JP2003187207A - Electrode structure of tag for rfid and method for adjusting resonance frequency using the same electrode - Google Patents

Electrode structure of tag for rfid and method for adjusting resonance frequency using the same electrode

Info

Publication number
JP2003187207A
JP2003187207A JP2001382638A JP2001382638A JP2003187207A JP 2003187207 A JP2003187207 A JP 2003187207A JP 2001382638 A JP2001382638 A JP 2001382638A JP 2001382638 A JP2001382638 A JP 2001382638A JP 2003187207 A JP2003187207 A JP 2003187207A
Authority
JP
Japan
Prior art keywords
electrode
resonance frequency
comb
fingers
finger
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001382638A
Other languages
Japanese (ja)
Other versions
JP3700777B2 (en
Inventor
Satoshi Uozumi
学司 魚住
Shinichiro Inui
信一郎 乾
Koichi Ishiyama
宏一 石山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP2001382638A priority Critical patent/JP3700777B2/en
Publication of JP2003187207A publication Critical patent/JP2003187207A/en
Application granted granted Critical
Publication of JP3700777B2 publication Critical patent/JP3700777B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide an electrode structure of a tag for RFID (radio frequency identification) by which a resonance frequency of a resonant circuit to be formed on the tag for RFID can be easily adjusted after formation of the circuit and a method for adjusting the resonance frequency using the electrode. <P>SOLUTION: In an RFID system for communicating data between a reader/ writer and the tag by using electromagnetic induction, a comb-line electrode 7 of a capacitor constituting the resonant circuit of the tag and a counter electrode 8 to be formed on the opposite side by sandwiching a substrate are formed so that area of an overlapped part between each finger 7b of the comb-line electrode 7 and the counter electrode 8 gradually becomes small from the tip side to the root side of the comb-line electrode 7, for example, the counter electrode 8 is formed like a taper and shift quantity of the resonance frequency when the fingers 7b are successively cut off is set as approximately equivalent values. Thus, the number of fingers to be cut off is directly determined from the shift quantity from desired resonant frequency and an adjustment work of the resonant frequency is facilitated. <P>COPYRIGHT: (C)2003,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、共振回路を構成す
るコンデンサの電極構造及び該電極を用いた共振周波数
の調整方法に関し、特に、容易に共振周波数の調整が可
能なRFID(Radio Frequency Identification)用タ
グの櫛型電極の形状及び該櫛型電極を用いた共振周波数
の調整方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an electrode structure of a capacitor forming a resonance circuit and a resonance frequency adjusting method using the electrode, and more particularly to an RFID (Radio Frequency Identification) which can easily adjust the resonance frequency. TECHNICAL FIELD The present invention relates to the shape of a comb-shaped electrode of a tag for use and a method of adjusting resonance frequency using the comb-shaped electrode.

【0002】[0002]

【従来の技術】近年、ICチップを備えたタグとリーダ
/ライタ(又はリーダ)との間でデータの交信を行うR
FIDシステムが普及している。このRFIDシステム
は、タグ及びリーダ/ライタの各々に備えたアンテナを
用いてデータの交信を行うため、タグをリーダ/ライタ
から数cm乃至数十cm離しても通信可能であり、ま
た、汚れや静電気等に強いという長所から、工場の生産
管理、物流の管理、入退室管理等の様々な分野に利用さ
れるようになってきている。
2. Description of the Related Art In recent years, an R which performs data communication between a tag equipped with an IC chip and a reader / writer (or reader).
FID systems are widespread. Since this RFID system uses a tag and an antenna provided in each of the reader / writer to communicate data, it is possible to communicate even if the tag is several cm to several tens of cm away from the reader / writer, and there is no contamination or dirt. Because of its strength against static electricity, it has come to be used in various fields such as factory production control, logistics control, and room access control.

【0003】このタグの基本的な回路要素は、アンテナ
コイルとコンデンサからなる共振回路とICチップとで
あり、所望する周波数帯域(例えば、13.56MH
z)でデータの交信を行うには、共振回路を構成するア
ンテナコイルのインダクタンスLとコンデンサの静電容
量Cとで設定される共振周波数fを上記周波数に正確に
調整する必要がある。
The basic circuit elements of this tag are a resonance circuit consisting of an antenna coil and a capacitor, and an IC chip, which has a desired frequency band (for example, 13.56 MH).
In order to perform data communication in z), it is necessary to accurately adjust the resonance frequency f set by the inductance L of the antenna coil and the capacitance C of the capacitor forming the resonance circuit to the above frequency.

【0004】ここで、タグとしてラベル型タグを用いる
場合は、フレキシブルなシート状の基板の一方の面にア
ンテナコイルを形成し、他方の面にアンテナコイルと対
向する電極を形成して、基板を誘電体とするコンデンサ
を形成する。そして、アンテナコイルの巻き数や面積に
よりインダクタンスを調整し、対向する電極の重なり部
分の面積や電極間の距離により静電容量を調整する。
Here, when a label-type tag is used as the tag, an antenna coil is formed on one surface of a flexible sheet-shaped substrate, and an electrode facing the antenna coil is formed on the other surface of the substrate to form the substrate. A capacitor as a dielectric is formed. Then, the inductance is adjusted by the number of turns and the area of the antenna coil, and the electrostatic capacitance is adjusted by the area of the overlapping portion of the opposing electrodes and the distance between the electrodes.

【0005】これらアンテナコイルの巻き数や面積、対
向する電極の重なり部分の面積等は、基本的にタグの設
計段階において設定されるものであり、設計値通りにア
ンテナコイルやコンデンサが形成されれば、所望の共振
周波数を有するタグを製造することができる。
The number of turns and the area of these antenna coils, the area of the overlapping portion of the electrodes facing each other, etc. are basically set at the design stage of the tag, and the antenna coil and the capacitor are formed as designed. For example, a tag having a desired resonance frequency can be manufactured.

【0006】[0006]

【発明が解決しようとする課題】これらのアンテナコイ
ルやコンデンサは、フレキシブルなシート状の基板の両
面に予め形成されている導電膜をウェットエッチングに
より除去するか、又はスクリーン印刷等により導電ペー
ストを印刷して形成されるが、例えば、ウェットエッチ
ングではエッチングマスク下部の電極端部が徐々にエッ
チングされてしまうためにパターン寸法にある程度の誤
差が生じる。また、スクリーン印刷の寸法精度や基板の
厚さ等の種々の要因により、アンテナコイルやコンデン
サの形状、構造が変化し、所望の共振回路を形成するこ
とができない。
In these antenna coils and capacitors, the conductive film previously formed on both surfaces of a flexible sheet-like substrate is removed by wet etching, or a conductive paste is printed by screen printing or the like. However, for example, in wet etching, the electrode end portion under the etching mask is gradually etched, so that some error occurs in the pattern dimension. Further, due to various factors such as the dimensional accuracy of screen printing and the thickness of the substrate, the shape and structure of the antenna coil and the capacitor are changed, and a desired resonance circuit cannot be formed.

【0007】そこで、製造上の要因によるアンテナコイ
ルのインダクタンスやコンデンサの静電容量のずれ、す
なわち、共振周波数のずれを補正することができる構造
及び調整方法が望まれており、例えば、特開2000−
216494号公報では、基板の一方の面に形成するア
ンテナコイルは同一形状とし、他方に設ける電極は面積
が徐々に減少するように導電性ペーストをスクリーン印
刷し、これらの電極を組み合わせることによってコンデ
ンサの静電容量を調整して最適な共振周波数を得てい
る。
Therefore, there is a demand for a structure and an adjusting method capable of correcting the deviation of the inductance of the antenna coil and the electrostatic capacity of the capacitor, that is, the deviation of the resonance frequency due to manufacturing factors. −
In Japanese Patent No. 216494, an antenna coil formed on one surface of a substrate has the same shape, and an electrode provided on the other surface is screen-printed with a conductive paste so that the area thereof is gradually reduced. The capacitance is adjusted to obtain the optimum resonance frequency.

【0008】また、特開平10−84075号公報で
は、コンデンサを構成する一方の電極を多数のフィンガ
ーが基部から延びる櫛型構造とし、櫛型電極のフィンガ
ーを順次切断することにより、コンデンサの電極面積す
なわち静電容量を変化させて、それにより共振周波数を
調整する方法について記載している。この特開平10−
84075号公報の調整方法について図面を参照して説
明する。
Further, in Japanese Unexamined Patent Publication No. 10-84075, one electrode forming a capacitor has a comb structure in which a large number of fingers extend from a base portion, and the fingers of the comb electrodes are sequentially cut to obtain an electrode area of the capacitor. That is, it describes a method of adjusting the resonance frequency by changing the capacitance. This Japanese Patent Laid-Open No. 10-
The adjustment method of Japanese Patent No. 84075 will be described with reference to the drawings.

【0009】図9は上述した従来の共振回路のコンデン
サ部の構造を模式的に示す図であり、(a)は平面図、
(b)は(a)のB−B′線における断面図である。図
9に示すように、絶縁体からなる基板6を挟んで、一方
の面に櫛型電極7((a)の実線)と幹部電極9とが、
他方の面に対向電極8((a)の破線)が形成されてい
る。この櫛型電極7は、同一幅のフィンガー7bが基部
7aに並設して形成され、一方、対向電極8は、基板6
の法線方向から見て矩形形状の電極がフィンガー7bと
相重なるように形成されている。上記構造の櫛型電極7
及び対向電極8を用いて共振周波数を調整する方法につ
いて以下に示す。
FIG. 9 is a diagram schematically showing the structure of the capacitor portion of the above-described conventional resonance circuit, in which (a) is a plan view,
(B) is a sectional view taken along the line BB 'of (a). As shown in FIG. 9, the comb-shaped electrode 7 (solid line in (a)) and the stem electrode 9 are provided on one surface with the substrate 6 made of an insulator interposed therebetween.
The counter electrode 8 (broken line of (a)) is formed on the other surface. The comb-shaped electrode 7 is formed by arranging fingers 7b having the same width side by side on the base portion 7a, while the counter electrode 8 is formed on the substrate 6.
The rectangular electrodes are formed so as to overlap the fingers 7b when viewed from the normal direction. Comb-shaped electrode 7 having the above structure
A method of adjusting the resonance frequency using the counter electrode 8 will be described below.

【0010】まず、共振回路の共振周波数fは、コイル
のインダクタンスLとシートコンデンサの静電容量Cと
で決まり、次式で表される。
First, the resonance frequency f of the resonance circuit is determined by the inductance L of the coil and the electrostatic capacitance C of the sheet capacitor, and is represented by the following equation.

【0011】 [0011]

【0012】また、静電容量Cは対向する電極(図では
フィンガー7bと対向電極8)が重なる部分の面積に比
例し、電極間の距離に反比例する。従って、フィンガー
7bの付け根のカット部7cをカットすることによっ
て、コンデンサの電極面積を減らして静電容量Cを減少
させ、式1より共振周波数fを増加させることができ
る。そこで、フィンガー7bをカットする前のコンデン
サの静電容量を予め大きめにしておき、フィンガー7b
をカットすることによって共振周波数fを所望の値に調
節することができる。
Further, the capacitance C is proportional to the area of the portion where the electrodes (finger 7b and the counter electrode 8 in the figure) which face each other overlap, and is inversely proportional to the distance between the electrodes. Therefore, by cutting the cut portion 7c at the base of the finger 7b, the electrode area of the capacitor can be reduced, the capacitance C can be reduced, and the resonance frequency f can be increased according to Equation 1. Therefore, the capacitance of the capacitor before the finger 7b is cut is made large beforehand, and the finger 7b
The resonance frequency f can be adjusted to a desired value by cutting.

【0013】しかしながら、従来の電極の構造では、櫛
型電極7のフィンガー7bの幅が一定であり、また、対
向電極8が矩形形状であるため、各々のフィンガー7b
が形成する電極の面積、すなわち静電容量Cは同一とな
る。従って、フィンガー7bを順次切断した場合の共振
周波数のシフト量は、式1の関係から一定とはならず、
カットするフィンガー7bの本数が多くなるほど式1の
分母の変化量が大きくなるため、共振周波数のシフト量
が大きくなってしまう。
However, in the conventional electrode structure, the fingers 7b of the comb-shaped electrode 7 have a constant width, and the counter electrode 8 has a rectangular shape.
The areas of the electrodes formed by, that is, the electrostatic capacitance C are the same. Therefore, the shift amount of the resonance frequency when the fingers 7b are sequentially cut off is not constant from the relationship of Equation 1,
As the number of fingers 7b to be cut increases, the amount of change in the denominator of Expression 1 increases, so that the amount of shift of the resonance frequency increases.

【0014】このような構造では、共振周波数fを目標
とする値に調節するためには、予め所望の共振周波数f
に対応するコンデンサの静電容量Cを計算により求め、
その静電容量になるようにカットするフィンガーの本数
を求めるという2段階の手順を踏まなければならず、共
振周波数の測定値から直接フィンガー7bのカット本数
を容易に計算することができない。すなわち、実際の作
業において、基板6上にコイルとコンデンサからなる共
振回路を形成した後、検査装置を用いて共振周波数を測
定しても、測定値から直接フィンガー7bのカット数が
決定できないため、フィンガーをカットしては測定を行
うという動作を何度も繰り返して共振周波数の調整を行
う必要があった。
In such a structure, in order to adjust the resonance frequency f to a target value, the desired resonance frequency f is preset.
Calculate the capacitance C of the capacitor corresponding to
It is necessary to perform a two-step procedure of obtaining the number of fingers to be cut so as to have the capacitance, and the number of fingers 7b to be cut cannot be easily calculated directly from the measured value of the resonance frequency. That is, in the actual work, even if the resonance frequency including the coil and the capacitor is formed on the substrate 6 and then the resonance frequency is measured using the inspection device, the number of cuts of the fingers 7b cannot be directly determined from the measured value. It was necessary to adjust the resonance frequency by repeating the operation of cutting the finger and performing the measurement many times.

【0015】本発明は、上記問題点に鑑みてなされたも
のであって、その主たる目的は、RFID用タグのよう
な共振回路を備える装置の共振周波数を簡単に調整する
ことができるRFID用タグの電極構造及び該電極を用
いた共振周波数の調整方法を提供することにある。
The present invention has been made in view of the above problems, and its main object is to make it possible to easily adjust the resonance frequency of a device having a resonance circuit such as an RFID tag. Another object of the present invention is to provide an electrode structure and a method of adjusting a resonance frequency using the electrode.

【0016】[0016]

【課題を解決するための手段】上記目的を達成するた
め、本発明のRFID用タグの電極構造は、RFID用
タグの共振回路を構成するコンデンサの電極が、複数の
フィンガーが基部に接続される櫛型電極及び幹部電極
と、基板を挟んで反対側の面に形成される対向電極とか
らなり、前記櫛型電極の各々の前記フィンガーと前記対
向電極との重なり部分の面積が、前記櫛型電極の前記基
部の長手方向の一端側から他端側に向かって徐々に変化
するように、前記電極の形状が設定されているものであ
る。
In order to achieve the above object, in the electrode structure of the RFID tag of the present invention, the electrodes of the capacitor forming the resonance circuit of the RFID tag are connected to the base of a plurality of fingers. The comb-shaped electrode and the stem electrode, and the counter electrode formed on the opposite surface across the substrate, and the area of the overlapping portion of each finger of the comb-shaped electrode and the counter electrode is the comb-shaped electrode. The shape of the electrode is set so as to gradually change from one end side to the other end side in the longitudinal direction of the base portion of the electrode.

【0017】本発明においては、前記重なり部分の面積
が、前記フィンガーを前記櫛型電極の前記一端側から順
に前記基部から切り離した場合において、前記共振回路
の共振周波数のシフト量が略一定となるように、前記電
極の形状が設定されることが好ましい。
In the present invention, the area of the overlapping portion has a substantially constant shift amount of the resonance frequency of the resonance circuit when the fingers are separated from the base in order from the one end side of the comb-shaped electrode. Thus, the shape of the electrode is preferably set.

【0018】また、本発明においては、前記櫛型電極の
前記一端側から数えてn(nは正数)番目の前記フィン
ガーと前記対向電極とで形成される容量ΔCnが、C及
びkを定数としたときにΔCn=C×(1−kn)で表
される関係を満たすように、前記電極の形状が設定され
る構成とすることができる。
Further, in the present invention, the capacitance ΔCn formed by the n-th finger (n is a positive number) counted from the one end side of the comb-shaped electrode and the counter electrode is a constant C and k. Then, the shape of the electrode can be set so as to satisfy the relationship represented by ΔCn = C × (1-kn).

【0019】また、本発明においては、前記対向電極
が、前記櫛型電極の前記他端側に向かって徐々に細くな
るテーパー形状又は段階的に細くなる階段形状をなす構
成とすることができ、前記対向電極の前記一端側の幅を
W1、前記他端側の幅をW2としたとき、W1:W2=
(1−k):(1−kn)となることが好ましい。
Further, in the present invention, the counter electrode may have a taper shape that gradually narrows toward the other end side of the comb-shaped electrode or a step shape that gradually narrows. When the width on the one end side of the counter electrode is W1 and the width on the other end side is W2, W1: W2 =
It is preferable that (1-k) :( 1-kn).

【0020】また、本発明においては、前記櫛型電極
が、前記他端側に向かうに従って徐々に前記フィンガー
の幅が小さくなるように形成されている構成とすること
ができ、前記櫛型電極の前記一端側の前記フィンガーの
幅をWf1、前記他端側の幅をWf2としたとき、Wf
1:Wf2=(1−k):(1−kn)となることが好
ましい。
Further, according to the present invention, the comb-shaped electrode may be formed such that the width of the fingers gradually decreases toward the other end side. When the width of the fingers on the one end side is Wf1 and the width on the other end side is Wf2, Wf
It is preferable that 1: Wf2 = (1-k) :( 1-kn).

【0021】また、本発明においては、前記基板が、P
ETシート、ポリエチレンシート又はポリイミドシート
のいずれか一からなり、前記電極がAl又はCuを材料
とする導電膜のエッチングパターンからなる構成とする
ことができ、前記基板と前記電極の材料との組み合わせ
が、PETシートとAl又はCu、ポリエチレンシート
とAl、ポリイミドシートとCuのいずれか一からなる
ことが好ましい。
In the present invention, the substrate is P
The electrode may be formed of any one of an ET sheet, a polyethylene sheet, and a polyimide sheet, and the electrode may be formed of an etching pattern of a conductive film using Al or Cu as a material, and a combination of the substrate and the material of the electrode may be used. , PET sheet and Al or Cu, polyethylene sheet and Al, polyimide sheet and Cu.

【0022】また、本発明の共振周波数の調整方法は、
上記電極構造を有するRFID用タグにおける共振周波
数の調整方法であって、前記基板に前記共振回路を一旦
形成した後、該共振回路の共振周波数を測定するステッ
プと、測定した共振周波数と所望の周波数とのずれ量を
求め、該ずれ量を前記フィンガー毎の共振周波数シフト
量で割って、切断すべき前記フィンガーの本数を設定す
るステップと、前記フィンガーを設定された本数分だけ
前記コンデンサより切断できるような前記基部の所定の
カット部を1カ所切断して、共振周波数を前記所望の周
波数に調整するステップと、を少なくとも有するもので
ある。
The resonance frequency adjusting method of the present invention is
A method of adjusting a resonance frequency in an RFID tag having the above electrode structure, which comprises forming the resonance circuit once on the substrate and then measuring the resonance frequency of the resonance circuit, the measured resonance frequency and a desired frequency. And a step of setting the number of the fingers to be cut by dividing the deviation amount by the resonance frequency shift amount of each finger, and cutting the fingers by the set number of fingers from the capacitor. And cutting the predetermined cut portion of the base portion at one place to adjust the resonance frequency to the desired frequency.

【0023】このように、本発明は、RFID用タグの
共振回路のコンデンサを構成する対向電極を櫛型電極の
フィンガーとの重なり部分の面積が変化するように階段
状やテーパー状としたり、また、櫛型電極のフィンガー
自体の幅を変化させ、かつ、対向電極の形状やフィンガ
ーの幅を所定の関係式(ΔCn=C×(1−kn))を
満たすように設定することにより、フィンガー毎の共振
周波数のシフト量を略一定にすることができる。これに
より、切断すべき前記フィンガーの本数を容易に計算で
きるため、前記基部の所定のカット部を1カ所だけ切断
し、必要な本数分の前記フィンガーを前記コンデンサよ
り切り離せ、共振周波数の調整を容易にすることが可能
となる。
As described above, according to the present invention, the counter electrode forming the capacitor of the resonance circuit of the RFID tag is formed in a stepped shape or a tapered shape so that the area of the overlapping portion with the fingers of the comb-shaped electrode changes, or By changing the width of the fingers themselves of the comb-shaped electrode and setting the shape of the counter electrode and the width of the fingers so as to satisfy a predetermined relational expression (ΔCn = C × (1-kn)), The shift amount of the resonance frequency can be made substantially constant. With this, the number of fingers to be cut can be easily calculated, so that the predetermined cut portion of the base is cut at only one place, and the necessary number of fingers can be separated from the capacitor, and the resonance frequency can be easily adjusted. It becomes possible to

【0024】[0024]

【発明の実施の形態】本発明に係るRFID用タグの電
極構造は、その好ましい一実施の形態において、リーダ
/ライタとのデータの交信を行うRFID用タグの共振
回路を構成するコンデンサの櫛型電極と、基板を挟んで
反対側の面に形成される対向電極とを、櫛型電極の各々
のフィンガーと対向電極との重なり部分の面積が、櫛型
電極の先端側から根元側に向かって徐々に小さくなるよ
うに形成し、フィンガーを順次切断していった場合の共
振周波数のシフト量が略一定となるようにするものであ
る。
BEST MODE FOR CARRYING OUT THE INVENTION An electrode structure of an RFID tag according to the present invention is, in a preferred embodiment thereof, a comb-shaped capacitor which constitutes a resonance circuit of an RFID tag for communicating data with a reader / writer. The electrode and the counter electrode formed on the opposite side of the substrate are arranged such that the area of the overlapping portion of each finger of the comb-shaped electrode and the counter electrode is from the tip side of the comb-shaped electrode toward the root side. It is formed so as to be gradually smaller so that the shift amount of the resonance frequency becomes substantially constant when the fingers are sequentially cut.

【0025】すなわち、カットするフィンガーの位置に
依らず、フィンガー1本当りの共振周波数のシフト量を
一定にするために、フィンガー毎に対向電極との間で形
成する微小容量値ΔCを設定する。設定例として、例え
ば、ΔCn=C×(1−kn)とすれば良い。ここで、
kは比例定数、ΔCnは櫛型電極の先端からn番目のフ
ィンガーが対向電極と形成する微小容量、Cは定数であ
る。但し、kの値は、C0(フィンガーカット前のタグ
の静電容量)とCの値をもとに、最適値に設定する必要
があり、例えば、フィンガーの幅及びフィンガー同士
の間隔は一定であり、交差する対向電極を根元が細いテ
ーパー形状や階段形状とする、フィンガーの幅を櫛型
電極の根元に近くなるほど細くなるようにすることによ
り実現できる。
That is, in order to make the amount of shift of the resonance frequency per finger constant regardless of the position of the finger to be cut, the minute capacitance value ΔC formed between the finger and the counter electrode is set. As a setting example, for example, ΔCn = C × (1-kn) may be set. here,
k is a proportional constant, ΔCn is a minute capacitance formed by the nth finger from the tip of the comb-shaped electrode with the counter electrode, and C is a constant. However, the value of k needs to be set to an optimum value based on the values of C 0 (capacitance of the tag before finger cut) and C. For example, the width of fingers and the interval between fingers are constant. This can be realized by forming the intersecting counter electrodes in a tapered shape or a staircase shape with a thin root, and by narrowing the width of the fingers toward the root of the comb-shaped electrode.

【0026】[0026]

【実施例】上記した本発明の実施の形態についてさらに
詳細に説明すべく、本発明の実施例について図面を参照
して説明する。
EXAMPLES Examples of the present invention will be described with reference to the drawings in order to describe the above-described embodiments of the present invention in more detail.

【0027】[実施例1]まず、本発明の第1の実施例
に係るRFID用タグの電極構造及び該電極を用いた共
振周波数の調整方法について、図1乃至図6を参照して
説明する。図1は、RFIDシステムの全体構成を模式
的に示す図である。また、図2は、本実施例のRFID
用ラベルタグの構造の一例を示す図であり、図3は、共
振回路のコンデンサ部分の拡大図である。また、図4及
び図5は、本実施例の効果を説明するための図であり、
図6は対向電極の他の構造を示す図である。
[Embodiment 1] First, an electrode structure of an RFID tag according to a first embodiment of the present invention and a resonance frequency adjusting method using the electrode will be described with reference to FIGS. 1 to 6. . FIG. 1 is a diagram schematically showing the overall configuration of an RFID system. In addition, FIG. 2 shows the RFID of this embodiment.
It is a figure which shows an example of the structure of the label label for, and FIG. 3 is an enlarged view of the capacitor part of a resonance circuit. 4 and 5 are diagrams for explaining the effect of this embodiment,
FIG. 6 is a diagram showing another structure of the counter electrode.

【0028】図1に示すように、RFIDシステム1
は、アンテナ3aを用いてデータの交信を行うリーダ/
ライタ3と、ラベル型、コイン型、シート型等の種々の
形状のタグ2とからなり、リーダ/ライタ3には、送受
信信号を変換するための通信回路部3bと送受信信号を
デコードするための演算処理部3cとが接続されてい
る。また、タグ2は、その内部にコイルとコンデンサと
から構成される共振回路2aを備え、タグ2側でも信号
を生成する場合には、共振回路2aにデータの演算、記
憶を行うIC2bが接続され、内蔵する電源又はリーダ
/ライタ3から供給される電源を用いて駆動される。
As shown in FIG. 1, the RFID system 1
Is a reader / device that communicates data using the antenna 3a.
The reader / writer 3 includes a writer 3 and a tag 2 having various shapes such as a label type, a coin type, and a sheet type. The reader / writer 3 includes a communication circuit unit 3b for converting a transmission / reception signal and a transmission / reception signal for decoding. The arithmetic processing unit 3c is connected. Further, the tag 2 includes a resonance circuit 2a including a coil and a capacitor therein, and when the tag 2 side also generates a signal, an IC 2b for calculating and storing data is connected to the resonance circuit 2a. It is driven by using a built-in power supply or a power supply supplied from the reader / writer 3.

【0029】このRFIDシステム1におけるリーダ/
ライタ3とタグ2とのデータ通信は、所望の通信周波数
(例えば、13.56MHz)により行われるため、タ
グ2の共振回路2aの共振周波数を通信周波数に正確に
調整する必要がある。ここで、タグ2の構造について図
2を参照して説明する。図2は、ラベル型タグの構造の
一例を示す図であり、(a)は平面図、(b)は(a)
のA−A′線における断面図である。
Reader / in this RFID system 1
Since data communication between the writer 3 and the tag 2 is performed at a desired communication frequency (for example, 13.56 MHz), it is necessary to accurately adjust the resonance frequency of the resonance circuit 2a of the tag 2 to the communication frequency. Here, the structure of the tag 2 will be described with reference to FIG. 2A and 2B are views showing an example of the structure of the label-type tag, where FIG. 2A is a plan view and FIG.
3 is a cross-sectional view taken along the line AA ′ of FIG.

【0030】図2に示すように、一般に、ラベル型タグ
は基板6とその両面に形成した導電膜パターンとIC2
bとから構成され、フレキシブルな絶縁性シートからな
る基板6の両面に設けられたAlやCu等の導電膜をエ
ッチングにより除去したり、スクリーン印刷により導電
性ペーストを塗布することにより、コイル4や櫛型電極
7、対向電極8のパターンが形成されるが、このパター
ン形成におけるエッチングやスクリーン印刷の精度等の
製造上の条件によりパターン形状に個体差が生じる。
As shown in FIG. 2, in general, a label type tag has a substrate 6 and a conductive film pattern formed on both surfaces thereof and an IC 2
b, and the conductive film such as Al or Cu provided on both sides of the substrate 6 made of a flexible insulating sheet is removed by etching, or a conductive paste is applied by screen printing to form the coil 4 or Patterns of the comb-shaped electrode 7 and the counter electrode 8 are formed, but individual differences occur in the pattern shape depending on manufacturing conditions such as the accuracy of etching and screen printing in this pattern formation.

【0031】そこで、パターン形成の個体差に起因する
タグ2毎の共振周波数のずれを調整するために、共振回
路2aを形成するコイル4のインダクタンスL又はコン
デンサ5の静電容量Cをパターン形成後に調整する必要
があるが、インダクタンスLはコイルの巻き数と面積に
比例し、パターン形成後にこれらを調整することは困難
である。一方、コンデンサ5の静電容量Cは絶縁層(基
板6)を挟んで形成される電極(櫛型電極7及び幹部電
極9と対向電極8)の重なり部分の面積及び両電極間の
距離に相関し、特に電極面積に関しては調整が容易であ
る。
Therefore, in order to adjust the deviation of the resonance frequency of each tag 2 due to the individual difference in the pattern formation, the inductance L of the coil 4 forming the resonance circuit 2a or the capacitance C of the capacitor 5 is formed after the pattern formation. Although it is necessary to adjust the inductance, the inductance L is proportional to the number of turns and the area of the coil, and it is difficult to adjust these after pattern formation. On the other hand, the capacitance C of the capacitor 5 correlates with the area of the overlapping portion of the electrodes (the comb-shaped electrode 7 and the trunk electrode 9 and the counter electrode 8) formed with the insulating layer (substrate 6) sandwiched between them and the distance between the electrodes. However, it is easy to adjust the electrode area.

【0032】そこで、従来例において示したように、一
方の電極を基部7aに多数のフィンガー7bが並設され
る櫛型構造とし、このフィンガー7bを付け根のカット
部7cで切断することによってコンデンサ5の電極の面
積すなわち静電容量Cを小さくし、これにより、二次的
に共振周波数fを調整している。しかしながら、従来の
電極構造では、対向電極8は矩形形状であり、また、櫛
型電極7のフィンガー7bの幅は同一であるため、どの
フィンガーを切断しても面積の減少量すなわち静電容量
の変化量は一定であるため、式1の関係から共振周波数
fのシフト量は一定とならず、その調整が困難であっ
た。
Therefore, as shown in the conventional example, one electrode has a comb-shaped structure in which a large number of fingers 7b are arranged in parallel on the base portion 7a, and the fingers 5b are cut by the cut portion 7c at the base to form the capacitor 5 The area of the electrode of, that is, the electrostatic capacitance C is reduced, so that the resonance frequency f is secondarily adjusted. However, in the conventional electrode structure, the counter electrode 8 has a rectangular shape and the fingers 7b of the comb-shaped electrode 7 have the same width. Therefore, no matter which finger is cut, the area reduction amount, that is, the capacitance is reduced. Since the amount of change is constant, the amount of shift of the resonance frequency f is not constant due to the relationship of Equation 1, and its adjustment is difficult.

【0033】そこで、本実施例では、フィンガー7b毎
に静電容量の変化量を一定にするのではなく、共振周波
数そのものの変化量が略一定となるような電極形状を提
案する。なお、以下に示す電極形状の設計方法は、本願
発明者が経験的に得た新規な知見に基づくものであり、
RFIDシステム1に許容される共振周波数のずれ量や
実際の共振周波数の調整作業を念頭において案出したも
のである。以下に具体的な設計方法について詳述する。
In view of this, the present embodiment proposes an electrode shape in which the amount of change in the resonance frequency itself is substantially constant, rather than making the amount of change in capacitance constant for each finger 7b. The electrode shape designing method described below is based on the novel knowledge obtained by the inventor of the present application empirically,
This is devised in consideration of the deviation amount of the resonance frequency allowed in the RFID system 1 and the adjustment work of the actual resonance frequency. The specific design method will be described in detail below.

【0034】図3は、本実施例の共振回路2aのコンデ
ンサ5を構成する櫛型電極7と対向電極8の構造及び位
置関係を模式的に示す図であり、櫛型電極7は基部7a
の片側にn本(nは任意の整数)のフィンガー7bが平
行かつ等間隔に配設されて構成されており、基板6を挟
んで反対側には、点線で示すテーパー状の対向電極8a
が先端側(図の右側)で太く、根元側(図の左側)で細
くなるように形成されている。なお、ここでは、フィン
ガー7bは等間隔かつ平行に配設されているが、各々の
フィンガー7bと対向電極8との重なり部分の面積が後
述する関係を満たす限りにおいて、図の形状に限定され
ない。
FIG. 3 is a diagram schematically showing the structure and positional relationship between the comb-shaped electrode 7 and the counter electrode 8 which form the capacitor 5 of the resonance circuit 2a of the present embodiment. The comb-shaped electrode 7 has a base portion 7a.
N fingers 7b (n is an arbitrary integer) are arranged on one side in parallel with each other at equal intervals, and on the opposite side with the substrate 6 sandwiched therebetween, a tapered counter electrode 8a shown by a dotted line is formed.
Is thicker on the tip side (right side in the figure) and thinner on the root side (left side in the figure). Here, the fingers 7b are arranged at equal intervals and in parallel, but as long as the area of the overlapping portion of each finger 7b and the counter electrode 8 satisfies the relationship described later, it is not limited to the shape shown in the drawing.

【0035】まず、フィンガー1本あたりの共振周波数
のシフト量を略一定にするための関係式を定めるが、本
願発明者は様々な関係式を検討した結果、RFIDシス
テム1における共振周波数のずれの許容値や電極形成の
容易性等を勘案して、コンデンサ5の静電容量の変化量
ΔCnを式2の関係式とすると、共振周波数のシフト量
の変化が抑制されることを見出した。以下、式2の比例
定数kを求める方法について説明する。
First, a relational expression for making the shift amount of the resonance frequency per finger substantially constant is determined. As a result of examining various relational expressions, the inventor of the present application found that the deviation of the resonance frequency in the RFID system 1 It has been found that when the variation amount ΔCn of the capacitance of the capacitor 5 is set to the relational expression of Equation 2 in consideration of the allowable value and the ease of electrode formation, the variation in the shift amount of the resonance frequency is suppressed. Hereinafter, a method of obtaining the proportionality constant k in Expression 2 will be described.

【0036】 [0036]

【0037】ΔCnを式2で表した場合の1本目とn本
目のフィンガーカット時の共振周波数のシフト量Δfが
等しくなるようなkを求める。まず、1本面のフィンガ
ーをカットした場合のΔfは、カット前の静電容量を
とすると、カット後の静電容量がC−C(1−
k)であることから、次式で表される。
When ΔCn is expressed by the equation 2, k is calculated so that the shift amounts Δf of the resonance frequencies at the finger cut of the first finger and the n-th finger are equal. First, Delta] f 1 in the case of cutting a single plane fingers, when the electrostatic capacity before cutting the C 0, the capacitance after cut C 0 -C (1-
k), it is expressed by the following equation.

【0038】 [0038]

【0039】同様にn本目のフィンガーをカットした場
合のΔfは、1からn−1本目をカットしたときの容
量の減少量が式4、1からn本目までをカットしたとき
の容量の減少量が式5となることから、式6で表され
る。
Similarly, Δf n in the case of cutting the n- th finger is the amount of decrease in the capacity when cutting the 1st to n−1th fingers, and the amount of decrease in the capacity when cutting the 1st to the n- th fingers in Equation 4. Since the amount becomes the formula 5, it is expressed by the formula 6.

【0040】 [0040]

【0041】ここで、ΔfとΔfとが等しいとする
と、kはC、C、nを用いて次式で表される。
Here, if Δf 1 and Δf n are equal, k is represented by the following equation using C, C 0 , and n.

【0042】 [0042]

【0043】すなわち、櫛型電極のフィンガーの本数が
与えられた時、初期静電容量Cと定数Cを設定するこ
とにより、式7を用いてkを求めることができ、このk
を式2に当てはめて対向電極の形状を設定することによ
り、カットするフィンガーの本数によらず、共振周波数
のシフト量を略一定にすることができる。これにより、
従来のように共振周波数のずれ量を一旦静電容量に変換
し、その後カットするフィンガーの本数を設定するとい
った2段階の作業を行う必要がなくなり、共振周波数の
ずれ量から直接的にカットするフィンガーの本数を決定
することができ、共振周波数の調整作業を格段に容易に
することができる。
That is, when the number of fingers of the comb-shaped electrode is given, by setting the initial capacitance C 0 and the constant C, k can be obtained by using the equation 7, and this k can be obtained.
By setting Eq. 2 to set the shape of the counter electrode, the shift amount of the resonance frequency can be made substantially constant regardless of the number of fingers to be cut. This allows
It is no longer necessary to perform a two-step operation such as once converting the deviation amount of the resonance frequency into capacitance and then setting the number of fingers to be cut, and it is possible to directly cut the finger from the deviation amount of the resonance frequency. Can be determined, and the adjustment work of the resonance frequency can be significantly facilitated.

【0044】以下、具体的に計算した結果を示す。例え
ば、カット前の静電容量C=100(pF)、定数C
=1、フィンガーの本数n=20を式7に代入するとk
を求めることができ、kは実数かつ式2の括弧内が正数
になることから、k=0.0124184となる。この
kを用いてΔCn=1−kn≒1−n/80の関係を満
たすように対向電極8の形状を定めれば、フィンガー毎
の共振周波数のシフト量を略一定にすることができる。
The results of concrete calculations are shown below. For example, capacitance C 0 before cutting = 100 (pF), constant C
= 1 and the number of fingers n = 20 is substituted into Equation 7, k
Can be obtained, and k is a real number and a positive number is given in the parentheses of Expression 2, so that k = 0.0124184. If the shape of the counter electrode 8 is determined so as to satisfy the relationship of ΔCn = 1−kn≈1−n / 80 using this k, the shift amount of the resonance frequency for each finger can be made substantially constant.

【0045】上記計算の妥当性を確認するために上記手
法で得た解と任意に設定した値とを用いて共振周波数の
シフト量のシミュレーションを行った。その結果を表1
〜表3及び図4に示す。表1〜表3は、n番目のフィン
ガーをカットした場合(すなわち、n−1番目までカッ
トした状態から更にn番目のフィンガーをカットした
時)の共振周波数のシフト量を示しており、表1はkの
値を本実施例の方法で求めた値(k=0.012418
4)とした場合、表2はk=0.01に設定した場合、
表3はk=0.015に設定した場合のシミュレーショ
ン結果を示している。
In order to confirm the validity of the above calculation, the resonance frequency shift amount was simulated using the solution obtained by the above method and an arbitrarily set value. The results are shown in Table 1.
~ Shown in Table 3 and FIG. Tables 1 to 3 show the shift amounts of the resonance frequency when the nth finger is cut (that is, when the nth finger is further cut from the state where the n-1th finger is cut). Is a value obtained by the method of the present embodiment for the value of k (k = 0.012418).
4), when Table 2 is set to k = 0.01,
Table 3 shows the simulation results when k = 0.015 is set.

【0046】表1〜表3をまとめた図4より、kを計算
によらずに適当に設定した場合(図の△印又は□印)で
は、フィンガー7bのカット数が増えるほど共振周波数
のシフト量が変化しているが、上記手法により算出した
解を用いた場合(図の○印)の共振周波数のシフト量Δ
fは略一定であり、上記計算手法の妥当性を確認するこ
とができた。
From FIG. 4, which summarizes Tables 1 to 3, when k is set appropriately without calculation (marked by Δ or □), the resonance frequency shifts as the number of fingers 7b cut increases. The amount has changed, but when the solution calculated by the above method is used (○ in the figure), the shift amount Δ of the resonance frequency
f was substantially constant, and the validity of the above calculation method could be confirmed.

【0047】なお、表1及び図4の結果から、本実施例
の方法で設定したkの値でも共振周波数のシフト量を完
全に一定にすることができないが、その誤差((最大値
−最小値)/平均値)は1%程度と小さく、RFIDシ
ステムの使用形態を考慮すると問題ない数値であり、本
実施例の方法で十分な精度で共振周波数の調整を行うこ
とができる。
From the results of Table 1 and FIG. 4, the resonance frequency shift amount cannot be made completely constant even with the value of k set by the method of this embodiment, but the error ((maximum value-minimum The value) / average value) is as small as about 1%, and is a numerical value that does not pose any problem in consideration of the usage form of the RFID system, and the resonance frequency can be adjusted with sufficient accuracy by the method of this embodiment.

【0048】[0048]

【表1】k=0.0124184の場合 [Table 1] In the case of k = 0.0124184

【0049】[0049]

【表2】k=0.01の場合 [Table 2] When k = 0.01

【0050】[0050]

【表3】k=0.015の場合 [Table 3] When k = 0.015

【0051】次に、式2の関係式の妥当性を判断するた
めに、フィンガー毎の静電容量の変化量ΔCnを一定の
値にした場合と徐々に静電容量の変化量が小さくなる関
係式を用いた場合について同様のシミュレーションを行
った。その結果を表4〜表6及び図5に示す。
Next, in order to judge the validity of the relational expression of the expression 2, the relationship in which the variation amount ΔCn of the capacitance for each finger is set to a constant value and the variation amount of the capacitance gradually decreases. Similar simulations were performed for the case of using the formula. The results are shown in Tables 4 to 6 and FIG.

【0052】具体的には、櫛型電極7のフィンガー7b
をカットする前の静電容量C=100pFのラベルタ
グにおいて、定数Cを1、フィンガーの本数nを20本
とし、櫛型電極7の先端からn番目のフィンガーが対向
電極8と形成する微小容量がΔCn=1−n/80(p
F)となるように櫛型電極7を設計した。すなわち、フ
ィンガーの幅及びフィンガー同士の間隔は一定であり、
交差する対向電極8の先端の幅(W1)と根元の幅(W
2)の比がW1:W2=1−1/80:1−20/80
=79:60のテーパー形状であるようなRFID用ラ
ベルタグを作製した。櫛型電極7の先端から順に、フィ
ンガー7bをカットしたときの共振周波数のシフト量を
表4に示す。
Specifically, the fingers 7b of the comb-shaped electrode 7
In the label tag having the electrostatic capacitance C 0 = 100 pF before cutting, the constant C is 1, the number n of fingers is 20, and the n-th finger from the tip of the comb-shaped electrode 7 forms the counter electrode 8 with a small capacitance. Is ΔCn = 1-n / 80 (p
The comb-shaped electrode 7 was designed so as to be F). That is, the width of the fingers and the spacing between the fingers are constant,
The width (W1) of the tip of the opposing electrodes 8 and the width (W
The ratio of 2) is W1: W2 = 1-1 / 80: 1-20 / 80.
A label label for RFID having a tapered shape of = 79: 60 was produced. Table 4 shows the shift amount of the resonance frequency when the fingers 7b are cut in order from the tip of the comb-shaped electrode 7.

【0053】また、比較例として、全てのフィンガー7
bに対してフィンガー7bと対向電極8とで形成する微
小容量ΔCがΔC=1(pF)となるように対向電極8
を設計した場合(表5)と、櫛型電極7の先端からn番
目のフィンガー7bと対向電極8とで形成する微小容量
ΔCがΔC=0.99×Cn−1(pF)となる
(但し、C=1)ように櫛型電極を設計した場合(表
6)についても同様に計算した。
As a comparative example, all fingers 7
The counter electrode 8 is formed so that the minute capacitance ΔC formed by the finger 7b and the counter electrode 8 with respect to b becomes ΔC = 1 (pF).
(Table 5), the minute capacitance ΔC n formed by the n-th finger 7b from the tip of the comb-shaped electrode 7 and the counter electrode 8 is ΔC n = 0.99 × C n-1 (pF). The same calculation was applied to the case where the comb-shaped electrode was designed so that (where C 1 = 1) (Table 6).

【0054】[0054]

【表4】ΔCn=1−n/80の場合 [Table 4] When ΔCn = 1-n / 80

【0055】[0055]

【表5】ΔCn=1の場合 [Table 5] When ΔCn = 1

【0056】[0056]

【表6】ΔCn=0.99×Cn−1(pF)の場合
(但し、C=1)
[Table 6] In the case of ΔCn = 0.99 × C n-1 (pF) (however, C 1 = 1)

【0057】上記表4〜表6の結果をグラフに表すと図
5に示すようになる。図5から、ΔCnが一定値の場合
(図の□印)は、カットするフィンガー7bの本数が多
くなるに従って静電容量の変化量は同じであるが、式1
の分母が徐々に小さくなるために共振周波数のシフト量
は徐々に大きくなり、1本目と20本目とでは37%程
度増加している。また、静電容量の変化量を徐々に小さ
くした場合(図の△印)、共振周波数のシフト量のずれ
は緩和されるが、それでも1本目と20本目とでは10
%程度増加している。
The results of Tables 4 to 6 are shown in a graph in FIG. From FIG. 5, when ΔCn has a constant value (marked by □ in the figure), the amount of change in capacitance is the same as the number of fingers 7b to be cut increases.
Since the denominator of is gradually decreased, the shift amount of the resonance frequency is gradually increased, and is increased by about 37% in the first and twentieth lines. Further, when the change amount of the electrostatic capacitance is gradually reduced (marked by Δ in the figure), the shift amount of the resonance frequency is alleviated, but the difference between the first and twentieth lines is still 10%.
% Has increased.

【0058】これに対して、本実施例の関係式で設計し
た場合(図の○印)では、共振周波数のシフト量は略一
定であり、最小値(右端)と最大値(10本目)とのず
れは1%強であり、本実施例の関係式が共振周波数のシ
フト量を一定にするために有効であることが分かる。こ
れにより、共振回路形成後の検査において共振周波数に
ずれが生じている場合には、共振周波数のずれ量をフィ
ンガー1本あたりの共振周波数の補正量(図4の場合は
略0.065HMz)で割った数のフィンガー7bを切
断することにより、簡単かつ確実に所望の共振周波数に
調整することができる。また、従来の共振周波数の調整
方法では、フィンガー1本当たりの共振周波数の変化量
が一定でないため、フィンガー7b根元のカット部7c
(図9参照)を順次切断して調整する必要があったが、
本実施例の方法では、フィンガー1本当たりの共振周波
数の変化量が一定であるため、切断すべきフィンガー7
bの本数を容易に計算することができ、その結果、フィ
ンガー7bの根元ではなく、基部7aのカット部7c
(図3参照、図3ではフィンガー2本を切断する場合を
例示)を直接切断することにより、一回の切断動作のみ
で所望の共振周波数に調整することができ、作業の効率
化を図ることができる。
On the other hand, in the case of designing with the relational expression of this embodiment (marked with a circle in the figure), the shift amount of the resonance frequency is substantially constant, and the minimum value (right end) and the maximum value (10th line) are set. The deviation is a little over 1%, and it can be seen that the relational expression of the present embodiment is effective for making the shift amount of the resonance frequency constant. As a result, when the resonance frequency is deviated in the inspection after the resonance circuit is formed, the deviation amount of the resonance frequency is the correction amount of the resonance frequency per finger (about 0.065 HMz in the case of FIG. 4). By cutting the divided number of fingers 7b, the desired resonance frequency can be adjusted easily and reliably. Further, in the conventional method of adjusting the resonance frequency, since the amount of change in the resonance frequency per finger is not constant, the cut portion 7c at the base of the finger 7b is
It was necessary to cut (see Fig. 9) in order and adjust.
In the method of this embodiment, since the amount of change in the resonance frequency per finger is constant, the finger 7 to be cut is
The number of b can be easily calculated, and as a result, the cut portion 7c of the base portion 7a is not the root of the finger 7b.
By directly cutting (see FIG. 3, the case of cutting two fingers in FIG. 3) can be adjusted to a desired resonance frequency with only one cutting operation, and work efficiency can be improved. You can

【0059】本実施例では、対向電極8の形状として、
図3に示すような先端に向かって徐々に太くなるテーパ
ー形状としたが、図6(a)に示すように、先端に向か
って階段状に太くなる形状とすることもできる。このよ
うな階段形状にすることによって、櫛型電極7と対向電
極8との位置ずれ(特に、フィンガー7bに直交する方
向の位置ずれ)が生じた場合であっても、フィンガー毎
の重なり部分の面積の変化を抑えることができる。どち
らの形状とするかは、タグ2に求められる共振周波数の
精度及び電極形成時の位置精度、製造容易性等を総合的
に勘案して適宜選択することができる。また、対向電極
の形状は、上記テーパー状又は階段状に限定されず、フ
ィンガー毎の静電容量の変化量ΔCnが式2の関係式で
表される形状であれば良く、櫛型電極7の形状も、図6
(b)に示すように基部7aの両側にフィンガー7bが
配置される構造であっても良い。
In this embodiment, the shape of the counter electrode 8 is
Although the taper shape is gradually thickened toward the tip as shown in FIG. 3, the shape may be gradually increased toward the tip as shown in FIG. 6A. With such a stepped shape, even if the comb-shaped electrode 7 and the counter electrode 8 are misaligned (particularly in the direction orthogonal to the fingers 7b), the overlapping portion of each finger is The change in area can be suppressed. The shape to be used can be appropriately selected in consideration of the accuracy of the resonance frequency required for the tag 2, the positional accuracy at the time of electrode formation, the ease of manufacturing, and the like. Further, the shape of the counter electrode is not limited to the tapered shape or the stepped shape described above, and may be any shape as long as the capacitance change amount ΔCn for each finger is represented by the relational expression of Expression 2. The shape is also shown in Figure 6.
As shown in (b), the finger 7b may be arranged on both sides of the base 7a.

【0060】なお、本実施例の方法を用いて設計した電
極をタグに形成するには、例えば、基板6となる絶縁フ
ィルムとして、例えばPETシートを用い、その両面に
形成されたAl箔をエッチングにより除去することによ
ってコイル4(上面コイル4a及び下面コイル4b)及
びコンデンサ5(櫛型電極7及び幹部電極9並びに対向
電極8)を形成し、その後、スルーホールにより上面コ
イル4aと下面コイル4bとを電気的に導通させてシー
トコイルを作製し、更にICチップ2bを実装してイン
レットを作製することにより可能である。そして、検査
装置を用いて共振周波数を測定し、上述した方法で所望
の数のフィンガー7bをトリミングして共振周波数を調
整し、インレットの両面にラベル加工してラベル型タグ
2が完成する。
In order to form an electrode designed by using the method of the present embodiment on a tag, for example, a PET sheet is used as an insulating film to be the substrate 6, and Al foils formed on both sides thereof are etched. The coil 4 (upper surface coil 4a and lower surface coil 4b) and the capacitor 5 (comb-shaped electrode 7, stem electrode 9 and counter electrode 8) are formed by removing the upper surface coil 4a and the lower surface coil 4b by through holes. Can be electrically conducted to produce a sheet coil, and then the IC chip 2b is mounted to produce an inlet. Then, the resonance frequency is measured using an inspection device, the resonance frequency is adjusted by trimming a desired number of fingers 7b by the method described above, and label processing is performed on both sides of the inlet to complete the label-type tag 2.

【0061】なお、絶縁フィルムとしてはPETシート
に限定されず、ポリエチレンシートやポリイミドシート
を用いることができ、導電膜としてはAlに代えてCu
を用いることができる。この中で、PETシートとAl
又はCuとの組み合わせ、ポリエチレンシートとAlと
の組み合わせ、又は、ポリイミドシートとCu箔との組
み合わせが用途上好ましいことを確認している。更に、
共振回路形成後に実装するICはフリップチップ実装に
より行うことが用途上好ましい。
The insulating film is not limited to the PET sheet, but a polyethylene sheet or a polyimide sheet can be used, and the conductive film is Cu instead of Al.
Can be used. Among them, PET sheet and Al
It has been confirmed that a combination with Cu, a combination of a polyethylene sheet and Al, or a combination of a polyimide sheet and Cu foil is preferable in use. Furthermore,
For the purpose of use, it is preferable that the IC mounted after forming the resonance circuit is flip-chip mounted.

【0062】[実施例2]次に、本発明の第2の実施例
に係るRFID用タグの櫛型電極構造及び該電極を用い
た共振周波数の調整方法について、図7を参照して説明
する。図7は、第2の実施例のRFID用ラベル型タグ
の共振回路を構成するコンデンサ部分の櫛型電極構造を
示す図である。
[Embodiment 2] Next, a comb type electrode structure of an RFID tag according to a second embodiment of the present invention and a resonance frequency adjusting method using the electrode will be described with reference to FIG. . FIG. 7 is a diagram showing a comb-shaped electrode structure of a capacitor portion which constitutes a resonance circuit of the RFID label tag of the second embodiment.

【0063】前記した第1の実施例では、共振回路のコ
ンデンサを構成する対向電極8の形状をテーパー状又は
階段状にする方法について記載したが、逆に、櫛型電極
7のフィンガー7bの形状を調整して共振周波数のシフ
ト量を略一定にすることも可能である。そこで、本実施
例では、式2に基づいて静電容量すなわち電極の面積が
変化するように各フィンガーの幅を先端に向かって徐々
に広くなるように設定した。
In the first embodiment described above, the method of making the shape of the counter electrode 8 forming the capacitor of the resonance circuit tapered or stepwise has been described. Conversely, the shape of the finger 7b of the comb electrode 7 is described. Can be adjusted to make the shift amount of the resonance frequency substantially constant. Therefore, in the present embodiment, the width of each finger is set to gradually increase toward the tip end so that the electrostatic capacitance, that is, the area of the electrode changes based on the equation 2.

【0064】具体的には、フィンガー7bをカットする
前の静電容量C0=100pFのラベルタグにおいて、
櫛型電極7の先端からn番目のフィンガー7bが対向電
極8と形成する微小容量ΔCnがΔCn=1−n/80
(pF)となるように櫛型電極7を設計した。すなわ
ち、フィンガーと交差する対向電極8が矩形形状で、櫛
型電極7の先端からn番目のフィンガーの幅Wfn=W
×(1−n/80)である櫛型電極7をもつRFI
D用ラベルタグを作製した。但しフィンガーの本数は2
0本あり、ΔC1=1−1/80(pF)である。櫛型
電極7の先端から順にフィンガー7bをカットしたとき
の共振周波数のシフト量をシミュレーションにより求め
た。
Specifically, in the label tag having the capacitance C 0 = 100 pF before the finger 7b is cut,
The minute capacitance ΔCn formed by the n-th finger 7b from the tip of the comb-shaped electrode 7 with the counter electrode 8 is ΔCn = 1−n / 80.
The comb-shaped electrode 7 was designed to have (pF). That is, the counter electrode 8 intersecting the fingers has a rectangular shape, and the width of the n-th finger from the tip of the comb-shaped electrode 7 is Wfn = W.
RFI having a comb-shaped electrode 7 of f 1 × (1-n / 80)
A label tag for D was produced. However, the number of fingers is 2
There are zero, and ΔC 1 = 1-1 / 80 (pF). The shift amount of the resonance frequency when the fingers 7b were sequentially cut from the tip of the comb-shaped electrode 7 was obtained by simulation.

【0065】上記構造でもフィンガー毎の静電容量の変
化量は第1の実施例の表4及び図5と同様になり、式2
の関係に基づいてフィンガー7bの幅を設定することに
より、第1の実施例と同様に共振周波数のシフト量を略
一定に保つことができ、実際の製造において共振周波数
にずれが生じた場合の調整を容易に行うことができる。
Even in the above structure, the amount of change in capacitance for each finger is the same as in Table 4 and FIG.
By setting the width of the finger 7b on the basis of the relationship, the shift amount of the resonance frequency can be kept substantially constant as in the first embodiment, and when the resonance frequency shifts in actual manufacturing, Adjustment can be easily performed.

【0066】なお、第1の実施例で対向電極8の形状を
設定し、第2の実施例で櫛型電極7の形状を設定した
が、図8に示すように、これらを組み合わせた構造とす
ることもできる。この場合は、対向電極8の幅と櫛型電
極7のフィンガー7bの幅の積が式2の関係を満たすよ
うに各々の電極を形成すればよい。また、上記各実施例
では、RFIDシステムに用いるタグの共振回路の構造
について記載したが、本発明は上記実施例に限定される
ものではなく、コンデンサの静電容量の調整が必要な任
意の回路及び装置に適用することができる。
Although the shape of the counter electrode 8 was set in the first embodiment and the shape of the comb-shaped electrode 7 was set in the second embodiment, as shown in FIG. You can also do it. In this case, each electrode may be formed so that the product of the width of the counter electrode 8 and the width of the finger 7b of the comb-shaped electrode 7 satisfies the relationship of Expression 2. Further, in each of the above embodiments, the structure of the resonance circuit of the tag used in the RFID system is described, but the present invention is not limited to the above embodiments, and any circuit that requires adjustment of the capacitance of the capacitor And can be applied to the device.

【0067】[0067]

【発明の効果】以上説明したように、本発明のRFID
用タグの電極構造及び該電極を用いた共振周波数の調整
方法によれば、下記記載の効果を奏する。
As described above, the RFID of the present invention
The electrode structure of the tag for use and the resonance frequency adjusting method using the electrode have the following effects.

【0068】本発明の第1の効果は、カットするフィン
ガーの位置に依らず、フィンガー1本当りの共振周波数
のシフト量をほぼ一定とすることができるということで
ある。
The first effect of the present invention is that the shift amount of the resonance frequency per finger can be made substantially constant regardless of the position of the finger to be cut.

【0069】その理由は、式2に基づいて、対向電極を
テーパー状や階段状にしたり、また、櫛型電極の各フィ
ンガーの幅を設定することにより、フィンガー毎の静電
容量の変化量を調整しているからである。
The reason for this is that the amount of change in capacitance for each finger is set by tapering or stepping the counter electrode or setting the width of each finger of the comb-shaped electrode based on equation (2). This is because it is being adjusted.

【0070】また、本発明の第2の効果は、共振周波数
を目標とする値へ調節するために必要なカット本数を容
量に計算することができ、その結果、フィンガーの根元
ではなく、基部のカット部を直接切断することにより、
一回の切断動作のみで所望の共振周波数に調整すること
ができ、作業の効率化を図ることができるということで
ある。
The second effect of the present invention is that the number of cuts necessary for adjusting the resonance frequency to a target value can be calculated in the capacitance, and as a result, the number of cuts necessary for adjusting the resonance frequency of the base is not the root of the finger. By directly cutting the cut part,
This means that the desired resonance frequency can be adjusted by only one cutting operation, and the work efficiency can be improved.

【0071】その理由は、従来はフィンガー毎の面積が
等しい、すなわち、静電容量の変化量が等しくなるよう
に電極を形成していたため、目標とする共振周波数と測
定した周波数のずれから一旦コンデンサの静電容量のず
れを算出し、その結果からカットするフィンガーの本数
を求めなければならなかったが、本発明では、フィンガ
ー毎の共振周波数のシフト量が略等しくなるように対向
電極の形状又は櫛型電極のフィンガーの幅が設定されて
いるため、共振周波数のずれ量から直接カットするフィ
ンガーの本数を求めることができるからである。
The reason for this is that, conventionally, since the electrodes are formed so that the areas of the fingers are the same, that is, the amount of change in the capacitance is the same, the capacitor is temporarily changed from the difference between the target resonance frequency and the measured frequency. It was necessary to calculate the displacement of the capacitance of, and to obtain the number of fingers to be cut from the result, but in the present invention, the shape of the counter electrode or the shape of the counter electrode so that the shift amount of the resonance frequency for each finger is substantially equal. Since the width of the fingers of the comb-shaped electrode is set, the number of fingers to be cut can be directly obtained from the shift amount of the resonance frequency.

【図面の簡単な説明】[Brief description of drawings]

【図1】RFIDシステムの全体構成を模式的に示す図
である。
FIG. 1 is a diagram schematically showing an overall configuration of an RFID system.

【図2】本発明の第1の実施例に係るラベル型タグの構
成を示す図であり、(a)は平面図、(b)は断面図で
ある。
2A and 2B are diagrams showing the configuration of the label-type tag according to the first embodiment of the present invention, in which FIG. 2A is a plan view and FIG. 2B is a sectional view.

【図3】本発明の第1の実施例に係る櫛型電極の構成を
示す平面図である。
FIG. 3 is a plan view showing a configuration of a comb electrode according to the first embodiment of the present invention.

【図4】本発明の第1の実施例の効果を説明するための
図であり、式2におけるkの値を変えた場合のフィンガ
ー当たりの共振周波数シフト量の変化を示している。
FIG. 4 is a diagram for explaining the effect of the first embodiment of the present invention, showing a change in the resonance frequency shift amount per finger when the value of k in Expression 2 is changed.

【図5】本発明の第1の実施例の効果を説明するための
図であり、ΔCnの関係式を変えた場合のフィンガー当
たりの共振周波数シフト量の変化を示している。
FIG. 5 is a diagram for explaining the effect of the first embodiment of the present invention, showing a change in the resonance frequency shift amount per finger when the relational expression of ΔCn is changed.

【図6】本発明の第1の実施例に係るコンデンサの対向
電極の他の構成を示す平面図である。
FIG. 6 is a plan view showing another configuration of the counter electrode of the capacitor according to the first embodiment of the present invention.

【図7】本発明の第2の実施例に係るコンデンサの櫛型
電極の構成を示す平面図である。
FIG. 7 is a plan view showing a configuration of comb electrodes of a capacitor according to a second embodiment of the present invention.

【図8】本発明の第2の実施例に係るコンデンサの櫛型
電極の他の構成を示す平面図である。
FIG. 8 is a plan view showing another configuration of the comb electrodes of the capacitor according to the second embodiment of the present invention.

【図9】従来のコンデンサの櫛型電極構成を示す平面図
である。
FIG. 9 is a plan view showing a comb-shaped electrode structure of a conventional capacitor.

【符号の説明】[Explanation of symbols]

1 RFIDシステム 2 タグ 2a 共振回路 2b IC 3 リーダ/ライタ 3a アンテナ 3b 通信回路部 3c 演算処理部 4 コイル 4a 上面コイル 4b 下面コイル 5 コンデンサ 6 基板 7 櫛型電極 7a 基部 7b フィンガー 7c カット部 8 対向電極 8a 対向電極(テーパー形状) 8b 対向電極(階段形状) 8c 対向電極(矩形形状) 9 幹部電極 1 RFID system 2 tags 2a Resonant circuit 2b IC 3 Reader / Writer 3a antenna 3b Communication circuit section 3c arithmetic processing unit 4 coils 4a Top coil 4b Bottom coil 5 capacitors 6 substrate 7 Comb type electrode 7a base 7b finger 7c cut part 8 Counter electrode 8a Counter electrode (taper shape) 8b Counter electrode (step shape) 8c Counter electrode (rectangular shape) 9 Executive electrodes

───────────────────────────────────────────────────── フロントページの続き (72)発明者 石山 宏一 東京都文京区小石川1−12−14 三菱マテ リアル株式会社RFID事業センター内 Fターム(参考) 5B035 BA01 BA03 BB09 CA11 CA23 5B058 CA15    ─────────────────────────────────────────────────── ─── Continued front page    (72) Inventor Koichi Ishiyama             1-12-14 Koishikawa, Bunkyo-ku, Tokyo Mitsubishi Mate             Real Co., Ltd. RFID Business Center F term (reference) 5B035 BA01 BA03 BB09 CA11 CA23                 5B058 CA15

Claims (11)

【特許請求の範囲】[Claims] 【請求項1】RFID用タグの共振回路を構成するコン
デンサの電極が、複数のフィンガーが基部に接続される
櫛型電極及び幹部電極と、基板を挟んで反対側の面に形
成される対向電極とからなり、 前記櫛型電極の各々の前記フィンガーと前記対向電極と
の重なり部分の面積が、前記櫛型電極の前記基部の長手
方向の一端側から他端側に向かって徐々に変化するよう
に、前記電極の形状が設定されていることを特徴とする
RFID用タグの電極構造。
1. An electrode of a capacitor constituting a resonance circuit of an RFID tag, a comb-shaped electrode and a trunk electrode to which a plurality of fingers are connected to a base, and a counter electrode formed on the opposite surface with a substrate sandwiched therebetween. So that the area of the overlapping portion of each of the fingers of the comb-shaped electrode and the counter electrode gradually changes from one end side to the other end side in the longitudinal direction of the base portion of the comb-shaped electrode. The electrode structure of the RFID tag is characterized in that the shape of the electrode is set.
【請求項2】前記重なり部分の面積が、前記フィンガー
を前記櫛型電極の前記一端側から順に前記基部から切り
離した場合において、前記共振回路の共振周波数のシフ
ト量が略一定となるように、前記電極の形状が設定され
ることを特徴とする請求項1記載のRFID用タグの電
極構造。
2. The area of the overlapping portion is such that when the fingers are sequentially separated from the base portion from the one end side of the comb-shaped electrode, the shift amount of the resonance frequency of the resonance circuit becomes substantially constant. The electrode structure of the RFID tag according to claim 1, wherein the shape of the electrode is set.
【請求項3】前記櫛型電極の前記一端側から数えてn
(nは正数)番目の前記フィンガーと前記対向電極とで
形成される容量ΔCnが、C及びkを定数としたときに
ΔCn=C×(1−kn)で表される関係を満たすよう
に、前記電極の形状が設定されることを特徴とする請求
項1又は2に記載のRFID用タグの電極構造。
3. N counted from the one end side of the comb-shaped electrode
The capacitance ΔCn formed by the (n is a positive number) finger and the counter electrode satisfies the relation represented by ΔCn = C × (1-kn) when C and k are constants. The electrode structure of the RFID tag according to claim 1 or 2, wherein the shape of the electrode is set.
【請求項4】前記対向電極が、前記櫛型電極の前記他端
側に向かって徐々に細くなるテーパー形状又は段階的に
細くなる階段形状をなすことを特徴とする請求項1乃至
3のいずれか一に記載のRFID用タグの電極構造。
4. The counter electrode according to claim 1, wherein the counter electrode has a tapered shape that gradually narrows toward the other end side of the comb-shaped electrode or a step shape that gradually narrows toward the other end. The electrode structure of the RFID tag according to 1 above.
【請求項5】幅と間隔とが一定の前記フィンガーがn本
あり、前記対向電極の前記一端側の幅をW1、前記他端
側の幅をW2としたとき、W1:W2=(1−k):
(1−kn)となることを特徴とする請求項4記載のR
FID用タグの電極構造。
5. When there are n fingers having constant widths and intervals and the width of the one end of the counter electrode is W1 and the width of the other end is W2, W1: W2 = (1- k):
5. R according to claim 4, which is (1-kn).
Electrode structure of FID tag.
【請求項6】前記櫛型電極が、前記他端側に向かうに従
って徐々に前記フィンガーの幅が小さくなるように形成
されていることを特徴とする請求項1乃至3のいずれか
一に記載のRFID用タグの電極構造。
6. The comb-shaped electrode is formed so that the width of each of the fingers gradually decreases toward the other end side. Electrode structure of RFID tag.
【請求項7】前記フィンガーがn本ある前記櫛型電極の
前記一端側の前記フィンガーの幅をWf1、前記他端側
の幅をWf2としたとき、Wf1:Wf2=(1−
k):(1−kn)となることを特徴とする請求項6記
載のRFID用タグの電極構造。
7. When the width of the finger on the one end side of the comb-shaped electrode having n fingers is Wf1 and the width on the other end side is Wf2, Wf1: Wf2 = (1-
k): (1-kn), The electrode structure of the RFID tag according to claim 6, wherein:
【請求項8】前記基板が、PETシート、ポリエチレン
シート又はポリイミドシートのいずれか一からなり、前
記電極がAl又はCuを材料とする導電膜のエッチング
パターンからなることを特徴とする請求項1乃至7のい
ずれか一に記載のRFID用タグの電極構造。
8. The method according to claim 1, wherein the substrate is made of any one of a PET sheet, a polyethylene sheet and a polyimide sheet, and the electrode is made of an etching pattern of a conductive film made of Al or Cu. 7. The electrode structure of the RFID tag described in any one of 7.
【請求項9】前記基板と前記電極の材料との組み合わせ
が、PETシートとAl又はCu、ポリエチレンシート
とAl、ポリイミドシートとCuのいずれか一からなる
ことを特徴とする請求項8記載のRFID用タグの電極
構造。
9. The RFID according to claim 8, wherein the combination of the material of the substrate and the electrode is any one of PET sheet and Al or Cu, polyethylene sheet and Al, and polyimide sheet and Cu. Electrode structure for tags.
【請求項10】前記基板に、ICがフリップチップ実装
されていることを特徴とする請求項1乃至9のいずれか
一に記載のRFID用タグの電極構造。
10. The electrode structure for an RFID tag according to claim 1, wherein an IC is flip-chip mounted on the substrate.
【請求項11】請求項1乃至10のいずれか一に記載の
電極構造を有するRFID用タグにおける共振周波数の
調整方法であって、 前記基板に前記共振回路を一旦形成した後、該共振回路
の共振周波数を測定するステップと、測定した共振周波
数と所望の周波数とのずれ量を求め、該ずれ量を前記フ
ィンガー毎の共振周波数シフト量で割って、切断すべき
前記フィンガーの本数を設定するステップと、前記フィ
ンガーを設定された本数分だけ前記コンデンサより切断
できるような前記基部の所定のカット部を1カ所切断し
て、共振周波数を前記所望の周波数に調整するステップ
と、を少なくとも有することを特徴とするRFID用タ
グの共振周波数の調整方法。
11. A method of adjusting a resonance frequency in an RFID tag having an electrode structure according to claim 1, wherein the resonance circuit is formed on the substrate and then the resonance circuit is formed. A step of measuring the resonance frequency, obtaining a deviation amount between the measured resonance frequency and a desired frequency, dividing the deviation amount by the resonance frequency shift amount of each finger, and setting the number of fingers to be cut. And adjusting the resonance frequency to the desired frequency by cutting one predetermined cut portion of the base portion such that the finger can be cut by the set number of fingers from the capacitor. A method for adjusting the resonance frequency of a characteristic RFID tag.
JP2001382638A 2001-12-17 2001-12-17 Electrode structure of RFID tag and method for adjusting resonance frequency using the electrode Expired - Fee Related JP3700777B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001382638A JP3700777B2 (en) 2001-12-17 2001-12-17 Electrode structure of RFID tag and method for adjusting resonance frequency using the electrode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001382638A JP3700777B2 (en) 2001-12-17 2001-12-17 Electrode structure of RFID tag and method for adjusting resonance frequency using the electrode

Publications (2)

Publication Number Publication Date
JP2003187207A true JP2003187207A (en) 2003-07-04
JP3700777B2 JP3700777B2 (en) 2005-09-28

Family

ID=27592907

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001382638A Expired - Fee Related JP3700777B2 (en) 2001-12-17 2001-12-17 Electrode structure of RFID tag and method for adjusting resonance frequency using the electrode

Country Status (1)

Country Link
JP (1) JP3700777B2 (en)

Cited By (99)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007083575A1 (en) * 2006-01-19 2007-07-26 Murata Manufacturing Co., Ltd. Radio ic device
WO2008050689A1 (en) * 2006-10-27 2008-05-02 Murata Manufacturing Co., Ltd. Article with electromagnetically coupled module
WO2008050535A1 (en) * 2006-09-26 2008-05-02 Murata Manufacturing Co., Ltd. Electromagnetically coupled module and article with electromagnetically coupled module
JP2009116647A (en) * 2007-11-07 2009-05-28 Toppan Printing Co Ltd Combined type ic card and its manufacturing method
US7764928B2 (en) 2006-01-19 2010-07-27 Murata Manufacturing Co., Ltd. Wireless IC device and component for wireless IC device
US7762472B2 (en) 2007-07-04 2010-07-27 Murata Manufacturing Co., Ltd Wireless IC device
US7786949B2 (en) 2006-04-14 2010-08-31 Murata Manufacturing Co., Ltd. Antenna
US7830311B2 (en) 2007-07-18 2010-11-09 Murata Manufacturing Co., Ltd. Wireless IC device and electronic device
US7857230B2 (en) 2007-07-18 2010-12-28 Murata Manufacturing Co., Ltd. Wireless IC device and manufacturing method thereof
US7871008B2 (en) 2008-06-25 2011-01-18 Murata Manufacturing Co., Ltd. Wireless IC device and manufacturing method thereof
US7932730B2 (en) 2006-06-12 2011-04-26 Murata Manufacturing Co., Ltd. System for inspecting electromagnetic coupling modules and radio IC devices and method for manufacturing electromagnetic coupling modules and radio IC devices using the system
US7931206B2 (en) 2007-05-10 2011-04-26 Murata Manufacturing Co., Ltd. Wireless IC device
US7967216B2 (en) 2008-05-22 2011-06-28 Murata Manufacturing Co., Ltd. Wireless IC device
US7990337B2 (en) 2007-12-20 2011-08-02 Murata Manufacturing Co., Ltd. Radio frequency IC device
US7997501B2 (en) 2007-07-17 2011-08-16 Murata Manufacturing Co., Ltd. Wireless IC device and electronic apparatus
US8009101B2 (en) 2007-04-06 2011-08-30 Murata Manufacturing Co., Ltd. Wireless IC device
US8031124B2 (en) 2007-01-26 2011-10-04 Murata Manufacturing Co., Ltd. Container with electromagnetic coupling module
US8070070B2 (en) 2007-12-26 2011-12-06 Murata Manufacturing Co., Ltd. Antenna device and radio frequency IC device
US8081541B2 (en) 2006-06-30 2011-12-20 Murata Manufacturing Co., Ltd. Optical disc
US8081119B2 (en) 2006-04-26 2011-12-20 Murata Manufacturing Co., Ltd. Product including power supply circuit board
US8081125B2 (en) 2006-07-11 2011-12-20 Murata Manufacturing Co., Ltd. Antenna and radio IC device
US8179329B2 (en) 2008-03-03 2012-05-15 Murata Manufacturing Co., Ltd. Composite antenna
US8177138B2 (en) 2008-10-29 2012-05-15 Murata Manufacturing Co., Ltd. Radio IC device
US8193939B2 (en) 2007-07-09 2012-06-05 Murata Manufacturing Co., Ltd. Wireless IC device
US8228252B2 (en) 2006-05-26 2012-07-24 Murata Manufacturing Co., Ltd. Data coupler
US8228075B2 (en) 2006-08-24 2012-07-24 Murata Manufacturing Co., Ltd. Test system for radio frequency IC devices and method of manufacturing radio frequency IC devices using the same
US8235299B2 (en) 2007-07-04 2012-08-07 Murata Manufacturing Co., Ltd. Wireless IC device and component for wireless IC device
US8264357B2 (en) 2007-06-27 2012-09-11 Murata Manufacturing Co., Ltd. Wireless IC device
US8299968B2 (en) 2007-02-06 2012-10-30 Murata Manufacturing Co., Ltd. Packaging material with electromagnetic coupling module
US8336786B2 (en) 2010-03-12 2012-12-25 Murata Manufacturing Co., Ltd. Wireless communication device and metal article
US8342416B2 (en) 2009-01-09 2013-01-01 Murata Manufacturing Co., Ltd. Wireless IC device, wireless IC module and method of manufacturing wireless IC module
US8360325B2 (en) 2008-04-14 2013-01-29 Murata Manufacturing Co., Ltd. Wireless IC device, electronic apparatus, and method for adjusting resonant frequency of wireless IC device
US8360324B2 (en) 2007-04-09 2013-01-29 Murata Manufacturing Co., Ltd. Wireless IC device
US8384547B2 (en) 2006-04-10 2013-02-26 Murata Manufacturing Co., Ltd. Wireless IC device
US8381997B2 (en) 2009-06-03 2013-02-26 Murata Manufacturing Co., Ltd. Radio frequency IC device and method of manufacturing the same
US8390459B2 (en) 2007-04-06 2013-03-05 Murata Manufacturing Co., Ltd. Wireless IC device
US8400307B2 (en) 2007-07-18 2013-03-19 Murata Manufacturing Co., Ltd. Radio frequency IC device and electronic apparatus
US8400365B2 (en) 2009-11-20 2013-03-19 Murata Manufacturing Co., Ltd. Antenna device and mobile communication terminal
US8418928B2 (en) 2009-04-14 2013-04-16 Murata Manufacturing Co., Ltd. Wireless IC device component and wireless IC device
US8424769B2 (en) 2010-07-08 2013-04-23 Murata Manufacturing Co., Ltd. Antenna and RFID device
US8474725B2 (en) 2007-04-27 2013-07-02 Murata Manufacturing Co., Ltd. Wireless IC device
US8531346B2 (en) 2007-04-26 2013-09-10 Murata Manufacturing Co., Ltd. Wireless IC device
US8546927B2 (en) 2010-09-03 2013-10-01 Murata Manufacturing Co., Ltd. RFIC chip mounting structure
US8544754B2 (en) 2006-06-01 2013-10-01 Murata Manufacturing Co., Ltd. Wireless IC device and wireless IC device composite component
US8583043B2 (en) 2009-01-16 2013-11-12 Murata Manufacturing Co., Ltd. High-frequency device and wireless IC device
US8590797B2 (en) 2008-05-21 2013-11-26 Murata Manufacturing Co., Ltd. Wireless IC device
US8596545B2 (en) 2008-05-28 2013-12-03 Murata Manufacturing Co., Ltd. Component of wireless IC device and wireless IC device
US8602310B2 (en) 2010-03-03 2013-12-10 Murata Manufacturing Co., Ltd. Radio communication device and radio communication terminal
US8613395B2 (en) 2011-02-28 2013-12-24 Murata Manufacturing Co., Ltd. Wireless communication device
US8632014B2 (en) 2007-04-27 2014-01-21 Murata Manufacturing Co., Ltd. Wireless IC device
US8668151B2 (en) 2008-03-26 2014-03-11 Murata Manufacturing Co., Ltd. Wireless IC device
US8680971B2 (en) 2009-09-28 2014-03-25 Murata Manufacturing Co., Ltd. Wireless IC device and method of detecting environmental state using the device
US8692718B2 (en) 2008-11-17 2014-04-08 Murata Manufacturing Co., Ltd. Antenna and wireless IC device
US8718727B2 (en) 2009-12-24 2014-05-06 Murata Manufacturing Co., Ltd. Antenna having structure for multi-angled reception and mobile terminal including the antenna
US8720789B2 (en) 2012-01-30 2014-05-13 Murata Manufacturing Co., Ltd. Wireless IC device
US8740093B2 (en) 2011-04-13 2014-06-03 Murata Manufacturing Co., Ltd. Radio IC device and radio communication terminal
US8757500B2 (en) 2007-05-11 2014-06-24 Murata Manufacturing Co., Ltd. Wireless IC device
US8770489B2 (en) 2011-07-15 2014-07-08 Murata Manufacturing Co., Ltd. Radio communication device
US8797225B2 (en) 2011-03-08 2014-08-05 Murata Manufacturing Co., Ltd. Antenna device and communication terminal apparatus
US8797148B2 (en) 2008-03-03 2014-08-05 Murata Manufacturing Co., Ltd. Radio frequency IC device and radio communication system
US8810456B2 (en) 2009-06-19 2014-08-19 Murata Manufacturing Co., Ltd. Wireless IC device and coupling method for power feeding circuit and radiation plate
US8814056B2 (en) 2011-07-19 2014-08-26 Murata Manufacturing Co., Ltd. Antenna device, RFID tag, and communication terminal apparatus
US8847831B2 (en) 2009-07-03 2014-09-30 Murata Manufacturing Co., Ltd. Antenna and antenna module
US8853549B2 (en) 2009-09-30 2014-10-07 Murata Manufacturing Co., Ltd. Circuit substrate and method of manufacturing same
US8870077B2 (en) 2008-08-19 2014-10-28 Murata Manufacturing Co., Ltd. Wireless IC device and method for manufacturing same
US8878739B2 (en) 2011-07-14 2014-11-04 Murata Manufacturing Co., Ltd. Wireless communication device
US8905296B2 (en) 2011-12-01 2014-12-09 Murata Manufacturing Co., Ltd. Wireless integrated circuit device and method of manufacturing the same
US8905316B2 (en) 2010-05-14 2014-12-09 Murata Manufacturing Co., Ltd. Wireless IC device
US8937576B2 (en) 2011-04-05 2015-01-20 Murata Manufacturing Co., Ltd. Wireless communication device
US8944335B2 (en) 2010-09-30 2015-02-03 Murata Manufacturing Co., Ltd. Wireless IC device
US8976075B2 (en) 2009-04-21 2015-03-10 Murata Manufacturing Co., Ltd. Antenna device and method of setting resonant frequency of antenna device
US8981906B2 (en) 2010-08-10 2015-03-17 Murata Manufacturing Co., Ltd. Printed wiring board and wireless communication system
US8991713B2 (en) 2011-01-14 2015-03-31 Murata Manufacturing Co., Ltd. RFID chip package and RFID tag
US8994605B2 (en) 2009-10-02 2015-03-31 Murata Manufacturing Co., Ltd. Wireless IC device and electromagnetic coupling module
US9024837B2 (en) 2010-03-31 2015-05-05 Murata Manufacturing Co., Ltd. Antenna and wireless communication device
US9024725B2 (en) 2009-11-04 2015-05-05 Murata Manufacturing Co., Ltd. Communication terminal and information processing system
US9064198B2 (en) 2006-04-26 2015-06-23 Murata Manufacturing Co., Ltd. Electromagnetic-coupling-module-attached article
US9077067B2 (en) 2008-07-04 2015-07-07 Murata Manufacturing Co., Ltd. Radio IC device
US9104950B2 (en) 2009-01-30 2015-08-11 Murata Manufacturing Co., Ltd. Antenna and wireless IC device
US9123996B2 (en) 2010-05-14 2015-09-01 Murata Manufacturing Co., Ltd. Wireless IC device
US9166291B2 (en) 2010-10-12 2015-10-20 Murata Manufacturing Co., Ltd. Antenna device and communication terminal apparatus
US9178279B2 (en) 2009-11-04 2015-11-03 Murata Manufacturing Co., Ltd. Wireless IC tag, reader-writer, and information processing system
US9231305B2 (en) 2008-10-24 2016-01-05 Murata Manufacturing Co., Ltd. Wireless IC device
US9236651B2 (en) 2010-10-21 2016-01-12 Murata Manufacturing Co., Ltd. Communication terminal device
US9281873B2 (en) 2008-05-26 2016-03-08 Murata Manufacturing Co., Ltd. Wireless IC device system and method of determining authenticity of wireless IC device
US9378452B2 (en) 2011-05-16 2016-06-28 Murata Manufacturing Co., Ltd. Radio IC device
US9444143B2 (en) 2009-10-16 2016-09-13 Murata Manufacturing Co., Ltd. Antenna and wireless IC device
US9461363B2 (en) 2009-11-04 2016-10-04 Murata Manufacturing Co., Ltd. Communication terminal and information processing system
US9460376B2 (en) 2007-07-18 2016-10-04 Murata Manufacturing Co., Ltd. Radio IC device
US9460320B2 (en) 2009-10-27 2016-10-04 Murata Manufacturing Co., Ltd. Transceiver and radio frequency identification tag reader
US9543642B2 (en) 2011-09-09 2017-01-10 Murata Manufacturing Co., Ltd. Antenna device and wireless device
US9558384B2 (en) 2010-07-28 2017-01-31 Murata Manufacturing Co., Ltd. Antenna apparatus and communication terminal instrument
US9692128B2 (en) 2012-02-24 2017-06-27 Murata Manufacturing Co., Ltd. Antenna device and wireless communication device
US9727765B2 (en) 2010-03-24 2017-08-08 Murata Manufacturing Co., Ltd. RFID system including a reader/writer and RFID tag
US9761923B2 (en) 2011-01-05 2017-09-12 Murata Manufacturing Co., Ltd. Wireless communication device
JP2018006968A (en) * 2016-06-30 2018-01-11 凸版印刷株式会社 Planar antenna, non-contact communication medium, and method for manufacturing non-contact communication medium
US10013650B2 (en) 2010-03-03 2018-07-03 Murata Manufacturing Co., Ltd. Wireless communication module and wireless communication device
US10235544B2 (en) 2012-04-13 2019-03-19 Murata Manufacturing Co., Ltd. Inspection method and inspection device for RFID tag
EP2849282B1 (en) * 2013-08-16 2021-12-22 Starkey Laboratories, Inc. Embedded tuning capacitance for hearing assistance device flex antenna

Cited By (134)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8326223B2 (en) 2006-01-19 2012-12-04 Murata Manufacturing Co., Ltd. Wireless IC device and component for wireless IC device
WO2007083575A1 (en) * 2006-01-19 2007-07-26 Murata Manufacturing Co., Ltd. Radio ic device
US8078106B2 (en) 2006-01-19 2011-12-13 Murata Manufacturing Co., Ltd. Wireless IC device and component for wireless IC device
US8676117B2 (en) 2006-01-19 2014-03-18 Murata Manufacturing Co., Ltd. Wireless IC device and component for wireless IC device
US8725071B2 (en) 2006-01-19 2014-05-13 Murata Manufacturing Co., Ltd. Wireless IC device and component for wireless IC device
US7764928B2 (en) 2006-01-19 2010-07-27 Murata Manufacturing Co., Ltd. Wireless IC device and component for wireless IC device
US8384547B2 (en) 2006-04-10 2013-02-26 Murata Manufacturing Co., Ltd. Wireless IC device
US7786949B2 (en) 2006-04-14 2010-08-31 Murata Manufacturing Co., Ltd. Antenna
US9064198B2 (en) 2006-04-26 2015-06-23 Murata Manufacturing Co., Ltd. Electromagnetic-coupling-module-attached article
US9165239B2 (en) 2006-04-26 2015-10-20 Murata Manufacturing Co., Ltd. Electromagnetic-coupling-module-attached article
US8081119B2 (en) 2006-04-26 2011-12-20 Murata Manufacturing Co., Ltd. Product including power supply circuit board
US8228252B2 (en) 2006-05-26 2012-07-24 Murata Manufacturing Co., Ltd. Data coupler
US8544754B2 (en) 2006-06-01 2013-10-01 Murata Manufacturing Co., Ltd. Wireless IC device and wireless IC device composite component
US7932730B2 (en) 2006-06-12 2011-04-26 Murata Manufacturing Co., Ltd. System for inspecting electromagnetic coupling modules and radio IC devices and method for manufacturing electromagnetic coupling modules and radio IC devices using the system
US8228765B2 (en) 2006-06-30 2012-07-24 Murata Manufacturing Co., Ltd. Optical disc
US8081541B2 (en) 2006-06-30 2011-12-20 Murata Manufacturing Co., Ltd. Optical disc
US8081125B2 (en) 2006-07-11 2011-12-20 Murata Manufacturing Co., Ltd. Antenna and radio IC device
US8228075B2 (en) 2006-08-24 2012-07-24 Murata Manufacturing Co., Ltd. Test system for radio frequency IC devices and method of manufacturing radio frequency IC devices using the same
JP4775442B2 (en) * 2006-09-26 2011-09-21 株式会社村田製作所 Article with electromagnetic coupling module
US8299929B2 (en) 2006-09-26 2012-10-30 Murata Manufacturing Co., Ltd. Inductively coupled module and item with inductively coupled module
WO2008050535A1 (en) * 2006-09-26 2008-05-02 Murata Manufacturing Co., Ltd. Electromagnetically coupled module and article with electromagnetically coupled module
DE112007002024B4 (en) * 2006-09-26 2010-06-10 Murata Mfg. Co., Ltd., Nagaokakyo-shi Inductively coupled module and element with inductively coupled module
US8081121B2 (en) 2006-10-27 2011-12-20 Murata Manufacturing Co., Ltd. Article having electromagnetic coupling module attached thereto
WO2008050689A1 (en) * 2006-10-27 2008-05-02 Murata Manufacturing Co., Ltd. Article with electromagnetically coupled module
US8031124B2 (en) 2007-01-26 2011-10-04 Murata Manufacturing Co., Ltd. Container with electromagnetic coupling module
US8299968B2 (en) 2007-02-06 2012-10-30 Murata Manufacturing Co., Ltd. Packaging material with electromagnetic coupling module
US8390459B2 (en) 2007-04-06 2013-03-05 Murata Manufacturing Co., Ltd. Wireless IC device
US8009101B2 (en) 2007-04-06 2011-08-30 Murata Manufacturing Co., Ltd. Wireless IC device
US8360324B2 (en) 2007-04-09 2013-01-29 Murata Manufacturing Co., Ltd. Wireless IC device
US8424762B2 (en) 2007-04-14 2013-04-23 Murata Manufacturing Co., Ltd. Wireless IC device and component for wireless IC device
US8531346B2 (en) 2007-04-26 2013-09-10 Murata Manufacturing Co., Ltd. Wireless IC device
US8632014B2 (en) 2007-04-27 2014-01-21 Murata Manufacturing Co., Ltd. Wireless IC device
US8474725B2 (en) 2007-04-27 2013-07-02 Murata Manufacturing Co., Ltd. Wireless IC device
US7931206B2 (en) 2007-05-10 2011-04-26 Murata Manufacturing Co., Ltd. Wireless IC device
US8757500B2 (en) 2007-05-11 2014-06-24 Murata Manufacturing Co., Ltd. Wireless IC device
US8264357B2 (en) 2007-06-27 2012-09-11 Murata Manufacturing Co., Ltd. Wireless IC device
US8662403B2 (en) 2007-07-04 2014-03-04 Murata Manufacturing Co., Ltd. Wireless IC device and component for wireless IC device
US7762472B2 (en) 2007-07-04 2010-07-27 Murata Manufacturing Co., Ltd Wireless IC device
US8235299B2 (en) 2007-07-04 2012-08-07 Murata Manufacturing Co., Ltd. Wireless IC device and component for wireless IC device
US8193939B2 (en) 2007-07-09 2012-06-05 Murata Manufacturing Co., Ltd. Wireless IC device
US8552870B2 (en) 2007-07-09 2013-10-08 Murata Manufacturing Co., Ltd. Wireless IC device
US7997501B2 (en) 2007-07-17 2011-08-16 Murata Manufacturing Co., Ltd. Wireless IC device and electronic apparatus
US8191791B2 (en) 2007-07-17 2012-06-05 Murata Manufacturing Co., Ltd. Wireless IC device and electronic apparatus
US8413907B2 (en) 2007-07-17 2013-04-09 Murata Manufacturing Co., Ltd. Wireless IC device and electronic apparatus
US7857230B2 (en) 2007-07-18 2010-12-28 Murata Manufacturing Co., Ltd. Wireless IC device and manufacturing method thereof
US8400307B2 (en) 2007-07-18 2013-03-19 Murata Manufacturing Co., Ltd. Radio frequency IC device and electronic apparatus
US9460376B2 (en) 2007-07-18 2016-10-04 Murata Manufacturing Co., Ltd. Radio IC device
US7830311B2 (en) 2007-07-18 2010-11-09 Murata Manufacturing Co., Ltd. Wireless IC device and electronic device
US9830552B2 (en) 2007-07-18 2017-11-28 Murata Manufacturing Co., Ltd. Radio IC device
JP2009116647A (en) * 2007-11-07 2009-05-28 Toppan Printing Co Ltd Combined type ic card and its manufacturing method
US7990337B2 (en) 2007-12-20 2011-08-02 Murata Manufacturing Co., Ltd. Radio frequency IC device
US8610636B2 (en) 2007-12-20 2013-12-17 Murata Manufacturing Co., Ltd. Radio frequency IC device
US8070070B2 (en) 2007-12-26 2011-12-06 Murata Manufacturing Co., Ltd. Antenna device and radio frequency IC device
US8360330B2 (en) 2007-12-26 2013-01-29 Murata Manufacturing Co., Ltd. Antenna device and radio frequency IC device
US8915448B2 (en) 2007-12-26 2014-12-23 Murata Manufacturing Co., Ltd. Antenna device and radio frequency IC device
US8179329B2 (en) 2008-03-03 2012-05-15 Murata Manufacturing Co., Ltd. Composite antenna
US8797148B2 (en) 2008-03-03 2014-08-05 Murata Manufacturing Co., Ltd. Radio frequency IC device and radio communication system
US8668151B2 (en) 2008-03-26 2014-03-11 Murata Manufacturing Co., Ltd. Wireless IC device
US8360325B2 (en) 2008-04-14 2013-01-29 Murata Manufacturing Co., Ltd. Wireless IC device, electronic apparatus, and method for adjusting resonant frequency of wireless IC device
US9022295B2 (en) 2008-05-21 2015-05-05 Murata Manufacturing Co., Ltd. Wireless IC device
US8590797B2 (en) 2008-05-21 2013-11-26 Murata Manufacturing Co., Ltd. Wireless IC device
US8973841B2 (en) 2008-05-21 2015-03-10 Murata Manufacturing Co., Ltd. Wireless IC device
US8960557B2 (en) 2008-05-21 2015-02-24 Murata Manufacturing Co., Ltd. Wireless IC device
US7967216B2 (en) 2008-05-22 2011-06-28 Murata Manufacturing Co., Ltd. Wireless IC device
US8047445B2 (en) 2008-05-22 2011-11-01 Murata Manufacturing Co., Ltd. Wireless IC device and method of manufacturing the same
US9281873B2 (en) 2008-05-26 2016-03-08 Murata Manufacturing Co., Ltd. Wireless IC device system and method of determining authenticity of wireless IC device
US8596545B2 (en) 2008-05-28 2013-12-03 Murata Manufacturing Co., Ltd. Component of wireless IC device and wireless IC device
US7871008B2 (en) 2008-06-25 2011-01-18 Murata Manufacturing Co., Ltd. Wireless IC device and manufacturing method thereof
US8011589B2 (en) 2008-06-25 2011-09-06 Murata Manufacturing Co., Ltd. Wireless IC device and manufacturing method thereof
US9077067B2 (en) 2008-07-04 2015-07-07 Murata Manufacturing Co., Ltd. Radio IC device
US8870077B2 (en) 2008-08-19 2014-10-28 Murata Manufacturing Co., Ltd. Wireless IC device and method for manufacturing same
US9231305B2 (en) 2008-10-24 2016-01-05 Murata Manufacturing Co., Ltd. Wireless IC device
US8177138B2 (en) 2008-10-29 2012-05-15 Murata Manufacturing Co., Ltd. Radio IC device
US8692718B2 (en) 2008-11-17 2014-04-08 Murata Manufacturing Co., Ltd. Antenna and wireless IC device
US8917211B2 (en) 2008-11-17 2014-12-23 Murata Manufacturing Co., Ltd. Antenna and wireless IC device
US8544759B2 (en) 2009-01-09 2013-10-01 Murata Manufacturing., Ltd. Wireless IC device, wireless IC module and method of manufacturing wireless IC module
US8342416B2 (en) 2009-01-09 2013-01-01 Murata Manufacturing Co., Ltd. Wireless IC device, wireless IC module and method of manufacturing wireless IC module
US8583043B2 (en) 2009-01-16 2013-11-12 Murata Manufacturing Co., Ltd. High-frequency device and wireless IC device
US9104950B2 (en) 2009-01-30 2015-08-11 Murata Manufacturing Co., Ltd. Antenna and wireless IC device
US8418928B2 (en) 2009-04-14 2013-04-16 Murata Manufacturing Co., Ltd. Wireless IC device component and wireless IC device
US8690070B2 (en) 2009-04-14 2014-04-08 Murata Manufacturing Co., Ltd. Wireless IC device component and wireless IC device
US8876010B2 (en) 2009-04-14 2014-11-04 Murata Manufacturing Co., Ltd Wireless IC device component and wireless IC device
US8976075B2 (en) 2009-04-21 2015-03-10 Murata Manufacturing Co., Ltd. Antenna device and method of setting resonant frequency of antenna device
US9203157B2 (en) 2009-04-21 2015-12-01 Murata Manufacturing Co., Ltd. Antenna device and method of setting resonant frequency of antenna device
US9564678B2 (en) 2009-04-21 2017-02-07 Murata Manufacturing Co., Ltd. Antenna device and method of setting resonant frequency of antenna device
US8381997B2 (en) 2009-06-03 2013-02-26 Murata Manufacturing Co., Ltd. Radio frequency IC device and method of manufacturing the same
US8810456B2 (en) 2009-06-19 2014-08-19 Murata Manufacturing Co., Ltd. Wireless IC device and coupling method for power feeding circuit and radiation plate
US8847831B2 (en) 2009-07-03 2014-09-30 Murata Manufacturing Co., Ltd. Antenna and antenna module
US8680971B2 (en) 2009-09-28 2014-03-25 Murata Manufacturing Co., Ltd. Wireless IC device and method of detecting environmental state using the device
US8853549B2 (en) 2009-09-30 2014-10-07 Murata Manufacturing Co., Ltd. Circuit substrate and method of manufacturing same
US9117157B2 (en) 2009-10-02 2015-08-25 Murata Manufacturing Co., Ltd. Wireless IC device and electromagnetic coupling module
US8994605B2 (en) 2009-10-02 2015-03-31 Murata Manufacturing Co., Ltd. Wireless IC device and electromagnetic coupling module
US9444143B2 (en) 2009-10-16 2016-09-13 Murata Manufacturing Co., Ltd. Antenna and wireless IC device
US9460320B2 (en) 2009-10-27 2016-10-04 Murata Manufacturing Co., Ltd. Transceiver and radio frequency identification tag reader
US9178279B2 (en) 2009-11-04 2015-11-03 Murata Manufacturing Co., Ltd. Wireless IC tag, reader-writer, and information processing system
US9024725B2 (en) 2009-11-04 2015-05-05 Murata Manufacturing Co., Ltd. Communication terminal and information processing system
US9461363B2 (en) 2009-11-04 2016-10-04 Murata Manufacturing Co., Ltd. Communication terminal and information processing system
US8704716B2 (en) 2009-11-20 2014-04-22 Murata Manufacturing Co., Ltd. Antenna device and mobile communication terminal
US8400365B2 (en) 2009-11-20 2013-03-19 Murata Manufacturing Co., Ltd. Antenna device and mobile communication terminal
US8718727B2 (en) 2009-12-24 2014-05-06 Murata Manufacturing Co., Ltd. Antenna having structure for multi-angled reception and mobile terminal including the antenna
US8602310B2 (en) 2010-03-03 2013-12-10 Murata Manufacturing Co., Ltd. Radio communication device and radio communication terminal
US10013650B2 (en) 2010-03-03 2018-07-03 Murata Manufacturing Co., Ltd. Wireless communication module and wireless communication device
US8336786B2 (en) 2010-03-12 2012-12-25 Murata Manufacturing Co., Ltd. Wireless communication device and metal article
US8528829B2 (en) 2010-03-12 2013-09-10 Murata Manufacturing Co., Ltd. Wireless communication device and metal article
US9727765B2 (en) 2010-03-24 2017-08-08 Murata Manufacturing Co., Ltd. RFID system including a reader/writer and RFID tag
US9024837B2 (en) 2010-03-31 2015-05-05 Murata Manufacturing Co., Ltd. Antenna and wireless communication device
US9123996B2 (en) 2010-05-14 2015-09-01 Murata Manufacturing Co., Ltd. Wireless IC device
US8905316B2 (en) 2010-05-14 2014-12-09 Murata Manufacturing Co., Ltd. Wireless IC device
US8424769B2 (en) 2010-07-08 2013-04-23 Murata Manufacturing Co., Ltd. Antenna and RFID device
US9558384B2 (en) 2010-07-28 2017-01-31 Murata Manufacturing Co., Ltd. Antenna apparatus and communication terminal instrument
US8981906B2 (en) 2010-08-10 2015-03-17 Murata Manufacturing Co., Ltd. Printed wiring board and wireless communication system
US8546927B2 (en) 2010-09-03 2013-10-01 Murata Manufacturing Co., Ltd. RFIC chip mounting structure
US8944335B2 (en) 2010-09-30 2015-02-03 Murata Manufacturing Co., Ltd. Wireless IC device
US9166291B2 (en) 2010-10-12 2015-10-20 Murata Manufacturing Co., Ltd. Antenna device and communication terminal apparatus
US9236651B2 (en) 2010-10-21 2016-01-12 Murata Manufacturing Co., Ltd. Communication terminal device
US9761923B2 (en) 2011-01-05 2017-09-12 Murata Manufacturing Co., Ltd. Wireless communication device
US8991713B2 (en) 2011-01-14 2015-03-31 Murata Manufacturing Co., Ltd. RFID chip package and RFID tag
US8613395B2 (en) 2011-02-28 2013-12-24 Murata Manufacturing Co., Ltd. Wireless communication device
US8757502B2 (en) 2011-02-28 2014-06-24 Murata Manufacturing Co., Ltd. Wireless communication device
US8960561B2 (en) 2011-02-28 2015-02-24 Murata Manufacturing Co., Ltd. Wireless communication device
US8797225B2 (en) 2011-03-08 2014-08-05 Murata Manufacturing Co., Ltd. Antenna device and communication terminal apparatus
US8937576B2 (en) 2011-04-05 2015-01-20 Murata Manufacturing Co., Ltd. Wireless communication device
US8740093B2 (en) 2011-04-13 2014-06-03 Murata Manufacturing Co., Ltd. Radio IC device and radio communication terminal
US9378452B2 (en) 2011-05-16 2016-06-28 Murata Manufacturing Co., Ltd. Radio IC device
US8878739B2 (en) 2011-07-14 2014-11-04 Murata Manufacturing Co., Ltd. Wireless communication device
US8770489B2 (en) 2011-07-15 2014-07-08 Murata Manufacturing Co., Ltd. Radio communication device
US8814056B2 (en) 2011-07-19 2014-08-26 Murata Manufacturing Co., Ltd. Antenna device, RFID tag, and communication terminal apparatus
US9543642B2 (en) 2011-09-09 2017-01-10 Murata Manufacturing Co., Ltd. Antenna device and wireless device
US8905296B2 (en) 2011-12-01 2014-12-09 Murata Manufacturing Co., Ltd. Wireless integrated circuit device and method of manufacturing the same
US8720789B2 (en) 2012-01-30 2014-05-13 Murata Manufacturing Co., Ltd. Wireless IC device
US9692128B2 (en) 2012-02-24 2017-06-27 Murata Manufacturing Co., Ltd. Antenna device and wireless communication device
US10235544B2 (en) 2012-04-13 2019-03-19 Murata Manufacturing Co., Ltd. Inspection method and inspection device for RFID tag
EP2849282B1 (en) * 2013-08-16 2021-12-22 Starkey Laboratories, Inc. Embedded tuning capacitance for hearing assistance device flex antenna
JP2018006968A (en) * 2016-06-30 2018-01-11 凸版印刷株式会社 Planar antenna, non-contact communication medium, and method for manufacturing non-contact communication medium

Also Published As

Publication number Publication date
JP3700777B2 (en) 2005-09-28

Similar Documents

Publication Publication Date Title
JP2003187207A (en) Electrode structure of tag for rfid and method for adjusting resonance frequency using the same electrode
EP1912284B1 (en) Rf tag and rf tag manufacturing method
KR101555232B1 (en) Method for manufacturing a component by etching
EP1912283B1 (en) Rf tag manufacturing method
EP1686649A1 (en) A meander line antenna
JP2004165965A (en) Surface mounted type antenna, its manufacturing method and communication equipment
KR100860448B1 (en) Flat coil component, characteristic adjusting method of flat coil component, id tag, and characteristic adjusting method of id tag
FI113809B (en) Method for making a smart sticker and a smart sticker
JP2007306601A (en) Structure of antenna coil for rfid transponder and tuning method for resonance frequency
JP4035706B2 (en) RFID tag measuring apparatus and method, and RFID tag manufacturing method using the apparatus
CN103181024B (en) The method of auto-compensation antenna structure is manufactured by etching
JP6627627B2 (en) RFID tag and high frequency circuit
EP0865053A2 (en) Multilayer microelectronic circuit with trimmable capacitors
JP4016261B2 (en) RFID transponder and method for adjusting resonance frequency
JPH11353440A (en) Capacitor and noncontact type ic card
US11095165B2 (en) RF power harvester
JPH10209744A (en) Inverted f-type antenna
JP3421334B2 (en) IC tag
US20120234579A1 (en) Method for contacting a chip
JP2002100520A (en) Laminated inductor and method of adjusting inductance value thereof
JP3524630B2 (en) Multilayer dielectric filter and method of manufacturing the same
WO2011135153A1 (en) Method for manufacturing an antenna component by etching
Shlykevich et al. Influence of manufacturing processes on rf planar passive components electrical parameters
JPH1022702A (en) Dielectric filter and manufacture therefor
KR101436721B1 (en) Structure of a loop antenna and method of manufacturing the same

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20041116

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20041215

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050207

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20050309

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050428

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20050603

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050622

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050705

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080722

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090722

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090722

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100722

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100722

Year of fee payment: 5

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100722

Year of fee payment: 5

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110722

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110722

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120722

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120722

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130722

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees