JP2003198230A - Integrated dielectric resin antenna - Google Patents

Integrated dielectric resin antenna

Info

Publication number
JP2003198230A
JP2003198230A JP2001401046A JP2001401046A JP2003198230A JP 2003198230 A JP2003198230 A JP 2003198230A JP 2001401046 A JP2001401046 A JP 2001401046A JP 2001401046 A JP2001401046 A JP 2001401046A JP 2003198230 A JP2003198230 A JP 2003198230A
Authority
JP
Japan
Prior art keywords
dielectric
antenna
frequency band
composite material
integrated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001401046A
Other languages
Japanese (ja)
Other versions
JP3895175B2 (en
Inventor
Koichi Okada
浩一 岡田
Fumitada Satoji
文規 里路
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NTN Corp
Original Assignee
NTN Corp
NTN Toyo Bearing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NTN Corp, NTN Toyo Bearing Co Ltd filed Critical NTN Corp
Priority to JP2001401046A priority Critical patent/JP3895175B2/en
Publication of JP2003198230A publication Critical patent/JP2003198230A/en
Application granted granted Critical
Publication of JP3895175B2 publication Critical patent/JP3895175B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Variable-Direction Aerials And Aerial Arrays (AREA)
  • Waveguide Aerials (AREA)
  • Details Of Aerials (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a miniaturized, high-performance and low-cost integral dielectric resin antenna, capable of communication in different frequency bands. <P>SOLUTION: The integrated dielectric resin antenna includes a plurality of antenna portions 1-3 respectively provided for mutually different frequency bands. Each of the plurality of antenna portions 1-3 is constituted of a dielectric formed of a dielectric resin composite material and a conductor, to form an integral structure by integrating each other. The dielectric resin composite material is produced by compounding synthetic resin with a filling material formed of dielectric inorganic powder. Thermoplastic resin is employed as the synthetic resin. The dielectric resin composite material capable of fusion molding, such as injection molding, extrusion molding, and compression molding is employed. As the filling material formed of dielectric inorganic powder, dielectric ceramic powder, preferably having a permittivity of 20 or more and a dielectric dissipation factor of 0.005 or less is employed. The filling material is formulated in a ratio of 10-40 vol.% capacity. <P>COPYRIGHT: (C)2003,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】この発明は、自動車等に搭載
されてラジオ、テレビ、カーナビゲーター、電話、ET
C、衝突防止用の距離センサ、CS(衛星通信)、等の
各種目的の通信等をまとめて行う小型の誘電性樹脂統合
アンテナに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention is mounted on an automobile or the like and is used for a radio, a television, a car navigator, a telephone, an ET
The present invention relates to a small-sized dielectric resin integrated antenna for collectively performing communication for various purposes such as C, a distance sensor for collision prevention, and CS (satellite communication).

【0002】[0002]

【従来の技術と発明が解決しようとする課題】自動車で
は、ラジオ、テレビの他、GPS(Global Positioning
System)を用いたカーナビゲーションシステムや、自動
料金収受システム(ETC)の端末、携帯電話、車間距
離センサなど、多くの無線通信機器が搭載されている。
これらの無線通信機器は、使用周波数帯がそれぞれ異な
り、一つのアンテナで兼用できず、各々が単独のアンテ
ナを有している。これらの通信機器のアンテナは、各機
器において占める大きさの割合が大きく、車載通信機器
類の小型化の妨げとなっている。
2. Description of the Related Art In automobiles, in addition to radios and televisions, GPS (Global Positioning)
Many wireless communication devices such as a car navigation system using a system), a terminal of an automatic toll collection system (ETC), a mobile phone, and an inter-vehicle distance sensor are installed.
These wireless communication devices have different frequency bands to be used, one antenna cannot be used in common, and each has a single antenna. The antennas of these communication devices account for a large proportion of the size of each device, which hinders downsizing of in-vehicle communication devices.

【0003】そこで、本発明者は、これらの通信機器の
アンテナを一体にまとめた統合アンテナを種々試みた。
統合アンテナを効果的なものとするには、個々のアンテ
ナ部分の小型化と共に、一体化の容易性が求められる。
小型アンテナとしては、フィルムアンテナやパッチアン
テナ等がある。しかし、従来のこれらのアンテナは、い
ずれも材質の面から、小型化と一体化の両方の条件を満
たすことが難しい。例えば、統合する個々のアンテナと
して、パッチアンテナを考えたが、一般のパッチアンテ
ナはセラミックスを誘電体として用いるため、一体化が
難しい。誘電体としてセラミックスに代えて合成樹脂を
用いると、一体化は容易であるが、誘電率が低いため、
アンテナが大型化する。また、シート状の平面アンテナ
を積層して用いることを考えたが、誘電体が合成樹脂で
あるため、小型化が難しい。
Therefore, the present inventor has tried various integrated antennas in which the antennas of these communication devices are integrated.
In order to make the integrated antenna effective, it is necessary to reduce the size of each antenna part and to facilitate the integration.
The small antenna includes a film antenna, a patch antenna, and the like. However, it is difficult for these conventional antennas to satisfy both conditions of miniaturization and integration from the viewpoint of material. For example, although patch antennas have been considered as individual antennas to be integrated, general patch antennas use ceramics as a dielectric, and thus are difficult to integrate. If synthetic resin is used instead of ceramics as the dielectric, the integration is easy, but the dielectric constant is low, so
The antenna becomes larger. Further, it is considered that the sheet-shaped planar antennas are laminated and used, but it is difficult to reduce the size because the dielectric is a synthetic resin.

【0004】合成樹脂の誘電性を高めた誘電性樹脂材料
としては、高誘電率の無機繊維を配合したものが種々提
案されている。しかし、繊維は異方性があるため、これ
を混入した場合、表面精度等の精度が出難く、また誘電
特性についても異方性が生じる。特に、薄いフィルムと
した場合に、異方性の影響が大きく、位相のずれを招く
恐れが生じるなど、アンテナとしての性能に影響が考え
られる。特に高周波用のアンテナでは、波長が短いこと
から、寸法精度等の要求が厳しく、このため、誘電体材
料として繊維を混入したものでは、性能確保が難しい。
今日、自動車に搭載される通信機器は、高周波化の傾向
にある。また、無機繊維は、材料として高価であり、こ
れを用いるとアンテナのコストが高くなる。
As a dielectric resin material obtained by enhancing the dielectric properties of synthetic resin, various materials containing inorganic fibers having a high dielectric constant have been proposed. However, since fibers have anisotropy, it is difficult to obtain accuracy such as surface accuracy when the fibers are mixed, and anisotropy also occurs in dielectric properties. In particular, when a thin film is used, the effect of anisotropy is large, and there is a risk of causing a phase shift, which may affect the performance as an antenna. Particularly for high frequency antennas, since the wavelength is short, the requirements for dimensional accuracy and the like are strict, and therefore, it is difficult to secure the performance with a fiber mixed as a dielectric material.
Today, communication devices mounted on automobiles tend to have higher frequencies. In addition, the inorganic fiber is expensive as a material, and the cost of the antenna increases if it is used.

【0005】この発明の目的は、周波数帯の異なる通信
が行えて、小型化、高性能化、および低コスト化が図れ
る誘電性樹脂統合アンテナを提供することである。
An object of the present invention is to provide a dielectric resin integrated antenna which can communicate in different frequency bands and can be miniaturized, improved in performance, and reduced in cost.

【0006】[0006]

【課題を解決するための手段】この発明の誘電性樹脂統
合アンテナは、互いに異なる周波数帯に対応した複数の
周波数帯別アンテナ部分を有し、これら各周波数帯別ア
ンテナ部分は誘電性樹脂複合材の誘電体と導体とで構成
されて互いに一体に統合され、上記各周波数帯別アンテ
ナ部分の上記誘電性樹脂複合材が、合成樹脂に誘電体無
機粉末の充填材を配合したものである。この構成による
と、誘電体として誘電性樹脂複合材を用いるため、複数
のアンテナ部分の一体化が容易に行え、かつ合成樹脂の
単独に比べて誘電率が高く、個々のアンテナ部分の小型
化が図れる。このように、個々のアンテナ部分の小型化
と共に、複数のアンテナ部分の一体化により、統合アン
テナの全体の小型化が図れる。また、充填材は、粉末を
用いるため、繊維を用いる場合と異なり、異方性が生じ
難く、表面精度,寸法精度の確保が容易で、誘電特性の
異方性も生じ難い。そのため、誘電特性の異方性等によ
って位相のずれ等を招くことのない優れた特性のアンテ
ナとできる。このように高性能化も可能になる。また、
粉末は繊維に比べて低コストであるため、アンテナのコ
ストも低減できる。
The dielectric resin integrated antenna according to the present invention has a plurality of frequency band-specific antenna parts corresponding to different frequency bands, and these frequency band-specific antenna parts are dielectric resin composite materials. The dielectric resin composite material of the antenna portion for each frequency band is a synthetic resin compounded with a filler of dielectric inorganic powder. According to this configuration, since the dielectric resin composite material is used as the dielectric, the plurality of antenna parts can be easily integrated, and the dielectric constant is higher than that of the synthetic resin alone, and the individual antenna parts can be miniaturized. Can be achieved. In this way, the miniaturization of the individual antenna parts and the miniaturization of the entire integrated antenna can be achieved by integrating the plurality of antenna parts. Further, since the filler uses powder, unlike the case of using fibers, anisotropy is unlikely to occur, surface accuracy and dimensional accuracy are easily ensured, and anisotropy of dielectric properties is unlikely to occur. Therefore, an antenna having excellent characteristics that does not cause phase shift due to anisotropy of dielectric characteristics or the like can be obtained. In this way, higher performance is possible. Also,
Since the cost of powder is lower than that of fiber, the cost of the antenna can be reduced.

【0007】この発明において、上記各周波数帯別アン
テナ部分を、板状またはシート状とし、これら各周波数
帯別アンテナ部分を積層状態に統合しても良い。各周波
数帯別アンテナ部分は、誘電性樹脂複合材の誘電率が互
いに異なるものとする。このように積層することで、複
数のアンテナ部分の一体化が容易に行える。また、個々
の周波数帯別アンテナ部分は、誘電率が互いに異なるも
のとするため、周波数帯が大きく異なっていても、各周
波数帯別アンテナパターンの寸法差を小さくできる。
In the present invention, each of the frequency band-based antenna portions may be formed into a plate shape or a sheet shape, and these frequency band-based antenna portions may be integrated in a laminated state. The dielectric constants of the dielectric resin composite materials of the antenna parts for each frequency band are different from each other. By stacking in this way, a plurality of antenna portions can be easily integrated. Further, since the individual antenna parts for each frequency band have different permittivities, even if the frequency bands are largely different, the dimensional difference between the antenna patterns for each frequency band can be reduced.

【0008】この発明において、上記各周波数帯別アン
テナ部分がパッチアンテナであっても良い。この場合
に、各周波数帯別アンテナ部分は誘電性樹脂複合材から
なる誘電体の誘電率が互いに異なるものとする。これら
各周波数帯別アンテナ部分は、例えば平面的に並ぶよう
に統合する。周波数帯別アンテナ部分をパッチアンテナ
とし、平面的に並べると、各周波数帯別アンテナ部分の
一体化が容易に行える。例えば2色成形や3色成形等の
ように、同じ金型内で射出成形する方法や、個々の周波
数帯別アンテナ部分を熱融着や超音波融着等で溶融接着
する方法で、容易に一体化が行える。各周波数帯別アン
テナ部分は、誘電性樹脂複合材の誘電率が互いに異なる
ものとするため、いずれの周波数帯のアンテナ部分も互
いに同じ厚みに、かつアンテナパターンの寸法差を小さ
くでき、一体の平面的な統合アンテナとできる。
In the present invention, the antenna part for each frequency band may be a patch antenna. In this case, it is assumed that the antenna parts for each frequency band have different dielectric constants of the dielectrics made of the dielectric resin composite material. The antenna parts for each frequency band are integrated so as to be arranged in a plane, for example. If the antenna parts for each frequency band are used as patch antennas and are arranged in a plane, the antenna parts for each frequency band can be easily integrated. For example, injection molding in the same mold, such as two-color molding or three-color molding, or a method of melting and bonding the antenna parts for each frequency band by heat fusion or ultrasonic fusion Can be integrated. Since the dielectric parts of the dielectric resin composite material are different from each other for each frequency band antenna part, the antenna parts of any frequency band can have the same thickness and the antenna pattern dimensional difference can be made small, and the integrated plane Integrated antenna.

【0009】各周波数帯別アンテナ部分をパッチアンテ
ナとする場合に、各周波数帯別アンテナ部分の誘電性樹
脂複合材からなる誘電体の厚さが互いに異なるものと
し、これら各周波数帯別アンテナ部分が平面的に並ぶよ
うに統合しても良い。このように厚さを変えると、同じ
誘電率の誘電性樹脂複合材を用いることができて、製造
が容易であり、より低コスト化が図れる。
When the antenna parts for each frequency band are used as patch antennas, the thicknesses of the dielectrics made of the dielectric resin composite material of the antenna parts for each frequency band are different from each other. You may integrate so that it may arrange in a plane. By changing the thickness in this way, a dielectric resin composite material having the same dielectric constant can be used, which is easy to manufacture and can be manufactured at a lower cost.

【0010】この発明の上記各構成の場合に、上記合成
樹脂は熱可塑性樹脂とし、上記誘電性樹脂複合材は、射
出形成、押し出し成形、または圧縮成形等の溶融成形が
可能なものとすることが好ましい。このような材質の誘
電性樹脂複合材を用いることにより、溶融成形により、
誘電性樹脂統合アンテナを希望の形状に簡単に成形する
ことができる。
In each of the above-mentioned constitutions of the present invention, the synthetic resin is a thermoplastic resin, and the dielectric resin composite material is capable of being melt-molded by injection molding, extrusion molding or compression molding. Is preferred. By using a dielectric resin composite material of such a material, by melt molding,
The dielectric resin integrated antenna can be easily molded into a desired shape.

【0011】上記誘電体無機粉末の充填材は、誘電率が
20以上でかつ誘電正接が0.005以下の誘電セラミ
ックス粉であり、上記誘電性樹脂複合材は、この充填材
を10〜40容量%配合したものであっても良い。充填
材は、アンテナの小型化のためには、なるべく誘電率が
高く、かつ無効成分となる誘電正接(Tanδ)につい
ては小さいほど良い。上記誘電率が20以上でかつ誘電
正接が0.005以下という値は、誘電セラミックス粉
として一般に得られる中で、優れた値である。充填材の
配合比率は、多いほど誘電性樹脂複合材の誘電率を高く
できるが、多すぎると成形性が悪くなる。上記の誘電率
および誘電正接を持つ誘電セラミックス粉を充填材とし
て用い、上記配合量とすると、誘電性樹脂複合材とし
て、例えば誘電率が5〜15程度で、誘電正接が0.0
008〜0.003程度のものができる。この誘電率お
よび誘電正接の値は、フィルムアンテナとして優れたも
のとなる。また、充填材の配合量が40%以下である
と、誘電性樹脂複合材の成形性にも優れる。
The dielectric inorganic powder filler is a dielectric ceramic powder having a dielectric constant of 20 or more and a dielectric loss tangent of 0.005 or less. The dielectric resin composite material contains 10 to 40 volumes of the filler. % May be used. In order to reduce the size of the antenna, it is preferable that the filler has a high dielectric constant and a small dielectric loss tangent (Tan δ) that is an ineffective component. The value of the dielectric constant of 20 or more and the dielectric loss tangent of 0.005 or less is an excellent value among those generally obtained as dielectric ceramic powder. The higher the compounding ratio of the filler, the higher the dielectric constant of the dielectric resin composite material, but if it is too high, the moldability deteriorates. When the dielectric ceramic powder having the above-mentioned dielectric constant and dielectric loss tangent is used as the filler and the blending amount is set, for example, the dielectric resin composite material has a dielectric constant of about 5 to 15 and a dielectric loss tangent of 0.0.
It can be about 008 to 0.003. The values of the dielectric constant and the dielectric loss tangent are excellent as a film antenna. Moreover, when the compounding amount of the filler is 40% or less, the moldability of the dielectric resin composite material is also excellent.

【0012】上記誘電セラミックス粉の充填材は、未完
全焼結体としても良い。高誘電セラミックスは、焼結し
て初めて、優れた誘電特性が得られる。しかし、完全な
焼結体としなくても、仮焼と言われるように、実際の焼
結温度よりも少し低い温度で、完全に固まらないところ
で一旦焼結したものであっても、つまり未完全焼結体で
あっても、優れた誘電特性を得ることができる。
The dielectric ceramic powder filler may be an incompletely sintered body. High dielectric ceramics can obtain excellent dielectric properties only after being sintered. However, even if it is not made into a perfect sintered body, it is said to be calcination, even if it is once sintered at a temperature slightly lower than the actual sintering temperature, where it is not completely hardened, that is, incompletely fired. Even if it is a bound body, excellent dielectric characteristics can be obtained.

【0013】[0013]

【発明の実施の形態】この発明の第1の実施形態を図1
と共に説明する。この誘電性樹脂統合アンテナ10は、
互いに異なる周波数帯に対応した複数の周波数帯別アン
テナ部分1〜3を有する。これら各周波数帯別アンテナ
部分1〜3は、誘電性樹脂複合材の誘電体部5と導体6
とで構成される。各周波数帯別アンテナ部分1〜3は、
板状またはシート状等の平面状であり、互いに積層状態
に統合される。この統合は、例えば熱融着や超音波融着
等の溶融接着により、誘電体部5が相互に一体化するよ
うに行われる。各周波数帯別アンテナ部分1〜3がフィ
ルム状のものである場合は、ラミネート加工等により一
体に統合しても良い。各周波数帯別アンテナ部分1〜3
は、平面状の誘電体5の表面に導体6が所定のアンテナ
パターンで形成されたものである。導体6は、例えば印
刷または蒸着等により被着された箔状のものである。こ
れら各周波数帯別アンテナ部分1〜3の導体6のアンテ
ナパターンは、それぞれのアンテナ部分1〜3の周波数
f1〜f3に応じたパターンとされている。また、各周
波数帯別アンテナ部分1〜3の導体6は、互いに重なり
部分を略生じないパターンとされている。
1 is a block diagram of a first embodiment of the present invention.
Will be explained together. This dielectric resin integrated antenna 10 is
It has a plurality of frequency band-based antenna parts 1 to 3 corresponding to different frequency bands. These frequency band-based antenna parts 1 to 3 are composed of a dielectric part 5 and a conductor 6 of a dielectric resin composite material.
Composed of and. The antenna parts 1 to 3 for each frequency band are
It has a flat shape such as a plate shape or a sheet shape and is integrated with each other in a laminated state. This integration is performed so that the dielectric parts 5 are integrated with each other by fusion bonding such as heat fusion or ultrasonic fusion. When the antenna parts 1 to 3 for each frequency band are film-shaped, they may be integrally integrated by laminating or the like. Antenna parts 1 to 3 for each frequency band
Is a conductor 6 formed on the surface of a planar dielectric 5 in a predetermined antenna pattern. The conductor 6 is a foil-shaped member applied by, for example, printing or vapor deposition. The antenna patterns of the conductors 6 of the antenna parts 1 to 3 for each frequency band are patterns corresponding to the frequencies f1 to f3 of the antenna parts 1 to 3, respectively. In addition, the conductors 6 of the antenna parts 1 to 3 for each frequency band have a pattern in which substantially no overlapping portions are formed.

【0014】各周波数帯別アンテナ部分1〜3の誘電体
5の誘電性樹脂複合材は、合成樹脂に誘電体無機粉末の
充填材を配合したものであり、充填材として粉末が用い
られている。誘電性樹脂複合材の具体的な材質例は、各
図の実施形態の説明の後に述べる。これらの周波数帯別
アンテナ部分1〜3の誘電体5は、誘電性樹脂複合材の
誘電率が互いに異なるものとされる。この場合に、各周
波数帯別アンテナ部分1〜3の厚みの差が少なくなるよ
うに、各周波数帯別アンテナ部分1〜3の誘電体5の誘
電率ε1〜ε3が設定されている。この実施形態では、
各周波数帯別アンテナ部分1〜3の周波数f1〜f3は
桁が異なり、f1≪f2≪f3であって、誘電率ε1〜
ε3は、ε1≫ε2≫ε3となっている。誘電率の違い
は、誘電性樹脂複合材に配合する誘電体無機粉末の充填
材の配合割合などで調整される。
The dielectric resin composite material of the dielectric 5 of the antenna parts 1 to 3 for each frequency band is a synthetic resin mixed with a filler of dielectric inorganic powder, and powder is used as the filler. . A specific material example of the dielectric resin composite material will be described after the description of the embodiment of each drawing. The dielectric materials 5 of the antenna parts 1 to 3 for each frequency band have different dielectric constants of the dielectric resin composite material. In this case, the dielectric constants ε1 to ε3 of the dielectric 5 of the antenna parts 1 to 3 for each frequency band are set so that the difference in the thickness of the antenna parts 1 to 3 for each frequency band becomes small. In this embodiment,
The frequencies f1 to f3 of the antenna parts 1 to 3 for each frequency band have different digits, and f1 << f2 << f3, and the permittivity ε1 to
ε3 is ε1 >> ε2 >> ε3. The difference in dielectric constant is adjusted by the compounding ratio of the filler of the dielectric inorganic powder compounded in the dielectric resin composite material.

【0015】この構成の誘電性樹脂統合アンテナ10に
よると、誘電体5として誘電性樹脂複合材を用いたた
め、複数のアンテナ部分1〜3の一体化が容易に行え
る。また合成樹脂の単独に比べて誘電率が高く、個々の
アンテナ部分1〜3の小型化が図れる。このように、個
々のアンテナ部分1〜3の小型化と共に、複数のアンテ
ナ部分1〜3の一体化により、統合アンテナ10の全体
の小型化が図れる。また、充填材は、粉末を用いるた
め、繊維を用いる場合と異なり、異方性が生じ難く、表
面精度,寸法精度の確保が容易で、誘電特性の異方性も
生じ難い。そのため、誘電特性の異方性等によって位相
のずれ等を招くことのない優れた特性のアンテナ10と
できる。また、粉末は繊維に比べて低コストであるた
め、アンテナ10のコストも低減できる。各周波数帯別
アンテナ部分1〜3は、平面状として積層により一体化
したため、一体化が容易に行える。また、個々の周波数
帯別アンテナ部分1〜3は、誘電率ε1〜ε3が互いに
異なるものとしたため、周波数帯が大きく異なっていて
も、各周波数帯別アンテナ部分(パターン1〜3の寸
法)の差を小さくできる。
According to the dielectric resin integrated antenna 10 having this structure, since the dielectric resin composite material is used as the dielectric 5, the plurality of antenna parts 1 to 3 can be easily integrated. Further, the dielectric constant is higher than that of the synthetic resin alone, and the individual antenna parts 1 to 3 can be miniaturized. As described above, the miniaturization of the individual antenna parts 1 to 3 and the miniaturization of the integrated antenna 10 can be achieved by integrating the plurality of antenna parts 1 to 3. Further, since the filler uses powder, unlike the case of using fibers, anisotropy is unlikely to occur, surface accuracy and dimensional accuracy are easily ensured, and anisotropy of dielectric properties is unlikely to occur. Therefore, the antenna 10 having excellent characteristics can be obtained in which the phase shift or the like is not caused by the anisotropy of the dielectric characteristics. Moreover, since the cost of powder is lower than that of fiber, the cost of the antenna 10 can be reduced. Since the antenna parts 1 to 3 for each frequency band are integrated by laminating as a plane, they can be easily integrated. Moreover, since the dielectric constants ε1 to ε3 of the individual antenna parts 1 to 3 for each frequency band are different from each other, even if the frequency bands are largely different, the antenna parts for each frequency band (the dimensions of the patterns 1 to 3) are different. The difference can be reduced.

【0016】図2,図3は、この発明の他の実施形態を
示す。この実施形態の誘電性樹脂統合アンテナ20は、
各周波数帯別アンテナ部分21〜26がパッチアンテナ
であって、これら各周波数帯別アンテナ部分21〜26
を平面的に並ぶように統合したものである。図示の例で
は、各周波数帯別アンテナ部分21〜26は、それぞれ
矩形とされ、2列に配列されている。パッチアンテナか
らなる各周波数帯別アンテナ部分21〜26は、それぞ
れ誘電性樹脂複合材の誘電体27と、この誘電体27を
挟んで表裏に設けた放射側および接地側の導体28,2
9とからなる。誘電性樹脂複合材は、上記実施形態と同
じく合成樹脂に誘電体無機粉末の充填材を配合したもの
である。各導体28,29は、例えば銀または同等の金
属箔または金属薄板が用いられる。各導体28は、例え
ば図3に示すように、フープ材の利用によって、複数の
導体28がリード線部28aと一体とつながった状態に
打ち抜き形成される。各周波数帯別アンテナ部分21〜
26は、誘電体27の誘電性樹脂複合材の誘電率が互い
に異なるものとされている。この場合に、各周波数f1
〜f6用の周波数帯別アンテナ部分21〜26は、その
周波数f1〜f6に応じて、互いに厚みが一定となるよ
うな誘電率ε1〜ε6とされている。誘電率の違いは、
誘電性樹脂複合材に配合する誘電体無機粉末の充填材の
配合割合などで調整される。
2 and 3 show another embodiment of the present invention. The dielectric resin integrated antenna 20 of this embodiment is
The antenna parts 21 to 26 for each frequency band are patch antennas, and the antenna parts 21 to 26 for each frequency band are provided.
Are integrated so that they are arranged in a plane. In the illustrated example, the antenna parts 21 to 26 for each frequency band are rectangular and are arranged in two rows. The antenna parts 21 to 26 for each frequency band, which are patch antennas, respectively, include a dielectric 27 made of a dielectric resin composite material, and conductors 28 and 2 on the front and back sides sandwiching the dielectric 27 on the front and back sides.
9 and 9. The dielectric resin composite material is a mixture of a synthetic resin and a filler of a dielectric inorganic powder as in the above embodiment. For each conductor 28, 29, for example, silver or an equivalent metal foil or metal thin plate is used. For example, as shown in FIG. 3, each conductor 28 is formed by punching by using a hoop material so that the plurality of conductors 28 are integrally connected to the lead wire portion 28a. Antenna part 21 for each frequency band
26, the dielectric constants of the dielectric resin composite materials of the dielectric 27 are different from each other. In this case, each frequency f1
The frequency band antenna parts 21 to 26 for .about.f6 have dielectric constants .epsilon.1 to .epsilon.6 such that their thicknesses are constant depending on their frequencies f1 to f6. The difference in dielectric constant is
It is adjusted by the blending ratio of the filler of the dielectric inorganic powder to be blended with the dielectric resin composite material.

【0017】各周波数帯別アンテナ部分21〜26の一
体化状態の統合は、例えば2色成形ないし3色成形等の
方法により、同じ金型に各誘電率の誘電性樹脂複合材を
順次または同時に注入する射出成形によって行う。すな
わち複数材料同時成形とする。導体28,29は、イン
サート成形等で誘電体27に固定する。周波数帯別アン
テナ部分21〜26の一体化状態の統合は、この他に、
個々の周波数帯別アンテナ部分21〜26を製造してお
いて、熱融着や超音波融着等の溶融接着によって行って
も良い。周波数帯別アンテナ部分21〜26が3個以上
ある場合、そのうちのいくつか複数を上記の複数材料同
時形成とし、その同時成形したもの同士、または同時成
形したものと単独の周波数帯別アンテナ部分21〜26
を融着より一体化しても良い。
To integrate the antenna parts 21 to 26 for each frequency band, the dielectric resin composite material having each dielectric constant is sequentially or simultaneously applied to the same mold by a method such as two-color molding or three-color molding. It is performed by injection molding. That is, simultaneous molding of a plurality of materials is performed. The conductors 28 and 29 are fixed to the dielectric 27 by insert molding or the like. In addition to this, the integrated state of the antenna parts 21 to 26 for each frequency band is as follows.
The individual antenna parts 21 to 26 for each frequency band may be manufactured and then melt-bonding such as heat fusion or ultrasonic fusion may be performed. When there are three or more frequency band-based antenna parts 21 to 26, some of them are simultaneously formed into the above-mentioned plural materials, and those simultaneously molded, or the simultaneously molded products and the single frequency band-based antenna parts 21. ~ 26
May be integrated by fusion.

【0018】この構成の場合も、誘電体27の誘電性樹
脂複合材に誘電体無機粉末の充填材を配合したものを用
いたことによる小型化、高性能化、および低コスト化、
並びに複数の周波数帯別アンテナ部分21〜26の統合
による小型化の効果が得られる。
Also in the case of this construction, by using a mixture of the dielectric resin composite material of the dielectric 27 and the filler of the dielectric inorganic powder, downsizing, high performance and cost reduction can be achieved.
In addition, the effect of miniaturization can be obtained by integrating the plurality of frequency band-based antenna parts 21 to 26.

【0019】なお、各周波数帯別アンテナ部分をパッチ
アンテナとして平面状に配列する場合、例えば図4に示
すように、誘電性樹脂統合アンテナ30を円周方向に複
数個に区画し、その各区画部分を周波数帯別アンテナ部
分31〜34としても良い。各周波数帯別アンテナ部分
31〜34は、図2の実施形態と同様に、誘電体35と
その両面の導体36とで構成する。また、図5に示すよ
うに、誘電性樹脂統合アンテナ40を、中心の円形部分
およびその外周の円環状部分に区画し、各区画部分を周
波数帯別アンテナ部分41〜43としても良い。各周波
数帯別アンテナ部分41〜43は、図2の実施形態と同
様に、誘電体44とその両面の導体45とで構成する。
これら図4および図5の実施形態における各周波数帯別
アンテナ部分31〜34,41〜43の統合は、図2の
実施形態と同様に、同時成形または融着により行う。誘
電体35,44の材質は、上記各実施形態と同じく合成
樹脂に誘電体無機粉末の充填材を配合した誘電性樹脂複
合材である。
When the antenna parts for each frequency band are arranged in a plane as patch antennas, for example, as shown in FIG. 4, the dielectric resin integrated antenna 30 is divided into a plurality of parts in the circumferential direction, and each of the parts is divided. The portions may be the antenna portions 31 to 34 for each frequency band. The antenna parts 31 to 34 for each frequency band are composed of the dielectric 35 and the conductors 36 on both surfaces thereof, as in the embodiment of FIG. Further, as shown in FIG. 5, the dielectric resin integrated antenna 40 may be divided into a circular portion at the center and an annular portion at the outer periphery thereof, and the divided portions may be the antenna portions 41 to 43 for each frequency band. The antenna parts 41 to 43 for each frequency band are composed of the dielectric 44 and the conductors 45 on both surfaces thereof, as in the embodiment of FIG.
The frequency band antenna parts 31 to 34, 41 to 43 in the embodiments of FIGS. 4 and 5 are integrated by simultaneous molding or fusion bonding as in the embodiment of FIG. The material of the dielectrics 35 and 44 is a dielectric resin composite material in which a filler of dielectric inorganic powder is mixed with a synthetic resin as in the above embodiments.

【0020】図6は、この発明のさらに他の実施形態を
示す。この実施形態の誘電性樹脂統合アンテナ50は、
各周波数帯別アンテナ部分51〜53をパッチアンテナ
とし、これら周波数帯別アンテナ部分51〜53は、誘
電体54の厚さを互いに異ならせたものとする。これら
各周波数帯別アンテナ部分51〜53は、平面的に並ぶ
ように一体に統合する。各周波数帯別アンテナ部分51
〜53は、誘電体54の両面に導体55,56を設けた
ものである。各周波数帯別アンテナ部分51〜53の誘
電率εは、互いに同じとしてある。誘電体54の材質
は、第1の実施形態と同じく合成樹脂に誘電体無機粉末
の充填材を配合したものである。
FIG. 6 shows still another embodiment of the present invention. The dielectric resin integrated antenna 50 of this embodiment is
Each of the frequency band antenna parts 51 to 53 is a patch antenna, and the frequency band antenna parts 51 to 53 have different thicknesses of the dielectric 54. The antenna parts 51 to 53 for each frequency band are integrated so as to be arranged in a plane. Antenna part for each frequency band 51
Numerals 53 to 53 are conductors 55 and 56 provided on both surfaces of the dielectric 54. The dielectric constants ε of the antenna parts 51 to 53 for each frequency band are the same. The material of the dielectric 54 is the same as that of the first embodiment, in which the filler of the dielectric inorganic powder is mixed with the synthetic resin.

【0021】各周波数帯別アンテナ部分51〜53の一
体化は、例えば誘電性樹脂統合アンテナ50の全体の誘
電体54を一体に射出成形で成形することで行う。この
他に、図7(A)に示すように、それぞれ幅の異なる均
一厚さの複数の分割誘電体54a〜54cを別々に成形
し、後にこれらの分割誘電体54a〜54cを重ねて溶
融接着することで、各周波数帯別アンテナ部分51〜5
3毎に厚さの異なる誘電体54を形成しても良い。ま
た、図7(B)に示すように、それぞれ幅の異なる均一
厚さの複数の分割誘電体54a〜54cを、先に成形さ
れた部分をインサートして順次成形して行くようにして
も良い。
The antenna parts 51 to 53 for each frequency band are integrated by, for example, integrally molding the entire dielectric 54 of the dielectric resin integrated antenna 50 by injection molding. In addition to this, as shown in FIG. 7 (A), a plurality of divided dielectrics 54a to 54c each having a different width and a uniform thickness are separately molded, and then these divided dielectrics 54a to 54c are overlapped and melt-bonded. By doing so, the antenna parts 51 to 5 for each frequency band
You may form the dielectric 54 with different thickness for every 3. Further, as shown in FIG. 7B, a plurality of divided dielectrics 54a to 54c having different widths and uniform thicknesses may be sequentially formed by inserting the previously formed portions. .

【0022】このように、各周波数帯別アンテナ部分5
1〜53を、厚さの異なるものとすると、同じ誘電率の
誘電性樹脂複合材を用いて周波数の違いに対応できる。
そのため製造が容易であり、より低コスト化が図れる。
In this way, the antenna part 5 for each frequency band
If the thicknesses of 1 to 53 are different, it is possible to cope with the difference in frequency by using the dielectric resin composite material having the same dielectric constant.
Therefore, the manufacturing is easy and the cost can be further reduced.

【0023】なお、上記各実施形態において、誘電性樹
脂複合材は、誘電体特性に異方性が実質上ないものとし
てある。ここで言う「異方性が実質上ない」とは、アン
テナとして異方性が性能に影響しない程度に低いことを
言う。この誘電性樹脂複合材は、誘電率に限らず、異方
性のないもの、例えば熱膨張率においても異方性がない
ものであることが好ましい。上記充填材は、複数種類の
充填材を混合させて配合しても良い。合成樹脂につい
は、複数種を混合させずに1種類としている。誘電性樹
脂複合材は、誘電性樹脂組成物とも言える。
In each of the above embodiments, the dielectric resin composite material has substantially no anisotropy in dielectric characteristics. The term "substantially free from anisotropy" as used herein means that the anisotropy of the antenna is so low that the performance is not affected. This dielectric resin composite material is not limited to the dielectric constant, but is preferably one having no anisotropy, for example, one having no anisotropy in thermal expansion coefficient. The above-mentioned filler may be mixed by mixing a plurality of kinds of fillers. For the synthetic resin, one kind is used without mixing plural kinds. The dielectric resin composite material can also be said to be a dielectric resin composition.

【0024】次に、上記各実施形態で用いられる誘電性
樹脂複合材の具体例を説明する。誘電性樹脂複合材とし
ては、ポリフェニレンサルファイド(PPS)樹脂、ポ
リプロピレン(PP)等の熱可塑性樹脂に、誘電体無機
粉末の充填材として、チタン酸バリウム、チタン酸スト
ロンチウム、チタン酸カルシウム、チタン酸カルシウム
マグネシウム、チタン酸ネオジウム等のチタン酸塩や、
酸化チタンを配合したものが使用できる。この充填材は
粉末であり、繊維状のものではない。配合割合は、例え
ば5〜70容量%の範囲が好ましいが、より好ましくは
10〜40%である。
Next, a specific example of the dielectric resin composite material used in each of the above embodiments will be described. Examples of the dielectric resin composite material include thermoplastic resins such as polyphenylene sulfide (PPS) resin and polypropylene (PP), and fillers of dielectric inorganic powder such as barium titanate, strontium titanate, calcium titanate, and calcium titanate. Titanate such as magnesium and neodymium titanate,
A mixture of titanium oxide can be used. This filler is powder and not fibrous. The blending ratio is preferably in the range of 5 to 70% by volume, more preferably 10 to 40%.

【0025】この実施形態において、誘電性樹脂複合材
に求める目標性能は、高周波数帯(ギガヘルツ(GH
z)単位の周波数帯)において、誘電率が5以上と高
く、誘電正接(=Tanδ)が0.005以下、好まし
くは0.001以下と低く、かつ溶融成形可能な樹脂複
合材であることである。合成樹脂の単独で誘電率は2〜
4程度であるため、誘電性樹脂複合材としては、誘電率
は5以上が好ましい。溶融成形は、例えば、射出成形、
押し出し成形、または圧縮成形のいずれかが行えれば良
い。この目標性能を達成するために、合成樹脂および充
填材は次の材質および配合とすることが好ましい。
In this embodiment, the target performance required for the dielectric resin composite material is the high frequency band (GHz (GHZ)
(z) frequency band), the dielectric constant is as high as 5 or more, the dielectric loss tangent (= Tan δ) is 0.005 or less, preferably 0.001 or less, and a melt-moldable resin composite material. is there. Synthetic resin alone has a dielectric constant of 2
Since it is about 4, the dielectric constant of the dielectric resin composite material is preferably 5 or more. Melt molding is, for example, injection molding,
It is sufficient if either extrusion molding or compression molding can be performed. In order to achieve this target performance, it is preferable that the synthetic resin and the filler have the following materials and formulations.

【0026】合成樹脂は、もともと、誘電率には大差が
ないため、できるだけ誘電正接(=Tanδ)が小さい
材料、つまりQ値(=1/Tanδ)が高い材料が好ま
しい。合成樹脂のTanδは、0.003以下のものが
好ましく、このTanδの条件を充足するものとして、
ポリプロピレン(PP)、ポリエチレン(PE)、ポリ
テトラフルオロエチレン(PTFE)、フルオロエチレ
ンプロピレン(FEP)、ポリフェニレンエーテル(P
PE)、シンジオタクティックポリスチレン(SP
S)、ポリフェニレンサルファイド(PPS)、液晶ポ
リマー(LCP)等がある。これらの合成樹脂のいずれ
をこの誘電性樹脂複合材に用いても良い。
Since the synthetic resin does not originally have a large difference in dielectric constant, a material having a dielectric loss tangent (= Tan δ) as small as possible, that is, a material having a high Q value (= 1 / Tan δ) is preferable. Tan δ of the synthetic resin is preferably 0.003 or less, and as satisfying the condition of Tan δ,
Polypropylene (PP), polyethylene (PE), polytetrafluoroethylene (PTFE), fluoroethylene propylene (FEP), polyphenylene ether (P
PE), syndiotactic polystyrene (SP
S), polyphenylene sulfide (PPS), liquid crystal polymer (LCP) and the like. Any of these synthetic resins may be used for this dielectric resin composite material.

【0027】充填材は、なるべく誘電率が高く、かつ誘
電正接(=Tanδ)が小さいものが良い。充填材とし
ては、誘電率が20以上で、かつTanδが0.005
以下の高誘電セラミックス粉が好ましい。この条件に
は、上記の誘電体無機粉末の充填材のうち、チタン酸バ
リウムがTanδの条件で大きく外れるが他の各充填
材、すなわちチタン酸ストロンチウム、チタン酸カルシ
ウム、チタン酸カルシウムマグネシウム、チタン酸ネオ
ジウム等のチタン酸塩や、酸化チタンは、いずれも該当
する。充填材の配合量の例は、後に示す表1に記載する
が、同表に記載のようにチタン酸ストロンチウム、チタ
ン酸カルシウム、チタン酸カルシウムマグネシウム、チ
タンサンネオジウム等を10〜40容量%の範囲で配合
すると、誘電率が5〜15程度で、Tanδが0.00
08〜0.003程度の誘電性樹脂複合材とできた。
The filler preferably has a high dielectric constant and a small dielectric loss tangent (= Tan δ). The filler has a dielectric constant of 20 or more and a Tan δ of 0.005.
The following high dielectric ceramic powders are preferred. In this condition, among the above-mentioned dielectric inorganic powder fillers, barium titanate largely deviates under the condition of Tan δ, but other fillers such as strontium titanate, calcium titanate, calcium magnesium titanate, and titanate. Both titanates such as neodymium and titanium oxide are applicable. Examples of the compounding amount of the filler are shown in Table 1 shown later, but as shown in the table, strontium titanate, calcium titanate, calcium magnesium titanate, titanium sane neodymium, etc. are in the range of 10 to 40% by volume. When blended with, the dielectric constant is about 5 to 15 and Tan δ is 0.00
The dielectric resin composite material was about 08 to 0.003.

【0028】なお、誘電セラミックス粉は、焼結して初
めて優れた誘電特性が得られることから、仮焼と言っ
て、実際の焼結温度(1300℃程度)より、少し下の
温度で、完全に固まらないことろで一旦焼成する。密度
的には、完全焼結体の密度を100とすると、仮焼の未
完全焼結体の密度は、97以上で100未満の割合が好
ましい。なお、従来の誘電性樹脂複合材の一般の提案例
は、完全焼結体であり、製造工程上で完全に焼結された
ものとする必要がある。また、液層法にて、誘電体粉末
を直接作ったものも好ましい。
Since the dielectric ceramic powder can obtain excellent dielectric properties only after being sintered, it is called calcination, which means that the temperature is a little lower than the actual sintering temperature (about 1300 ° C.). Bake once because it does not harden. In terms of density, when the density of the completely sintered body is 100, the density of the calcined incompletely sintered body is preferably 97 or more and less than 100. It should be noted that the general proposal example of the conventional dielectric resin composite material is a completely sintered body, and it is necessary to completely sinter it in the manufacturing process. Further, it is also preferable that the dielectric powder is directly produced by the liquid layer method.

【0029】誘電体無機粉末の充填材の粒径は、平均粒
径が0.1μm〜10μmの範囲であることが好まし
い。実験によると、同種材料では粒径が小さい方が、T
anδが小さくて良好な傾向が見られる。
The average particle size of the filler of the dielectric inorganic powder is preferably in the range of 0.1 μm to 10 μm. According to the experiment, the smaller the particle size of the same material, the T
There is a good tendency that an δ is small.

【0030】次に、各種誘電性樹脂複合材の誘電率等を
実験した実験例、および経験式より求めた誘電率等につ
き説明する。表1は、誘電性樹脂複合材における合成樹
脂をポリフェニレンサルファイド(PPS)とし、充填
材の種類および配合量を、表中に記載のように種々変え
た場合の実験結果(生データ)を示す。サンプルは、サ
ンプルNo1〜15に示す15種類である。充填材の種類
で整理したため、サンプルNoは非整列となっている。表
1において、充填材名に付した符号A〜Cは、同じ充填
材種類であって、配合量のみが異なるものに同じ符号を
付し、充填材種類が同じであっても、そのグレード等が
異なるものは、異なる符号を付してある。この表から、
前述の内容を繰り返すが、チタン酸ストロンチウム、チ
タン酸カルシウム、チタン酸カルシウムマグネシウム、
チタンサンネオジウム等を10〜40容量%の範囲で配
合すると、誘電率が5〜15程度で、Tanδが0.0
008〜0.003程度の誘電性樹脂複合材ことがわか
る。
Next, experimental examples in which the dielectric constants and the like of various dielectric resin composite materials are tested, and the dielectric constants and the like obtained from empirical formulas will be described. Table 1 shows experimental results (raw data) when polyphenylene sulfide (PPS) was used as the synthetic resin in the dielectric resin composite material, and the kinds and blending amounts of the fillers were changed variously as described in the table. There are 15 types of samples shown in sample Nos. 1 to 15. The sample numbers are not aligned because they are sorted by the type of filler. In Table 1, the reference numerals A to C added to the filler names are the same filler types, the same reference numerals are given to those having different compounding amounts, and even if the filler types are the same, their grades, etc. Those having different numbers are given different reference numerals. From this table,
Repeating the above contents, strontium titanate, calcium titanate, calcium magnesium titanate,
When titanium sun neodymium or the like is blended in a range of 10 to 40% by volume, the dielectric constant is about 5 to 15 and Tan δ is 0.0.
It can be seen that the dielectric resin composite material is about 008 to 0.003.

【0031】[0031]

【表1】 [Table 1]

【0032】図8は、誘電性樹脂複合材における合成樹
脂をポリフェニレンサルファイド(PPS)とし、誘電
体無機粉末の充填材をチタン酸ストロンチウムとして、
配合量を種々変えた場合の誘電率の実測値、および誘電
率の経験式の値(理論値)を重ねて示す。図9は同じく
それらの誘電正接(=Tanδ)の値を示す。これらの
グラフから、経験式の値は実測値と近似しており、経験
式から、充填材の配合量を増やすに従い、誘電率が高く
なり、配合量が80%程度になると、誘電率は80程度
と大きくなることがわかる。誘電正接(=Tanδ)の
値も、充填材の配合量の増加に従って大きくなるが、そ
の増加の割合は小さい。
FIG. 8 shows that the synthetic resin in the dielectric resin composite material is polyphenylene sulfide (PPS) and the filler of the dielectric inorganic powder is strontium titanate.
The actual measurement value of the dielectric constant and the value (theoretical value) of the empirical formula of the dielectric constant when the compounding amount is variously changed are shown. FIG. 9 also shows the values of their dielectric loss tangents (= Tan δ). From these graphs, the value of the empirical formula is close to the actual measured value. From the empirical formula, the dielectric constant increases as the compounding amount of the filler increases, and when the compounding amount becomes about 80%, the dielectric constant becomes 80%. It can be seen that the size increases. The value of the dielectric loss tangent (= Tan δ) also increases as the compounding amount of the filler increases, but the rate of increase is small.

【0033】図10,図11は、誘電性樹脂複合材にお
ける合成樹脂をポリフェニレンサルファイド(PPS)
とし、誘電体無機粉末の充填材をチタン酸カルシウムマ
グネシウムとした場合の例を、図8,図9と同様に示し
たものである。充填材がチタン酸カルシウムマグネシウ
ムの場合は、充填材の配合量を増やすに従い、誘電率が
高くなるが、Tanδは低下する。
FIG. 10 and FIG. 11 show synthetic resin in the dielectric resin composite material as polyphenylene sulfide (PPS).
An example in which the filler of the dielectric inorganic powder is calcium magnesium titanate is shown in the same manner as FIGS. 8 and 9. When the filler is calcium magnesium titanate, the dielectric constant increases as the compounding amount of the filler increases, but Tan δ decreases.

【0034】図12〜図17は、誘電性樹脂複合材にお
ける合成樹脂がポリプロピレン(PP)である場合につ
いて、図中に記載の充填材を用いた場合の例を、図8,
図9と同様に示したものである。
FIGS. 12 to 17 show an example of the case where the synthetic resin in the dielectric resin composite material is polypropylene (PP) and the filler shown in FIG.
This is the same as FIG. 9.

【0035】なお、上記各実施形態など、この発明の誘
電性樹脂統合アンテナにおいて、各周波数帯別アンテナ
部分は、それぞれラジオ、テレビ、GPS(Global Pos
itioning System)を用いたカーナビゲーションシステム
の端末、自動料金収受システム(ETC)の端末、携帯
電話、車間距離センサなどに用いられる。
In the dielectric resin integrated antenna of the present invention such as the above-described embodiments, the antenna parts for each frequency band are radio, television and GPS (Global Pos) respectively.
It is used for terminals of car navigation systems that use the itioning system), terminals of an automatic toll collection system (ETC), mobile phones, inter-vehicle distance sensors, and the like.

【0036】[0036]

【発明の効果】この発明の誘電性樹脂統合アンテナは、
互いに異なる周波数帯に対応した複数の周波数帯別アン
テナ部分を有し、これら各周波数帯別アンテナ部分は誘
電性樹脂複合材の誘電体と導体とで構成されて互いに一
体に統合され、上記各周波数帯別アンテナ部分の上記誘
電性樹脂複合材が、合成樹脂に誘電体無機粉末の充填材
を配合したものであるため、周波数帯の異なる通信が一
つのアンテナで行え、小型化、高性能化、および低コス
ト化が図れる。
The dielectric resin integrated antenna of the present invention is
It has a plurality of frequency band-based antenna parts corresponding to different frequency bands, each of these frequency band-based antenna parts are composed of a dielectric and a conductor of a dielectric resin composite material and are integrally integrated with each other. Since the above-mentioned dielectric resin composite material of the band-specific antenna part is a mixture of a synthetic resin and a filler of dielectric inorganic powder, communication with different frequency bands can be performed with one antenna, downsizing, high performance, And the cost can be reduced.

【図面の簡単な説明】[Brief description of drawings]

【図1】(A),(B)は、それぞれこの発明の第1の
実施形態にかかる誘電性樹脂統合アンテナの分解斜視図
および外観斜視図である。
1A and 1B are respectively an exploded perspective view and an external perspective view of a dielectric resin integrated antenna according to a first embodiment of the present invention.

【図2】(A),(B)は、それぞれこの発明の他の実
施形態にかかる誘電性樹脂統合アンテナの斜視図および
そのB−B線断面図である。
2A and 2B are respectively a perspective view and a cross-sectional view taken along line BB of a dielectric resin integrated antenna according to another embodiment of the present invention.

【図3】同アンテナの導体の一例を示す平面図である。FIG. 3 is a plan view showing an example of a conductor of the antenna.

【図4】この発明のさらに他の実施形態の平面図であ
る。
FIG. 4 is a plan view of still another embodiment of the present invention.

【図5】この発明のさらに他の実施形態の平面図であ
る。
FIG. 5 is a plan view of still another embodiment of the present invention.

【図6】(A),(B)は、それぞれこの発明のさらに
他の実施形態の斜視図および線断面図である。
6 (A) and 6 (B) are respectively a perspective view and a line sectional view of still another embodiment of the present invention.

【図7】(A),(B)はそれぞれ同実施形態における
誘電体の製造方法の各例を示す説明図である。
7 (A) and 7 (B) are explanatory views showing each example of the method of manufacturing a dielectric in the same embodiment.

【図8】特定樹脂に特定充填材を配合した誘電性樹脂複
合材につき、配合量を種々変えた場合の誘電率の実測値
と経験式による値とを示すグラフである。
FIG. 8 is a graph showing a measured value of dielectric constant and a value obtained from an empirical formula when a compounding amount is variously changed for a dielectric resin composite material in which a specific resin is mixed with a specific filler.

【図9】同特定樹脂に同特定充填材を配合した誘電性樹
脂複合材につき、配合量を種々変えた場合の誘電正接の
実測値と経験式による値とを示すグラフである。
FIG. 9 is a graph showing measured values of dielectric loss tangent and values obtained by empirical formulas for dielectric resin composite materials in which the same specific resin is mixed with the same specific filler when the compounding amount is variously changed.

【図10】同特定樹脂に他の特定充填材を配合した誘電
性樹脂複合材につき、配合量を種々変えた場合の誘電率
の実測値と経験式による値とを示すグラフである。
FIG. 10 is a graph showing a measured value of dielectric constant and a value based on an empirical formula when the compounding amount is variously changed for the dielectric resin composite material in which the other specific filler is mixed with the same specific resin.

【図11】同特定樹脂に同特定の充填材を配合した誘電
性樹脂複合材につき、配合量を種々変えた場合の誘電正
接の実測値と経験式による値とを示すグラフである。
FIG. 11 is a graph showing a measured value of dielectric loss tangent and a value obtained by an empirical formula when the compounding amount is variously changed for the dielectric resin composite material in which the same specific resin is mixed with the same specific filler.

【図12】他の特定樹脂に他の特定充填材を配合した誘
電性樹脂複合材につき、配合量を種々変えた場合の誘電
率の実測値と経験式による値とを示すグラフである。
FIG. 12 is a graph showing a measured value of dielectric constant and a value obtained by an empirical formula when the compounding amount is variously changed for the dielectric resin composite material in which the other specific resin is mixed with the other specific filler.

【図13】同特定樹脂に同特定充填材を配合した誘電性
樹脂複合材につき、配合量を種々変えた場合の誘電正接
の実測値と経験式による値とを示すグラフである。
FIG. 13 is a graph showing a measured value of dielectric loss tangent and a value obtained by an empirical formula when the compounding amount is variously changed for the dielectric resin composite material in which the same specific resin is mixed with the same specific filler.

【図14】同特定樹脂にさらに他の特定充填材を配合し
た誘電性樹脂複合材につき、配合量を種々変えた場合の
誘電率の実測値と経験式による値とを示すグラフであ
る。
FIG. 14 is a graph showing a measured value of dielectric constant and a value obtained by an empirical formula when the compounding amount is variously changed for the dielectric resin composite material in which the other specific filler is mixed with the specific resin.

【図15】同特定樹脂に同特定充填材を配合した誘電性
樹脂複合材につき、配合量を種々変えた場合の誘電正接
の実測値と経験式による値とを示すグラフである。
FIG. 15 is a graph showing measured values of dielectric loss tangent and values obtained from empirical formulas for dielectric resin composite materials in which the same specific resin is mixed with the same specific filler when the compounding amount is variously changed.

【図16】同特定樹脂にさらに他の特定充填材を配合し
た誘電性樹脂複合材につき、配合量を種々変えた場合の
誘電率の実測値と経験式による値とを示すグラフであ
る。
FIG. 16 is a graph showing a measured value of dielectric constant and a value based on an empirical formula when the compounding amount is variously changed for the dielectric resin composite material in which the other specific filler is mixed with the specific resin.

【図17】同特定樹脂に同特定充填材を配合した誘電性
樹脂複合材につき、配合量を種々変えた場合の誘電正接
の実測値と経験式による値とを示すグラフである。
FIG. 17 is a graph showing a measured value of dielectric loss tangent and a value obtained from an empirical formula when the compounding amount is variously changed for the dielectric resin composite material in which the same specific resin is mixed with the same specific filler.

【符号の説明】[Explanation of symbols]

1〜3…周波数帯別アンテナ部分 5…誘電体 6…電極 10…誘電性樹脂統合アンテナ 20…誘電性樹脂統合アンテナ 21〜26…周波数帯別アンテナ部分 27…誘電体 28,29…電極 30…誘電性樹脂統合アンテナ 31〜34…周波数帯別アンテナ部分 35…誘電体 36…電極 40…誘電性樹脂統合アンテナ 41〜43…周波数帯別アンテナ部分 44…誘電体 45…電極 50…誘電性樹脂統合アンテナ 51〜53…周波数帯別アンテナ部分 54…誘電体 55…電極 1-3 ... Antenna parts by frequency band 5 ... Dielectric 6 ... Electrode 10 ... Dielectric resin integrated antenna 20 ... Dielectric resin integrated antenna 21-26 ... Antenna parts by frequency band 27 ... Dielectric 28, 29 ... Electrodes 30 ... Dielectric resin integrated antenna 31-34 ... Antenna parts by frequency band 35 ... Dielectric 36 ... Electrode 40 ... Dielectric resin integrated antenna 41-43 ... Antenna parts by frequency band 44 ... Dielectric 45 ... Electrode 50 ... Dielectric resin integrated antenna 51-53 ... Antenna parts by frequency band 54 ... Dielectric 55 ... Electrode

フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) H01Q 21/30 H01Q 21/30 Fターム(参考) 5J021 AA03 AA06 AA09 AB04 AB06 HA05 HA06 HA10 JA03 JA07 5J045 AA03 AB02 AB05 AB06 DA10 EA07 GA02 HA03 MA07 NA01 5J046 AA07 AA09 AA10 AA13 AB01 AB11 AB13 PA07 QA02 Continuation of front page (51) Int.Cl. 7 Identification code FI theme code (reference) H01Q 21/30 H01Q 21/30 F term (reference) 5J021 AA03 AA06 AA09 AB04 AB06 HA05 HA06 HA10 JA03 JA07 5J045 AA03 AB02 AB05 AB06 DA10 EA07 GA02 HA03 MA07 NA01 5J046 AA07 AA09 AA10 AA13 AB01 AB11 AB13 PA07 QA02

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 互いに異なる周波数帯に対応した複数の
周波数帯別アンテナ部分を有し、これら各周波数帯別ア
ンテナ部分は誘電性樹脂複合材の誘電体と導体とで構成
されて互いに一体に統合され、上記各周波数帯別アンテ
ナ部分の上記誘電性樹脂複合材が、合成樹脂に誘電体無
機粉末の充填材を配合したものである誘電性樹脂統合ア
ンテナ。
1. A plurality of frequency band-specific antenna parts corresponding to mutually different frequency bands, each of these frequency band-specific antenna parts being composed of a dielectric and a conductor of a dielectric resin composite material and being integrally integrated with each other. A dielectric resin integrated antenna in which the dielectric resin composite material of the antenna part for each frequency band is a mixture of a synthetic resin and a filler of a dielectric inorganic powder.
【請求項2】 上記各周波数帯別アンテナ部分が、板状
またはシート状であって、各周波数帯別アンテナ部分は
誘電性樹脂複合材の誘電率が互いに異なるものであり、
これら各周波数帯別アンテナ部分を積層状態に統合した
請求項1に記載の誘電性樹脂統合アンテナ。
2. The antenna part for each frequency band has a plate shape or a sheet shape, and the dielectric parts of the dielectric resin composite materials are different from each other for the antenna part for each frequency band,
The dielectric resin integrated antenna according to claim 1, wherein the antenna parts for each frequency band are integrated in a laminated state.
【請求項3】 上記各周波数帯別アンテナ部分がパッチ
アンテナであって、各周波数帯別アンテナ部分は誘電性
樹脂複合材からなる誘電体の誘電率が互いに異なるもの
であり、これら各周波数帯別アンテナ部分は平面的に並
ぶように統合した請求項1に記載の誘電性樹脂統合アン
テナ。
3. The antenna part for each frequency band is a patch antenna, and the dielectric parts made of a dielectric resin composite material have different permittivities between the antenna parts for each frequency band. The dielectric resin integrated antenna according to claim 1, wherein the antenna parts are integrated so as to be arranged in a plane.
【請求項4】 上記各周波数帯別アンテナ部分がパッチ
アンテナであって、各周波数帯別アンテナ部分は誘電性
樹脂複合材からなる誘電体の厚さが互いに異なるもので
あり、これら各周波数帯別アンテナ部分は平面的に並ぶ
ように統合した請求項1に記載の誘電性樹脂統合アンテ
ナ。
4. The antenna part for each frequency band is a patch antenna, and the antenna parts for each frequency band have different thicknesses of dielectrics made of a dielectric resin composite material. The dielectric resin integrated antenna according to claim 1, wherein the antenna parts are integrated so as to be arranged in a plane.
【請求項5】 上記合成樹脂が熱可塑性樹脂であり、上
記誘電性樹脂複合材は、射出形成、押し出し成形、また
は圧縮成形等の溶融成形が可能なものである請求項1な
いし請求項4のいずれかに記載の誘電性樹脂統合アンテ
ナ。
5. The synthetic resin is a thermoplastic resin, and the dielectric resin composite material is capable of being melt-molded by injection molding, extrusion molding, compression molding, or the like. The dielectric resin integrated antenna according to any one of the above.
【請求項6】 上記誘電性樹脂複合材は、誘電体無機粉
末の充填材が、誘電率20以上でかつ誘電正接0.00
5以下の誘電セラミックス粉であり、この充填材を10
〜40容量%配合したものである請求項1ないし請求項
5のいずれかに記載の誘電性樹脂統合アンテナ。
6. The dielectric resin composite material according to claim 6, wherein the dielectric inorganic powder filler has a dielectric constant of 20 or more and a dielectric loss tangent of 0.00.
Dielectric ceramic powder of 5 or less.
The dielectric resin integrated antenna according to any one of claims 1 to 5, which is mixed in an amount of -40% by volume.
【請求項7】 上記誘電セラミックス粉の充填材は、未
完全焼結体である請求項6に記載の誘電性樹脂統合アン
テナ。
7. The dielectric resin integrated antenna according to claim 6, wherein the filling material of the dielectric ceramic powder is an incompletely sintered body.
JP2001401046A 2001-12-28 2001-12-28 Dielectric resin integrated antenna Expired - Fee Related JP3895175B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001401046A JP3895175B2 (en) 2001-12-28 2001-12-28 Dielectric resin integrated antenna

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001401046A JP3895175B2 (en) 2001-12-28 2001-12-28 Dielectric resin integrated antenna

Publications (2)

Publication Number Publication Date
JP2003198230A true JP2003198230A (en) 2003-07-11
JP3895175B2 JP3895175B2 (en) 2007-03-22

Family

ID=27605261

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001401046A Expired - Fee Related JP3895175B2 (en) 2001-12-28 2001-12-28 Dielectric resin integrated antenna

Country Status (1)

Country Link
JP (1) JP3895175B2 (en)

Cited By (109)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005123852A (en) * 2003-10-16 2005-05-12 Matsushita Electric Ind Co Ltd Antenna module
JP2005354476A (en) * 2004-06-11 2005-12-22 Denso Corp Integrated antenna
WO2007101902A1 (en) * 2006-03-08 2007-09-13 Nokia Corporation Low loss layered cover for an antenna
JP2008085976A (en) * 2006-08-31 2008-04-10 Fujitsu Component Ltd Antenna apparatus
WO2009011154A1 (en) * 2007-07-18 2009-01-22 Murata Manufacturing Co., Ltd. Wireless ic device and electronic device
US7762472B2 (en) 2007-07-04 2010-07-27 Murata Manufacturing Co., Ltd Wireless IC device
US7764928B2 (en) 2006-01-19 2010-07-27 Murata Manufacturing Co., Ltd. Wireless IC device and component for wireless IC device
US7786949B2 (en) 2006-04-14 2010-08-31 Murata Manufacturing Co., Ltd. Antenna
JP4535209B2 (en) * 2008-04-14 2010-09-01 株式会社村田製作所 Wireless IC device, electronic apparatus, and method for adjusting resonance frequency of wireless IC device
US7857230B2 (en) 2007-07-18 2010-12-28 Murata Manufacturing Co., Ltd. Wireless IC device and manufacturing method thereof
US7871008B2 (en) 2008-06-25 2011-01-18 Murata Manufacturing Co., Ltd. Wireless IC device and manufacturing method thereof
US7931206B2 (en) 2007-05-10 2011-04-26 Murata Manufacturing Co., Ltd. Wireless IC device
US7932730B2 (en) 2006-06-12 2011-04-26 Murata Manufacturing Co., Ltd. System for inspecting electromagnetic coupling modules and radio IC devices and method for manufacturing electromagnetic coupling modules and radio IC devices using the system
US7967216B2 (en) 2008-05-22 2011-06-28 Murata Manufacturing Co., Ltd. Wireless IC device
US7990337B2 (en) 2007-12-20 2011-08-02 Murata Manufacturing Co., Ltd. Radio frequency IC device
US7997501B2 (en) 2007-07-17 2011-08-16 Murata Manufacturing Co., Ltd. Wireless IC device and electronic apparatus
US8009101B2 (en) 2007-04-06 2011-08-30 Murata Manufacturing Co., Ltd. Wireless IC device
US8031124B2 (en) 2007-01-26 2011-10-04 Murata Manufacturing Co., Ltd. Container with electromagnetic coupling module
US8070070B2 (en) 2007-12-26 2011-12-06 Murata Manufacturing Co., Ltd. Antenna device and radio frequency IC device
US8081125B2 (en) 2006-07-11 2011-12-20 Murata Manufacturing Co., Ltd. Antenna and radio IC device
US8081121B2 (en) 2006-10-27 2011-12-20 Murata Manufacturing Co., Ltd. Article having electromagnetic coupling module attached thereto
US8081541B2 (en) 2006-06-30 2011-12-20 Murata Manufacturing Co., Ltd. Optical disc
US8081119B2 (en) 2006-04-26 2011-12-20 Murata Manufacturing Co., Ltd. Product including power supply circuit board
WO2012043144A1 (en) * 2010-09-28 2012-04-05 Ntn株式会社 Chip antenna and production method thereof
US8177138B2 (en) 2008-10-29 2012-05-15 Murata Manufacturing Co., Ltd. Radio IC device
US8179329B2 (en) 2008-03-03 2012-05-15 Murata Manufacturing Co., Ltd. Composite antenna
US8193939B2 (en) 2007-07-09 2012-06-05 Murata Manufacturing Co., Ltd. Wireless IC device
US8228075B2 (en) 2006-08-24 2012-07-24 Murata Manufacturing Co., Ltd. Test system for radio frequency IC devices and method of manufacturing radio frequency IC devices using the same
US8228252B2 (en) 2006-05-26 2012-07-24 Murata Manufacturing Co., Ltd. Data coupler
US8235299B2 (en) 2007-07-04 2012-08-07 Murata Manufacturing Co., Ltd. Wireless IC device and component for wireless IC device
CN102646209A (en) * 2011-02-22 2012-08-22 山田尖端科技株式会社 Rfid tag, wireless charging antenna part, method of manufacturing same, and mold
US8264357B2 (en) 2007-06-27 2012-09-11 Murata Manufacturing Co., Ltd. Wireless IC device
US8299968B2 (en) 2007-02-06 2012-10-30 Murata Manufacturing Co., Ltd. Packaging material with electromagnetic coupling module
US8299929B2 (en) 2006-09-26 2012-10-30 Murata Manufacturing Co., Ltd. Inductively coupled module and item with inductively coupled module
US8336786B2 (en) 2010-03-12 2012-12-25 Murata Manufacturing Co., Ltd. Wireless communication device and metal article
US8342416B2 (en) 2009-01-09 2013-01-01 Murata Manufacturing Co., Ltd. Wireless IC device, wireless IC module and method of manufacturing wireless IC module
US8360324B2 (en) 2007-04-09 2013-01-29 Murata Manufacturing Co., Ltd. Wireless IC device
US8381997B2 (en) 2009-06-03 2013-02-26 Murata Manufacturing Co., Ltd. Radio frequency IC device and method of manufacturing the same
US8384547B2 (en) 2006-04-10 2013-02-26 Murata Manufacturing Co., Ltd. Wireless IC device
US8390459B2 (en) 2007-04-06 2013-03-05 Murata Manufacturing Co., Ltd. Wireless IC device
US8400365B2 (en) 2009-11-20 2013-03-19 Murata Manufacturing Co., Ltd. Antenna device and mobile communication terminal
US8400307B2 (en) 2007-07-18 2013-03-19 Murata Manufacturing Co., Ltd. Radio frequency IC device and electronic apparatus
US8418928B2 (en) 2009-04-14 2013-04-16 Murata Manufacturing Co., Ltd. Wireless IC device component and wireless IC device
US8424769B2 (en) 2010-07-08 2013-04-23 Murata Manufacturing Co., Ltd. Antenna and RFID device
JP2013088364A (en) * 2011-10-20 2013-05-13 Furukawa Electric Co Ltd:The Antenna apparatus
US8474725B2 (en) 2007-04-27 2013-07-02 Murata Manufacturing Co., Ltd. Wireless IC device
US8531346B2 (en) 2007-04-26 2013-09-10 Murata Manufacturing Co., Ltd. Wireless IC device
WO2013137404A1 (en) * 2012-03-16 2013-09-19 Ntn株式会社 Multiband antenna and manufacturing method thereof
US8544754B2 (en) 2006-06-01 2013-10-01 Murata Manufacturing Co., Ltd. Wireless IC device and wireless IC device composite component
US8546927B2 (en) 2010-09-03 2013-10-01 Murata Manufacturing Co., Ltd. RFIC chip mounting structure
US8583043B2 (en) 2009-01-16 2013-11-12 Murata Manufacturing Co., Ltd. High-frequency device and wireless IC device
US8590797B2 (en) 2008-05-21 2013-11-26 Murata Manufacturing Co., Ltd. Wireless IC device
US8596545B2 (en) 2008-05-28 2013-12-03 Murata Manufacturing Co., Ltd. Component of wireless IC device and wireless IC device
US8602310B2 (en) 2010-03-03 2013-12-10 Murata Manufacturing Co., Ltd. Radio communication device and radio communication terminal
US8613395B2 (en) 2011-02-28 2013-12-24 Murata Manufacturing Co., Ltd. Wireless communication device
US8632014B2 (en) 2007-04-27 2014-01-21 Murata Manufacturing Co., Ltd. Wireless IC device
US8668151B2 (en) 2008-03-26 2014-03-11 Murata Manufacturing Co., Ltd. Wireless IC device
US8680971B2 (en) 2009-09-28 2014-03-25 Murata Manufacturing Co., Ltd. Wireless IC device and method of detecting environmental state using the device
US8692718B2 (en) 2008-11-17 2014-04-08 Murata Manufacturing Co., Ltd. Antenna and wireless IC device
US8718727B2 (en) 2009-12-24 2014-05-06 Murata Manufacturing Co., Ltd. Antenna having structure for multi-angled reception and mobile terminal including the antenna
US8720789B2 (en) 2012-01-30 2014-05-13 Murata Manufacturing Co., Ltd. Wireless IC device
US8740093B2 (en) 2011-04-13 2014-06-03 Murata Manufacturing Co., Ltd. Radio IC device and radio communication terminal
US8757500B2 (en) 2007-05-11 2014-06-24 Murata Manufacturing Co., Ltd. Wireless IC device
US8770489B2 (en) 2011-07-15 2014-07-08 Murata Manufacturing Co., Ltd. Radio communication device
US8797148B2 (en) 2008-03-03 2014-08-05 Murata Manufacturing Co., Ltd. Radio frequency IC device and radio communication system
US8797225B2 (en) 2011-03-08 2014-08-05 Murata Manufacturing Co., Ltd. Antenna device and communication terminal apparatus
US8810456B2 (en) 2009-06-19 2014-08-19 Murata Manufacturing Co., Ltd. Wireless IC device and coupling method for power feeding circuit and radiation plate
US8814056B2 (en) 2011-07-19 2014-08-26 Murata Manufacturing Co., Ltd. Antenna device, RFID tag, and communication terminal apparatus
US8847831B2 (en) 2009-07-03 2014-09-30 Murata Manufacturing Co., Ltd. Antenna and antenna module
US8853549B2 (en) 2009-09-30 2014-10-07 Murata Manufacturing Co., Ltd. Circuit substrate and method of manufacturing same
US8870077B2 (en) 2008-08-19 2014-10-28 Murata Manufacturing Co., Ltd. Wireless IC device and method for manufacturing same
US8878739B2 (en) 2011-07-14 2014-11-04 Murata Manufacturing Co., Ltd. Wireless communication device
US8905316B2 (en) 2010-05-14 2014-12-09 Murata Manufacturing Co., Ltd. Wireless IC device
US8905296B2 (en) 2011-12-01 2014-12-09 Murata Manufacturing Co., Ltd. Wireless integrated circuit device and method of manufacturing the same
US8937576B2 (en) 2011-04-05 2015-01-20 Murata Manufacturing Co., Ltd. Wireless communication device
US8944335B2 (en) 2010-09-30 2015-02-03 Murata Manufacturing Co., Ltd. Wireless IC device
US8976075B2 (en) 2009-04-21 2015-03-10 Murata Manufacturing Co., Ltd. Antenna device and method of setting resonant frequency of antenna device
US8981906B2 (en) 2010-08-10 2015-03-17 Murata Manufacturing Co., Ltd. Printed wiring board and wireless communication system
US8991713B2 (en) 2011-01-14 2015-03-31 Murata Manufacturing Co., Ltd. RFID chip package and RFID tag
US8994605B2 (en) 2009-10-02 2015-03-31 Murata Manufacturing Co., Ltd. Wireless IC device and electromagnetic coupling module
US9024725B2 (en) 2009-11-04 2015-05-05 Murata Manufacturing Co., Ltd. Communication terminal and information processing system
US9024837B2 (en) 2010-03-31 2015-05-05 Murata Manufacturing Co., Ltd. Antenna and wireless communication device
US9064198B2 (en) 2006-04-26 2015-06-23 Murata Manufacturing Co., Ltd. Electromagnetic-coupling-module-attached article
US9077067B2 (en) 2008-07-04 2015-07-07 Murata Manufacturing Co., Ltd. Radio IC device
US9104950B2 (en) 2009-01-30 2015-08-11 Murata Manufacturing Co., Ltd. Antenna and wireless IC device
US9123996B2 (en) 2010-05-14 2015-09-01 Murata Manufacturing Co., Ltd. Wireless IC device
US9166291B2 (en) 2010-10-12 2015-10-20 Murata Manufacturing Co., Ltd. Antenna device and communication terminal apparatus
US9178279B2 (en) 2009-11-04 2015-11-03 Murata Manufacturing Co., Ltd. Wireless IC tag, reader-writer, and information processing system
US9231305B2 (en) 2008-10-24 2016-01-05 Murata Manufacturing Co., Ltd. Wireless IC device
US9236651B2 (en) 2010-10-21 2016-01-12 Murata Manufacturing Co., Ltd. Communication terminal device
US9281873B2 (en) 2008-05-26 2016-03-08 Murata Manufacturing Co., Ltd. Wireless IC device system and method of determining authenticity of wireless IC device
US9378452B2 (en) 2011-05-16 2016-06-28 Murata Manufacturing Co., Ltd. Radio IC device
US9444143B2 (en) 2009-10-16 2016-09-13 Murata Manufacturing Co., Ltd. Antenna and wireless IC device
US9460320B2 (en) 2009-10-27 2016-10-04 Murata Manufacturing Co., Ltd. Transceiver and radio frequency identification tag reader
US9461363B2 (en) 2009-11-04 2016-10-04 Murata Manufacturing Co., Ltd. Communication terminal and information processing system
US9460376B2 (en) 2007-07-18 2016-10-04 Murata Manufacturing Co., Ltd. Radio IC device
US9543642B2 (en) 2011-09-09 2017-01-10 Murata Manufacturing Co., Ltd. Antenna device and wireless device
US9558384B2 (en) 2010-07-28 2017-01-31 Murata Manufacturing Co., Ltd. Antenna apparatus and communication terminal instrument
US9692128B2 (en) 2012-02-24 2017-06-27 Murata Manufacturing Co., Ltd. Antenna device and wireless communication device
US9727765B2 (en) 2010-03-24 2017-08-08 Murata Manufacturing Co., Ltd. RFID system including a reader/writer and RFID tag
US9761923B2 (en) 2011-01-05 2017-09-12 Murata Manufacturing Co., Ltd. Wireless communication device
US10013650B2 (en) 2010-03-03 2018-07-03 Murata Manufacturing Co., Ltd. Wireless communication module and wireless communication device
US10235544B2 (en) 2012-04-13 2019-03-19 Murata Manufacturing Co., Ltd. Inspection method and inspection device for RFID tag
WO2019172482A1 (en) * 2018-03-06 2019-09-12 엘지전자 주식회사 Mobile terminal having antenna
CN111344901A (en) * 2017-11-06 2020-06-26 东友精细化工有限公司 Film antenna and display device comprising same
WO2021131283A1 (en) * 2019-12-26 2021-07-01 株式会社村田製作所 Antenna module and communication device having same mounted thereon
WO2021131285A1 (en) * 2019-12-26 2021-07-01 株式会社村田製作所 Antenna module and communication device equipped with same
WO2022185917A1 (en) * 2021-03-05 2022-09-09 株式会社村田製作所 Antenna module and communication device equipped with same
WO2024034188A1 (en) * 2022-08-10 2024-02-15 株式会社村田製作所 Antenna module and communication device equipped with same

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010027074A1 (en) 2008-09-05 2010-03-11 住友電気工業株式会社 Ceramic powder, dielectric composite material containing said ceramic powder, and dielectric antenna
CN104241870A (en) * 2013-06-14 2014-12-24 李展 Combined antenna for mobile device and manufacturing method for combined antenna

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05211406A (en) * 1991-07-01 1993-08-20 Ball Corp Stacked microstrip antenna for multi- frequency use
JPH07303005A (en) * 1994-03-10 1995-11-14 Nippondenso Co Ltd Antenna system for vehicle
JPH0936647A (en) * 1995-07-19 1997-02-07 Matsushita Electric Works Ltd Manufacture of microstrip antenna
JP2000307341A (en) * 1999-04-23 2000-11-02 Matsushita Electric Works Ltd Antenna system
JP2001157471A (en) * 1999-11-24 2001-06-08 Minolta Co Ltd Piezoelectric transducer
JP2003060427A (en) * 2001-08-13 2003-02-28 Harada Ind Co Ltd Antenna device

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05211406A (en) * 1991-07-01 1993-08-20 Ball Corp Stacked microstrip antenna for multi- frequency use
JPH07303005A (en) * 1994-03-10 1995-11-14 Nippondenso Co Ltd Antenna system for vehicle
JPH0936647A (en) * 1995-07-19 1997-02-07 Matsushita Electric Works Ltd Manufacture of microstrip antenna
JP2000307341A (en) * 1999-04-23 2000-11-02 Matsushita Electric Works Ltd Antenna system
JP2001157471A (en) * 1999-11-24 2001-06-08 Minolta Co Ltd Piezoelectric transducer
JP2003060427A (en) * 2001-08-13 2003-02-28 Harada Ind Co Ltd Antenna device

Cited By (159)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005123852A (en) * 2003-10-16 2005-05-12 Matsushita Electric Ind Co Ltd Antenna module
JP2005354476A (en) * 2004-06-11 2005-12-22 Denso Corp Integrated antenna
US8078106B2 (en) 2006-01-19 2011-12-13 Murata Manufacturing Co., Ltd. Wireless IC device and component for wireless IC device
US8326223B2 (en) 2006-01-19 2012-12-04 Murata Manufacturing Co., Ltd. Wireless IC device and component for wireless IC device
US7764928B2 (en) 2006-01-19 2010-07-27 Murata Manufacturing Co., Ltd. Wireless IC device and component for wireless IC device
US8725071B2 (en) 2006-01-19 2014-05-13 Murata Manufacturing Co., Ltd. Wireless IC device and component for wireless IC device
US8676117B2 (en) 2006-01-19 2014-03-18 Murata Manufacturing Co., Ltd. Wireless IC device and component for wireless IC device
WO2007101902A1 (en) * 2006-03-08 2007-09-13 Nokia Corporation Low loss layered cover for an antenna
US8059038B2 (en) 2006-03-08 2011-11-15 Nokia Corporation Low loss layered cover for an antenna
US8384547B2 (en) 2006-04-10 2013-02-26 Murata Manufacturing Co., Ltd. Wireless IC device
US7786949B2 (en) 2006-04-14 2010-08-31 Murata Manufacturing Co., Ltd. Antenna
US9064198B2 (en) 2006-04-26 2015-06-23 Murata Manufacturing Co., Ltd. Electromagnetic-coupling-module-attached article
US8081119B2 (en) 2006-04-26 2011-12-20 Murata Manufacturing Co., Ltd. Product including power supply circuit board
US9165239B2 (en) 2006-04-26 2015-10-20 Murata Manufacturing Co., Ltd. Electromagnetic-coupling-module-attached article
US8228252B2 (en) 2006-05-26 2012-07-24 Murata Manufacturing Co., Ltd. Data coupler
US8544754B2 (en) 2006-06-01 2013-10-01 Murata Manufacturing Co., Ltd. Wireless IC device and wireless IC device composite component
US7932730B2 (en) 2006-06-12 2011-04-26 Murata Manufacturing Co., Ltd. System for inspecting electromagnetic coupling modules and radio IC devices and method for manufacturing electromagnetic coupling modules and radio IC devices using the system
US8228765B2 (en) 2006-06-30 2012-07-24 Murata Manufacturing Co., Ltd. Optical disc
US8081541B2 (en) 2006-06-30 2011-12-20 Murata Manufacturing Co., Ltd. Optical disc
US8081125B2 (en) 2006-07-11 2011-12-20 Murata Manufacturing Co., Ltd. Antenna and radio IC device
US8228075B2 (en) 2006-08-24 2012-07-24 Murata Manufacturing Co., Ltd. Test system for radio frequency IC devices and method of manufacturing radio frequency IC devices using the same
JP2008085976A (en) * 2006-08-31 2008-04-10 Fujitsu Component Ltd Antenna apparatus
US8299929B2 (en) 2006-09-26 2012-10-30 Murata Manufacturing Co., Ltd. Inductively coupled module and item with inductively coupled module
US8081121B2 (en) 2006-10-27 2011-12-20 Murata Manufacturing Co., Ltd. Article having electromagnetic coupling module attached thereto
US8031124B2 (en) 2007-01-26 2011-10-04 Murata Manufacturing Co., Ltd. Container with electromagnetic coupling module
US8299968B2 (en) 2007-02-06 2012-10-30 Murata Manufacturing Co., Ltd. Packaging material with electromagnetic coupling module
US8390459B2 (en) 2007-04-06 2013-03-05 Murata Manufacturing Co., Ltd. Wireless IC device
US8009101B2 (en) 2007-04-06 2011-08-30 Murata Manufacturing Co., Ltd. Wireless IC device
US8360324B2 (en) 2007-04-09 2013-01-29 Murata Manufacturing Co., Ltd. Wireless IC device
US8424762B2 (en) 2007-04-14 2013-04-23 Murata Manufacturing Co., Ltd. Wireless IC device and component for wireless IC device
US8531346B2 (en) 2007-04-26 2013-09-10 Murata Manufacturing Co., Ltd. Wireless IC device
US8474725B2 (en) 2007-04-27 2013-07-02 Murata Manufacturing Co., Ltd. Wireless IC device
US8632014B2 (en) 2007-04-27 2014-01-21 Murata Manufacturing Co., Ltd. Wireless IC device
US7931206B2 (en) 2007-05-10 2011-04-26 Murata Manufacturing Co., Ltd. Wireless IC device
US8757500B2 (en) 2007-05-11 2014-06-24 Murata Manufacturing Co., Ltd. Wireless IC device
US8264357B2 (en) 2007-06-27 2012-09-11 Murata Manufacturing Co., Ltd. Wireless IC device
US8662403B2 (en) 2007-07-04 2014-03-04 Murata Manufacturing Co., Ltd. Wireless IC device and component for wireless IC device
US7762472B2 (en) 2007-07-04 2010-07-27 Murata Manufacturing Co., Ltd Wireless IC device
US8235299B2 (en) 2007-07-04 2012-08-07 Murata Manufacturing Co., Ltd. Wireless IC device and component for wireless IC device
US8552870B2 (en) 2007-07-09 2013-10-08 Murata Manufacturing Co., Ltd. Wireless IC device
US8193939B2 (en) 2007-07-09 2012-06-05 Murata Manufacturing Co., Ltd. Wireless IC device
US8413907B2 (en) 2007-07-17 2013-04-09 Murata Manufacturing Co., Ltd. Wireless IC device and electronic apparatus
US8191791B2 (en) 2007-07-17 2012-06-05 Murata Manufacturing Co., Ltd. Wireless IC device and electronic apparatus
US7997501B2 (en) 2007-07-17 2011-08-16 Murata Manufacturing Co., Ltd. Wireless IC device and electronic apparatus
US8400307B2 (en) 2007-07-18 2013-03-19 Murata Manufacturing Co., Ltd. Radio frequency IC device and electronic apparatus
US7857230B2 (en) 2007-07-18 2010-12-28 Murata Manufacturing Co., Ltd. Wireless IC device and manufacturing method thereof
JP2009153166A (en) * 2007-07-18 2009-07-09 Murata Mfg Co Ltd Wireless ic device and electronic device
WO2009011154A1 (en) * 2007-07-18 2009-01-22 Murata Manufacturing Co., Ltd. Wireless ic device and electronic device
US9460376B2 (en) 2007-07-18 2016-10-04 Murata Manufacturing Co., Ltd. Radio IC device
US9830552B2 (en) 2007-07-18 2017-11-28 Murata Manufacturing Co., Ltd. Radio IC device
US7830311B2 (en) 2007-07-18 2010-11-09 Murata Manufacturing Co., Ltd. Wireless IC device and electronic device
US8610636B2 (en) 2007-12-20 2013-12-17 Murata Manufacturing Co., Ltd. Radio frequency IC device
US7990337B2 (en) 2007-12-20 2011-08-02 Murata Manufacturing Co., Ltd. Radio frequency IC device
US8360330B2 (en) 2007-12-26 2013-01-29 Murata Manufacturing Co., Ltd. Antenna device and radio frequency IC device
US8915448B2 (en) 2007-12-26 2014-12-23 Murata Manufacturing Co., Ltd. Antenna device and radio frequency IC device
US8070070B2 (en) 2007-12-26 2011-12-06 Murata Manufacturing Co., Ltd. Antenna device and radio frequency IC device
US8179329B2 (en) 2008-03-03 2012-05-15 Murata Manufacturing Co., Ltd. Composite antenna
US8797148B2 (en) 2008-03-03 2014-08-05 Murata Manufacturing Co., Ltd. Radio frequency IC device and radio communication system
US8668151B2 (en) 2008-03-26 2014-03-11 Murata Manufacturing Co., Ltd. Wireless IC device
US8360325B2 (en) 2008-04-14 2013-01-29 Murata Manufacturing Co., Ltd. Wireless IC device, electronic apparatus, and method for adjusting resonant frequency of wireless IC device
JP4535209B2 (en) * 2008-04-14 2010-09-01 株式会社村田製作所 Wireless IC device, electronic apparatus, and method for adjusting resonance frequency of wireless IC device
JPWO2009128437A1 (en) * 2008-04-14 2011-08-04 株式会社村田製作所 Wireless IC device, electronic apparatus, and method for adjusting resonance frequency of wireless IC device
US8960557B2 (en) 2008-05-21 2015-02-24 Murata Manufacturing Co., Ltd. Wireless IC device
US8590797B2 (en) 2008-05-21 2013-11-26 Murata Manufacturing Co., Ltd. Wireless IC device
US9022295B2 (en) 2008-05-21 2015-05-05 Murata Manufacturing Co., Ltd. Wireless IC device
US8973841B2 (en) 2008-05-21 2015-03-10 Murata Manufacturing Co., Ltd. Wireless IC device
US8047445B2 (en) 2008-05-22 2011-11-01 Murata Manufacturing Co., Ltd. Wireless IC device and method of manufacturing the same
US7967216B2 (en) 2008-05-22 2011-06-28 Murata Manufacturing Co., Ltd. Wireless IC device
US9281873B2 (en) 2008-05-26 2016-03-08 Murata Manufacturing Co., Ltd. Wireless IC device system and method of determining authenticity of wireless IC device
US8596545B2 (en) 2008-05-28 2013-12-03 Murata Manufacturing Co., Ltd. Component of wireless IC device and wireless IC device
US7871008B2 (en) 2008-06-25 2011-01-18 Murata Manufacturing Co., Ltd. Wireless IC device and manufacturing method thereof
US8011589B2 (en) 2008-06-25 2011-09-06 Murata Manufacturing Co., Ltd. Wireless IC device and manufacturing method thereof
US9077067B2 (en) 2008-07-04 2015-07-07 Murata Manufacturing Co., Ltd. Radio IC device
US8870077B2 (en) 2008-08-19 2014-10-28 Murata Manufacturing Co., Ltd. Wireless IC device and method for manufacturing same
US9231305B2 (en) 2008-10-24 2016-01-05 Murata Manufacturing Co., Ltd. Wireless IC device
US8177138B2 (en) 2008-10-29 2012-05-15 Murata Manufacturing Co., Ltd. Radio IC device
US8917211B2 (en) 2008-11-17 2014-12-23 Murata Manufacturing Co., Ltd. Antenna and wireless IC device
US8692718B2 (en) 2008-11-17 2014-04-08 Murata Manufacturing Co., Ltd. Antenna and wireless IC device
US8342416B2 (en) 2009-01-09 2013-01-01 Murata Manufacturing Co., Ltd. Wireless IC device, wireless IC module and method of manufacturing wireless IC module
US8544759B2 (en) 2009-01-09 2013-10-01 Murata Manufacturing., Ltd. Wireless IC device, wireless IC module and method of manufacturing wireless IC module
US8583043B2 (en) 2009-01-16 2013-11-12 Murata Manufacturing Co., Ltd. High-frequency device and wireless IC device
US9104950B2 (en) 2009-01-30 2015-08-11 Murata Manufacturing Co., Ltd. Antenna and wireless IC device
US8418928B2 (en) 2009-04-14 2013-04-16 Murata Manufacturing Co., Ltd. Wireless IC device component and wireless IC device
US8690070B2 (en) 2009-04-14 2014-04-08 Murata Manufacturing Co., Ltd. Wireless IC device component and wireless IC device
US8876010B2 (en) 2009-04-14 2014-11-04 Murata Manufacturing Co., Ltd Wireless IC device component and wireless IC device
US8976075B2 (en) 2009-04-21 2015-03-10 Murata Manufacturing Co., Ltd. Antenna device and method of setting resonant frequency of antenna device
US9564678B2 (en) 2009-04-21 2017-02-07 Murata Manufacturing Co., Ltd. Antenna device and method of setting resonant frequency of antenna device
US9203157B2 (en) 2009-04-21 2015-12-01 Murata Manufacturing Co., Ltd. Antenna device and method of setting resonant frequency of antenna device
US8381997B2 (en) 2009-06-03 2013-02-26 Murata Manufacturing Co., Ltd. Radio frequency IC device and method of manufacturing the same
US8810456B2 (en) 2009-06-19 2014-08-19 Murata Manufacturing Co., Ltd. Wireless IC device and coupling method for power feeding circuit and radiation plate
US8847831B2 (en) 2009-07-03 2014-09-30 Murata Manufacturing Co., Ltd. Antenna and antenna module
US8680971B2 (en) 2009-09-28 2014-03-25 Murata Manufacturing Co., Ltd. Wireless IC device and method of detecting environmental state using the device
US8853549B2 (en) 2009-09-30 2014-10-07 Murata Manufacturing Co., Ltd. Circuit substrate and method of manufacturing same
US9117157B2 (en) 2009-10-02 2015-08-25 Murata Manufacturing Co., Ltd. Wireless IC device and electromagnetic coupling module
US8994605B2 (en) 2009-10-02 2015-03-31 Murata Manufacturing Co., Ltd. Wireless IC device and electromagnetic coupling module
US9444143B2 (en) 2009-10-16 2016-09-13 Murata Manufacturing Co., Ltd. Antenna and wireless IC device
US9460320B2 (en) 2009-10-27 2016-10-04 Murata Manufacturing Co., Ltd. Transceiver and radio frequency identification tag reader
US9024725B2 (en) 2009-11-04 2015-05-05 Murata Manufacturing Co., Ltd. Communication terminal and information processing system
US9178279B2 (en) 2009-11-04 2015-11-03 Murata Manufacturing Co., Ltd. Wireless IC tag, reader-writer, and information processing system
US9461363B2 (en) 2009-11-04 2016-10-04 Murata Manufacturing Co., Ltd. Communication terminal and information processing system
US8400365B2 (en) 2009-11-20 2013-03-19 Murata Manufacturing Co., Ltd. Antenna device and mobile communication terminal
US8704716B2 (en) 2009-11-20 2014-04-22 Murata Manufacturing Co., Ltd. Antenna device and mobile communication terminal
US8718727B2 (en) 2009-12-24 2014-05-06 Murata Manufacturing Co., Ltd. Antenna having structure for multi-angled reception and mobile terminal including the antenna
US8602310B2 (en) 2010-03-03 2013-12-10 Murata Manufacturing Co., Ltd. Radio communication device and radio communication terminal
US10013650B2 (en) 2010-03-03 2018-07-03 Murata Manufacturing Co., Ltd. Wireless communication module and wireless communication device
US8528829B2 (en) 2010-03-12 2013-09-10 Murata Manufacturing Co., Ltd. Wireless communication device and metal article
US8336786B2 (en) 2010-03-12 2012-12-25 Murata Manufacturing Co., Ltd. Wireless communication device and metal article
US9727765B2 (en) 2010-03-24 2017-08-08 Murata Manufacturing Co., Ltd. RFID system including a reader/writer and RFID tag
US9024837B2 (en) 2010-03-31 2015-05-05 Murata Manufacturing Co., Ltd. Antenna and wireless communication device
US8905316B2 (en) 2010-05-14 2014-12-09 Murata Manufacturing Co., Ltd. Wireless IC device
US9123996B2 (en) 2010-05-14 2015-09-01 Murata Manufacturing Co., Ltd. Wireless IC device
US8424769B2 (en) 2010-07-08 2013-04-23 Murata Manufacturing Co., Ltd. Antenna and RFID device
US9558384B2 (en) 2010-07-28 2017-01-31 Murata Manufacturing Co., Ltd. Antenna apparatus and communication terminal instrument
US8981906B2 (en) 2010-08-10 2015-03-17 Murata Manufacturing Co., Ltd. Printed wiring board and wireless communication system
US8546927B2 (en) 2010-09-03 2013-10-01 Murata Manufacturing Co., Ltd. RFIC chip mounting structure
CN103155279B (en) * 2010-09-28 2015-09-02 Ntn株式会社 Antenna component and manufacture method thereof
US9634384B2 (en) 2010-09-28 2017-04-25 Ntn Corporation Chip antenna and manufacturing method thereof
WO2012043144A1 (en) * 2010-09-28 2012-04-05 Ntn株式会社 Chip antenna and production method thereof
CN103155279A (en) * 2010-09-28 2013-06-12 Ntn株式会社 Chip antenna and production method thereof
US8944335B2 (en) 2010-09-30 2015-02-03 Murata Manufacturing Co., Ltd. Wireless IC device
US9166291B2 (en) 2010-10-12 2015-10-20 Murata Manufacturing Co., Ltd. Antenna device and communication terminal apparatus
US9236651B2 (en) 2010-10-21 2016-01-12 Murata Manufacturing Co., Ltd. Communication terminal device
US9761923B2 (en) 2011-01-05 2017-09-12 Murata Manufacturing Co., Ltd. Wireless communication device
US8991713B2 (en) 2011-01-14 2015-03-31 Murata Manufacturing Co., Ltd. RFID chip package and RFID tag
CN102646209A (en) * 2011-02-22 2012-08-22 山田尖端科技株式会社 Rfid tag, wireless charging antenna part, method of manufacturing same, and mold
US8967484B2 (en) 2011-02-22 2015-03-03 Apic Yamada Corporation RFID tag, wireless charging antenna part, method of manufacturing the same, and mold
KR101223409B1 (en) * 2011-02-22 2013-01-16 아피쿠 야마다 가부시키가이샤 Rfid tag, wireless charging antenna part, method of manufacturing the same, and mold
US8757502B2 (en) 2011-02-28 2014-06-24 Murata Manufacturing Co., Ltd. Wireless communication device
US8960561B2 (en) 2011-02-28 2015-02-24 Murata Manufacturing Co., Ltd. Wireless communication device
US8613395B2 (en) 2011-02-28 2013-12-24 Murata Manufacturing Co., Ltd. Wireless communication device
US8797225B2 (en) 2011-03-08 2014-08-05 Murata Manufacturing Co., Ltd. Antenna device and communication terminal apparatus
US8937576B2 (en) 2011-04-05 2015-01-20 Murata Manufacturing Co., Ltd. Wireless communication device
US8740093B2 (en) 2011-04-13 2014-06-03 Murata Manufacturing Co., Ltd. Radio IC device and radio communication terminal
US9378452B2 (en) 2011-05-16 2016-06-28 Murata Manufacturing Co., Ltd. Radio IC device
US8878739B2 (en) 2011-07-14 2014-11-04 Murata Manufacturing Co., Ltd. Wireless communication device
US8770489B2 (en) 2011-07-15 2014-07-08 Murata Manufacturing Co., Ltd. Radio communication device
US8814056B2 (en) 2011-07-19 2014-08-26 Murata Manufacturing Co., Ltd. Antenna device, RFID tag, and communication terminal apparatus
US9543642B2 (en) 2011-09-09 2017-01-10 Murata Manufacturing Co., Ltd. Antenna device and wireless device
JP2013088364A (en) * 2011-10-20 2013-05-13 Furukawa Electric Co Ltd:The Antenna apparatus
US8905296B2 (en) 2011-12-01 2014-12-09 Murata Manufacturing Co., Ltd. Wireless integrated circuit device and method of manufacturing the same
US8720789B2 (en) 2012-01-30 2014-05-13 Murata Manufacturing Co., Ltd. Wireless IC device
US9692128B2 (en) 2012-02-24 2017-06-27 Murata Manufacturing Co., Ltd. Antenna device and wireless communication device
US9912056B2 (en) 2012-03-16 2018-03-06 Ntn Corporation Multiband antenna and manufacturing method thereof
JP2013197678A (en) * 2012-03-16 2013-09-30 Ntn Corp Multi-band antenna and manufacturing method thereof
WO2013137404A1 (en) * 2012-03-16 2013-09-19 Ntn株式会社 Multiband antenna and manufacturing method thereof
CN104205499A (en) * 2012-03-16 2014-12-10 Ntn株式会社 Multiband antenna and manufacturing method thereof
US20150061963A1 (en) * 2012-03-16 2015-03-05 Ntn Corporation Multiband antenna and manufacturing method thereof
US10235544B2 (en) 2012-04-13 2019-03-19 Murata Manufacturing Co., Ltd. Inspection method and inspection device for RFID tag
US11411299B2 (en) 2017-11-06 2022-08-09 Dongwoo Fine-Chem Co., Ltd. Film antenna and display device including the same
CN111344901A (en) * 2017-11-06 2020-06-26 东友精细化工有限公司 Film antenna and display device comprising same
JP2021501541A (en) * 2017-11-06 2021-01-14 東友ファインケム株式会社Dongwoo Fine−Chem Co., Ltd. Film antenna and display device including it
CN111344901B (en) * 2017-11-06 2023-01-10 东友精细化工有限公司 Film antenna and display device comprising same
JP6999831B2 (en) 2017-11-06 2022-01-19 東友ファインケム株式会社 Film antenna and display device including it
WO2019172482A1 (en) * 2018-03-06 2019-09-12 엘지전자 주식회사 Mobile terminal having antenna
WO2021131283A1 (en) * 2019-12-26 2021-07-01 株式会社村田製作所 Antenna module and communication device having same mounted thereon
WO2021131285A1 (en) * 2019-12-26 2021-07-01 株式会社村田製作所 Antenna module and communication device equipped with same
US11929557B2 (en) 2019-12-26 2024-03-12 Murata Manufacturing Co., Ltd. Antenna module and communication device equipped with the same
WO2022185917A1 (en) * 2021-03-05 2022-09-09 株式会社村田製作所 Antenna module and communication device equipped with same
WO2024034188A1 (en) * 2022-08-10 2024-02-15 株式会社村田製作所 Antenna module and communication device equipped with same

Also Published As

Publication number Publication date
JP3895175B2 (en) 2007-03-22

Similar Documents

Publication Publication Date Title
JP3895175B2 (en) Dielectric resin integrated antenna
JP3664094B2 (en) Composite dielectric molded product, manufacturing method thereof, and lens antenna using the same
CN102186776B (en) Dielectric composite material containing said ceramic powder, and dielectric antenna
JPH03179805A (en) Composite material for dielectric lens antenna
KR100689352B1 (en) Dielectric ceramic, resin-ceramics composite, and electric parts and antenna and method for their manufacture
US7056468B2 (en) Method for producing low-loss tunable ceramic composites with improved breakdown strengths
JP2004253853A (en) Dielectric resin lens antenna
EP1353887A2 (en) Electronically tunable, low-loss ceramic materials including a tunable dielectric phase and multiple metal oxide phases
KR20140081128A (en) Mutilayered ferrite sheet, antenna device and manufacturing method thereof
US20020105479A1 (en) Small antenna and manufacturing method thereof
JPH0869712A (en) Resin-ceramic composite material and wiring board for electronic parts using the composite material
JP2003198231A (en) Dielectric resin film antenna and information recording tag
KR20160014938A (en) Magneto-dielectric antenna
JPH09232855A (en) Electronic component
JP2005094068A (en) Resin-made dielectric antenna
JP2005146009A (en) Dielectric resin composition and electronic component
JP2979736B2 (en) Composite material for dielectric antenna
JP2003198243A (en) Dielectric resin lens antenna
KR101174412B1 (en) Ferrite sheet complex, fabricating method the same, antenna and fabricating method using the same
US20240162624A1 (en) Anti-reflective assemblies
US7508287B2 (en) Band-pass filter
JP2001094339A (en) Composite antenna
JPH08231274A (en) Resin-ceramic composite material and electronic circuit board using the same
US6836251B2 (en) Radio antenna in the form of a transmitting antenna or a receiving antenna, and radio mobile system
JP2006019198A (en) High dielectric composite material

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041122

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060427

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060905

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061102

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20061212

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20061213

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees