous glycoprotein expresses and secretes the heterologous glycoprotein having a plant-type sugar chain. By culturing the transformed cells, the plant-type glycoprotein can be expressed and accumulated in the plant cells or secreted in large amounts in the culture medium.

【0044】この動物型の糖タンパク質は、コア糖鎖お
よび外部糖鎖を含み、このコア糖鎖は、複数のマンノ−
スおよびアセチルグルコサミンから本質的になる。得ら
れる糖タンパク質の外部糖鎖は、非還元末端糖鎖部分を
含む。外部糖鎖は、直鎖状構造を持っていても分岐状構
造を持っていてもよい。分岐糖鎖部分が、モノ、バイ、
トリ、またはテトラ構造のいずれかであり得る。形質転
換細胞により生産される糖タンパク質は、好ましくは、
フコ−スまたはキシロ−スを含まない。
This animal-type glycoprotein contains a core sugar chain and an outer sugar chain, and this core sugar chain comprises a plurality of manno-glycans.
It consists essentially of glucose and acetylglucosamine. The outer sugar chain of the resulting glycoprotein contains a non-reducing end sugar chain portion. The external sugar chain may have a linear structure or a branched structure. The branched sugar chain part is mono, bi,
It can be either tri- or tetra-structured. The glycoprotein produced by the transformed cell is preferably
Does not contain fucose or xylose.

【0045】得られた形質転換植物細胞は、培養細胞の
状態で維持されてもよいし、特定の組織または器官へと
分化させてもよいし、完全な植物体に再生させてもよ
い。あるいは、完全な植物体から得られる、種子、果
実、葉、根、茎、花などの部分であってもよい。
The obtained transformed plant cells may be maintained in the state of cultured cells, may be differentiated into a specific tissue or organ, or may be regenerated into a complete plant body. Alternatively, it may be a part of seeds, fruits, leaves, roots, stems, flowers and the like obtained from a whole plant.

【0046】植物細胞を形質転換する方法は当業者に公
知であり、以下を含む。マイクロインジョクション(C
rossway et al.,BioTechniq
ues 4:320−334(1986))、エレクト
ロポ−レ−ション(Riggs et al.,Pro
c.Natl.Acad.Sci.USA 83:56
02−5606(1986)、アグロバクテリウム媒介
形質転換(Hinchee et al.,Biote
chnology 6:915−921(1988);
Ishida et al.,Nature Biot
echnology 14:745−750(June
1996)トウモロコシ形質転換について)、直接遺
伝子移入(Paszkowski et al.,EM
BO J.3:2717−2722(1984);Ha
yashimoto et al.,Plant Ph
ysiol 93:857−863(1990)(イ
ネ))、Agracetus,Inc.,Madiso
n,Wis.およびDupont,Inc.,Wilm
ington,Del.社製のデバイスを用いた衝撃粒
子加速(Sanford et al.,米国特許第
4,945,050号;McCabe et al.,
Biotechnology 6:923−926(1
988))など。
Methods of transforming plant cells are known to those skilled in the art and include: Micro injection (C
Rossway et al. , BioTechniq
ues 4: 320-334 (1986)), electroporation (Riggs et al., Pro.
c. Natl. Acad. Sci. USA 83:56
02-5606 (1986), Agrobacterium-mediated transformation (Hinchee et al., Biote.
chnology 6: 915-921 (1988);
Ishida et al. , Nature Biot
technology 14: 745-750 (June
1996) for maize transformation), direct gene transfer (Paszkowski et al., EM).
BO J. 3: 2717-2722 (1984); Ha.
yashimato et al. , Plant Ph
ysiol 93: 857-863 (1990) (rice)), Agracetus, Inc. , Madiso
n, Wis. And Dupont, Inc. , Wilm
Inton, Del. Accelerated Particle Acceleration Using a Device from Sanford (Sanford et al., US Pat. No. 4,945,050; McCave et al.,
Biotechnology 6: 923-926 (1
988)) and so on.

【0047】Weissinger et al.,A
nnual Rev.Genet.22:421−47
7(1988);Sanford et al.,Pa
rticulate Science and Tec
hnology 5.27−37 91987)(タマ
ネギ); Svab et al.,Proc.Nat
l.Acad.Sci.USA 87:8526−85
30(1990) (タバコクロロプラスト);Chri
stou et al.,Plant Physio
l.87:671−674(1988)(ダイズ);Mc
Cabe et al.,Bio/Technolog
y 6.923−926(1988)(ダイズ); Kle
in et al.,Proc.Natl.Acad.
Sci.USA,85:4305−4309(198
8)(トウモロコシ);Klein etal.,Bio
/Technology 6:559−563(198
8)(トウモロコシ);Klein et al.,Pl
ant Physiol.91:440−444(19
88)(トウモロコシ);Fromm et al.,
Bio/Technology 8:833−839
(1990);およびGordon−Kamm et
al.,Plant Cell 2:603−618
(1990)(トウモロコシ);Koziel et a
l.,Biotechnology 11:194−2
00(1993)(トウモロコシ);Shimamoto
et al.,Nature 338:274−27
7(1989)(イネ);Christou et a
l.,Biotechnology 9:957−96
2(1991)(イネ);Datta et al.,B
iol/Technology 3:736−740
(1990)(イネ);European Patent
Application EP 0 332 581
(カモガヤなどのイネ科の植物);Vasil et
al.,Biotechnology 11:1553
−1558(1993)(コムギ);Weeks et
al.,Plant Physiol.102:107
7−1084(1993)(コムギ);Wan et
al.,Plant Physiol.104:37−
48(1994)(オオムギ);Jahne et a
l.,Theor.Appl.Genet.89:52
5−533(1994)(オオムギ);Umbeck
et al.,Bio/Technology 5:2
63−266(1987)(コットン);Casas
et al.,Proc.Natl.Acad.Sc
i.USA 90:11212−11216(Dece
mber 1993)(ソルガム);Somers e
t al.,Bio/Technology 10:1
589−1594(December 1992)(オ
−トムギ);Torbert et al.,Plan
t Cell Reports 14:635−640
(1995)(オ−トムギ);Weeks et a
l.,Plant Physiol.102:1077
−1084(1993)(コムギ);Chang et
al.,WO94/13822(コムギ)およびNe
hra et al.,The Plant Jour
nal 5:285−297(1994)(コムギ)を
もまた参照のこと。
Weissinger et al. , A
nnual Rev. Genet. 22: 421-47
7 (1988); Sanford et al. , Pa
rticulate Science and Tec
hnology 5.27-37 91987) (onion); Svab et al. , Proc. Nat
l. Acad. Sci. USA 87: 8526-85.
30 (1990) (Tobacco chloroplast); Chri
Sto et al. , Plant Physio
l. 87: 671-674 (1988) (soybean); Mc.
Cave et al. , Bio / Technology
y 6.923-926 (1988) (soybean); Kle
in et al. , Proc. Natl. Acad.
Sci. USA, 85: 4305-4309 (198).
8) (corn); Klein et al. , Bio
/ Technology 6: 559-563 (198)
8) (corn); Klein et al. , Pl
ant Physiol. 91: 440-444 (19
88) (corn); Fromm et al. ,
Bio / Technology 8: 833-839.
(1990); and Gordon-Kammet.
al. , Plant Cell 2: 603-618
(1990) (corn); Koziel et a.
l. , Biotechnology 11: 194-2
00 (1993) (corn); Shimamoto
et al. , Nature 338: 274-27.
7 (1989) (rice); Christou et a
l. , Biotechnology 9: 957-96.
2 (1991) (rice); Datta et al. , B
iol / Technology 3: 736-740
(1990) (Rice); European Patent
Application EP 0 332 581
(Plants of the grass family such as Kamogaya); Vasil et
al. , Biotechnology 11: 1553
-1558 (1993) (Wheat); Weeks et
al. , Plant Physiol. 102: 107
7-1084 (1993) (Wheat); Wan et.
al. , Plant Physiol. 104: 37-
48 (1994) (barley); Jahne et a.
l. , Theor. Appl. Genet. 89:52
5-533 (1994) (barley); Umbeck
et al. , Bio / Technology 5: 2
63-266 (1987) (Cotton); Casas
et al. , Proc. Natl. Acad. Sc
i. USA 90: 11212-11216 (Dece
mber 1993) (Sorghum); Somers e
t al. , Bio / Technology 10: 1
589-1594 (December 1992) (Otomugi); Torbert et al. , Plan
t Cell Reports 14: 635-640.
(1995) (Otomugi); Weeks et a.
l. , Plant Physiol. 102: 1077
-1084 (1993) (Wheat); Chang et.
al. , WO94 / 13822 (Wheat) and Ne
hara et al. , The Plant Jour
See also nal 5: 285-297 (1994) (Wheat).

【0048】微粒子銃によって、トウモロコシ中に組換
えDNA分子を導入するために特に好適な実施形態は、
Koziel et al.,Biotechnolo
gy11:194−200(1993),Hill e
t al.,Euphytica 85:119−12
3(1995)およびKoziel et al.,A
nnals of the New York Aca
demy of Sciences 792:164−
171(1996)に記載されている。トウモロコシに
ついて別の好適な実施形態であるプロトプラスト形質転
換法は、EP0 292 435に記載されている。植
物の形質転換は、単一のDNA種または複数のDNA種
(すなわち同時形質転換)を用いて行うことができる。
A particularly preferred embodiment for introducing recombinant DNA molecules into corn by particle bombardment is:
Koziel et al. , Biotechnolo
gy11: 194-200 (1993), Hill e.
t al. , Euphytica 85: 119-12.
3 (1995) and Koziel et al. , A
nnals of the New York Aca
demy of Sciences 792: 164-
171 (1996). Another preferred embodiment for maize, the protoplast transformation method, is described in EP 0 292 435. Transformation of plants can be performed using a single DNA species or multiple DNA species (ie co-transformation).

【0049】形質転換植物細胞の培養、分化および再生
のためには、当該分野で公知の手法および培地が用いら
れる。このような培地には、例えば、Murashig
e−Skoog(MS)培地、GaMborg B5
(B)培地、White培地、Nitsch&Nits
ch(Nitsch)培地などが含まれるが、これらに
限定されるわけではない。これらの培地は、通常、植物
生長調節物質(植物ホルモン)などが適当量添加されて
用いられる。
Techniques and media known in the art are used for culturing, differentiating and regenerating the transformed plant cells. Such media include, for example, Murashig.
e-Skoog (MS) medium, GaMburg B5
(B) Medium, White medium, Nitsch & Nits
ch (Nitsch) medium and the like, but not limited thereto. These media are usually used after adding an appropriate amount of a plant growth regulator (plant hormone) or the like.

【0050】また、動物型糖鎖を持つ糖タンパク質の生
産のためには、形質転換植物細胞が増殖し、そして所望
の遺伝子産物を生産する限り、基本的には、炭素源、窒
素源、およびビタミン類、塩類のような植物細胞の生育
に必要な微量栄養素を含む任意の組成の培養培地を用い
ることができる。生産された異種タンパク質の安定化、
および異種タンパク質の分泌の効率化のために、ポリビ
ニルピロリドン、タンパク質分解酵素阻害剤などを添加
してもよい。
In order to produce a glycoprotein having an animal-type sugar chain, as long as a transformed plant cell grows and produces a desired gene product, basically, a carbon source, a nitrogen source, and A culture medium having any composition containing micronutrients necessary for the growth of plant cells such as vitamins and salts can be used. Stabilization of the produced heterologous protein,
In addition, polyvinylpyrrolidone, proteolytic enzyme inhibitors and the like may be added to improve the efficiency of secretion of heterologous proteins.

【0051】形質転換植物細胞により生産された、植物
型の糖鎖を持つ糖タンパク質は、代表的には、植物細胞
の培養液から単離され得る。植物細胞の培養液からの糖
タンパク質の単離は、当業者に周知の方法を用いて実施
され得る。例えば、塩析(硫酸アンモニウム沈殿、リン
酸ナトリウム沈殿など)、溶媒沈殿(アセトンまたはエ
タノ−ルなどによる蛋白質分画沈殿法)、透析、ゲル濾
過、イオン交換、逆相等のカラムクロマトグラフィ−、
限外濾過、高速液体クロマトグラフィ−(HPLC)等
の手法を単独で、または組み合わせて用いて、培養液か
ら糖タンパク質を精製して単離し得る。
The glycoprotein having a plant-type sugar chain produced by the transformed plant cell can be typically isolated from the culture solution of the plant cell. Isolation of glycoproteins from plant cell cultures can be performed using methods well known to those of skill in the art. For example, salting out (ammonium sulfate precipitation, sodium phosphate precipitation, etc.), solvent precipitation (protein fractionation precipitation method using acetone or ethanol), dialysis, gel filtration, ion exchange, column chromatography such as reverse phase,
Glycoproteins can be purified and isolated from the culture broth using techniques such as ultrafiltration and high performance liquid chromatography (HPLC), alone or in combination.

【0052】あるいは、本発明の糖タンパク質は、植物
細胞から単離または抽出されてもよい。さらには、本発
明の糖タンパク質は、形質転換細胞中に含まれたままの
状態で食用に供され得る。本発明の糖タンパク質は、動
物型の糖鎖付加を有するので、抗原性を有さず、それゆ
え、ヒトを含む動物への投与に適している。
Alternatively, the glycoprotein of the present invention may be isolated or extracted from plant cells. Furthermore, the glycoprotein of the present invention can be edible as it is contained in a transformed cell. Since the glycoprotein of the present invention has animal-type glycosylation, it has no antigenicity and is therefore suitable for administration to animals including humans.

【0053】[0053]

【実施例】実施例を用いて本発明を説明する。以下の実
施例は、本発明を例示するものであって、制限するもの
ではない。
EXAMPLES The present invention will be described with reference to examples. The following examples illustrate, but do not limit, the invention.

【0054】植物細胞の代表例として、タバコ培養細胞
Nicotiana tabacum L.cv.b
right yellow 2(理化学研究所ライフサ
イエンス筑波研究センタ−、ジ−ンバンク室植物細胞開
発銀行のカタログ番号RPC1より細胞株名BY2とし
て入手)を用いた。BY2が産生する糖タンパク質の糖
鎖構造は、本発明者らによるPCT国際公開番号WO
00/34490に詳細に記載されている。
As a typical example of plant cells, tobacco culture cells Nicotiana tabacum L. cv. b
light yellow 2 (obtained as cell line name BY2 from catalog number RPC1 of Gene Cell Office Plant Cell Development Bank, RIKEN Life Science Tsukuba Research Center). The sugar chain structure of the glycoprotein produced by BY2 is shown in PCT International Publication No. WO by the present inventors.
00/34490.

【0055】本発明の原理を模式的に図3に示した。培
養BY2細胞は、細胞外に数百種ものタンパク質を培地
中に分泌する(Okushima Yら、1999、前
述)。図3では、BY2細胞を図の左に、そしてそれか
ら分泌された糖タンパク質の構造を図の右上に示す。こ
の糖タンパク質を培地から回収し、β1,4−ガラクト
−ス転移酵素を作用させると、図3の右下に示すガラク
ト−ス残基が転移して結合した動物型糖鎖を持つ糖タン
パク質が得られる。
The principle of the present invention is schematically shown in FIG. Cultured BY2 cells secrete hundreds of proteins extracellularly into the medium (Okushima Y et al., 1999, supra). In FIG. 3, BY2 cells are shown on the left of the figure and the structure of the glycoprotein secreted therefrom is shown on the upper right of the figure. When this glycoprotein was recovered from the medium and reacted with β1,4-galactosyltransferase, a glycoprotein having an animal type sugar chain to which the galactose residue shown in the lower right of FIG. 3 was transferred and bound was produced. can get.

【0056】1.タバコ培養細胞が生産する糖タンパク
質の調製 タバコ培養細胞BY2株を、1LのMurashige
−Skoog培地用混合塩類(和光純薬)を用いて調製
した改変Murashige−Skoog培地で7日間
培養した。得られた培養液を2000rpmで10分間
(室温)遠心分離して上清を回収した。得られた上清
を、4℃でdH2O(脱イオン水)に対し透析し(1×
105倍希釈)、そして凍結乾燥した。得られた凍結乾
燥物(500mg)を糖タンパク質試料として用いた。
1. Preparation of Glycoprotein Produced by Tobacco Cultured Cells Tobacco cultured cell BY2 strain was prepared by adding 1 L of Murashige.
-The culture was carried out for 7 days in a modified Murashige-Skoog medium prepared using a mixed salt for Skoog medium (Wako Pure Chemical Industries, Ltd.). The obtained culture solution was centrifuged at 2000 rpm for 10 minutes (room temperature) to collect the supernatant. The resulting supernatant was dialyzed against dH 2 O (deionized water) at 4 ° C. (1 ×
10 5 times dilution), and freeze-dried. The obtained freeze-dried product (500 mg) was used as a glycoprotein sample.

【0057】2.インビトロにおける糖タンパク質糖鎖
へのガラクト−ス転移 2.1.レクチンブロッティング解析のためのインビト
ロにおけるガラクト−ス転移酵素反応 10mMの塩化マンガン、100μg/mlのUDP−
ガラクト−ス、60mU/mlヒトガラクト−ス転移酵
素(Toyobo株式会社製;E. coli組換体)、
および1または10mg/mlの上記糖タンパク質試料
を含む、50mMのHEPES緩衝液(pH7.4)
中、37℃で24時間転移ガラクト−ス酵素反応を行っ
た。酵素反応を、100℃で3分間煮沸することにより
停止させ、4℃で12,000rpmで5分間遠心分離
した後、上清を回収した。
2. Galactose transfer to glycoprotein sugar chain in vitro 2.1. In vitro galactosyltransferase reaction for lectin blotting analysis 10 mM manganese chloride, 100 μg / ml UDP-
Galactose, 60 mU / ml human galactose transferase (manufactured by Toyobo Co .; E. coli recombinant),
And 50 mM HEPES buffer (pH 7.4) containing 1 or 10 mg / ml of the above glycoprotein sample
In the medium, the transfer galactose enzyme reaction was performed at 37 ° C. for 24 hours. The enzymatic reaction was stopped by boiling at 100 ° C. for 3 minutes, centrifugation was performed at 4 ° C. at 12,000 rpm for 5 minutes, and then the supernatant was recovered.

【0058】(レクチンブロッティング)回収した上清
の10μlを、12.5%ポリアクリルアミドゲルを用
いたSDS−PAGE(120V、2時間)に供した。
泳動後、15%メタノ−ルを含むSDS−PAGE泳動
緩衝液を用い、分離された糖タンパク質をニトロセルロ
−ス膜に1A/cm2で45分間膜転移させた。次い
で、転移後のニトロセルロ−ス膜を、1%BSA溶液を
用い室温で1時間ブロッキングした。ブロッキング後、
ニトロセルロ−ス膜を、Washing buffer
(0.05% Tween−20を含むPBS溶液)で
10分間、3回洗浄した後、西洋ワサビペルオキシダ−
ゼ標識RCA(Ricinus communis a
gglutinin)120レクチン(生化学工業)を含
むWashing buffer中、室温で2時間イン
キュベ−トした。次いで、Washing buffe
rで10分間、3回洗浄した後PODイムノステインキ
ット(Wako)を用いてニトロセルロース膜を染色し
た。RCA120レクチンは、末端N−アセチルグルコサ
ミン残基にβ1,4−ガラクト−ス結合した糖鎖を特異
的に認識する。レクチン分析の結果を図4に示した。各
レ−ンで泳動した試料は、表1に示す反応系で酵素反応
して得られたものである。
(Lectin blotting) 10 μl of the collected supernatant was subjected to SDS-PAGE (120 V, 2 hours) using a 12.5% polyacrylamide gel.
After the electrophoresis, the separated glycoprotein was transferred to the nitrocellulose membrane at 1 A / cm 2 for 45 minutes using an SDS-PAGE running buffer containing 15% methanol. Then, the transferred nitrocellulose membrane was blocked with a 1% BSA solution at room temperature for 1 hour. After blocking
Nitro cellulosic membrane was washed with a washing buffer.
After washing with PBS solution containing 0.05% Tween-20 for 3 times for 10 minutes, horseradish peroxidase was added.
Ze labeled RCA (Ricinus communis a
Incubation was carried out at room temperature for 2 hours in a washing buffer containing gglutinin) 120 lectin (Seikagaku Corporation). Next, the washing buffer
After washing with r for 3 times for 10 minutes, the nitrocellulose membrane was stained with POD Immunostain Kit (Wako). The RCA 120 lectin specifically recognizes a sugar chain having β1,4-galactose linked to a terminal N-acetylglucosamine residue. The result of the lectin analysis is shown in FIG. The samples electrophoresed in each lane were obtained by enzymatic reaction in the reaction system shown in Table 1.

【0059】[0059]

【表1】 なお、レ−ン6は、ポジティブコントロ−ルとして用い
た100μg/mlのアシアロフェツインである。
[Table 1] Lane 6 is 100 μg / ml asialofetuin used as a positive control.

【0060】図4に示されるように、ガラクト−ス転移
酵素を添加した試料には、β1,4−ガラクト−ス結合
した糖鎖が確認され(レーン1およびレーン2)、BY
2株が分泌した糖タンパク質に、インビトロ酵素反応に
よりβ1,4位でガラクト−ス残基が結合したことが示
された。
As shown in FIG. 4, β1,4-galactose-linked sugar chains were confirmed in the sample to which the galactosyltransferase was added (lane 1 and lane 2), and BY
It was shown that galactose residues were bound to the glycoproteins secreted by the two strains by the in vitro enzymatic reaction at β1,4 positions.

【0061】2.2.糖鎖構造解析のためのインビトロ
におけるガラクト−ス転移酵素反応 10mMの塩化マンガン、100μg/mlのUDP−
ガラクト−ス、10mU/mlのヒト由来ガラクト−ス
転移酵素(Toyobo株式会社製;E. coli組換
体)、および10mg/ml糖タンパク質試料を含む、
50mMのHEPES緩衝液(pH7.4)中、37℃
で2日間転移酵素反応を行った。酵素反応後、酵素反応
液を4℃でDH2O(脱イオン水)に対し透析し(1×
105倍希釈)、そして凍結乾燥した。得られた凍結乾
燥物を糖タンパク質試料として用いた。
2.2. In vitro galactosyltransferase reaction for sugar chain structure analysis 10 mM manganese chloride, 100 μg / ml UDP-
Galactose, 10 mU / ml human-derived galactose transferase (manufactured by Toyobo Co .; E. coli recombinant), and 10 mg / ml glycoprotein sample,
37 mM in 50 mM HEPES buffer (pH 7.4)
The transferase reaction was carried out for 2 days. After the enzyme reaction, the enzyme reaction solution was dialyzed against DH 2 O (deionized water) at 4 ° C. (1 ×
10 5 times dilution), and freeze-dried. The obtained freeze-dried product was used as a glycoprotein sample.

【0062】糖鎖構造は、糖タンパク質から糖鎖を切り
出し、得られた糖鎖をピリジルアミノ化(PA化)し、
これを、HPLC分析、エキソグリコシダ−ゼ消化、お
よびMSスペクトル分析に供することで解析した。
The sugar chain structure is obtained by cleaving a sugar chain from a glycoprotein and subjecting the obtained sugar chain to pyridylamination (PA conversion).
This was analyzed by subjecting it to HPLC analysis, exoglycosidase digestion, and MS spectral analysis.

【0063】(糖タンパク質からの糖鎖の調製)凍結乾
燥した糖タンパク質試料を、100℃で10時間ヒドラ
ジン分解することにより、糖鎖を切り出した。次いでヒ
ドラジン分解物に過剰のアセトンを加え、4℃、100
00rmpで20分間遠心分離することで糖鎖を沈殿さ
せた。飽和炭酸水素ナトリウム水溶液および無水酢酸存
在下で糖鎖をNアセチル化した後、Dowex 50×
2(室町化学工業)を用いて脱塩処理し、0.1Nアン
モニア水で平衡化したTSKゲルToyopearl
HW−40カラム(2.5×30cm ;Tosoh社
製)に通すことで、糖鎖を回収した。
(Preparation of Sugar Chain from Glycoprotein) The freeze-dried glycoprotein sample was hydrolyzed at 100 ° C. for 10 hours to cut out the sugar chain. Then, excess acetone was added to the hydrazine decomposition product at 4 ° C for 100
The sugar chains were precipitated by centrifugation at 00 rpm for 20 minutes. After N-acetylating the sugar chain in the presence of a saturated aqueous sodium hydrogen carbonate solution and acetic anhydride, Dowex 50 ×
2 (Muromachi Chemical Co., Ltd.), desalted, and equilibrated with 0.1N ammonia water TSK gel Toyopearl
The sugar chain was recovered by passing through a HW-40 column (2.5 × 30 cm; manufactured by Tosoh).

【0064】(ピリジルアミノ化(PA化)糖鎖の調
製)回収した糖鎖を2アミノピリジンを用いてピリジル
アミノ(PA)化した。PA化糖鎖は、0.1Nアンモ
ニア水で平衡化したTSKToyopearl HW−
40カラム(2.5×30 cM;Tosoh社製)に通
すことで精製した。
(Preparation of Pyridyl Amination (PA) Sugar Chain) The recovered sugar chain was pyridylamino (PA) using 2-aminopyridine. The PA sugar chain was TSK Toyopearl HW- equilibrated with 0.1N ammonia water.
It was purified by passing through 40 columns (2.5 × 30 cM; manufactured by Tosoh).

【0065】(HPLCによるPA化糖鎖の精製)PA
化糖鎖を、Reversed−Phase(RP)およ
びSize−Fractionation(SF)HP
LC分析を用いて解析した。HPLC分析では、蛍光検
出器L−7480を持つ日立HPLC装置を用い、励起
および蛍光波長を各々310nm、380nmとして蛍
光強度を測定した。Cosmosil 5C18−P
column(6×250mm;ナカライテスク社製)
を用いたRP−HPLC分析では、流速1.2ml/分
の下で、0.02%TFA水溶液中のアセトニトリル濃
度を40分間で0%から6%に増加させることによりP
A化糖鎖を溶出させた。また、Asahipak NH
2P−50 column(4.6×250mm;昭和
電工製)を用いたSF−HPLC分析では、流速0.7
ml/分の下で、dH2O−アセトニトリル混合液中の
アセトニトリル濃度を25分間で26%から50%に上
昇させることでPA化糖鎖を溶出させた。
(Purification of PA-modified sugar chain by HPLC) PA
The modified sugar chain is subjected to Reversed-Phase (RP) and Size-Fractionation (SF) HP.
It was analyzed using LC analysis. In the HPLC analysis, a Hitachi HPLC apparatus having a fluorescence detector L-7480 was used, and the fluorescence intensity was measured with excitation and fluorescence wavelengths of 310 nm and 380 nm, respectively. Cosmosil 5C18-P
column (6 x 250 mm; manufactured by Nacalai Tesque, Inc.)
In RP-HPLC analysis using P., the concentration of acetonitrile in 0.02% TFA aqueous solution was increased from 0% to 6% in 40 minutes under a flow rate of 1.2 ml / min.
The glycosylated A sugar chain was eluted. Also, Asahipak NH
The flow rate was 0.7 in the SF-HPLC analysis using 2P-50 column (4.6 × 250 mm; Showa Denko).
The PA-treated sugar chain was eluted by increasing the concentration of acetonitrile in the dH 2 O-acetonitrile mixture solution from 26% to 50% in 25 minutes under ml / min.

【0066】(エキソグリコシダ−ゼ消化によるPA化
糖鎖の解析)β−ガラクトシダ−ゼ(Diplococ
cus pneumoniae;Roche社製)酵素
消化反応は、各PA化糖鎖を、5mUのβ−ガラクトシ
ダ−ゼを含む、0.1M酢酸ナトリウム緩衝液(pH
5.5)中、37℃で2日間インキュベーションするこ
とにより行った。同様に、Nアセチルグルコサミニダ−
ゼ(Diplococcus pneumoniae;
Roche社製)酵素消化反応は、各PA化糖鎖を5m
UのN−アセチルグルコサミニダ−ゼを含む、0.1M
酢酸ナトリウム緩衝液(pH 5.5)中、37℃で2日
間インキュベーションすることにより行った。また、α
マンノシダ−ゼ(Almond; Sigma社製)酵素
消化反応は、10mM酢酸亜鉛および10μUのαマン
ノシダ−ゼを含む、0.1M酢酸ナトリウム緩衝液(p
H 4.0)中、37℃で2日間インキュベーションす
ることにより行った。各酵素消化反応は、100℃で3
分間煮沸することで停止させた。そして12,000r
pmで5分間遠心した後、上清をHPLCに供した。P
A化糖鎖の構造は、試料糖鎖の溶出時間を既知の糖鎖の
溶出時間と比較することにより解析した。
(Analysis of PA-modified sugar chain by exoglycosidase digestion) β-galactosidase (Diplococ)
cus pneumoniae; manufactured by Roche) The enzymatic digestion reaction was carried out by adding 0.1 m sodium acetate buffer (pH) containing 5 mU of β-galactosidase to each PA-modified sugar chain.
5.5) in 37 ° C. for 2 days. Similarly, N-acetylglucosaminida
Ze (Diplococcus pneumoniae;
Roche) enzymatic digestion reaction, each PA sugar chain 5m
0.1 M containing U N-acetylglucosaminidase
It was carried out by incubation in a sodium acetate buffer (pH 5.5) at 37 ° C for 2 days. Also, α
The mannosidase (Almond; Sigma) enzymatic digestion reaction was carried out in a 0.1 M sodium acetate buffer (p) containing 10 mM zinc acetate and 10 μU of α-mannosidase.
H 4.0) by incubation at 37 ° C. for 2 days. Each enzyme digestion reaction is 3 at 100 ℃
It was stopped by boiling for a minute. And 12,000r
After centrifugation at pm for 5 minutes, the supernatant was subjected to HPLC. P
The structure of the A-modified sugar chain was analyzed by comparing the elution time of the sample sugar chain with the known elution time of the sugar chain.

【0067】(MSスペクトル分析)MSスペクトル分
析は、Voyger DE−Pro Mass spe
ctrometry(PerSeptive Bios
ystems, FraminghaM MA)を用いて
行った。
(MS spectrum analysis) MS spectrum analysis was carried out by Voyger DE-Pro Mass spe.
ctrometry (PerSeptive Bios
systems, Framingha M MA).

【0068】(結果)図5は、RP−HPLCにおける
PA化糖鎖の溶出パタ−ンを示すクロマトグラムであ
る。図5に示されるように、調製したPA化糖鎖は、R
P−HPLCによって、I〜IXのピーク成分に分離さ
れた。
(Results) FIG. 5 is a chromatogram showing the elution pattern of PA-modified sugar chains in RP-HPLC. As shown in FIG. 5, the PA sugar chain prepared was
It was separated into peak components I to IX by P-HPLC.

【0069】次に、これらの9つのピーク成分の各々を
SF−HPLCを用いてさらに分離した。SF−HPL
CにおけるI〜IXの各ピーク成分のクロマトグラムを
図6に示す。図6中各クロマトグラムの右に示す参照用
語(例えば、PeakI)は、SF−HPLCに供した
試料が由来するRP−HPLCのピーク成分を示す。次
いで、SF−HPLCで得られた各ピーク成分につい
て、非還元末端におけるβ1,4位でのガラクト−ス残
基の結合の有無を確認した。その結果、以下に記載する
ように、図6に示す8つのピーク成分(I−4、I−
5、II−3、II−4、IV−1、V−1、V−2、
V−3)について、非還元末端におけるβ1,4位での
ガラクト−ス残基の結合が確認された。
Next, each of these nine peak components was further separated using SF-HPLC. SF-HPL
The chromatogram of each peak component of I to IX in C is shown in FIG. The reference term (for example, PeakI) shown on the right side of each chromatogram in FIG. 6 indicates the peak component of RP-HPLC derived from the sample subjected to SF-HPLC. Next, for each peak component obtained by SF-HPLC, it was confirmed whether or not a galactose residue was bound at the β1,4 position at the non-reducing end. As a result, as described below, the eight peak components (I-4, I-
5, II-3, II-4, IV-1, V-1, V-2,
For V-3), binding of a galactose residue at the β1,4 position at the non-reducing end was confirmed.

【0070】ピークI−4:ピークI−4の分子量(m
/z値 1836.63)は、GalGN2M3FX−
PAの分子量に一致した。また、ピークI−4のβ1,
4−ガラクトシダ−ゼ酵素消化によりGN2M3FX−
PA(図7の上から2番目のクロマトグラム)が得ら
れ、さらにN−アセチルグルコサミニダ−ゼ消化により
M3FX−PAが得られた(図7の上から3番目のクロ
マトグラム)。また、RP−HPLCにおいて、ピーク
I−4のN−アセチルグルコサミニダ−ゼ消化産物は、
ピークII−3よりも早く溶出した。RP−HPLCに
おいて、GalGN1M3FX−PAはGalGN1M3
FX−PAよりも早く溶出することが知られている。こ
のことから、ピークI−4はGal1GN2M3FX−
PAであると推定された。
Peak I-4 : Molecular weight of peak I-4 (m
/ Z value 1836.63) is GalGN2M3FX-.
It matched the molecular weight of PA. In addition, β1 of peak I-4,
GN2M3FX-by enzymatic digestion with 4-galactosidase
PA (the second chromatogram from the top of FIG. 7) was obtained, and M3FX-PA was further obtained by digestion with N-acetylglucosaminidase (the third chromatogram from the top of FIG. 7). In addition, in RP-HPLC, the N-acetylglucosaminidase digestion product of peak I-4 was
Elution was earlier than peak II-3. In RP-HPLC, GalGN 1 M3FX-PA was GalGN 1 M3.
It is known to elute earlier than FX-PA. From this, the peak I-4 is Gal 1 GN2M3FX-.
It was estimated to be PA.

【0071】これらの結果から、ピークI−4の構造は
β−D−GlcNAc−(1→2)−α−D−Man−
(1→6)〔β−D−Gal−(1→4)−β−D−Glc
NAc−(1→2)−α−D−Man−(1→3)〕〔β−
D−Xyl−(1→2)〕β−D−Man−(1→4)−β
−D−GlcNAc−(1→4)−〔α−L−Fuc−(1
→3)〕GlcNAc−PA(Gal1GN2M3FX)
であると推定された。
From these results, the structure of peak I-4 is β-D-GlcNAc- (1 → 2) -α-D-Man-
(1 → 6) [β-D-Gal- (1 → 4) -β-D-Glc
NAc- (1 → 2) -α-D-Man- (1 → 3)] [β-
D-Xyl- (1 → 2)] β-D-Man- (1 → 4) -β
-D-GlcNAc- (1 → 4)-[α-L-Fuc- (1
→ 3)] GlcNAc-PA (Gal 1 GN2M3FX)
Was estimated to be.

【0072】ピーク I−5:ピークI−5の分子量
(m/z値 1717.97)は、Gal2GN2M3
−PAの分子量に一致した。また、ピークI−5のβ
1,4−ガラクトシダ−ゼ酵素消化によりGN2M3−
PAが得られ、さらに、N−アセチルグルコサミニダ−
ゼ消化によりM3−PAが得られた。これらの結果か
ら、ピークI−5の構造は〔β−D−Gal−(1→4)
−β−D−GlcNAc−(1→2)−α−D−Man−
(1→6)〕〔β−D−Gal−(1→4)−β−D−Gl
cNAc−(1→2)−α−D−Man−(1→3)〕β−
D−Man−(1→4)−β−D−GlcNAc−(1→
4)−GlcNAc−PA(Gal2GN2M3−P
A)であると推定された。
Peak I-5 : The molecular weight of peak I-5 (m / z value 1717.97) was Gal2GN2M3.
-Consistent with the molecular weight of PA. In addition, β of peak I-5
GN2M3-by enzymatic digestion of 1,4-galactosidase
PA is obtained and further N-acetylglucosaminida
Z3-digestion gave M3-PA. From these results, the structure of peak I-5 is [β-D-Gal- (1 → 4)
-Β-D-GlcNAc- (1 → 2) -α-D-Man-
(1 → 6)] [β-D-Gal- (1 → 4) -β-D-Gl
cNAc- (1 → 2) -α-D-Man- (1 → 3)] β-
D-Man- (1 → 4) -β-D-GlcNAc- (1 →
4) -GlcNAc-PA (Gal2GN2M3-P
A) was estimated.

【0073】ピークII−3 ピークII−3の分子量(m/z値 1654.85)
は、GalGNM3FX−PAの分子量に一致した。ま
た、ピークII−3のβ1,4−ガラクトシダ−ゼ酵素
消化によりGNM3FX−PAが得られ、さらにN−ア
セチルグルコサミニダ−ゼ消化によりM3FX−PAが
得られた。また、先に記載したように、RP−HPLC
において、ピークII−3のN−アセチルグルコサミニ
ダ−ゼ消化産物は、ピークI−4よりも遅く溶出した。
これらの結果から、ピークII−3の構造はβ−D−G
al−(1→4)−β−D−GlcNAc−(1→2)−α
−D−Man−(1→6)〔α−D−Man−(1→3)〕
〔β−D−Xyl−(1→2)〕β−D−Man−(1→
4)−β−D−GlcNAc−(1→4)−〔α−L−Fu
c−(1→3)〕GlcNAc−PA(GalGN1M3
FX)であると推定された。
[0073] The molecular weight of the peak II-3 peak II-3 (m / z value 1654.85)
Was in agreement with the molecular weight of GalGNM3FX-PA. In addition, GNM3FX-PA was obtained by digesting β1,4-galactosidase of peak II-3 and further M3FX-PA was obtained by digesting N-acetylglucosaminidase. Also, as described above, RP-HPLC
In, the N-acetylglucosaminidase digestion product of peak II-3 eluted later than peak I-4.
From these results, the structure of peak II-3 is β-DG
al- (1 → 4) -β-D-GlcNAc- (1 → 2) -α
-D-Man- (1 → 6) [α-D-Man- (1 → 3)]
[Β-D-Xyl- (1 → 2)] β-D-Man- (1 →
4) -β-D-GlcNAc- (1 → 4)-[α-L-Fu
c- (1 → 3)] GlcNAc-PA (GalGN 1 M3
FX).

【0074】ピークII−4 ピーク II−4の分子量(m/z値 2019.70)
は、Gal2GN2M3FX−PAの分子量に一致し
た。また、ピークII−4のβ1,4−ガラクトシダ−
ゼ酵素消化によりGN2M3FX−PAが得られ(図7
下から2番目のクロマトグラム)、さらにN−アセチル
グルコサミニダ−ゼ消化によりM3FX−PAが得られ
た(図7一番下のクロマトグラム)。これらの結果か
ら、ピークII−4の構造はβ−D−Gal−(1→4)
−β−D−GlcNAc−(1→2)−α−D−Man−
(1→6)〔β−D−Gal−(1→4)−β−D−Glc
NAc−(1→2)−α−D−Man−(1→3)〕〔β−
D−Xyl−(1→2)〕β−D−Man−(1→4)−β
−D−GlcNAc−(1→4)−〔α−L−Fuc−(1
→3)〕GlcNAc−PA(Gal2GN2M3F
X)であると推定された。
[0074] The molecular weight of the peak II-4 peak II-4 (m / z value 2019.70)
Was in agreement with the molecular weight of Gal2GN2M3FX-PA. Also, β1,4-galactosidase of peak II-4
GN2M3FX-PA was obtained by enzymatic digestion (Fig. 7).
(The second chromatogram from the bottom), and M3FX-PA was obtained by digestion with N-acetylglucosaminidase (the bottom chromatogram in FIG. 7). From these results, the structure of peak II-4 is β-D-Gal- (1 → 4)
-Β-D-GlcNAc- (1 → 2) -α-D-Man-
(1 → 6) [β-D-Gal- (1 → 4) -β-D-Glc
NAc- (1 → 2) -α-D-Man- (1 → 3)] [β-
D-Xyl- (1 → 2)] β-D-Man- (1 → 4) -β
-D-GlcNAc- (1 → 4)-[α-L-Fuc- (1
→ 3)] GlcNAc-PA (Gal2GN2M3F
X) was estimated.

【0075】ピークIV−1:ピーク IV−1の分子
量(m/z値 1486.59)は、GalGNM3X
−PAの分子量に一致した。また、ピークIV−1のβ
1,4−ガラクトシダ−ゼ酵素消化によりGNM3X−
PAが得られ、さらにN−アセチルグルコサミニダ−ゼ
消化によりM3X−PAが得られた。また、RP−HP
LCにおいて、ピークIV−1の溶出時間はGalGN
1M3X−PAの溶出時間と一致した。これらの結果か
ら、ピークIV−1の構造は、α−D−Man−(1→
6)〔β−D−Gal−(1→4)−β−D−GlcNA
c−(1→2)−α−D−Man−(1→3)〕〔β−D−
Xyl−(1→2)〕β−D−Man−(1→4)−β−D
−GlcNAc−(1→4)−GlcNAc−PA(Ga
lGN1M3X−PA)であると推定された。
Peak IV-1: The molecular weight of peak IV-1 (m / z value 1486.59) was GalGNM3X.
-Consistent with the molecular weight of PA. In addition, β of peak IV-1
GNM3X-by digestion with 1,4-galactosidase enzyme
PA was obtained, and M3X-PA was obtained by digestion with N-acetylglucosaminidase. Also, RP-HP
In LC, the elution time of peak IV-1 was GalGN
1 This was in agreement with the elution time of M3X-PA. From these results, the structure of peak IV-1 is α-D-Man- (1 →
6) [β-D-Gal- (1 → 4) -β-D-GlcNA
c- (1 → 2) -α-D-Man- (1 → 3)] [β-D-
Xyl- (1 → 2)] β-D-Man- (1 → 4) -β-D
-GlcNAc- (1 → 4) -GlcNAc-PA (Ga
lGN was assumed to be 1 M3X-PA).

【0076】ピークV−1 ピーク V−1の分子量(m/z値 1487.04)
は、GalGNM3X−PAの分子量に一致した。ま
た、ピークV−1のβ1,4−ガラクトシダ−ゼ酵素消
化によりGNM3X−PAが得られ、さらにN−アセチ
ルグルコサミニダ−ゼ消化によりM3X−PAが得られ
た。また、RP−HPLCにおいて、ピークV−1の溶
出時間は、GalGN1M3X−PAのものと一致し
た。これらの結果から、ピークV−1の構造は、β−D
−Gal−(1→4)−β−D−GlcNAc−(1→2)
−α−D−Man−(1→6)〔α−D−Man−(1→
3)〕〔β−D−Xyl−(1→2)〕β−D−Man−
(1→4)−β−D−GlcNAc−(1→4)−GlcN
Ac−PA(GalGN1M3X−PA)であると推定
された。
[0076] The molecular weight of the peak V-1 peak V-1 (m / z value 1487.04)
Was in agreement with the molecular weight of GalGNM3X-PA. In addition, GNM3X-PA was obtained by digesting the peak V-1 with β1,4-galactosidase enzyme, and further M3X-PA was obtained by digesting N-acetylglucosaminidase. In addition, in RP-HPLC, the elution time of peak V-1 was consistent with that of GalGN 1 M3X-PA. From these results, the structure of peak V-1 is β-D
-Gal- (1 → 4) -β-D-GlcNAc- (1 → 2)
-Α-D-Man- (1 → 6) [α-D-Man- (1 →
3)] [β-D-Xyl- (1 → 2)] β-D-Man-
(1 → 4) -β-D-GlcNAc- (1 → 4) -GlcN
It was estimated to be Ac-PA (GalGN 1 M3X-PA).

【0077】ピークV−2 ピークV−2の分子量(m/z値 1712.21)
は、GalGN2M3X−PAの分子量に一致した。ま
た、ピークV−2のβ1,4−ガラクトシダ−ゼ酵素消
化によりGN2M3X−PAが得られ、さらにN−アセ
チルグルコサミニダ−ゼ消化によりM3X−PAが得ら
れた。また、RP−HPLCにおいて、ピークV−2の
N−アセチルグルコサミニダ−ゼ消化産物の溶出時間
は、ピークIV−1およびGalGN1M3X−PAの
溶出時間と一致した。これらの結果から、ピークV−2
の構造は、β−D−GlcNAc−(1→2)−α−D−
Man−(1→6)〔β−D−Gal−(1→4)−β−D
−GlcNAc−(1→2)−α−D−Man−(1→
3)〕〔β−D−Xyl−(1→2)〕β−D−Man−
(1→4)−β−D−GlcNAc−(1→4)−GlcN
Ac−PA(Gal1GN2M3X−PA)であると推
定された。
[0077] The molecular weight of the peak V-2 peak V-2 (m / z value 1712.21)
Was in agreement with the molecular weight of GalGN2M3X-PA. Also, GN2M3X-PA was obtained by digesting peak V-2 with β1,4-galactosidase enzyme, and further M3X-PA was obtained by digesting N-acetylglucosaminidase. Further, in RP-HPLC, the elution time of the N-acetylglucosaminidase digestion product of peak V-2 coincided with the elution time of peak IV-1 and GalGN 1 M3X-PA. From these results, peak V-2
Has a structure of β-D-GlcNAc- (1 → 2) -α-D-
Man- (1 → 6) [β-D-Gal- (1 → 4) -β-D
-GlcNAc- (1 → 2) -α-D-Man- (1 →
3)] [β-D-Xyl- (1 → 2)] β-D-Man-
(1 → 4) -β-D-GlcNAc- (1 → 4) -GlcN
It was estimated to be Ac-PA (Gal 1 GN2M3X-PA).

【0078】ピークV−3 ピークV−3の分子量(m/z値 1851.95)
は、Gal2GN2M3X−PAの分子量に一致した。
また、ピークV−3のβ1,4−ガラクトシダ−ゼ酵素
消化によりGN2M3X−PAが得られ、さらにN−ア
セチルグルコサミニダ−ゼ消化によりM3X−PAが得
られた。これらの結果から、ピークV−3の構造はβ−
D−Gal−(1→4)−β−D−GlcNAc−(1→
2)−α−D−Man−(1→6)〔β−D−Gal−(1
→4)−β−D−GlcNAc−(1→2)−α−D−M
an−(1→3)〕〔β−D−Xyl−(1→2)〕β−D
−Man−(1→4)−β−D−GlcNAc−(1→4)
−GlcNAc−PA(Gal2GN2M3X−PA)
であると推定された。
[0078] The molecular weight of the peak V-3 peak V-3 (m / z value 1851.95)
Was in agreement with the molecular weight of Gal2GN2M3X-PA.
Also, GN2M3X-PA was obtained by digesting peak V-3 with β1,4-galactosidase enzyme, and further M3X-PA was obtained by digesting N-acetylglucosaminidase. From these results, the structure of peak V-3 is β-
D-Gal- (1 → 4) -β-D-GlcNAc- (1 →
2) -α-D-Man- (1 → 6) [β-D-Gal- (1
→ 4) -β-D-GlcNAc- (1 → 2) -α-D-M
an- (1 → 3)] [β-D-Xyl- (1 → 2)] β-D
-Man- (1 → 4) -β-D-GlcNAc- (1 → 4)
-GlcNAc-PA (Gal2GN2M3X-PA)
Was estimated to be.

【0079】まとめ図8は、上記実施例で得られた糖タ
ンパク質の糖鎖構造を、BY2株細胞内の糖タンパク質
の糖鎖構造(Nirianne Q.Palacpac
et al(1999)Biosci.Biotec
hnol.Biochem.63(1)、35−39)
および細胞外に分泌された糖タンパク質の糖鎖構造(R
yoMisaki et al(2001)Biosc
i.Biotechnol.Biochem.10月号
掲載予定)とを示した図である。図中の四角はN−アセ
チルグルコサミン、丸はマンノース、三角はガラクトー
ス、菱形はシアル酸、Fはフコース、Xはキシロースを
それぞれ表す。糖鎖構造の右に示すPeakI−4など
の参照用語は、糖鎖構造が由来するHPLC分析におけ
るピークを示す。
Summary FIG. 8 shows the sugar chain structure of the glycoprotein obtained in the above Example, which is the sugar chain structure of the glycoprotein in BY2 strain cells (Nirian Q. Palapac).
et al (1999) Biosci. Biotec
hnol. Biochem. 63 (1), 35-39)
And sugar chain structure of glycoprotein secreted extracellularly (R
yoMisaki et al (2001) Biosc
i. Biotechnol. Biochem. (Scheduled to be published in October issue). In the figure, squares represent N-acetylglucosamine, circles represent mannose, triangles represent galactose, diamonds represent sialic acid, F represents fucose, and X represents xylose. Reference terms such as PeakI-4 shown to the right of the sugar chain structure indicate peaks in the HPLC analysis from which the sugar chain structure was derived.

【0080】図8に示すように、いずれのピーク成分に
おいても、β1,4−結合したガラスクトース残基(図
中三角で示される)が存在することが示された。
As shown in FIG. 8, it was shown that β1,4-bonded glass-lactose residues (indicated by triangles in the figure) are present in all the peak components.

【0081】[0081]

【発明の効果】インビボで安定であって本来の生理活性
を保持し、かつアレルゲンとならない糖鎖構造を持つ糖
タンパク質を、簡便かつ迅速に生産する方法が提供され
る。得られた糖タンパク質は、動物型糖鎖構造をもつた
めに動物への投与に有用である。
EFFECTS OF THE INVENTION A method for conveniently and rapidly producing a glycoprotein having a sugar chain structure that is stable in vivo, retains its original physiological activity, and does not serve as an allergen is provided. The resulting glycoprotein is useful for administration to animals because it has an animal-type sugar chain structure.

【図面の簡単な説明】[Brief description of drawings]

【図1】 動物細胞と植物細胞に存在する糖鎖の構造を
示す図。
FIG. 1 is a diagram showing the structures of sugar chains present in animal cells and plant cells.

【図2】 動物細胞および植物細胞における糖鎖の合成
経路の一部を示す図。図中の四角はN−アセチルグルコ
サミン、丸はマンノース、三角はガラクトース、菱形は
シアル酸、Fはフコース、Xはキシロースをそれぞれ表
す。
FIG. 2 is a view showing a part of a sugar chain synthetic pathway in animal cells and plant cells. In the figure, squares represent N-acetylglucosamine, circles represent mannose, triangles represent galactose, diamonds represent sialic acid, F represents fucose, and X represents xylose.

【図3】 本発明の方法を模式的に示す図。FIG. 3 is a diagram schematically showing the method of the present invention.

【図4】 レクチン分析の結果を示す電気泳動ゲルの写
真。
FIG. 4 is a photograph of an electrophoresis gel showing the results of lectin analysis.

【図5】 RP−HPLCにおける糖鎖の溶出パタ−ン
を示すクロマトグラム。
FIG. 5 is a chromatogram showing an elution pattern of sugar chains in RP-HPLC.

【図6】 SF−HPLCにおける糖鎖の溶出パターン
を示すクロマトグラム。
FIG. 6 is a chromatogram showing the elution pattern of sugar chains in SF-HPLC.

【図7】 SF−HPLCクロマトグラムにおける糖鎖
の溶出パターンを示すクロマトグラム。
FIG. 7 is a chromatogram showing the elution pattern of sugar chains in the SF-HPLC chromatogram.

【図8】 本発明の方法により得られた糖鎖構造を示す
図である。
FIG. 8 is a diagram showing a sugar chain structure obtained by the method of the present invention.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 関 達治 大阪府豊中市新千里西町2−1−1−1015 Fターム(参考) 2B030 AA02 AB03 AD08 CA06 CA17 CA19 CB03 CD03 CD07 CD09 4B024 AA01 BA80 CA01 DA01 GA11 HA01 4B064 AG01 CA11 CA21 CB30 CC24 CD09 CE20 DA01 4H045 AA10 BA53 CA30 EA20 FA74   ─────────────────────────────────────────────────── ─── Continued front page    (72) Inventor Tatsuharu Seki             2-1-1-1015 Shinsenri Nishimachi, Toyonaka City, Osaka Prefecture F-term (reference) 2B030 AA02 AB03 AD08 CA06 CA17                       CA19 CB03 CD03 CD07 CD09                 4B024 AA01 BA80 CA01 DA01 GA11                       HA01                 4B064 AG01 CA11 CA21 CB30 CC24                       CD09 CE20 DA01                 4H045 AA10 BA53 CA30 EA20 FA74

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】 植物型糖鎖を持つ糖タンパク質を動物型
糖鎖を持つ糖タンパク質に変換する方法であって、 植物型糖鎖を持つ糖タンパク質に、非還元末端アセチル
グルコサミン残基へのガラクト−ス残基の転移反応を行
い得る酵素を作用させる工程、を包含する方法。
1. A method for converting a glycoprotein having a plant-type sugar chain into a glycoprotein having an animal-type sugar chain, which comprises converting a glycoprotein having a plant-type sugar chain into a non-reducing terminal acetylglucosamine residue. -A step of reacting with an enzyme capable of carrying out a transfer reaction of amino acid residues.
【請求項2】 前記植物型糖鎖を持つ糖タンパク質が、
植物細胞によって産生される糖タンパク質である、請求
項1に記載の方法。
2. The glycoprotein having the plant type sugar chain,
The method according to claim 1, which is a glycoprotein produced by a plant cell.
【請求項3】 前記植物細胞によって産生される糖タン
パク質が、異種糖タンパク質である、請求項2に記載の
方法。
3. The method of claim 2, wherein the glycoprotein produced by the plant cell is a heterologous glycoprotein.
【請求項4】 前記異種タンパク質が、異種タンパク質
をコードする遺伝子で植物細胞を形質転換する工程、お
よび得られた形質転換体を培養する工程を包含する方法
によって得られる、請求項3に記載の方法。
4. The method according to claim 3, wherein the heterologous protein is obtained by a method comprising the steps of transforming a plant cell with a gene encoding the heterologous protein, and culturing the resulting transformant. Method.
【請求項5】 前記形質転換体の培養液を回収する工程
をさらに包含する、請求項4に記載の方法。
5. The method according to claim 4, further comprising a step of collecting a culture solution of the transformant.
【請求項6】 前記動物型糖鎖を持つ糖タンパク質が、
コア糖鎖および外部糖鎖を含み、該コア糖鎖が複数のマ
ンノ−スおよびアセチルグルコサミンから本質的にな
り、該外部糖鎖が非還元末端ガラクト−スを含む末端糖
鎖部分を含む、請求項1に記載の方法。
6. The glycoprotein having the animal type sugar chain,
A core sugar chain and an outer sugar chain, wherein the core sugar chain consists essentially of a plurality of mannoses and acetylglucosamine, and the outer sugar chain comprises a terminal sugar chain portion containing a non-reducing terminal galactose. The method according to Item 1.
【請求項7】 前記動物型糖鎖を持つ糖タンパク質がフ
コ−スまたはキシロ−スを含まない、請求項1に記載の
方法。
7. The method according to claim 1, wherein the glycoprotein having an animal type sugar chain does not contain fucose or xylose.
【請求項8】 請求項1に記載の方法によって得られた
動物型糖鎖を持つ糖タンパク質。
8. A glycoprotein having an animal-type sugar chain, which is obtained by the method according to claim 1.
JP2002045486A 2002-02-21 2002-02-21 Method for converting glycoprotein having plant type sugar chain into glycoprotein having animal type sugar chain Withdrawn JP2003235561A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002045486A JP2003235561A (en) 2002-02-21 2002-02-21 Method for converting glycoprotein having plant type sugar chain into glycoprotein having animal type sugar chain

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002045486A JP2003235561A (en) 2002-02-21 2002-02-21 Method for converting glycoprotein having plant type sugar chain into glycoprotein having animal type sugar chain

Publications (1)

Publication Number Publication Date
JP2003235561A true JP2003235561A (en) 2003-08-26

Family

ID=27784334

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002045486A Withdrawn JP2003235561A (en) 2002-02-21 2002-02-21 Method for converting glycoprotein having plant type sugar chain into glycoprotein having animal type sugar chain

Country Status (1)

Country Link
JP (1) JP2003235561A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007521834A (en) * 2004-02-11 2007-08-09 バイオレックス インク Expression of plasminogen and microplasminogen in duckweed
JP2008534665A (en) * 2005-04-08 2008-08-28 アイシス イノヴェイション リミテッド Protein glycosylation
US8716557B2 (en) 2006-01-17 2014-05-06 Synthon Biopharmaceuticals B.V. Compositions and methods for inhibition of fucosyltransferase and xylosyltransferase expression in plants

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007521834A (en) * 2004-02-11 2007-08-09 バイオレックス インク Expression of plasminogen and microplasminogen in duckweed
US8017836B2 (en) 2004-02-11 2011-09-13 Biolex Therapeutics, Inc. Expression of plasminogen and microplasminogen in duckweed
JP2008534665A (en) * 2005-04-08 2008-08-28 アイシス イノヴェイション リミテッド Protein glycosylation
US8716557B2 (en) 2006-01-17 2014-05-06 Synthon Biopharmaceuticals B.V. Compositions and methods for inhibition of fucosyltransferase and xylosyltransferase expression in plants

Similar Documents

Publication Publication Date Title
CN100532558C (en) Optimizing glycan processing in plants
Cramer et al. Transgenic plants for therapeutic proteins: linking upstream and downstream strategies
DE60035285T2 (en) GLYCOLISATION OF THE MAMMALIAN IN PLANTS
US20170275599A1 (en) Plant cells and plants expressing fucosyl transferase for animal-type sugar chain adding function
JP4559358B2 (en) Production of heterologous glycosylated proteins in moss cells
CA2614998C (en) Production of sialylated glycoproteins in bryophytes
US20100154081A1 (en) Methods and means for producing glycoproteins with altered glycosylation pattern in higher plants
CN107810271B (en) Compositions and methods for producing polypeptides with altered glycosylation patterns in plant cells
Jung et al. Production of recombinant human acid α-glucosidase with high-mannose glycans in gnt1 rice for the treatment of Pompe disease
AU2002236234A1 (en) Plant cell having animal-type sugar chain adding function
JP2003235561A (en) Method for converting glycoprotein having plant type sugar chain into glycoprotein having animal type sugar chain
US20030084484A1 (en) Commercial use of arabidopsis for production of human and animal therapeutic and diagnostic proteins
Liu et al. Expression of bioactive single-chain murine IL-12 in transgenic plants
Khvatkov et al. Wolffia arrhiza as a promising producer of recombinant hirudin
Shin et al. N-linked glycan analysis of glycoproteins secreted from rice cell suspension cultures under sugar starvation
Sariyatun et al. Production of human acid-alpha glucosidase with a paucimannose structure by glycoengineered arabidopsis cell culture
JP5623683B2 (en) Plant cells with animal-type glycosylation function
JP2006333701A (en) Method for producing glycoprotein having animal type sugar chain
EP2598648B1 (en) N-glycosylation in transformed phaeodactylum tricornutum
JP6689742B2 (en) Method for producing plant-based recombinant butyrylcholinesterase
EP2113514A1 (en) Method for creating hypoallergenic glycoproteins in mutated or genetically modified plants or plant cells and mutated or genetically modified plants and plant cells for creating hypoallergenic glycoproteins
KR101606918B1 (en) Plant synthesizing humanized paucimannose type N-glycan and uses thereof
Nandi et al. Strategies to increase heterologous protein expression in rice grains
Nguyen et al. Production and N-glycan engineering of Varlilumab in Nicotiana benthamiana
KR100278229B1 (en) Human Interleukin-2 Protein Production from Potatoes

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20050510