JP2003197135A - Image display device - Google Patents

Image display device

Info

Publication number
JP2003197135A
JP2003197135A JP2002187046A JP2002187046A JP2003197135A JP 2003197135 A JP2003197135 A JP 2003197135A JP 2002187046 A JP2002187046 A JP 2002187046A JP 2002187046 A JP2002187046 A JP 2002187046A JP 2003197135 A JP2003197135 A JP 2003197135A
Authority
JP
Japan
Prior art keywords
phosphor
display device
mixed
image display
fluorescent film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002187046A
Other languages
Japanese (ja)
Inventor
Masaaki Komatsu
正明 小松
Masatoshi Shiiki
正敏 椎木
Shin Imamura
伸 今村
Akira Inoue
亮 井上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2002187046A priority Critical patent/JP2003197135A/en
Publication of JP2003197135A publication Critical patent/JP2003197135A/en
Pending legal-status Critical Current

Links

Landscapes

  • Cathode-Ray Tubes And Fluorescent Screens For Display (AREA)
  • Luminescent Compositions (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To improve a filled density of a fluorescent screen, and improve service life characteristics and brightness characteristics of an image display device. <P>SOLUTION: This image display device comprises a field emission type display device provided with a face plate on which the fluorescent screen is formed, and a means to radiate an electron beam to the fluorescent screen. The fluorescent screen is composed of main phosphor mixed with particulate phosphor of an average grain size, smaller than 1/2 that of the main phosphor. Since the particulate phosphor is mixed, the filled density of the fluorescent screen is improved, thereby both characteristics of service life and brightness are improved. <P>COPYRIGHT: (C)2003,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は,蛍光膜が形成され
たフェースプレートと,前記蛍光膜に電子線を照射する
手段を備えた電界放出型ディスプレイ装置及び投射型ブ
ラウン管に係り,特に蛍光膜を構成する蛍光体として微
粒子蛍光体を混合したことを特徴とする電界放出型ディ
スプレイ装置(以下FEDとする)及び投射型ブラウン管
に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a field emission type display device and a projection type cathode ray tube equipped with a face plate having a fluorescent film formed thereon and means for irradiating the fluorescent film with an electron beam. The present invention relates to a field emission type display device (hereinafter referred to as FED) and a projection type cathode ray tube, characterized in that a fine particle phosphor is mixed as a constituent phosphor.

【0002】[0002]

【従来の技術】映像情報システムにおいては,高精細
化、大画面化,薄型化,低消費電力化といった様々な要
求に応じて各種ディスプレイ装置の研究開発が盛んに行
われている。これまで,主としてブラウン管を用いたデ
ィスプレイ装置が幅広く用いられてきたが,薄型化には
限界がある。このような要求に応える薄型化,低消費電
力化を実現するディスプレイとしてFEDの研究開発が近
年,盛んに行われている。FEDは平面状の電界放出型電
子源を真空外囲器の背面に設置し,前面のフェースプレ
ートの内面に蛍光膜を設置した構造となっており,加速
電圧約0.1〜10kV程度の低加速電子線を蛍光膜に照射
して発光させ,画像を表示する。ここで,蛍光膜に照射
する電子線の電流密度は一般のブラウン管の約10〜1
000倍程度と高電流密度であるため,FED用蛍光膜に
おいてはチャージアップを引き起こさない,低抵抗な特
性が望まれる。さらに,高電流密度下における寿命特性
が良好であり,輝度飽和が少なく高輝度な特性も必要と
される。また、高電流密度の電子線を蛍光膜に照射する
ため、蛍光膜を透過してフェースプレート内面に電子線
が到達し、ガラス焼けを引き起こして茶褐色に変色する
ことでディスプレイの輝度寿命が低下する問題がある。
また、ガラス焼けは一般のブラウン管の約100倍程度
と高電流密度の電子線を蛍光膜に照射する投射型ブラウ
ン管においても輝度寿命を低下する要因の1つであり、
その改善が課題となっている。これまで,蛍光膜の低抵
抗化,長寿命化,高輝度化を実現するために様々な開発
が行われてきた。蛍光体を混合することによりFED用蛍
光膜の性能を向上する方法としては,例えば特開平09
87618号公報のように高抵抗な蛍光体と低抵抗な蛍
光体を混合することにより駆動電圧2kV以下で優れた
輝度特性を有する方法がある。また,例えば特開平12
96046号公報のように硫化物系蛍光体とイットリウ
ムのアルミン酸塩系もしくは珪酸塩系蛍光体である酸化
物系蛍光体との混合蛍光体からなり,経時的に発光輝度
維持率が良好な方法がある。一方,FED用途ではない
が,異なる粒径の蛍光体を混合する方法として,例えば
特開平07245062号公報のように,プラズマディ
スプレイ装置において大粒の青色蛍光体の隙間に小粒の
青色蛍光体が入り込んだ緻密な構造をもつ蛍光体層によ
りアドレス電極の露出に起因する不要の放電を抑える方
法がある。これまで,FED用蛍光膜の低抵抗化,長寿命
化,高輝度化を実現するために様々な方法が検討されて
きた。しかしながら,これら従来の方法でその課題が全
て解決されたわけではない。特に,個々の蛍光体のみな
らず,蛍光膜全体の抵抗を低下させ,蛍光膜の長寿命
化,高輝度化を達成し、さらにガラス焼けを軽減する新
しい方法が必要である。
2. Description of the Related Art In video information systems, various display devices have been actively researched and developed in response to various demands such as high definition, large screen, thinning, and low power consumption. Until now, display devices mainly using cathode ray tubes have been widely used, but there is a limit to thinning them. In recent years, FED has been actively researched and developed as a display that realizes thinness and low power consumption to meet such requirements. The FED has a structure in which a flat field emission electron source is installed on the back surface of the vacuum envelope and a fluorescent film is installed on the inner surface of the face plate on the front surface. Low-acceleration electron with an acceleration voltage of about 0.1 to 10 kV. An image is displayed by irradiating the fluorescent film with a line to emit light. Here, the current density of the electron beam with which the fluorescent film is irradiated is about 10 to 1 of a general cathode ray tube.
Since the current density is as high as about 000 times, it is desirable that the FED phosphor film has a low resistance characteristic that does not cause charge-up. In addition, good life characteristics under high current density, high brightness characteristics with less brightness saturation are also required. In addition, since the fluorescent film is irradiated with an electron beam having a high current density, the electron beam reaches the inner surface of the face plate through the fluorescent film, causing a glass burn and discoloring to brown, thereby reducing the brightness life of the display. There's a problem.
In addition, glass burning is one of the factors that reduce the brightness life of a projection type cathode ray tube in which a fluorescent film is irradiated with an electron beam having a current density of about 100 times that of a general cathode ray tube.
The improvement is an issue. Until now, various developments have been made to realize low resistance, long life, and high brightness of the fluorescent film. As a method for improving the performance of the FED phosphor film by mixing the phosphors, for example, Japanese Patent Application Laid-Open No. Hei 09
As disclosed in Japanese Patent No. 87618, there is a method in which a phosphor having a high resistance and a phosphor having a low resistance are mixed to have excellent luminance characteristics at a driving voltage of 2 kV or less. Also, for example, Japanese Patent Laid-Open No.
As disclosed in Japanese Patent Publication No. 96046, a method comprising a mixed phosphor of a sulfide-based phosphor and an yttrium-aluminate-based or silicate-based oxide-based phosphor, and having a good emission luminance maintenance rate over time. There is. On the other hand, as a method of mixing phosphors of different particle sizes, which is not for FED use, for example, as disclosed in Japanese Patent Laid-Open No. 07245062, small blue phosphors are inserted into a gap between large blue phosphors in a plasma display device. There is a method of suppressing unnecessary discharge due to the exposure of the address electrode by using a phosphor layer having a dense structure. Until now, various methods have been studied to realize low resistance, long life, and high brightness of the FED fluorescent film. However, all of these problems have not been solved by these conventional methods. In particular, there is a need for a new method that not only reduces the resistance of the individual phosphors but also the resistance of the entire phosphor film, achieves a long life and high brightness of the phosphor film, and further reduces glass burn.

【0003】[0003]

【発明が解決しようとする課題】したがって本発明の目
的は,上記従来の蛍光膜の低抵抗化、寿命、輝度の各特
性の改善を図ることであり、さらにガラス焼けを軽減す
ることにより,優れた特性を有する電界放出型ディスプ
レイ装置及び投射型ブラウン管を提供することにある。
SUMMARY OF THE INVENTION Therefore, an object of the present invention is to reduce the resistance, the life and the brightness of the conventional phosphor film described above, and to further reduce the glass burn. Another object of the present invention is to provide a field emission display device and a projection type cathode ray tube having the above characteristics.

【0004】[0004]

【課題を解決するための手段】上記目的は蛍光膜が形成
されたフェースプレートと,前記蛍光膜に電子線を照射
する手段とを備えた画像表示装置であって,前記蛍光膜
を主たる蛍光体と平均粒径が主たる蛍光体の1/2より
小さい微粒子蛍光体で構成したことを特徴とする蛍光膜
を備えた電界放出型ディスプレイ装置により達成され
る。即ち,本発明の画像表示装置に使用する蛍光膜の特
徴の一つは,主たる蛍光体に微粒子蛍光体を混合するこ
とにより,主たる蛍光体の隙間に微粒子蛍光体が入り込
み,蛍光体間の接触が増加して蛍光膜全体の低抵抗化が
実現される。また,平均粒径Aの主たる蛍光体に対し
て,混合する微粒子蛍光体の平均粒径Bが0.16A≦B≦0.2
8Aで表される場合,主たる蛍光体の隙間に微粒子蛍光体
がちょうど入り込むため,蛍光膜の充填密度が向上す
る。さらに,主たる蛍光体に対して微粒子蛍光体を2〜5
0重量%混合した場合,微粒子蛍光体は主たる蛍光体の隙
間に入り込み,蛍光膜の充填密度が向上する。また,平
均粒径Aの主たる蛍光体と平均粒径Bの微粒子蛍光体を
混合して成る時,粒径Bの位置の体積が正規分布曲線よ
りも2〜50体積%大きい場合に,微粒子蛍光体は主た
る蛍光体の隙間に入り込み蛍光膜の充填密度が向上す
る。さらに,粒径Bの位置の体積が正規分布曲線よりも
6〜12体積%大きい場合に,特に蛍光膜の充填密度が
向上する。また,主たる蛍光体と微粒子蛍光体の組成を
同一とすることにより,蛍光体の発光特性を変えずに蛍
光膜の低抵抗化を実現できる。また,主たる蛍光体が硫
化物系蛍光体であるZnS:Ag蛍光体であり,混合する蛍光
体が酸化物系蛍光体であるY2SiO5:Ce, (Y,Gd)2SiO5:Ce,
ZnGa2O4, CaMgSi2O6:Eu, Sr3MgSi2O8:Eu, Sr5(PO4)3C
l:Eu, YNbO4:Bi蛍光体のいずれか一種もしくは複数種の
蛍光体とすることにより,硫黄の飛散を軽減することが
でき,蛍光膜が低抵抗化して,寿命,輝度の各特性が向
上し,良好なFED用青色蛍光膜を実現できる。また,主
たる蛍光体が硫化物系蛍光体であるY2O2S:Eu蛍光体であ
り,混合する蛍光体が酸化物系蛍光体であるY2O3:Eu, S
rTiO3:Pr, SnO2:Eu, SrIn2O4:Pr蛍光体のいずれか一種
もしくは複数種の蛍光体とすることにより,硫黄の飛散
を軽減することができ,蛍光膜が低抵抗化して,寿命,
輝度の各特性が向上し,良好なFED用赤色蛍光膜を実現
できる。また,主たる蛍光体が酸化物系蛍光体であるY2
SiO5:Tb, (Y,Gd)2SiO5:Tb, Y3(Al,Ga)5O12:Tb, (Y,Gd)3
(Al,Ga)5O12:Tb, ZnGa2O4:Mn, Zn(Ga,Al)2O4:Mn, ZnO:Z
n蛍光体のうちいずれか一種もしくは複数種の蛍光体で
あり,混合する蛍光体が硫化物系蛍光体であるZnS:Cu,
ZnS:Cu,Au蛍光体のうちいずれか一種もしくは複数種の
蛍光体とすることにより,各蛍光体間の接触が増加する
ことによって蛍光膜が低抵抗化して,寿命,輝度の各特
性が向上し,良好なFED用緑色蛍光膜を実現できる。ま
た,主たる蛍光体が酸化物系蛍光体であるY2O3:Eu, SrT
iO3:Pr蛍光体のうちいずれか一種もしくは複数種の蛍光
体であり,混合する蛍光体が硫化物系蛍光体であるY2O2
S:Eu蛍光体とすることにより,各蛍光体間の接触が増加
することによって蛍光膜が低抵抗化して,寿命,輝度の
各特性が向上し,良好なFED用赤色蛍光膜を実現でき
る。さらに、上記目的は蛍光膜が形成されたフェースプ
レートと,前記蛍光膜に電子線を照射する手段とを備え
た投射型ブラウン管であって,前記蛍光膜を主たる蛍光
体に対して平均粒径が主たる蛍光体より小さい小粒子蛍
光体を5重量%以上70重量%以下の範囲で混合したこ
とを特徴とする蛍光膜を備えた投射型ブラウン管により
達成される。即ち,本発明の画像表示装置に使用する蛍
光膜の特徴の一つは,主たる蛍光体に小粒子蛍光体を混
合することにより,小粒子蛍光体は主たる蛍光体の隙間
に入り込み,蛍光膜の充填密度が向上する。また、主た
る蛍光体の隙間に小粒子蛍光体が入り込み,蛍光体間の
接触が増加して蛍光膜全体の低抵抗化が実現される。ま
た,前記蛍光膜を主たる蛍光体に対して平均粒径が主た
る蛍光体より小さい小粒子蛍光体を10重量%以上40
重量%以下の範囲で混合したことを特徴とする蛍光膜に
より、特に蛍光膜の充填密度が向上する。このような特
徴を有する蛍光膜によって投射型ブラウン管及び電界放
出型ディスプレイ装置においてフェースプレート内面の
透過電子線照射によるガラス焼けが改善し、輝度寿命の
良好な画像表示装置を提供することができる。
An object of the present invention is to provide an image display device provided with a face plate having a fluorescent film formed thereon and a means for irradiating the fluorescent film with an electron beam, wherein the fluorescent film mainly comprises the fluorescent film. And a fine particle phosphor having an average particle size smaller than 1/2 of that of the main phosphor. That is, one of the characteristics of the fluorescent film used in the image display device of the present invention is that by mixing the main fluorescent material with the fine particle fluorescent material, the fine particle fluorescent material enters into the gap between the main fluorescent material and the contact between the fluorescent materials occurs. And the resistance of the entire fluorescent film is reduced. In addition, the average particle size B of the fine particle phosphors to be mixed is 0.16A ≦ B ≦ 0.2 with respect to the main phosphor of the average particle size A.
In the case of being represented by 8A, since the fine particle phosphor just enters the gap between the main phosphors, the packing density of the phosphor film is improved. In addition, 2 to 5 particles of phosphor are used for the main phosphor.
When 0% by weight is mixed, the fine particle phosphor enters the gap between the main phosphors, and the packing density of the phosphor film is improved. Further, when the main fluorescent material having the average particle diameter A and the fine particle fluorescent material having the average particle diameter B are mixed and the volume at the position of the particle diameter B is larger than the normal distribution curve by 2 to 50% by volume, the fine particle fluorescent light is emitted. The body enters the gaps between the main phosphors and the packing density of the phosphor film is improved. Further, when the volume at the position of the particle size B is larger than the normal distribution curve by 6 to 12% by volume, the packing density of the fluorescent film is particularly improved. Further, by making the composition of the main fluorescent material and the fine particle fluorescent material the same, it is possible to realize a low resistance of the fluorescent film without changing the emission characteristics of the fluorescent material. The main phosphor is ZnS: Ag phosphor, which is a sulfide phosphor, and the phosphor to be mixed is an oxide phosphor, Y 2 SiO 5 : Ce, (Y, Gd) 2 SiO 5 : Ce. ,
ZnGa 2 O 4 , CaMgSi 2 O 6 : Eu, Sr 3 MgSi 2 O 8 : Eu, Sr 5 (PO 4 ) 3 C
By using any one or more of l: Eu, YNbO 4 : Bi phosphors, it is possible to reduce the scattering of sulfur, reduce the resistance of the phosphor film, and improve the life and brightness characteristics. It is possible to improve and realize a good blue fluorescent film for FED. The main phosphor is Y 2 O 2 S: Eu phosphor, which is a sulfide-based phosphor, and the mixed phosphor is Y 2 O 3 : Eu, S, which is an oxide-based phosphor.
By using one or more of the rTiO 3 : Pr, SnO 2 : Eu, and SrIn 2 O 4 : Pr phosphors, it is possible to reduce the scattering of sulfur and reduce the resistance of the phosphor film. ,lifespan,
The brightness characteristics are improved, and a good red phosphor film for FED can be realized. In addition, the main phosphor is Y 2 which is an oxide-based phosphor.
SiO 5 : Tb, (Y, Gd) 2 SiO 5 : Tb, Y 3 (Al, Ga) 5 O 12 : Tb, (Y, Gd) 3
(Al, Ga) 5 O 12 : Tb, ZnGa 2 O 4 : Mn, Zn (Ga, Al) 2 O 4 : Mn, ZnO: Z
ZnS: Cu, which is one or more of the n phosphors and the phosphor to be mixed is a sulfide-based phosphor,
By using one or more of ZnS: Cu, Au phosphors, the contact between the phosphors is increased and the resistance of the phosphor film is lowered, thus improving the life and brightness characteristics. In addition, a good green fluorescent film for FED can be realized. The main phosphor is Y 2 O 3 : Eu, SrT, which is an oxide phosphor.
Y 2 O 2 which is one or more of iO 3 : Pr phosphors and the phosphor to be mixed is a sulfide-based phosphor
By using the S: Eu phosphor, the resistance of the phosphor film is lowered by increasing the contact between the phosphors, the lifetime and brightness characteristics are improved, and a good red phosphor film for FED can be realized. Further, the above-mentioned object is a projection type CRT equipped with a face plate having a fluorescent film formed thereon and means for irradiating the fluorescent film with an electron beam, wherein the average particle size of the fluorescent film is mainly with respect to the main fluorescent substance. This is achieved by a projection type cathode ray tube equipped with a fluorescent film, characterized in that a small particle phosphor smaller than the main phosphor is mixed in a range of 5% by weight or more and 70% by weight or less. That is, one of the characteristics of the fluorescent film used in the image display device of the present invention is that by mixing the main fluorescent substance with the small particle fluorescent substance, the small particle fluorescent substance enters into the gap between the main fluorescent substances and The packing density is improved. In addition, the small particle phosphors enter the gaps between the main phosphors, the contact between the phosphors increases, and the resistance of the entire phosphor film is reduced. In addition, a small particle phosphor having an average particle size smaller than that of the main fluorescent substance is used in an amount of 10% by weight or more and 40% or less.
The packing density of the fluorescent film is particularly improved by the fluorescent film characterized by being mixed in the range of not more than wt%. With the fluorescent film having such characteristics, it is possible to provide an image display device having a good brightness life by improving the glass burning due to the transmission electron beam irradiation on the inner surface of the face plate in the projection type cathode ray tube and the field emission type display device.

【0005】[0005]

【発明の実施の形態】ここでは本発明の画像表示装置に
使用する蛍光体の製造方法及び輝度特性等の各特性につ
いて詳述するが,以下に示す実施形態は,本発明を具体
化する一例を示すものであり,本発明を拘束するもので
はない。 (実施形態1)図1は本発明の蛍光膜の1例を示す模式
図である。図1において,2はフェースプレート,3は
蛍光膜全体,4は主たる蛍光体,5は混合した微粒子蛍
光体である。最適な蛍光体層の厚さは3層程度であり,
本発明の蛍光膜では各蛍光体層の隙間に微粒子蛍光体が
入り込んだ構造になっている。蛍光膜3の受ける電子ビ
ーム6による電子は,混合した微粒子蛍光体5によって
各蛍光体間の接触が増加しているために,スムーズに蛍
光膜3の全体に広がり,結果として蛍光膜3全体の低抵
抗化が図られている。さらに,微粒子蛍光体が混合され
ている分量だけ蛍光膜密度が向上し,蛍光体全体の表面
積が増加している。従って,同じ電流量の電子線が蛍光
膜に照射された場合の蛍光体表面の電流密度は,本発明
では従来に比べて低下する。電流密度が低くなれば,蛍
光膜の経時的劣化は軽減し,寿命特性が向上する。ま
た,電流密度が低くなれば輝度飽和による輝度低下を抑
えることができ,蛍光膜全体からの発光輝度は向上す
る。蛍光膜周辺の構成としては、硫化物系蛍光体を使用
する場合には、アルミバックによって硫黄の飛散を防止
して電子源の劣化を押さえることができる。また、フェ
ースプレート2の蛍光膜側にITO膜を設けることによっ
て蛍光膜の低抵抗化を図ることができる。蛍光膜3の受
ける電子線6は電界放出型ディスプレイでは加速電圧が
約0.1kVから10kV程度と低加速電圧であり、その電
流量は一般のブラウン管に比べて約10倍から1000倍と高
い。また、投射型ブラウン管における照射電子線の電流
量は一般のブラウン管に比べて約100倍と高い。その
ため、蛍光膜を透過してフェースプレート2に到達する
電子線量が比較的多く、フェースプレート2の内面が電
子線によって茶褐色に変色するガラス焼けが生じる。ガ
ラス焼けが生じると蛍光体で発光する光がフェースプレ
ート2を透過してディスプレイの前面に出てくる光の強
度が低下する。ガラス焼けは、ディスプレイの輝度寿命
を低下する原因の一つである。このようなディスプレイ
の輝度寿命低下を引き起こすガラス焼けを軽減するに
は、蛍光膜の充填密度を高めて蛍光体間の空隙を少なく
し、透過する電子線量を低減することが有効である。本
発明の小粒子蛍光体を混合した蛍光膜によって、蛍光膜
の充填密度が向上し、透過電子線量が低減してガラス焼
けを軽減することができる。 (実施形態2)図2は上述の蛍光膜3の1部を示す模式
図である。図2において,3個の主たる蛍光体4の上に
微粒子蛍光体5が乗っている。ここで,主たる蛍光体の
半径をR,微粒子蛍光体の半径をr,微粒子蛍光体の中
心から主たる蛍光体の中心を通る面に垂直に下ろした線
の長さをyとすれば, y=(r+2rR−1/3R1/2 で表される。y=0の時,すなわち3個の主たる蛍光体
の隙間に入る場合の微粒子蛍光体の半径はr=0.16Rで
ある。また,上述の3個の主たる蛍光体の上にさらに1
個の主たる蛍光体を乗せた時にできる隙間に微粒子蛍光
体が入り,4個の主たる蛍光体全てに接触する場合には
微粒子蛍光体の中心は4個の主たる蛍光体の中心が作る
四面体の重心となるから,y=(8/27)Rであり,
r=0.28Rである。従って,主たる蛍光体の平均粒径を
A,混合する微粒子蛍光体の平均粒径をBとすれば,主た
る蛍光体の隙間に入り,微粒子蛍光体が各蛍光体と接触
するのは0.16A≦B≦0.28Aとなる。この時,微
粒子蛍光体の組成が主たる蛍光体の組成と同一であれ
ば,微粒子蛍光体の混合する重量は2重量%〜9重量%
の範囲が望ましい。また,この時,微粒子蛍光体による
蛍光体の表面積の増加分は10〜31%である。微粒子
蛍光体の平均粒径BがB=0.28Aであれば,微粒子蛍光
体の混合する重量は9重量%,表面積の増加は31%で
ある。従って,微粒子蛍光体の平均粒径BがB=0.28A
の場合の電流密度は24%低減する。図3にB=0.28
Aの場合の青色ZnS:Ag蛍光体の加速試験による輝度維持
率を示す。照射した電子線の電流密度は450μA/c
m2,基板温度は200℃ である。従来の蛍光膜では電
子線を照射すると輝度が急激に低下して,初期輝度に比
べて約80%まで減少する。一方,本発明による蛍光膜
を用いた場合には蛍光膜全体の低抵抗化が図られてお
り,電流密度が軽減するので加速試験終了時においても
輝度維持率は約90%を保っている。このように,本発
明の蛍光膜を用いることによって,輝度維持率は従来に
比べて約10%改善する。また,図4にZnS:Ag蛍光体の
発光輝度と電流密度のlog―logプロットのグラフを示
す。電流密度の範囲は低電流密度域で約45μA/cm2
高電流密度域で約110μA/cm2とした。グラフ下線が
従来の発光輝度電流密度を示すグラフであり,グラフ上
線が本発明の発光輝度電流密度を示すグラフである。上
述したように,B=0.28Aの場合の電流密度は24%
低減し,低電流密度域で約35μA/cm2,高電流域で約
85μA/cm2となる。ZnS:Agの場合にはlog-logプロット
の傾きが電流密度が高くなるにしたがって約0.7から
約0.6まで低下し,発光効率が低下する。従って,電
流密度は低い方が発光効率は高い。本発明により電流密
度が低下して発光効率の高い領域を利用できるため,図
4に示すように低電流域で発光輝度が約10%向上し,
高電流域で約20%向上した。 (実施形態3)図5は混合する微粒子蛍光体5の平均粒
径Bが主たる蛍光体4の隙間よりも大きいB>0.28A
の場合の模式図である。この時の蛍光膜の膜厚TはT=
4R+2yで表される。図6に主たる蛍光体の平均粒径
が4μmの場合の微粒子蛍光体の平均粒径変化による膜
厚変化のグラフを示す。微粒子蛍光体の平均粒径が1.1
μm程度までは,微粒子蛍光体が隙間に入り込むために
膜厚は10.5μm程度と変わらない。一方,B>1.
1μmでは図6に示すように膜厚は厚くなる傾向があ
る。蛍光体組成が同一でありB=1.1μmの場合の微粒
子蛍光体の重量は9重量%が最適である。蛍光体の平均
粒径が4μmの場合の最適な膜厚は輝度特性の要請から
10〜12μm程度が望ましく,それよりも膜厚が薄い
と発光層が十分でなく輝度が低く,逆にそれよりも厚い
と蛍光体表面の光吸収により発光輝度が低下する。図6
に示すように混合する微粒子蛍光体の平均粒径が主たる
蛍光体の1/2である2.0μmより小さければ,膜厚
は12μmより小さく良好である。この時,蛍光体の混
合する重量は50重量%より少ない範囲が望ましく,蛍
光膜密度は6重量%〜12重量%がより望ましい。図7
は蛍光体の粒度分布を示すグラフであり,縦軸を体積比
率,横軸を蛍光体の粒径で表している。平均粒径が4μ
mの主たる蛍光体に平均粒径が1μmの微粒子蛍光体を
10重量%混合した場合,図7に示すように全体として
は小粒子側に偏った粒度分布となり,微粒子蛍光体が混
合されている分量だけ主たる蛍光体の形成する正規分布
からずれている。主たる蛍光体と微粒子蛍光体の組成が
同一である場合には,このずれは混合する微粒子蛍光体
の重量比にほぼ等しく,粒径Bの位置における体積比率
の正規分布からのずれは2体積%〜50体積%大きい範囲
で良好であり,特に6体積%〜12体積%大きい範囲が
より望ましい。図8は粒径6μm及び4μmのY2SiO5:T
b蛍光体、及び粒径6μmと4μmのY2SiO5:Tb蛍光体を
混合した蛍光体の粒度分布を示すグラフである。図8に
おいて、粒径6μmの主たる蛍光体に粒径4μmの小粒
子蛍光体を20重量%混合している。そのため、全体と
しては小粒子側に偏った粒度分布となり,微粒子蛍光体
が混合されている分量だけ主たる蛍光体の形成する粒径
6μmの粒度分布からずれている。図9に蛍光膜充填密
度の微粒子蛍光体の平均粒径依存性を示す。微粒子蛍光
体の平均粒径Bが0.8〜1.4μm程度が望ましく,
従って主たる蛍光体と微粒子蛍光体の組成が同一である
場合には蛍光膜密度は6重量%〜12重量%がより望ま
しい。 (実施形態4)ここでは、原理実験としてガラス基板上
に混合蛍光膜を形成して、その膜厚、膜密度、光透過率
の特性を調べた。平均粒径8μmの緑色発光Y2SiO5:Tb
蛍光体と平均粒径4μmの緑色発光Y2SiO5:Tb蛍光体を混
合して蛍光膜をガラス基板上に沈降塗布法により形成し
た。今回行った沈降塗布では、直径65mmの沈降管に
純水135mlを入れ、無水酢酸バリウム1.30gを
純水150mlに加えて調合した溶液を14ml入れ、
界面活性剤を14ml加えた。所定の膜厚になるように
重量を計量した混合蛍光体を純水50mlに加えて、こ
れに水ガラス(オーカシールA、東京応化工業)40m
lを純水198mlに加えて調合した溶液を27ml加
え、溶液及び基板をセットした沈降管中に投入した。塗
布時のガラス基板からの液面高さは約5cmである。沈
降時間は7分として、塗布後に溶液を沈降管の下からゆ
っくりと抜いてから、塗布した基板を室温にて乾燥し
た。このようにして混合蛍光膜を形成した。塗布前後の
ガラス基板の重量から塗布した蛍光膜の膜重量を求め
た。また、膜厚はレーザーフォーカス変位計(LT―8
010、KEYENCE)により計測した。膜密度は膜重量、
膜厚、基板面積より求めた。塗布した蛍光膜の膜厚の膜
重量変化を図10に示す。粒径8μm単一蛍光膜の場合
の膜厚は膜重量の増加とともに直線的に増加する。粒径
8μmの蛍光体に粒径4μmの蛍光体を30重量%加え
て混合した混合蛍光膜の膜厚膜重量変化を図10に合わ
せて示した。同じ膜重量では混合蛍光膜の方が膜厚が薄
くなっている。特に、膜重量が4mg/cmを越える
と混合蛍光膜の膜厚は大幅に薄くなっている。図11に
膜密度の膜重量変化を示す。単一蛍光膜の場合の膜密度
は膜重量によらず、約1.7g/cmでほぼ一定であ
る。混合蛍光膜では膜重量が増加するとともに膜密度は
増加する傾向がある。単一蛍光膜と混合蛍光膜を比較す
ると、膜密度は混合蛍光膜の方が高く、膜重量が大きい
ほどその差が大きい。次に、分光光度計(U3200、
日立製作所)で各蛍光膜の光透過率の測定を行った。照
射する光の波長は540nmとして、蛍光膜側から光を
照射して蛍光膜と基板ガラスを透過した光量を測定し
た。リファレンスにはガラス基板のみを設置して、蛍光
膜の光透過率を測定した。図12に粒径8μm単一蛍光
膜の場合及び粒径8μm蛍光体に粒径4μm蛍光体を3
0重量%混合した混合蛍光膜の光透過率の膜厚変化を示
す。両者ともに膜厚が厚くなると透過率が減少する。同
じ膜厚では混合蛍光膜の方が光透過率が約10%程度低
くなっている。粒径8μmの蛍光体と粒径8μmの蛍光
体に粒径4μmの蛍光体を30重量%混合した混合蛍光
膜の膜厚、膜密度及び光透過率の比較を行った。混合蛍
光膜では膜厚が薄く、膜密度が高くなることが明らかに
なった。また、光透過率は混合蛍光膜で約10%と大幅
に低下した。これらの結果は(実施形態1)で述べたよ
うに、混合した小粒子蛍光体が主たる蛍光体の隙間に入
り込み、空間率が低下したことを示している。 (実施形態5)平均粒径8μmの緑色発光Y2SiO5:Tb蛍
光体と平均粒径4μmの緑色発光Y2SiO5:Tb蛍光体を混合
して蛍光膜をガラス基板上に沈降塗布法により形成し
た。蛍光膜の形成方法は(実施形態4)と同様である。
図13に蛍光膜の光透過率の4μm混合比率変化を示
す。粒径4μmの透過率が低いために全体として4μm
混合比率が増加するに伴い透過率は低下する傾向があ
る。このことから、小粒子蛍光体による単一蛍光膜が高
密度蛍光膜を実現する候補の1つとして考えられるので
あるが、小粒子蛍光体の場合には輝度及び寿命特性がそ
れよりも大きい粒子形状の蛍光体に対して劣る場合があ
る。ここでは、小粒子蛍光体の混合比率が低い場合に蛍
光膜の高密度化が図られることについて述べる。図13
より、小粒子混合比率が5重量%以上70重量%以下の
範囲において、直線的な透過率の下降曲線よりもさらに
透過率が低下している範囲がある。粒径8μm単一蛍光
膜の透過率が62%であるのに対して、混合膜の透過率
は4μm混合比率が10重量%で54%と約8%低下す
る。透過率は4μm混合比率が5重量%以上70重量%
以下の範囲で低く、比較的混合比率が低い場合にその効
果が見られる。特に、4μm混合比率が10重量%以上
40重量%以下の範囲で透過率が低く、小粒子を混合し
たことによる光のストッピング効果が大きい。この結果
から、電子線を混合蛍光膜に照射した場合にも、電子線
に対するストッピング効果が働き、フェースプレート内
面のガラス焼けを軽減することができる。次に、2成分
粒子混合充填層空間率推定プログラム(鈴木道隆)によ
って粒子の空隙の割合である空間率の計算を行った。図
14に粒径8μm、空間率50%の粒子と粒径4μm、
空間率50%の粒子を混合した時の空間率の小粒子混合
比率変化を示す。2つの粒子を混合することにより、空
間率は両者の空間率50%よりも減少することが分か
る。小粒子混合比率が41重量%の時、空間率は48%
と最小となる。図14に粒径8μm、空間率50%の粒
子と粒径2μm、空間率50%の粒子を混合した時の空
間率の小粒子混合比率変化を合わせて示す。粒径2μm
の粒子を混合した場合には、小粒子混合比率が33重量
%の時、空間率は44%で最小となる。また、粒径8μ
mの粒子に粒径4μmを混合した場合と粒径2μmの粒
子を混合した場合を比較すると、粒径差が大きい粒径2
μmを混合した場合の方が空間率の低下が大きいことが
分かる。また、粒径差が大きい方が空間率が最小となる
小粒子混合比率は小さくなる。粒径8μmの粒子に粒径
4μmの粒子を混合した場合の実験結果と計算結果を比
較すると、実験では小粒子混合比率が20重量%付近を
中心に10重量%以上40重量%以下の範囲で透過率が
低いのに対して、計算では小粒子混合比率が41重量%
で空間率が最小となり、実験の方が低い混合比率で充填
密度が良好な領域があった。これは、各蛍光体が粒度分
布に広がりをもつために、粒径8μm中の大粒子と粒径
4μm中の小粒子による空間率低下効果が大きく、実験
における小粒子混合比率の最適点が計算よりも低くなっ
たと考えられる。 (実施例)以下に具体的な実施例を挙げて本発明を説明
するが,本発明はこれらの実施例に限定されるものでは
なく,本発明の目的が達成される範囲の各要素の置換や
設計変更がなされたものも包含することは言うまでもな
い。 (実施例1)MIM電子源ディスプレイ装置その1 本発明のMIM型電子源ディスプレイ装置を図15に示
す。MIM型電子源ディスプレイ装置12はフェースプ
レート2、MIM電子源11、リアプレイト7で構成さ
れており、MIM型電子源11は下部電極(Al)8,絶
縁層(Al2O3)9,上部電極(Ir-Pt-Au)10で形成さ
れている。特に、フェースプレート2の内側には青色蛍
光体として平均粒径4μmのZnS:Ag、Cl蛍光体
と平均粒径1μmのZnS:Ag、Cl微粒子蛍光体を
9重量%混合した蛍光膜3がある。さらに,蛍光体の抵
抗を下げるために導電性物質In2O3を蛍光膜に混合し
た。蛍光膜の作成では、フェースプレートにポリビニル
アルコールと重クロム酸塩との混合水溶液に、赤(Y
S:Eu蛍光体)、緑(ZnS:Cu,Al蛍光
体)、青(ZnS:Ag,Cl蛍光体粒径4μm、80
重量%+粒径4μm、20重量%)のいずれかの蛍光体
の混ざったスラリーを注入する。マスクを介して露光し
たあと現像すると蛍光体のパターンが形成される。この
工程を数回繰り返して蛍光膜を形成する。これを他の発
色の蛍光体についても同様に繰り返すことで青色ついて
は混合蛍光膜を形成した。精細度を上げるために1画素
間に黒色導電材を設けた。黒色導電材の作製では,全面
にホトレジスト膜を塗布し,マスクを介して露光して現
像し,部分的にホトレジスト膜を残す。その後,全面に
黒鉛膜を形成してから過酸化水素などを作用させてホト
レジスト膜とその上の黒鉛を取り除いて黒色導電材を形
成した。メタルバックは,蛍光膜3の内面にフィルミン
グ加工してからAlを真空蒸着して作成する。その後,熱
処理してフィルミング剤を飛ばして作製した。このよう
にして蛍光膜3が完成する。本発明により輝度維持率は
従来に比べて10%向上し,発光のエネルギー効率は低
電流域で10%向上し,高電流域で20%向上した。 (実施例2)MIM電子源ディスプレイ装置その2 本発明のMIM型電子源ディスプレイ装置を図15に示
す。特に、フェースプレート2の内側には青色蛍光体と
して平均粒径4μmのZnS:Ag蛍光体と平均粒径1
μmのY2SiO5:Ce微粒子蛍光体を混合した蛍光膜3があ
る。導電性物質,黒色導電材及びメタルバックの形成方
法は(実施例1)と同様である。本発明による輝度維持
率,発光のエネルギー効率は実施例1と同様に良好であ
った。 (実施例3)MIM電子源ディスプレイ装置その3 本発明のMIM型電子源ディスプレイ装置を図15に示
す。特に、フェースプレート2の内側には赤色蛍光体と
して平均粒径3μmのYS:Eu蛍光体と平均粒
径0.8μmのYS:Eu微粒子蛍光体を混合し
た蛍光膜3がある。導電性物質,黒色導電材及びメタル
バックの形成方法は(実施例1)と同様である。本発明
による輝度維持率,発光のエネルギー効率は実施例1と
同様に良好であった。 (実施例4)MIM電子源ディスプレイ装置その4 本発明のMIM型電子源ディスプレイ装置を図15に示
す。特に、フェースプレート2の内側には赤色蛍光体と
して平均粒径2.5μmのYS:Eu蛍光体と平
均粒径1μmのY:Eu微粒子蛍光体を混合した
蛍光膜3がある。黒色導電材及びメタルバックの形成方
法は(実施例1)と同様である。本発明による輝度維持
率,発光のエネルギー効率は実施例1と同様に良好であ
った。 (実施例5)MIM電子源ディスプレイ装置その5 本発明のMIM型電子源ディスプレイ装置を図15に示
す。特に、フェースプレート2の内側には赤色蛍光体と
して平均粒径4μmのYS:Eu蛍光体と平均粒
径1μmのSrTiO3:Pr微粒子蛍光体を混合した蛍光膜3
がある。導電性物質,黒色導電材及びメタルバックの形
成方法は(実施例1)と同様である。本発明による輝度
維持率,発光のエネルギー効率は実施例1と同様に良好
であった。 (実施例6)MIM電子源ディスプレイ装置その6 本発明のMIM型電子源ディスプレイ装置を図15に示
す。特に、フェースプレート2の内側には緑色蛍光体と
して平均粒径3μmのZnS:Cu蛍光体と平均粒径
0.8μmのZnS:Cu微粒子蛍光体を混合した蛍光
膜3がある。導電性物質,黒色導電材及びメタルバック
の形成方法は(実施例1)と同様である。本発明による
輝度維持率,発光のエネルギー効率は実施例1と同様に
良好であった。(実施例7)MIM電子源ディスプレイ
装置その7 本発明のMIM型電子源ディスプレイ装置を図15に示
す。特に、フェースプレート2の内側には緑色蛍光体と
して平均粒径3μmのZnS:Cu蛍光体と平均粒径
0.8μmのYSiO:Tb微粒子蛍光体を混合し
た蛍光膜3がある。導電性物質,黒色導電材及びメタル
バックの形成方法は(実施例1)と同様である。本発明
による輝度維持率,発光のエネルギー効率は実施例1と
同様に良好であった。 (実施例8)MIM電子源ディスプレイ装置その8 本発明のMIM型電子源ディスプレイ装置を図15に示
す。特に、フェースプレート2の内側には緑色蛍光体と
して平均粒径4μmのY2SiO5:Tb蛍光体と平均粒径1μ
mのY2SiO5:Tb微粒子蛍光体を混合した蛍光膜3があ
る。導電性物質,黒色導電材及びメタルバックの形成方
法は(実施例1)と同様である。本発明による輝度維持
率,発光のエネルギー効率は実施例1と同様に良好であ
った。 (実施例9)MIM電子源ディスプレイ装置その9 本発明のMIM型電子源ディスプレイ装置を図15に示
す。特に、フェースプレート2の内側には緑色蛍光体と
して平均粒径4μmのY2SiO5:Tb蛍光体と平均粒径1μ
mのZnS:Cu微粒子蛍光体を混合した蛍光膜3がある。導
電性物質,黒色導電材及びメタルバックの形成方法は
(実施例1)と同様である。本発明による輝度維持率,
発光のエネルギー効率は実施例1と同様に良好であっ
た。 (実施例10)MIM電子源ディスプレイ装置その10 本発明のMIM型電子源ディスプレイ装置を図15に示
す。特に、フェースプレート2の内側には緑色蛍光体と
して平均粒径4μmのY3(Al,Ga)5O12:Tb蛍光体と平均粒
径1μmのZnS:Cu微粒子蛍光体を混合した蛍光膜3があ
る。導電性物質,黒色導電材及びメタルバックの形成方
法は(実施例1)と同様である。本発明による輝度維持
率,発光のエネルギー効率は実施例1と同様に良好であ
った。 (実施例11)MIM電子源ディスプレイ装置その11 本発明のMIM型電子源ディスプレイ装置を図15に示
す。特に、フェースプレート2の内側には赤色蛍光体と
して平均粒径4μmのY2O3:Eu蛍光体と平均粒径1μm
のY2O2S:Eu微粒子蛍光体を混合した蛍光膜3がある。導
電性物質,黒色導電材及びメタルバックの形成方法は
(実施例1)と同様である。本発明による輝度維持率,
発光のエネルギー効率は実施例1と同様に良好であっ
た。 (実施例12)MIM電子源ディスプレイ装置その12 本発明のMIM型電子源ディスプレイ装置を図14に示
す。特に、フェースプレート2の内側には赤色蛍光体と
して平均粒径4μmのSrTiO3:Pr蛍光体と平均粒径1μ
mのY2O2S:Eu微粒子蛍光体を混合した蛍光膜3がある。
導電性物質,黒色導電材及びメタルバックの形成方法は
(実施例1)と同様である。本発明による輝度維持率,
発光のエネルギー効率は実施例1と同様に良好であっ
た。 (実施例13)Spindt電子源ディスプレイ装置その1 本発明のSpindt型電子源ディスプレイ装置を図16に示
す。Spindt型電子源ディスプレイ装置19はフェースプ
レート2、Spindt電子源18、リアプレイト7で構成さ
れており、Spindt型電子源18は陰極13,抵抗膜1
4,絶縁膜15,ゲート16,円錐型金属(Moなど)1
7で形成されている。特に、フェースプレート2の内側
には青色蛍光体として平均粒径4μmのZnS:Ag蛍
光体と平均粒径1μmのY2SiO5:Ce微粒子蛍光体を混合
した蛍光膜3がある。導電性物質,黒色導電材及びメタ
ルバックの形成方法は(実施例1)と同様である。本発
明による輝度維持率,発光のエネルギー効率は実施例1
と同様に良好であった。 (実施例14)Spindt電子源ディスプレイ装置その2 本発明のSpindt型電子源ディスプレイ装置を図16に示
す。特に、フェースプレート2の内側には赤色蛍光体と
して平均粒径3μmのYS:Eu蛍光体と平均粒
径0.8μmのYS:Eu微粒子蛍光体を混合し
た蛍光膜3がある。導電性物質,黒色導電材及びメタル
バックの形成方法は(実施例1)と同様である。本発明
による輝度維持率,発光のエネルギー効率は実施例1と
同様に良好であった。 (実施例15)Spindt電子源ディスプレイ装置その3 本発明のSpindt型電子源ディスプレイ装置を図16に示
す。特に、フェースプレート2の内側には緑色蛍光体と
して平均粒径4μmのY2SiO5:Tb蛍光体と平均粒径1μ
mのY2SiO5:Tb微粒子蛍光体を混合した蛍光膜3があ
る。導電性物質,黒色導電材及びメタルバックの形成方
法は(実施例1)と同様である。本発明による輝度維持
率,発光のエネルギー効率は実施例1と同様に良好であ
った。 (実施例16)MIM電子源ディスプレイ装置その13 本発明のMIM型電子源ディスプレイ装置を図15に示
す。MIM型電子源ディスプレイ装置12はフェースプ
レート2、MIM電子源11、リアプレイト7で構成さ
れており、MIM型電子源11は下部電極(Al)8,絶
縁層(Al2O3)9,上部電極(Ir-Pt-Au)10で形成さ
れている。特に、フェースプレート2の内側には青色蛍
光体として平均粒径8μmのZnS:Ag,Al蛍光体と平均粒
径4μmのZnS:Ag,Al小粒子蛍光体を20重量%混合し
た蛍光膜3がある。蛍光膜の塗布にはスラリー法を用い
た。ポリビニルアルコールと重クロム酸塩との混合水溶
液に蛍光体を分散させてスラリー懸濁液を調合する。フ
ェースプレートに懸濁液を塗布して乾燥後、マスクを介
して露光して蛍光体を固着させる。温純水でスプレイ現
像して未露光部分の膜を洗い流して蛍光体のパターンを
形成した。精細度を上げるために1画素間に黒色導電材
を設けた。黒色導電材の作製では,全面にホトレジスト
膜を塗布し,マスクを介して露光して現像し,部分的に
ホトレジスト膜を残す。その後,全面に黒鉛膜を形成し
てから過酸化水素などを作用させてホトレジスト膜とそ
の上の黒鉛を取り除いて黒色導電材を形成した。メタル
バックは,蛍光膜3の内面にフィルミング加工してから
Alを真空蒸着して作成する。その後,熱処理してフィル
ミング剤を飛ばして作製した。本発明により製作した電
界放出型ディスプレイ装置では、従来の蛍光膜を用いた
場合に比べてその輝度寿命は10%向上した。 (実施例17)MIM電子源ディスプレイ装置その14 本発明のMIM型電子源ディスプレイ装置を図15に示
す。特に、フェースプレート2の内側には青色蛍光体と
して平均粒径6μmのZnS:Ag,Al蛍光体と平均粒径4μ
mのZnS:Ag,Cl小粒子蛍光体を混合した蛍光膜3があ
る。蛍光膜、黒色導電材及びメタルバックの形成方法は
(実施例16)と同様である。本発明による輝度寿命は
(実施例16)と同様に良好であった。 (実施例18)MIM電子源ディスプレイ装置その15 本発明のMIM型電子源ディスプレイ装置を図15に示
す。特に、フェースプレート2の内側には緑色蛍光体と
して平均粒径4μmのZnS:Cu,Al蛍光体と平均粒径2μ
mのZnS:Cu,Al小粒子蛍光体を混合した蛍光膜3があ
る。蛍光膜,黒色導電材及びメタルバックの形成方法は
(実施例16)と同様である。本発明による輝度寿命は
(実施例16)と同様に良好であった。 (実施例19)MIM電子源ディスプレイ装置その16 本発明のMIM型電子源ディスプレイ装置を図15に示
す。特に、フェースプレート2の内側には緑色蛍光体と
して平均粒径6μmのY2SiO5:Tb蛍光体と平均粒径2μ
mのZnS:Cu,Al小粒子蛍光体を混合した蛍光膜3があ
る。蛍光膜,黒色導電材及びメタルバックの形成方法は
(実施例16)と同様である。本発明による輝度寿命は
(実施例16)と同様に良好であった。 (実施例20)MIM電子源ディスプレイ装置その17 本発明のMIM型電子源ディスプレイ装置を図15に示
す。特に、フェースプレート2の内側には緑色蛍光体と
して平均粒径8μmのY3(Al,Ga)5O12:Tb蛍光体と平均粒
径4μmのZnS:Cu,Al小粒子蛍光体を混合した蛍光膜3
がある。蛍光膜,黒色導電材及びメタルバックの形成方
法は(実施例16)と同様である。本発明による輝度寿
命は(実施例16)と同様に良好であった。 (実施例21)MIM電子源ディスプレイ装置その18 本発明のMIM型電子源ディスプレイ装置を図15に示
す。特に、フェースプレート2の内側には赤色蛍光体と
して平均粒径4μmのYS:Eu蛍光体と平均粒
径3μmのYS:Eu小粒子蛍光体を混合した蛍
光膜3がある。蛍光膜、黒色導電材及びメタルバックの
形成方法は(実施例16)と同様である。本発明による
輝度寿命は(実施例16)と同様に良好であった。 (実施例22)MIM電子源ディスプレイ装置その19 本発明のMIM型電子源ディスプレイ装置を図15に示
す。特に、フェースプレート2の内側には赤色蛍光体と
して平均粒径8μmのY:Eu蛍光体と平均粒径
3μmのYS:Eu小粒子蛍光体を混合した蛍光
膜3がある。蛍光膜、黒色導電材及びメタルバックの形
成方法は(実施例16)と同様である。本発明による輝
度寿命は(実施例16)と同様に良好であった。 (実施例23)Spindt電子源ディスプレイ装置その4 本発明のSpindt型電子源ディスプレイ装置を図16に示
す。Spindt型電子源ディスプレイ装置19はフェースプ
レート2、Spindt電子源18、リアプレイト7で構成さ
れており、Spindt型電子源18は陰極13,抵抗膜1
4,絶縁膜15,ゲート16,円錐型金属(Moなど)1
7で形成されている。特に、フェースプレート2の内側
には青色蛍光体として平均粒径8μmのZnS:Ag,Al蛍光
体と平均粒径6μmのZnS:Ag,Al小粒子蛍光体を混合し
た蛍光膜3がある。蛍光膜,黒色導電材及びメタルバッ
クの形成方法は(実施例16)と同様である。本発明に
よる輝度寿命は(実施例16)と同様に良好であった。 (実施例24)Spindt電子源ディスプレイ装置その5 本発明のSpindt型電子源ディスプレイ装置を図16に示
す。特に、フェースプレート2の内側には緑色蛍光体と
して平均粒径6μmのZnS:Cu,Al蛍光体と平均粒径4μ
mのY2SiO5:Tb小粒子蛍光体を混合した蛍光膜3があ
る。蛍光膜,黒色導電材及びメタルバックの形成方法は
(実施例16)と同様である。本発明による輝度寿命は
(実施例16)と同様に良好であった。 (実施例25)Spindt電子源ディスプレイ装置その6 本発明のSpindt型電子源ディスプレイ装置を図16に示
す。特に、フェースプレート2の内側には赤色蛍光体と
して平均粒径6μmのYS:Eu蛍光体と平均粒
径3μmのYS:Eu小粒子蛍光体を混合した蛍
光膜3がある。蛍光膜,黒色導電材及びメタルバックの
形成方法は(実施例16)と同様である。本発明による
輝度寿命は(実施例16)と同様に良好であった。 (実施例26)カーボンナノチューブ電子源ディスプレ
イ装置その1 本発明のカーボンナノチューブ型電子源ディスプレイ装
置を図17に示す。カーボンナノチューブ型電子源ディ
スプレイ装置23はフェースプレート2、カーボンナノ
チューブ電子源22、リアプレイト7で構成されてお
り、カーボンナノチューブ型電子源22は電極20,カ
ーボンナノチューブ層21で形成されている。特に、フ
ェースプレート2の内側には青色蛍光体として平均粒径
8μmのZnS:Ag,Al蛍光体と平均粒径4μmのZnS:Ag,Cl
小粒子蛍光体を混合した蛍光膜3がある。蛍光膜,黒色
導電材及びメタルバックの形成方法は(実施例16)と
同様である。本発明による輝度寿命は(実施例16)と
同様に良好であった。 (実施例27)カーボンナノチューブ電子源ディスプレ
イ装置その2 本発明のカーボンナノチューブ型電子源ディスプレイ装
置を図17に示す。特に、フェースプレート2の内側に
は緑色蛍光体として平均粒径6μmのZnS:Cu,Al蛍光体
と平均粒径5μmのY2SiO5:Tb小粒子蛍光体を混合した
蛍光膜3がある。蛍光膜,黒色導電材及びメタルバック
の形成方法は(実施例16)と同様である。本発明によ
る輝度寿命は(実施例16)と同様に良好であった。 (実施例28)カーボンナノチューブ電子源ディスプレ
イ装置その3 本発明のカーボンナノチューブ型電子源ディスプレイ装
置を図17に示す。特に、フェースプレート2の内側に
は赤色蛍光体として平均粒径6μmのYS:Eu
蛍光体と平均粒径3μmのY:Eu小粒子蛍光体
を混合した蛍光膜3がある。蛍光膜,黒色導電材及びメ
タルバックの形成方法は(実施例16)と同様である。
本発明による輝度寿命は(実施例16)と同様に良好で
あった。 (実施例29)投射型ブラウン管その1 本発明の投射型ブラウン管のフェースプレート内面には
緑色蛍光体として平均粒径8μmのYSiO:Tb
蛍光体と平均粒径4μmのYSiO:Tb小粒子蛍
光体を混合した蛍光膜がある。蛍光膜の作製方法は(実
施形態4)と同様の沈降塗布法で行った。本発明による
輝度寿命は(実施例16)と同様に良好であった。 (実施例30)投射型ブラウン管その2 本発明の投射型ブラウン管のフェースプレート内面には
緑色蛍光体として平均粒径6μmのYSiO:Tb
蛍光体と平均粒径4μmのYSiO:Tb小粒子蛍
光体を混合した蛍光膜がある。蛍光膜の作製方法は(実
施形態4)と同様の沈降塗布法で行った。本発明による
輝度寿命は(実施例16)と同様に良好であった。 (実施例31)投射型ブラウン管その3 本発明の投射型ブラウン管のフェースプレート内面には
青色蛍光体として平均粒径10μmのZnS:Ag,A
l蛍光体と平均粒径8μmのZnS:Ag,Al小粒子
蛍光体を混合した蛍光膜がある。蛍光膜の作製方法は
(実施形態4)と同様の沈降塗布法で行った。本発明に
よる輝度寿命は(実施例16)と同様に良好であった。 (実施例32)投射型ブラウン管その4 本発明の投射型ブラウン管のフェースプレート内面には
赤色蛍光体として平均粒径8μmのY:Eu蛍光
体と平均粒径4μmのY:Eu小粒子蛍光体を混
合した蛍光膜がある。蛍光膜の作製方法は(実施形態
4)と同様の沈降塗布法で行った。本発明による輝度寿
命は(実施例16)と同様に良好であった。 (実施例33)直視型カラーブラウン管その1 本発明の直視型カラーブラウン管のフェースプレート内
面には緑色蛍光体として平均粒径7μmのZnS:C
u,Al蛍光体と平均粒径5μmのZnS:Cu,Al
小粒子蛍光体を混合した蛍光膜がある。蛍光膜の作製で
は、ブラウン管にポリビニルアルコールと重クロム酸塩
との混合水溶液に、赤(Y2O2S:Eu蛍光体)、緑
(ZnS:Cu,Al蛍光体粒径7μm、80重量%+
粒径5μm、20重量%)、青(ZnS:Ag,Cl蛍
光体)のいずれかの蛍光体の混ざったスラリーを注入す
る。マスクを介して露光したあと現像すると蛍光体のパ
ターンが形成される。この工程を数回繰り返して蛍光膜
を形成する。これを他の発色の蛍光体についても同様に
繰り返すことでドット状の蛍光膜を形成した。本発明に
より製作した直視型カラーブラウン管では、従来の蛍光
膜を用いた場合に比べてその輝度寿命は10%向上し
た。 (実施例34)直視型カラーブラウン管その2 本発明の直視型カラーブラウン管のフェースプレート内
面には青色蛍光体として平均粒径7μmのZnS:A
g,Cl蛍光体と平均粒径5μmのZnS:Ag,Cl
小粒子蛍光体を混合した蛍光膜がある。蛍光膜の作製方
法は(実施例33)と同様である。このようにしてスト
ライプ状の蛍光膜を形成した。本発明による輝度寿命は
(実施例33)と同様に良好であった。
BEST MODE FOR CARRYING OUT THE INVENTION Here, in the image display device of the present invention,
For each method such as the manufacturing method of the phosphor to be used and the brightness characteristics,
The embodiment described below embodies the present invention.
FIG. 1 shows an example of the present invention, which binds the present invention.
There is no. (Embodiment 1) FIG. 1 is a schematic view showing an example of a fluorescent film of the present invention.
It is a figure. In FIG. 1, 2 is a face plate and 3 is
The whole phosphor film, 4 is the main phosphor, 5 is the mixed fine particles
It is a light body. The optimum phosphor layer thickness is about 3 layers,
In the phosphor film of the present invention, the fine particle phosphor is provided in the gap between the phosphor layers.
It has a complicated structure. The electron beam received by the fluorescent film 3
The electrons generated by the dome 6 are generated by the mixed fine particle phosphor 5.
Since the contact between each phosphor is increasing,
It spreads over the entire light screen 3, and as a result, the low resistance of the entire fluorescent film 3 is reduced.
Anti-resistance is planned. Furthermore, the fine particle phosphor is mixed
The density of the fluorescent film is increased by the amount of
The product is increasing. Therefore, an electron beam with the same current amount is fluorescent.
The current density on the phosphor surface when the film is irradiated is determined by the present invention.
Will be lower than before. If the current density becomes low,
The deterioration of the light film over time is reduced and the life characteristics are improved. Well
Moreover, when the current density is low, the brightness decrease due to the brightness saturation is suppressed.
And the emission brightness from the entire phosphor screen is improved.
It Sulfide-based phosphor is used for the structure around the fluorescent film
Aluminum back prevents sulfur from scattering
Therefore, the deterioration of the electron source can be suppressed. Also,
By providing the ITO film on the fluorescent film side of the spacer plate 2,
As a result, the resistance of the fluorescent film can be reduced. Receiving phosphor film 3
The electron beam 6 that is emitted has an accelerating voltage in a field emission display.
It has a low acceleration voltage of about 0.1 kV to 10 kV.
The flow rate is about 10 to 1000 times higher than that of general cathode ray tubes.
Yes. Also, the current of the irradiation electron beam in the projection type cathode ray tube
The amount is about 100 times higher than that of general cathode ray tubes. That
Therefore, it reaches the face plate 2 through the fluorescent film.
The electron dose is relatively large, and the inner surface of the face plate 2 is electrically charged.
The sacrificial wire causes a glass burn that turns brown. Moth
When lath burn occurs, the light emitted by the phosphor is
The intensity of the light that passes through the window 2 and appears in front of the display.
The degree decreases. Glass burn is the brightness life of the display
Is one of the causes of decrease. Such a display
To reduce the glass burn that causes the deterioration of the brightness life of
Enhances the packing density of the phosphor film and reduces the gaps between the phosphors.
However, it is effective to reduce the transmitted electron dose. Book
The fluorescent film mixed with the small particle phosphor of the present invention enables
The packing density is improved, the transmitted electron dose is reduced, and
Injury can be reduced. (Embodiment 2) FIG. 2 is a schematic view showing a part of the above-mentioned fluorescent film 3.
It is a figure. In FIG. 2, on top of the three main phosphors 4,
The fine particle phosphor 5 is mounted. Where the main phosphor
Radius R, radius of fine particle phosphor r, inside fine particle phosphor
Line drawn from the heart perpendicular to the plane passing through the center of the main phosphor
Let y be the length of y = (rTwo+ 2rR-1 / 3RTwo)1/2 It is represented by. When y = 0, that is, three main phosphors
The radius of the fine particle phosphor when entering the gap is r = 0.16R
is there. In addition, one more on top of the above three main phosphors
Fine particle fluorescence in the gap created when one main phosphor is placed
When the body enters and contacts all four main phosphors
The center of the fine particle phosphor is made by the centers of the four main phosphors.
Since it is the center of gravity of the tetrahedron, y = (8/27) R,
r = 0.28R. Therefore, the average particle size of the main phosphor is
Let A be the average particle size of the fine particle phosphors to be mixed, and let B be the main
Enter the gap between the phosphors and the fine particle phosphors come into contact with each phosphor.
What is done is 0.16A ≦ B ≦ 0.28A. At this time,
If the composition of the particle phosphor is the same as that of the main phosphor
For example, the mixing weight of the fine particle phosphor is 2% by weight to 9% by weight.
The range of is desirable. Also, at this time, due to the fine particle phosphor
The increase in the surface area of the phosphor is 10 to 31%. Fine particles
If the average particle size B of the phosphor is B = 0.28A, fine particle fluorescence
9% by weight of body mixing, 31% increase in surface area
is there. Therefore, the average particle size B of the fine particle phosphor is B = 0.28A
In this case, the current density is reduced by 24%. B = 0.28 in FIG.
Brightness maintenance of blue ZnS: Ag phosphor by A accelerated test
Indicates the rate. The current density of the irradiated electron beam is 450 μA / c
m2The substrate temperature is 200 ° C. The conventional fluorescent film does not
When the sagittal beam is irradiated, the brightness drops sharply and
It reduces to about 80% in total. Meanwhile, the fluorescent film according to the present invention
In the case of using, the resistance of the entire fluorescent film is lowered.
As the current density is reduced,
The brightness maintenance rate is maintained at about 90%. In this way,
By using a bright fluorescent film, the brightness retention rate is
Approximately 10% improvement. In addition, Fig. 4 shows the ZnS: Ag phosphor
Shows a graph of the log-log plot of emission brightness and current density.
You Current density range is about 45μA / cm in low current density range2
About 110μA / cm at high current density2And Underlined graph
It is the graph which shows the conventional luminous brightness current density, on the graph
A line is a graph showing the emission luminance current density of the present invention. Up
As mentioned above, the current density at B = 0.28A is 24%.
Reduced, about 35μA / cm at low current density2、 About high current range
85 μA / cm2Becomes Log-log plot for ZnS: Ag
The slope of is from about 0.7 as the current density increases.
The light emission efficiency is reduced to about 0.6. Therefore,
The lower the flow density, the higher the luminous efficiency. Current density according to the invention
Since it is possible to use the region where the light emission efficiency is low and the luminous efficiency is high,
As shown in 4, the emission brightness is improved by about 10% in the low current range,
Approximately 20% improvement in high current range. (Embodiment 3) FIG. 5 shows the average particles of the fine particle phosphor 5 to be mixed.
The diameter B is larger than the gap of the main phosphor 4, B> 0.28A
It is a schematic diagram in the case of. At this time, the thickness T of the fluorescent film is T =
It is represented by 4R + 2y. Fig. 6 shows the average particle size of the main phosphors.
With a change in the average particle size of the fine particle phosphor when the thickness is 4 μm
The graph of thickness change is shown. The average particle size of the fine particle phosphor is 1.1
Because up to about μm, the fine particle phosphor enters the gap
The film thickness is about the same as 10.5 μm. On the other hand, B> 1.
At 1 μm, the film thickness tends to increase as shown in FIG.
It Fine particles with the same phosphor composition and B = 1.1 μm
The optimum weight of the child phosphor is 9% by weight. Phosphor average
The optimum film thickness when the particle size is 4 μm is due to the demand for brightness characteristics.
10 to 12 μm is desirable, and the film thickness is thinner than that
And the light emitting layer is not sufficient and the brightness is low, and conversely it is thicker
When the phosphor surface absorbs light, the emission brightness decreases. Figure 6
The average particle size of the fine particle phosphors to be mixed as shown in
If it is smaller than 2.0 μm, which is 1/2 of the phosphor, the film thickness
Is smaller than 12 μm, which is good. At this time, the mixture of phosphors
The combined weight should be less than 50% by weight.
The photo film density is more preferably 6% by weight to 12% by weight. Figure 7
Is a graph showing the particle size distribution of the phosphor, where the vertical axis is the volume ratio
The abscissa and the horizontal axis are expressed by the particle size of the phosphor. Average particle size is 4μ
m as the main phosphor and a fine particle phosphor with an average particle size of 1 μm
When mixed at 10% by weight, as a whole, as shown in FIG.
Has a particle size distribution that is biased toward the small particle side, and the fine particle phosphor is mixed.
Normal distribution formed by the main phosphor by the combined amount
It is out of alignment. The composition of the main phosphor and the fine particle phosphor is
If they are the same, this deviation is mixed
Volume ratio at the position of particle size B, which is almost equal to the weight ratio of
The deviation from the normal distribution of is in the range of 2% by volume to 50% by volume.
Is good, especially in the range of 6% to 12% by volume.
More desirable. Fig. 8 shows Y with a particle size of 6 μm and 4 μm.2SiOFive: T
b Phosphor and Y with particle size 6μm and 4μm2SiOFive: Tb phosphor
It is a graph which shows the particle size distribution of the mixed fluorescent substance. In Figure 8
In addition, the main phosphor with a particle size of 6 μm has a small particle size of 4 μm.
20% by weight of the child phosphor is mixed. So with the whole
As a result, the particle size distribution is biased toward the small particle side, and
Particle size formed by the main phosphor by the amount that is mixed
The particle size distribution deviates from 6 μm. Fig. 9 shows the dense packing of the fluorescent film.
The average particle size dependence of the fine particle phosphor is shown. Fine particle fluorescence
The average particle size B of the body is preferably 0.8 to 1.4 μm,
Therefore, the composition of the main phosphor and the fine particle phosphor are the same.
In this case, the fluorescent film density is more preferably 6% by weight to 12% by weight.
Good (Embodiment 4) Here, as a principle experiment, on a glass substrate
A mixed fluorescent film is formed on the film, and its film thickness, film density, and light transmittance
Was investigated. Green emission Y with an average particle size of 8 μm2SiOFive: Tb
Phosphor and green emission Y with average particle size 4μm2SiOFive: Tb phosphor mixed
Then, the fluorescent film is formed on the glass substrate by the sedimentation coating method.
It was In the settling application performed this time, a settling tube with a diameter of 65 mm was
Add 135 ml of pure water and add 1.30 g of anhydrous barium acetate.
Add 14 ml of the solution prepared by adding 150 ml of pure water,
14 ml of surfactant was added. So that the desired film thickness is obtained
Add the weighed mixed phosphor to 50 ml of pure water.
40m water glass (Oka Seal A, Tokyo Ohka Kogyo)
27 ml of the solution prepared by adding 1 to 198 ml of pure water.
Then, the solution and the substrate were placed in a settling tube. Paint
The liquid level height from the glass substrate when clothed is about 5 cm. Sinking
The falling time was 7 minutes, and after coating, the solution was shaken from the bottom of the settling tube.
After gently pulling it out, dry the coated substrate at room temperature.
It was Thus, the mixed fluorescent film was formed. Before and after application
Calculate the film weight of the fluorescent film applied from the weight of the glass substrate
It was Also, the film thickness is measured by laser focus displacement meter (LT-8
010, KEYENCE). The film density is the film weight,
It was determined from the film thickness and the substrate area. Film of the thickness of the applied fluorescent film
The change in weight is shown in FIG. In case of single fluorescent film with 8μm particle size
The thickness of the film increases linearly with the increase of the film weight. Particle size
Add 30% by weight of phosphor with particle diameter 4μm to phosphor with 8μm
The change in film thickness and film weight of the mixed fluorescent film mixed by
I showed it. Mixed fluorescent film is thinner at the same film weight
Is getting worse. Especially, the film weight is 4 mg / cmTwoCross over
And the film thickness of the mixed fluorescent film is significantly reduced. In Figure 11
The change in film weight of film density is shown. Film density for single fluorescent film
Is about 1.7 g / cm regardless of film weightThreeIs almost constant at
It With the mixed fluorescent film, the film density increases as the film weight increases.
Tends to increase. Compare single fluorescent film and mixed fluorescent film
Then, the film density of the mixed fluorescent film is higher and the film weight is larger.
The difference is so large. Next, a spectrophotometer (U3200,
The light transmittance of each fluorescent film was measured by Hitachi. Teru
The wavelength of the emitted light is 540 nm and the light is emitted from the fluorescent film side.
Measure the amount of light that has passed through the fluorescent film and the substrate glass by irradiation.
It was Only the glass substrate is installed as a reference, and the fluorescence
The light transmittance of the film was measured. Fig. 12 shows a single fluorescence with a particle size of 8 μm.
In the case of a film and a phosphor having a particle size of 8 μm and a phosphor having a particle size of 4 μm
The change in light transmittance of the mixed fluorescent film mixed with 0% by weight is shown.
You In both cases, the transmittance decreases as the film thickness increases. same
At the same thickness, the mixed fluorescent film has a light transmittance of about 10% lower.
Is getting worse. 8μm particle size phosphor and 8μm particle size fluorescent
Mixed fluorescence in which 30% by weight of phosphor having a particle size of 4 μm is mixed with the body
The film thickness, film density, and light transmittance of the films were compared. Mixed firefly
It is clear that the optical film has a small film thickness and a high film density
became. In addition, the light transmittance is about 10% with the mixed fluorescent film.
Fell to. These results are described in (Embodiment 1).
The mixed small particle phosphor into the main phosphor gap.
It shows that the porosity has decreased. (Embodiment 5) Green light emission Y having an average particle size of 8 μm2SiOFive: Tb firefly
Luminous body and green emission Y with average particle size 4μm2SiOFive: Tb phosphor mixed
Then, the fluorescent film is formed on the glass substrate by the sedimentation coating method.
It was The method for forming the fluorescent film is the same as in (Embodiment 4).
Fig. 13 shows the change in the light transmittance of the phosphor film in the 4 µm mixing ratio.
You 4 μm as a whole due to low transmittance of particle size 4 μm
The transmittance tends to decrease as the mixing ratio increases.
It From this, the single fluorescent film with small particle phosphors
Since it can be considered as one of the candidates for realizing the high density fluorescent film,
However, in the case of small particle phosphors, the brightness and life characteristics are poor.
In some cases, it may be inferior to a phosphor with a larger particle shape.
It Here, if the mixing ratio of small particle phosphors is low,
It will be described that the density of the optical film can be increased. FIG.
Therefore, if the mixing ratio of small particles is 5% by weight or more and 70% by weight or less
More than linear drop-down curve of transmission in range
There is a range where the transmittance is reduced. Particle size 8μm Single fluorescence
The transmittance of the membrane is 62%, while the transmittance of the mixed membrane is
When the mixing ratio of 4 μm is 10% by weight, it is 54%, which is about 8% lower.
It The transmittance is 4 μm and the mixing ratio is 5% by weight or more and 70% by weight.
The effect is low when the mixing ratio is relatively low in the range below.
You can see the fruit. Particularly, the mixing ratio of 4 μm is 10% by weight or more.
The transmittance is low in the range of 40% by weight or less, and small particles are mixed.
The effect of stopping light is great. As a result
Therefore, even when the mixed fluorescent film is irradiated with electron beams,
Stopping effect on the inside of the face plate
It is possible to reduce the glass burn on the surface. Next, 2 components
Particle mixture packed bed porosity estimation program (Michitaka Suzuki)
Then, the porosity, which is the ratio of the voids of the particles, was calculated. Figure
14 has a particle size of 8 μm, particles having a porosity of 50% and a particle size of 4 μm,
Small particle mixing of porosity when mixing particles with porosity of 50%
The change in ratio is shown. Empty by mixing two particles
It can be seen that the space ratio is less than the space ratio 50% of both.
It When the mixing ratio of small particles is 41% by weight, the porosity is 48%
And the minimum. Fig. 14 shows particles with a particle size of 8 µm and a voidage of 50%.
Empty space when particles and particles with a particle size of 2 μm and a porosity of 50% are mixed
The change in intermixing ratio of small particles is also shown. Particle size 2 μm
When mixing the particles, the small particle mixing ratio is 33% by weight.
%, The porosity is 44%, which is the minimum. Also, the particle size is 8μ
m particles with a particle size of 4 μm and particles with a particle size of 2 μm
Compared with the case of mixing the particles, the particle size difference is large.
The decrease in porosity is larger when μm is mixed.
I understand. Also, the larger the difference in particle size, the smaller the porosity.
The small particle mixing ratio becomes small. Particle size of 8μm
Comparison of experimental and calculated results when 4 μm particles are mixed
By comparison, in the experiment, the small particle mixing ratio was around 20% by weight.
The transmittance is in the range of 10 wt% to 40 wt% in the center.
It is low, but the ratio of small particles is 41% by weight.
Fills with a lower mixing ratio in the experiment, which has the lowest porosity
There were areas with good density. This is because each phosphor has particle size
Due to the wideness of the cloth, the large particles and the particle diameter in 8μm
The effect of reducing the porosity due to small particles in 4 μm is large,
The optimum point of small particle mixture ratio in
It is thought that (Example) The present invention will be described below with reference to specific examples.
However, the present invention is not limited to these examples.
Without replacing each element within the range in which the object of the present invention is achieved,
It goes without saying that it includes those that have undergone design changes.
Yes. (Example 1) MIM electron source display device 1 The MIM type electron source display device of the present invention is shown in FIG.
You The MIM type electron source display device 12 has a face
Consists of rate 2, MIM electron source 11, rear plate 7
The MIM type electron source 11 has a lower electrode (Al) 8
Edge layer (Al2O3) 9, upper electrode (Ir-Pt-Au) 10
Has been. In particular, blue fireflies on the inside of the face plate 2.
ZnS: Ag, Cl phosphor having an average particle size of 4 μm as an optical body
And a ZnS: Ag, Cl fine particle phosphor having an average particle size of 1 μm
There is a phosphor film 3 mixed with 9% by weight. In addition, the phosphor
Conductive material In to lower resistance2O3Mixed with the fluorescent film
It was When making the fluorescent film, polyvinyl chloride is used on the face plate.
To the mixed aqueous solution of alcohol and dichromate, add red (YTwo
OTwoS: Eu phosphor), green (ZnS: Cu, Al fluorescence)
Body), blue (ZnS: Ag, Cl phosphor particle size 4 μm, 80
Wt% + particle size 4 μm, 20 wt%)
Pour the mixed slurry of. Exposed through the mask
After development, a phosphor pattern is formed. this
The process is repeated several times to form the fluorescent film. This is another
Repeat the same for the color phosphors,
Formed a mixed fluorescent film. 1 pixel for higher definition
A black conductive material was provided between them. For the production of black conductive material,
A photoresist film is applied on the substrate and exposed through a mask.
Image and leave the photoresist film partially. After that, on the whole surface
After forming the graphite film, apply hydrogen peroxide etc.
Remove the resist film and graphite on it to form a black conductive material.
I made it. The metal back is a film on the inner surface of the fluorescent film 3.
It is created by vacuum deposition of Al after vacuum processing. Then heat
It was prepared by removing the filming agent after processing. like this
Then, the fluorescent film 3 is completed. The brightness maintenance rate according to the present invention is
10% better than before and the energy efficiency of light emission is low
It improved by 10% in the current range and improved by 20% in the high current range. (Example 2) MIM electron source display device part 2 The MIM type electron source display device of the present invention is shown in FIG.
You In particular, a blue phosphor is provided inside the face plate 2.
ZnS: Ag phosphor having an average particle size of 4 μm and an average particle size of 1
μm Y2SiOFive: Ce fine particle phosphor mixed phosphor screen 3
It How to form conductive material, black conductive material and metal back
The method is the same as in (Example 1). Brightness maintenance according to the present invention
The rate and the energy efficiency of light emission are good as in Example 1.
It was. (Example 3) MIM electron source display device No. 3 The MIM type electron source display device of the present invention is shown in FIG.
You Especially, a red phosphor is provided inside the face plate 2.
And Y with an average particle size of 3 μmTwoOTwoS: Eu phosphor and average grain
Y with a diameter of 0.8 μmTwoOTwoS: Eu fine particle phosphor is mixed
There is a fluorescent film 3. Conductive material, black conductive material and metal
The method of forming the bag is the same as in (Example 1). The present invention
The luminance maintenance ratio and the energy efficiency of light emission by
Similarly good. (Example 4) MIM electron source display device part 4 The MIM type electron source display device of the present invention is shown in FIG.
You Especially, a red phosphor is provided inside the face plate 2.
And Y with an average particle size of 2.5 μmTwoOTwoS: Eu phosphor and flat
Y with a uniform particle size of 1 μmTwoOThree: Eu fine particle phosphor was mixed
There is a fluorescent film 3. How to form black conductive material and metal back
The method is the same as in (Example 1). Brightness maintenance according to the present invention
The rate and the energy efficiency of light emission are good as in Example 1.
It was. (Example 5) MIM electron source display device 5 The MIM type electron source display device of the present invention is shown in FIG.
You Especially, a red phosphor is provided inside the face plate 2.
And Y with an average particle size of 4 μmTwoOTwoS: Eu phosphor and average grain
SrTiO with a diameter of 1 μm3: Pr fine particle phosphor mixed phosphor film 3
There is. Shape of conductive material, black conductive material and metal back
The production method is the same as in (Example 1). Luminance according to the invention
The maintenance rate and the energy efficiency of light emission are good as in Example 1.
Met. (Example 6) MIM electron source display device No. 6 The MIM type electron source display device of the present invention is shown in FIG.
You In particular, a green phosphor is provided inside the face plate 2.
And a ZnS: Cu phosphor having an average particle size of 3 μm and an average particle size
Fluorescence mixed with ZnS: Cu fine particle phosphor of 0.8 μm
There is a membrane 3. Conductive material, black conductive material and metal back
The formation method of is similar to that of (Example 1). According to the invention
The brightness maintenance rate and the energy efficiency of light emission are the same as in Example 1.
It was good. (Example 7) MIM electron source display
Device 7 The MIM type electron source display device of the present invention is shown in FIG.
You In particular, a green phosphor is provided inside the face plate 2.
And a ZnS: Cu phosphor having an average particle size of 3 μm and an average particle size
0.8 μm YTwoSiO5: Tb fine particle phosphor is mixed
There is a fluorescent film 3. Conductive material, black conductive material and metal
The method of forming the bag is the same as in (Example 1). The present invention
The luminance maintenance ratio and the energy efficiency of light emission by
Similarly good. (Example 8) MIM electron source display device 8 The MIM type electron source display device of the present invention is shown in FIG.
You In particular, a green phosphor is provided inside the face plate 2.
And Y with an average particle size of 4 μm2SiOFive: Tb phosphor and average particle size 1μ
m of Y2SiOFive: Tb fine particle phosphor mixed phosphor screen 3
It How to form conductive material, black conductive material and metal back
The method is the same as in (Example 1). Brightness maintenance according to the present invention
The rate and the energy efficiency of light emission are good as in Example 1.
It was. (Example 9) MIM electron source display device No. 9 The MIM type electron source display device of the present invention is shown in FIG.
You In particular, a green phosphor is provided inside the face plate 2.
And Y with an average particle size of 4 μm2SiOFive: Tb phosphor and average particle size 1μ
There is a phosphor film 3 in which a ZnS: Cu fine particle phosphor of m is mixed. Guide
How to form the conductive material, black conductive material and metal back
This is similar to (Example 1). The brightness maintenance ratio according to the present invention,
The energy efficiency of light emission was as good as in Example 1.
It was (Example 10) MIM electron source display device 10 The MIM type electron source display device of the present invention is shown in FIG.
You In particular, a green phosphor is provided inside the face plate 2.
And Y with an average particle size of 4 μm3(Al, Ga)FiveO12: Tb phosphor and average grain
There is a phosphor film 3 mixed with ZnS: Cu fine particle phosphor having a diameter of 1 μm.
It How to form conductive material, black conductive material and metal back
The method is the same as in (Example 1). Brightness maintenance according to the present invention
The rate and the energy efficiency of light emission are good as in Example 1.
It was. (Example 11) MIM electron source display device 11 The MIM type electron source display device of the present invention is shown in FIG.
You Especially, a red phosphor is provided inside the face plate 2.
And Y with an average particle size of 4 μm2O3: Eu phosphor and average particle size 1μm
Y2O2There is a phosphor film 3 in which S: Eu fine particle phosphor is mixed. Guide
How to form the conductive material, black conductive material and metal back
This is similar to (Example 1). The brightness maintenance ratio according to the present invention,
The energy efficiency of light emission was as good as in Example 1.
It was (Example 12) MIM electron source display device 12 The MIM type electron source display device of the present invention is shown in FIG.
You Especially, a red phosphor is provided inside the face plate 2.
And SrTiO with an average particle size of 4 μm3: Pr phosphor and average particle size 1μ
m of Y2O2There is a phosphor film 3 in which S: Eu fine particle phosphor is mixed.
How to form conductive material, black conductive material and metal back
This is similar to (Example 1). The brightness maintenance ratio according to the present invention,
The energy efficiency of light emission was as good as in Example 1.
It was (Example 13) Spindt electron source display device 1 A Spindt type electron source display device of the present invention is shown in FIG.
You Spindt-type electron source display device 19 is
Consists of rate 2, Spindt electron source 18, rear plate 7
The Spindt type electron source 18 has a cathode 13 and a resistance film 1.
4, insulating film 15, gate 16, conical metal (Mo, etc.) 1
It is formed of 7. Especially inside the face plate 2
ZnS: Ag firefly having an average particle size of 4 μm is used as a blue phosphor.
Luminescent material and Y with average particle size of 1 μm2SiOFive: Ce fine particle phosphor mixed
There is a fluorescent film 3 formed. Conductive material, black conductive material and meta
The method for forming the rubach is the same as that in (Example 1). Starting
Example 1 shows the brightness maintenance rate and the energy efficiency of light emission by light.
As good as. (Example 14) Spindt electron source display device 2 A Spindt type electron source display device of the present invention is shown in FIG.
You Especially, a red phosphor is provided inside the face plate 2.
And Y with an average particle size of 3 μmTwoOTwoS: Eu phosphor and average grain
Y with a diameter of 0.8 μmTwoOTwoS: Eu fine particle phosphor is mixed
There is a fluorescent film 3. Conductive material, black conductive material and metal
The method of forming the bag is the same as in (Example 1). The present invention
The luminance maintenance ratio and the energy efficiency of light emission by
Similarly good. (Example 15) Spindt electron source display device No. 3 A Spindt type electron source display device of the present invention is shown in FIG.
You In particular, a green phosphor is provided inside the face plate 2.
And Y with an average particle size of 4 μm2SiOFive: Tb phosphor and average particle size 1μ
m of Y2SiOFive: Tb fine particle phosphor mixed phosphor screen 3
It How to form conductive material, black conductive material and metal back
The method is the same as in (Example 1). Brightness maintenance according to the present invention
The rate and the energy efficiency of light emission are good as in Example 1.
It was. (Example 16) MIM electron source display device 13 The MIM type electron source display device of the present invention is shown in FIG.
You The MIM type electron source display device 12 has a face
Consists of rate 2, MIM electron source 11, rear plate 7
The MIM type electron source 11 has a lower electrode (Al) 8
Edge layer (Al2O3) 9, upper electrode (Ir-Pt-Au) 10
Has been. In particular, blue fireflies on the inside of the face plate 2.
ZnS: Ag, Al phosphor with average particle size of 8μm and average particle
20% by weight of ZnS: Ag, Al small particle phosphor having a diameter of 4 μm was mixed.
There is a fluorescent film 3. The slurry method is used to apply the fluorescent film.
It was Water-soluble mixture of polyvinyl alcohol and dichromate
The phosphor is dispersed in the liquid to prepare a slurry suspension. F
Apply the suspension to the base plate and dry it.
Then, the phosphor is exposed and fixed. Sprayed with warm pure water
Image and wash away the unexposed film to remove the phosphor pattern.
Formed. Black conductive material between 1 pixel to improve definition
Was set up. When manufacturing a black conductive material, a photoresist is used on the entire surface.
The film is applied, exposed through a mask, developed, and partially
Leave the photoresist film. After that, a graphite film is formed on the entire surface
Then use hydrogen peroxide etc. to remove the photoresist film and
The black conductive material was formed by removing the graphite from above. metal
For the back, after filming the inner surface of the phosphor film 3,
It is created by vacuum evaporation of Al. Then heat-treat and fill
It was produced by skipping the minging agent. A battery manufactured according to the present invention.
A field emission display device uses a conventional fluorescent film.
The brightness life was improved by 10% as compared with the case. (Example 17) MIM electron source display device 14 The MIM type electron source display device of the present invention is shown in FIG.
You In particular, a blue phosphor is provided inside the face plate 2.
And a ZnS: Ag, Al phosphor with an average particle size of 6 μm and an average particle size of 4 μ
m of ZnS: Ag, Cl small particle fluorescent material is mixed.
It The method for forming the fluorescent film, black conductive material and metal back is
This is the same as (Example 16). The brightness lifetime according to the present invention is
It was as good as (Example 16). (Example 18) MIM electron source display device 15 The MIM type electron source display device of the present invention is shown in FIG.
You In particular, a green phosphor is provided inside the face plate 2.
And a ZnS: Cu, Al phosphor with an average particle size of 4 μm and an average particle size of 2 μm
m of ZnS: Cu, Al small particle phosphor is mixed.
It How to form the fluorescent film, black conductive material and metal back
This is the same as (Example 16). The brightness lifetime according to the present invention is
It was as good as (Example 16). (Example 19) MIM electron source display device 16 The MIM type electron source display device of the present invention is shown in FIG.
You In particular, a green phosphor is provided inside the face plate 2.
And Y with an average particle size of 6 μm2SiOFive: Tb phosphor and average particle size 2μ
m of ZnS: Cu, Al small particle phosphor is mixed.
It How to form the fluorescent film, black conductive material and metal back
This is the same as (Example 16). The brightness lifetime according to the present invention is
It was as good as (Example 16). (Example 20) MIM electron source display device No. 17 The MIM type electron source display device of the present invention is shown in FIG.
You In particular, a green phosphor is provided inside the face plate 2.
And Y with an average particle size of 8 μm3(Al, Ga)FiveO12: Tb phosphor and average grain
Phosphor film 3 containing ZnS: Cu, Al small particle phosphors with a diameter of 4 μm
There is. How to form fluorescent film, black conductive material and metal back
The method is the same as in (Example 16). Luminance life according to the present invention
Life was as good as (Example 16). (Example 21) MIM electron source display device 18 The MIM type electron source display device of the present invention is shown in FIG.
You Especially, a red phosphor is provided inside the face plate 2.
And Y with an average particle size of 4 μmTwoOTwoS: Eu phosphor and average grain
Y with a diameter of 3 μmTwoOTwoS: Eu Firefly mixed with small particle phosphor
There is a light film 3. Fluorescent film, black conductive material and metal back
The forming method is the same as in (Example 16). According to the invention
The luminance life was as good as that of (Example 16). (Example 22) MIM electron source display device 19 The MIM type electron source display device of the present invention is shown in FIG.
You Especially, a red phosphor is provided inside the face plate 2.
And the average particle size is 8 μmTwoOThree: Eu phosphor and average particle size
3 μm YTwoOTwoS: Eu Fluorescence mixed with small particle phosphor
There is a membrane 3. Shape of fluorescent film, black conductive material and metal back
The production method is the same as in (Example 16). Bright according to the invention
The cycle life was as good as (Example 16). (Example 23) Spindt electron source display device part 4 A Spindt type electron source display device of the present invention is shown in FIG.
You Spindt-type electron source display device 19 is
Consists of rate 2, Spindt electron source 18, rear plate 7
The Spindt type electron source 18 has a cathode 13 and a resistance film 1.
4, insulating film 15, gate 16, conical metal (Mo, etc.) 1
It is formed of 7. Especially inside the face plate 2
ZnS: Ag, Al fluorescence with an average particle size of 8 μm as a blue phosphor
Body and ZnS: Ag, Al small particle phosphor of average particle size 6μm
There is a fluorescent film 3. Fluorescent film, black conductive material and metal bag
The method for forming the pits is the same as in (Example 16). In the present invention
The luminance life was good as in (Example 16). (Example 24) Spindt electron source display device No. 5 A Spindt type electron source display device of the present invention is shown in FIG.
You In particular, a green phosphor is provided inside the face plate 2.
And a ZnS: Cu, Al phosphor with an average particle size of 6 μm and an average particle size of 4 μm
m of Y2SiOFive: Tb small particle phosphor mixed phosphor screen 3
It How to form the fluorescent film, black conductive material and metal back
This is the same as (Example 16). The brightness lifetime according to the present invention is
It was as good as (Example 16). (Example 25) Spindt electron source display device No. 6 A Spindt type electron source display device of the present invention is shown in FIG.
You Especially, a red phosphor is provided inside the face plate 2.
And Y with an average particle size of 6 μmTwoOTwoS: Eu phosphor and average grain
Y with a diameter of 3 μmTwoOTwoS: Eu Firefly mixed with small particle phosphor
There is a light film 3. Fluorescent film, black conductive material and metal back
The forming method is the same as in (Example 16). According to the invention
The luminance life was as good as that of (Example 16). (Example 26) Carbon nanotube electron source display
B device 1 Carbon nanotube type electron source display device of the present invention
The device is shown in FIG. Carbon nanotube type electron source
Spray device 23 is face plate 2, carbon nano
It consists of a tube electron source 22 and a rear plate 7.
The carbon nanotube type electron source 22 is
Carbon nanotube layer 21. In particular,
Inside the base plate 2 is a blue phosphor with an average particle size.
8 μm ZnS: Ag, Al phosphor and ZnS: Ag, Cl with an average particle size of 4 μm
There is a phosphor film 3 in which a small particle phosphor is mixed. Fluorescent film, black
The method for forming the conductive material and the metal back is described in (Example 16).
It is the same. The brightness lifetime according to the present invention is (Example 16)
Similarly good. Example 27 Carbon Nanotube Electron Source Display
B device 2 Carbon nanotube type electron source display device of the present invention
The device is shown in FIG. Especially on the inside of the face plate 2.
Is a ZnS: Cu, Al phosphor with an average particle size of 6 μm as a green phosphor
And Y with an average particle size of 5 μm2SiOFive: Tb small particle phosphor mixed
There is a fluorescent film 3. Fluorescent film, black conductive material and metal back
The formation method of is similar to that of (Example 16). According to the invention
The luminance life was good as in (Example 16). (Example 28) Carbon nanotube electron source display
B device 3 Carbon nanotube type electron source display device of the present invention
The device is shown in FIG. Especially on the inside of the face plate 2.
Is a red phosphor having an average particle diameter of 6 μmTwoOTwoS: Eu
Phosphor and Y with an average particle size of 3 μmTwoOThree: Eu small particle phosphor
There is a fluorescent film 3 in which Fluorescent film, black conductive material and
The method for forming talvac is the same as in (Example 16).
The luminance life according to the present invention is as good as that of (Example 16).
there were. (Example 29) Projection type cathode ray tube Part 1 The inner surface of the face plate of the projection type CRT of the present invention is
Y with an average particle size of 8 μm as a green phosphorTwoSiO5: Tb
Phosphor and Y with an average particle size of 4 μmTwoSiO5: Tb small particle firefly
There is a fluorescent film mixed with a light body. The manufacturing method of the fluorescent film is
The same coating method as in Embodiment 4) was used. According to the invention
The luminance life was as good as that of (Example 16). (Example 30) Projection type cathode ray tube 2 The inner surface of the face plate of the projection type CRT of the present invention is
Y with an average particle size of 6 μm as a green phosphorTwoSiO5: Tb
Phosphor and Y with an average particle size of 4 μmTwoSiO5: Tb small particle firefly
There is a fluorescent film mixed with a light body. The manufacturing method of the fluorescent film is
The same coating method as in Embodiment 4) was used. According to the invention
The luminance life was as good as that of (Example 16). (Example 31) Projection type cathode ray tube No. 3 The inner surface of the face plate of the projection type CRT of the present invention is
ZnS: Ag, A having an average particle size of 10 μm as a blue phosphor
l Phosphor and ZnS: Ag, Al small particles having an average particle size of 8 μm
There is a phosphor film in which phosphors are mixed. How to make a fluorescent film
The same precipitation coating method as in (Embodiment 4) was used. In the present invention
The luminance life was good as in (Example 16). (Example 32) Projection-type cathode ray tube No. 4 The inner surface of the face plate of the projection type CRT of the present invention is
Y with an average particle size of 8 μm as a red phosphorTwoOThree: Eu fluorescence
Body and Y with an average particle size of 4 μmTwoOThree: Mixed Eu small particle phosphor
There is a combined fluorescent film. The manufacturing method of the fluorescent film is
The same precipitation coating method as in 4) was performed. Luminance life according to the present invention
Life was as good as (Example 16). (Example 33) Direct-viewing type color cathode ray tube Part 1 Inside the face plate of the direct-view type color CRT of the present invention
ZnS: C with an average particle size of 7 μm as a green phosphor on the surface
u, Al phosphor and ZnS: Cu, Al having an average particle size of 5 μm
There is a phosphor film mixed with small particle phosphors. In the production of fluorescent film
Polyvinyl alcohol and dichromate in a cathode ray tube
Red (Y2O2S: Eu phosphor), green
(ZnS: Cu, Al phosphor particle size 7 μm, 80% by weight +
Particle size 5 μm, 20 wt%), blue (ZnS: Ag, Cl firefly)
Inject the phosphor mixed slurry with one of the phosphors
It When exposed through a mask and then developed, the phosphor
A turn is formed. Repeat this process several times
To form. Do the same for phosphors of other colors
By repeating this, a dot-shaped fluorescent film was formed. In the present invention
The direct-view color cathode-ray tube manufactured by
The brightness life is improved by 10% compared to the case where a film is used.
It was (Example 34) Direct view type color cathode ray tube No. 2 Inside the face plate of the direct-view type color CRT of the present invention
ZnS: A with a mean particle size of 7 μm as a blue phosphor on the surface
g, Cl phosphor and ZnS: Ag, Cl having an average particle size of 5 μm
There is a phosphor film mixed with small particle phosphors. How to make a fluorescent film
The method is the same as in (Example 33). Strike in this way
A lip-shaped fluorescent film was formed. The brightness lifetime according to the present invention is
It was as good as (Example 33).

【0006】[0006]

【発明の効果】本発明の電界放出型ディスプレイ装置及
び投射型ブラウン管は、混合した微粒子蛍光体が主たる
蛍光体の隙間に入り込み蛍光体間の接触が増加して蛍光
膜全体の抵抗が抑えられ、また、蛍光体の充填密度が高
くなり,蛍光体全体の表面積が増加し電流密度が低減す
るため,装置の長寿命化,高輝度化、蛍光膜の焼き付き
改善が実現できる。
In the field emission display device and the projection type cathode ray tube of the present invention, the mixed fine particle phosphor enters the gap between the main phosphors, the contact between the phosphors increases, and the resistance of the entire phosphor film is suppressed. In addition, since the packing density of the phosphor is increased, the surface area of the whole phosphor is increased, and the current density is reduced, the life of the device can be increased, the brightness can be increased, and the burn-in of the phosphor film can be improved.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の蛍光膜構造を示す模式図である。FIG. 1 is a schematic view showing a fluorescent film structure of the present invention.

【図2】本発明の蛍光体粒径を示す模式図である。FIG. 2 is a schematic diagram showing a phosphor particle size of the present invention.

【図3】本発明の蛍光膜の輝度維持率を示すグラフであ
る。
FIG. 3 is a graph showing the luminance maintenance ratio of the phosphor film of the present invention.

【図4】本発明の蛍光膜の輝度電流密度特性を示すグラ
フである。
FIG. 4 is a graph showing a luminance current density characteristic of the phosphor film of the present invention.

【図5】本発明の蛍光膜構造を示す模式図である。FIG. 5 is a schematic diagram showing a fluorescent film structure of the present invention.

【図6】本発明の蛍光膜厚を示すグラフである。FIG. 6 is a graph showing a fluorescent film thickness of the present invention.

【図7】本発明の粒度分布を示すグラフである。FIG. 7 is a graph showing the particle size distribution of the present invention.

【図8】本発明の粒度分布を示すグラフである。FIG. 8 is a graph showing the particle size distribution of the present invention.

【図9】本発明の蛍光膜充填密度を示すグラフである。FIG. 9 is a graph showing the packing density of the fluorescent film of the present invention.

【図10】本発明の蛍光膜の膜厚と膜重量の関係を示す
グラフである。
FIG. 10 is a graph showing the relationship between film thickness and film weight of the fluorescent film of the present invention.

【図11】本発明の蛍光膜の膜密度と膜重量の関係を示
すグラフである。
FIG. 11 is a graph showing the relationship between the film density and the film weight of the fluorescent film of the present invention.

【図12】本発明の蛍光膜の光透過率―膜厚特性を示す
グラフである。
FIG. 12 is a graph showing light transmittance-film thickness characteristics of the fluorescent film of the present invention.

【図13】本発明の蛍光膜の光透過率―小粒子混合比率
特性を示すグラフである。
FIG. 13 is a graph showing the light transmittance-small particle mixing ratio characteristics of the phosphor film of the present invention.

【図14】空間率―小粒子混合比率特性の計算結果を示
すグラフである。
FIG. 14 is a graph showing a calculation result of a porosity-small particle mixing ratio characteristic.

【図15】本発明のMIM型電子源ディスプレイ装置の
全体構造を示す模式図である。
FIG. 15 is a schematic view showing the overall structure of a MIM type electron source display device of the present invention.

【図16】本発明のSpindt型電子源ディスプレイ装置の
全体構造を示す模式図である。
FIG. 16 is a schematic view showing the overall structure of a Spindt-type electron source display device of the present invention.

【図17】本発明のカーボンナノチューブ型電子源ディ
スプレイ装置の全体構造を示す模式図である。
FIG. 17 is a schematic view showing the overall structure of a carbon nanotube type electron source display device of the present invention.

【符号の説明】[Explanation of symbols]

2…フェースプレート、3…蛍光膜、4…主たる蛍光
体、5…微粒子蛍光体、6…電子線、7…リアプレイ
ト、8…下部電極、9…絶縁層、10…上部電極、11
…MIM型電子源、12…MIM型電子源ディスプレイ
装置、13…陰極、14…抵抗膜、15…絶縁膜、16
…ゲート、17…円錐型金属、18…FED型電子源、
19…FED型電子源ディスプレイ装置、20…電極、
21…カーボンナノチューブ層、22…カーボンナノチ
ューブ型電子源、23…カーボンナノチューブ型電子源
ディスプレイ装置。
2 ... Face plate, 3 ... Fluorescent film, 4 ... Main fluorescent substance, 5 ... Fine particle fluorescent substance, 6 ... Electron beam, 7 ... Rear plate, 8 ... Lower electrode, 9 ... Insulating layer, 10 ... Upper electrode, 11
... MIM type electron source, 12 ... MIM type electron source display device, 13 ... cathode, 14 ... resistive film, 15 ... insulating film, 16
... gate, 17 ... conical metal, 18 ... FED electron source,
19 ... FED type electron source display device, 20 ... Electrode,
21 ... Carbon nanotube layer, 22 ... Carbon nanotube type electron source, 23 ... Carbon nanotube type electron source display device.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) C09K 11/59 CPR C09K 11/59 CPR 11/62 CQB 11/62 CQB 11/66 CPX 11/66 CPX 11/67 CPG 11/67 CPG 11/73 CPB 11/73 CPB 11/78 CPJ 11/78 CPJ 11/79 CPN 11/79 CPN 11/80 CPQ 11/80 CPQ 11/84 CPP 11/84 CPP H01J 29/18 H01J 29/18 A 29/20 29/20 31/10 31/10 A (72)発明者 今村 伸 茨城県日立市大みか町七丁目1番1号 株 式会社日立製作所日立研究所内 (72)発明者 井上 亮 茨城県日立市大みか町七丁目1番1号 株 式会社日立製作所日立研究所内 Fターム(参考) 4H001 CA04 CA05 XA08 XA12 XA13 XA14 XA15 XA16 XA17 XA20 XA22 XA30 XA31 XA38 XA39 XA41 XA49 XA50 XA64 YA25 YA30 YA47 YA58 YA59 YA63 YA65 YA83 5C036 AA01 AA10 EE01 EE19 EF01 EF06 EF07 EF09 EG36 EH12 EH22 EH23 ─────────────────────────────────────────────────── ─── Continuation of front page (51) Int.Cl. 7 Identification code FI theme code (reference) C09K 11/59 CPR C09K 11/59 CPR 11/62 CQB 11/62 CQB 11/66 CPX 11/66 CPX 11 / 67 CPG 11/67 CPG 11/73 CPB 11/73 CPB 11/78 CPJ 11/78 CPJ 11/79 CPN 11/79 CPN 11/80 CPQ 11/80 CPQ 11/84 CPP 11/84 CPP H01J 29 / 18 H01J 29/18 A 29/20 29/20 31/10 31/10 A (72) Inventor Shin Imamura 7-1-1, Omika-cho, Hitachi-shi, Ibaraki Hitachi Ltd. (72) Invention Person Ryo Inoue 7-1-1, Omika-cho, Hitachi-shi, Ibaraki F-term in Hitachi Research Laboratory, Hitachi, Ltd. (reference) 4H001 CA04 CA05 XA08 XA12 XA13 XA14 XA15 XA16 XA17 XA20 XA22 XA30 XA31 XA38 XA39 XA41 XA49 XA50 XA64 YA25 YA30 YA47 YA58 YA59 YA63 YA65 YA83 5C036 AA01 AA10 EE01 EE19 EF01 EF06 EF07 EF09 EG36 EH12 EH22 EH23

Claims (27)

【特許請求の範囲】[Claims] 【請求項1】蛍光膜が形成されたフェースプレートと,
前記蛍光膜に電子線を照射する手段とを備えた電界放出
型ディスプレイ装置であって,前記蛍光膜を,主たる蛍
光体と平均粒径が主たる蛍光体の1/2より小さい微粒
子蛍光体とを混合した蛍光体で構成したことを特徴とす
る画像表示装置。
1. A face plate having a fluorescent film formed thereon,
A field emission display device comprising means for irradiating the phosphor film with an electron beam, wherein the phosphor film comprises a main phosphor and a fine particle phosphor having an average particle size smaller than ½ of the main phosphor. An image display device comprising a mixed phosphor.
【請求項2】蛍光膜が形成されたフェースプレートと,
前記蛍光膜に電子線を照射する手段とを備えた電界放出
型ディスプレイ装置であって,前記蛍光膜を,平均粒径
Aの主たる蛍光体と該主たる蛍光体に対して平均粒径Bが
0.16A≦B≦0.28Aで表される微粒子蛍光体とを混合した
蛍光体で構成したことを特徴とする画像表示装置。
2. A face plate having a fluorescent film formed thereon,
A field emission display device comprising means for irradiating the fluorescent film with an electron beam, wherein the fluorescent film has an average particle size of
A main phosphor of A and the average particle size B with respect to the main phosphor
An image display device comprising a phosphor mixed with a fine particle phosphor represented by 0.16A ≦ B ≦ 0.28A.
【請求項3】前記電界放出型ディスプレイ装置におい
て、蛍光体に照射する電子線の加速電圧が1kVから1
5kVの範囲であることを特徴とする請求項2記載の画
像表示装置。
3. In the field emission display device, the acceleration voltage of the electron beam with which the phosphor is irradiated is from 1 kV to 1.
The image display device according to claim 2, wherein the image display device has a range of 5 kV.
【請求項4】前記主たる蛍光体に対して前記微粒子蛍光
体を2〜50重量%混合したことを特徴とする請求項2記載
の画像表示装置。
4. The image display device according to claim 2, wherein 2 to 50% by weight of the fine particle phosphor is mixed with the main phosphor.
【請求項5】前記主たる蛍光体と混合する前記微粒子蛍
光体が同一組成であることを特徴とする請求項2記載の
画像表示装置。
5. The image display device according to claim 2, wherein the fine particle phosphor mixed with the main phosphor has the same composition.
【請求項6】前記主たる蛍光体が硫化物系蛍光体であ
り,混合する前記微粒子蛍光体が酸化物系蛍光体である
ことを特徴とする請求項2記載の画像表示装置。
6. The image display device according to claim 2, wherein the main phosphor is a sulfide phosphor, and the fine particle phosphor to be mixed is an oxide phosphor.
【請求項7】前記主たる蛍光体がZnS:Ag蛍光体であり,
混合する前記微粒子蛍光体がY2SiO5:Ce, (Y,Gd)2SiO5:C
e, ZnGa2O4, CaMgSi2O6:Eu, Sr3MgSi2O8:Eu, Sr5(PO4)3
Cl:Eu,YNbO4:Bi蛍光体のいずれか一種もしくは複数種の
蛍光体であることを特徴とする請求項6記載の画像表示
装置。
7. The main phosphor is a ZnS: Ag phosphor,
The fine particle phosphor to be mixed is Y 2 SiO 5 : Ce, (Y, Gd) 2 SiO 5 : C
e, ZnGa 2 O 4 , CaMgSi 2 O 6 : Eu, Sr 3 MgSi 2 O 8 : Eu, Sr 5 (PO 4 ) 3
7. The image display device according to claim 6, wherein the image display device is one or a plurality of types of Cl: Eu, YNbO 4 : Bi phosphors.
【請求項8】前記主たる蛍光体がY2O2S:Eu蛍光体であ
り,混合する前記微粒子蛍光体がY2O3:Eu, SrTiO3:Pr,
SnO2:Eu, SrIn2O4:Pr蛍光体のいずれか一種もしくは複
数種の蛍光体であることを特徴とする請求項6記載の画
像表示装置。
8. The main phosphor is Y 2 O 2 S: Eu phosphor, and the fine particle phosphor to be mixed is Y 2 O 3 : Eu, SrTiO 3 : Pr,
The image display device according to claim 6, wherein the phosphor is one or a plurality of phosphors of SnO 2 : Eu and SrIn 2 O 4 : Pr phosphors.
【請求項9】前記主たる蛍光体が酸化物系蛍光体であ
り,混合する前記微粒子蛍光体が硫化物系蛍光体である
ことを特徴とする請求項2記載の画像表示装置。
9. The image display device according to claim 2, wherein the main phosphor is an oxide phosphor, and the fine particle phosphor to be mixed is a sulfide phosphor.
【請求項10】前記主たる蛍光体がY2SiO5:Tb, (Y,Gd)2
SiO5:Tb, Y3(Al,Ga)5O12:Tb, (Y,Gd)3(Al,Ga)5O12:Tb,
ZnGa2O4:Mn, Zn(Ga,Al)2O4:Mn, ZnO:Zn蛍光体のうちい
ずれか一種もしくは複数種の蛍光体であり,混合する前
記微粒子蛍光体がZnS:Cu, ZnS:Cu,Au蛍光体のうちいず
れか一種もしくは複数種の蛍光体であることを特徴とす
る請求項9記載の画像表示装置。
10. The main phosphor is Y 2 SiO 5 : Tb, (Y, Gd) 2
SiO 5 : Tb, Y 3 (Al, Ga) 5 O 12 : Tb, (Y, Gd) 3 (Al, Ga) 5 O 12 : Tb,
ZnGa 2 O 4 : Mn, Zn (Ga, Al) 2 O 4 : Mn, ZnO: Zn phosphor, which is one or more kinds of phosphors, and the fine particle phosphor to be mixed is ZnS: Cu, ZnS The image display device according to claim 9, wherein the image display device is any one or a plurality of types of: Cu and Au phosphors.
【請求項11】前記主たる蛍光体がY2O3:Eu, SrTiO3:Pr
蛍光体のうちいずれか一種もしくは複数種の蛍光体であ
り,混合する前記微粒子蛍光体がY2O2S:Eu蛍光体である
ことを特徴とする請求項9記載の画像表示装置。
11. The main phosphor is Y 2 O 3 : Eu, SrTiO 3 : Pr.
10. The image display device according to claim 9, wherein any one or a plurality of types of phosphors are used, and the fine particle phosphors to be mixed are Y 2 O 2 S: Eu phosphors.
【請求項12】蛍光膜が形成されたフェースプレート
と,前記蛍光膜に電子線を照射する手段とを備えた電界
放出型ディスプレイ装置であって,前記蛍光膜を,平均
粒径Aの主たる蛍光体と平均粒径Bの微粒子蛍光体とを混
合した蛍光体で構成した時,粒径Bの位置の体積が正規
分布曲線よりも2〜50体積%大きいことを特徴とする画
像表示装置。
12. A field emission display device comprising a face plate on which a fluorescent film is formed, and means for irradiating the fluorescent film with an electron beam, wherein the fluorescent film is a main fluorescent substance having an average particle size A. An image display device characterized in that the volume at the position of the particle size B is 2 to 50% by volume larger than the normal distribution curve when it is composed of a phosphor in which a body and a fine particle phosphor having an average particle size B are mixed.
【請求項13】前記蛍光膜を,平均粒径Aの主たる蛍光
体と平均粒径Bの前記微粒子蛍光体とを混合した蛍光体
で構成した時,粒径Bの位置の体積が正規分布曲線より
も6〜12体積%大きいことを特徴とする請求項12記載
の画像表示装置。
13. When the phosphor film is composed of a phosphor in which a main phosphor having an average particle diameter A and the fine particle phosphor having an average particle diameter B are mixed, the volume at the position of the particle diameter B is a normal distribution curve. The image display device according to claim 12, wherein the image display device is 6 to 12% by volume larger than that.
【請求項14】前記主たる蛍光体に対して前記微粒子蛍
光体を2〜50重量%混合したことを特徴とする請求項12
記載の画像表示装置。
14. The fine particle phosphor is mixed in an amount of 2 to 50% by weight with respect to the main phosphor.
The image display device described.
【請求項15】前記主たる蛍光体と混合する前記微粒子
蛍光体が同一組成であることを特徴とする請求項12記
載の画像表示装置。
15. The image display device according to claim 12, wherein the fine particle phosphors mixed with the main phosphor have the same composition.
【請求項16】前記主たる蛍光体が硫化物系蛍光体であ
り,混合する前記微粒子蛍光体が酸化物系蛍光体である
ことを特徴とする請求項12記載の画像表示装置。
16. The image display device according to claim 12, wherein the main phosphor is a sulfide phosphor, and the fine particle phosphor to be mixed is an oxide phosphor.
【請求項17】前記主たる蛍光体がZnS:Ag蛍光体であ
り,混合する前記微粒子蛍光体がY2SiO5:Ce, (Y,Gd)2Si
O5:Ce, ZnGa2O4, CaMgSi2O6:Eu, Sr3MgSi2O8:Eu, Sr5(P
O4)3Cl:Eu,YNbO4:Bi蛍光体のいずれか一種もしくは複数
種の蛍光体であることを特徴とする請求項16記載の画
像表示装置。
17. The main phosphor is ZnS: Ag phosphor, and the fine particle phosphor to be mixed is Y 2 SiO 5 : Ce, (Y, Gd) 2 Si.
O 5 : Ce, ZnGa 2 O 4 , CaMgSi 2 O 6 : Eu, Sr 3 MgSi 2 O 8 : Eu, Sr 5 (P
The image display device according to claim 16, wherein the image display device is one or a plurality of O 4 ) 3 Cl: Eu, YNbO 4 : Bi phosphors.
【請求項18】前記主たる蛍光体がY2O2S:Eu蛍光体であ
り,混合する前記微粒子蛍光体がY2O3:Eu, SrTiO3:Pr,
SnO2:Eu, SrIn2O4:Pr蛍光体のいずれか一種もしくは複
数種の蛍光体であることを特徴とする請求項16記載の
画像表示装置。
18. The main phosphor is Y 2 O 2 S: Eu phosphor, and the fine particle phosphor to be mixed is Y 2 O 3 : Eu, SrTiO 3 : Pr,
The image display device according to claim 16, wherein the image display device is one or a plurality of phosphors of SnO 2 : Eu and SrIn 2 O 4 : Pr phosphors.
【請求項19】前記主たる蛍光体が酸化物系蛍光体であ
り,混合する前記微粒子蛍光体が硫化物系蛍光体である
ことを特徴とする請求項12記載の画像表示装置。
19. The image display device according to claim 12, wherein the main phosphor is an oxide phosphor, and the fine particle phosphor to be mixed is a sulfide phosphor.
【請求項20】前記主たる蛍光体がY2SiO5:Tb, (Y,Gd)2
SiO5:Tb, Y3(Al,Ga)5O12:Tb, (Y,Gd)3(Al,Ga)5O12:Tb,
ZnGa2O4:Mn, Zn(Ga,Al)2O4:Mn, ZnO:Zn蛍光体のうちい
ずれか一種もしくは複数種の蛍光体であり,混合する前
記微粒子蛍光体がZnS:Cu, ZnS:Cu,Au蛍光体のうちいず
れか一種もしくは複数種の蛍光体であることを特徴とす
る請求項19記載の画像表示装置。
20. The main phosphor is Y 2 SiO 5 : Tb, (Y, Gd) 2
SiO 5 : Tb, Y 3 (Al, Ga) 5 O 12 : Tb, (Y, Gd) 3 (Al, Ga) 5 O 12 : Tb,
ZnGa 2 O 4 : Mn, Zn (Ga, Al) 2 O 4 : Mn, ZnO: Zn phosphor, which is one or more kinds of phosphors, and the fine particle phosphor to be mixed is ZnS: Cu, ZnS 20. The image display device according to claim 19, wherein the image display device is any one or a plurality of types of: Cu and Au phosphors.
【請求項21】前記主たる蛍光体がY2O3:Eu, SrTiO3:Pr
蛍光体のうちいずれか一種もしくは複数種の蛍光体であ
り,混合する前記微粒子蛍光体がY2O2S:Eu蛍光体である
ことを特徴とする請求項19記載の画像表示装置。
21. The main phosphor is Y 2 O 3 : Eu, SrTiO 3 : Pr.
20. The image display device according to claim 19, wherein any one or a plurality of types of phosphors are used, and the fine particle phosphors to be mixed are Y2O2S: Eu phosphors.
【請求項22】蛍光膜が形成されたフェースプレート
と,前記蛍光膜に電子線を照射する手段とを備えた投射
型ブラウン管であって,前記蛍光膜を主たる蛍光体に対
して平均粒径が小さい小粒子蛍光体を5重量%以上70
重量%以下の範囲で混合したことを特徴とする蛍光膜を
備えた画像表示装置。
22. A projection type cathode ray tube comprising a face plate having a fluorescent film formed thereon, and means for irradiating the fluorescent film with an electron beam, wherein the average particle size of the fluorescent film is the main phosphor. 5% by weight or more of small small particle phosphor 70
An image display device provided with a fluorescent film, which is characterized by being mixed in a range of not more than wt%.
【請求項23】蛍光膜が形成されたフェースプレート
と,前記蛍光膜に電子線を照射する手段とを備えた投射
型ブラウン管であって,前記蛍光膜を主たる蛍光体に対
して平均粒径が小さい小粒子蛍光体を10重量%以上4
0重量%以下の範囲で混合したことを特徴とする蛍光膜
を備えた画像表示装置。
23. A projection type cathode ray tube comprising a face plate having a fluorescent film formed thereon, and means for irradiating the fluorescent film with an electron beam, wherein the average particle size of the fluorescent film is mainly with respect to the main fluorescent substance. 10% by weight or more of small small particle phosphors 4
An image display device provided with a fluorescent film, characterized in that it is mixed in an amount of 0% by weight or less.
【請求項24】前記投射型ブラウン管において、蛍光体
に照射する電子線の加速電圧が15kVから35kVの
範囲であることを特徴とする請求項23記載の画像表示
装置。
24. The image display device according to claim 23, wherein in the projection type cathode ray tube, the acceleration voltage of the electron beam with which the phosphor is irradiated is in the range of 15 kV to 35 kV.
【請求項25】前記主たる蛍光体と混合する前記小粒子
蛍光体が同一組成であることを特徴とする請求項23記
載の画像表示装置。
25. The image display device according to claim 23, wherein the small particle phosphors mixed with the main phosphor have the same composition.
【請求項26】蛍光膜が形成されたフェースプレート
と,前記蛍光膜に電子線を照射する手段とを備えた電界
放出型ディスプレイ装置であって,前記蛍光膜を主たる
蛍光体に対して平均粒径が小さい小粒子蛍光体を5重量
%以上70重量%以下の範囲で混合したことを特徴とす
る蛍光膜を備えた画像表示装置。
26. A field emission display device comprising a face plate having a fluorescent film formed thereon and means for irradiating the fluorescent film with an electron beam, wherein the fluorescent film has an average grain size with respect to the main fluorescent substance. An image display device provided with a phosphor film, characterized in that a small particle phosphor having a small diameter is mixed in a range of 5% by weight or more and 70% by weight or less.
【請求項27】蛍光膜が形成されたフェースプレート
と,前記蛍光膜に電子線を照射する手段とを備えた電界
放出型ディスプレイ装置であって,前記蛍光膜を主たる
蛍光体に対して平均粒径が小さい小粒子蛍光体を10重
量%以上40重量%以下の範囲で混合したことを特徴と
する蛍光膜を備えた画像表示装置。
27. A field emission display device comprising a face plate having a fluorescent film formed thereon and means for irradiating the fluorescent film with an electron beam, wherein the fluorescent film has an average grain size with respect to a main fluorescent substance. An image display device provided with a fluorescent film, characterized in that a small particle phosphor having a small diameter is mixed in a range of 10% by weight or more and 40% by weight or less.
JP2002187046A 2001-10-16 2002-06-27 Image display device Pending JP2003197135A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002187046A JP2003197135A (en) 2001-10-16 2002-06-27 Image display device

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2001317581 2001-10-16
JP2001-317581 2001-10-16
JP2002187046A JP2003197135A (en) 2001-10-16 2002-06-27 Image display device

Publications (1)

Publication Number Publication Date
JP2003197135A true JP2003197135A (en) 2003-07-11

Family

ID=27615453

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002187046A Pending JP2003197135A (en) 2001-10-16 2002-06-27 Image display device

Country Status (1)

Country Link
JP (1) JP2003197135A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005080528A1 (en) * 2004-02-24 2005-09-01 Kabushiki Kaisha Toshiba Green light-emitting phosphor for displays and field-emission display using same
JP2006335778A (en) * 2005-05-31 2006-12-14 Hitachi Displays Ltd Image display device
JP2007242428A (en) * 2006-03-09 2007-09-20 Hitachi Ltd Image display
KR100821798B1 (en) 2006-05-19 2008-04-14 캐논 가부시끼가이샤 Image display apparatus and method of driving the same
JP2009098775A (en) * 2007-10-15 2009-05-07 Toppan Printing Co Ltd Information reader and information reading method
JP2019028380A (en) * 2017-08-03 2019-02-21 株式会社ブイ・テクノロジー Full color LED display panel

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005080528A1 (en) * 2004-02-24 2005-09-01 Kabushiki Kaisha Toshiba Green light-emitting phosphor for displays and field-emission display using same
JP2006335778A (en) * 2005-05-31 2006-12-14 Hitachi Displays Ltd Image display device
JP2007242428A (en) * 2006-03-09 2007-09-20 Hitachi Ltd Image display
KR100821798B1 (en) 2006-05-19 2008-04-14 캐논 가부시끼가이샤 Image display apparatus and method of driving the same
US8188668B2 (en) 2006-05-19 2012-05-29 Canon Kabushiki Kaisha Image display apparatus and method of driving the same
JP2009098775A (en) * 2007-10-15 2009-05-07 Toppan Printing Co Ltd Information reader and information reading method
JP2019028380A (en) * 2017-08-03 2019-02-21 株式会社ブイ・テクノロジー Full color LED display panel

Similar Documents

Publication Publication Date Title
US4275333A (en) Fluorescent compositions and low-velocity electron excited fluorescent display devices utilizing the same
JP2004134216A (en) Cathode-ray tube
US6069439A (en) Phosphor material, method of manufacturing the same and display device
US6791253B2 (en) Display
JP2007103052A (en) Plasma display panel
JP2003197135A (en) Image display device
JP2002226847A (en) Fluorescent substance for display device and field emission type display device using thereof
JP2006164854A (en) Fluorescent screen and image display device
JP2006312695A (en) Blue light-emitting phosphor for display device, and field emission type display device
JP2004043568A (en) Image display device
US20060071587A1 (en) Fluorescent material for dispaly unit, process for producing the same and color display unit including the same
JPS632314B2 (en)
JP2004123786A (en) Phosphor for display device, its production method, and color display device using the same
JP4207368B2 (en) LIGHT EMITTING MANUFACTURING METHOD, LIGHT EMITTING MATERIAL PRODUCED BY THE MANUFACTURING METHOD, DISPLAY SUBSTRATE HAVING THE LIGHT EMITTING UNIT, AND DISPLAY DEVICE
JP2001076613A (en) Display device
US20080265743A1 (en) Green Light-Emitting Phosphor for Displays and Field-Emission Display Using Same
JP2002105446A (en) Display device
JP2001226670A (en) Fluorescent material for display apparatus and luminescent element produced by using the material
JP3417831B2 (en) Manufacturing method of phosphor material
JP2795185B2 (en) Display device
JP2004263068A (en) Green light emitting fluorescent substance for low voltage/high current density use, and field emission type display unit using the same
JP2006316105A (en) Green color-emitting fluorophor for display device and field emission-type display device
KR20010084379A (en) High brightness plasma display panel and fabricating method thereof
JP2000268728A (en) Plasma display panel and image display device using same
JP2008156580A (en) Light-emitting element and field emission display

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20050621

Free format text: JAPANESE INTERMEDIATE CODE: A621

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20060419

A977 Report on retrieval

Effective date: 20060609

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Effective date: 20060620

Free format text: JAPANESE INTERMEDIATE CODE: A131

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060821

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080212

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080402

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20080417

A912 Removal of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20080912