JP2003183213A - Non-resonant two-photon absorbing compound, non- resonant two-photon emission compound and non- resonant two-photon absorption inducing method and luminescent method using the same - Google Patents

Non-resonant two-photon absorbing compound, non- resonant two-photon emission compound and non- resonant two-photon absorption inducing method and luminescent method using the same

Info

Publication number
JP2003183213A
JP2003183213A JP2002251398A JP2002251398A JP2003183213A JP 2003183213 A JP2003183213 A JP 2003183213A JP 2002251398 A JP2002251398 A JP 2002251398A JP 2002251398 A JP2002251398 A JP 2002251398A JP 2003183213 A JP2003183213 A JP 2003183213A
Authority
JP
Japan
Prior art keywords
resonant
photon
compound
photon absorption
general formula
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002251398A
Other languages
Japanese (ja)
Other versions
JP4244124B2 (en
Inventor
Masaatsu Akiba
雅温 秋葉
Hiroo Takizawa
裕雄 滝沢
Takeharu Tani
武晴 谷
Jun Kawamata
純 川俣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Holdings Corp
Original Assignee
Fuji Photo Film Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Photo Film Co Ltd filed Critical Fuji Photo Film Co Ltd
Priority to JP2002251398A priority Critical patent/JP4244124B2/en
Publication of JP2003183213A publication Critical patent/JP2003183213A/en
Application granted granted Critical
Publication of JP4244124B2 publication Critical patent/JP4244124B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an organic material absorbing two photons in high efficiency, i.e., a material having high two-photon absorption cross-section and provide an organic material exhibiting two-photon luminescence having high luminescent intensity. <P>SOLUTION: The compound exhibiting non-resonant two-photon absorption is expressed by general formula (1): X<SP>2</SP>-(-CR<SP>4</SP>=CR<SP>3</SP>-)<SB>m</SB>-C(=O)-(-CR<SP>1</SP>=CR<SP>2</SP>-)<SB>n</SB>- X<SP>1</SP>...(1) (X<SP>1</SP>and X<SP>2</SP>are each independently a substituted or non-substituted aryl or a substituted or non-substituted heterocyclic group; R<SP>1</SP>, R<SP>2</SP>, R<SP>3</SP>and R<SP>4</SP>are each independently hydrogen atom or a substituent; two or more groups of R<SP>1</SP>, R<SP>2</SP>, R<SP>3</SP>and R<SP>4</SP>may be bonded together to form a ring; plural R<SP>1</SP>, R<SP>2</SP>, R<SP>3</SP>and R<SP>4</SP>groups may be the same or different when (n) or (m) is ≥2; and (n) and (m) are each independently an integer of 1-4). <P>COPYRIGHT: (C)2003,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、非線形光学効果を
発現する材料に関し、特に非共鳴2光子吸収断面積が大
きく、非共鳴2光子吸収により生成した励起状態からの
発光効率の大きな有機非線形光学材料に関するものであ
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a material exhibiting a nonlinear optical effect, and in particular, an organic nonlinear optical having a large non-resonant two-photon absorption cross section and a large emission efficiency from an excited state generated by non-resonant two-photon absorption. It is about materials.

【0002】[0002]

【従来の技術】一般に、非線形光学効果とは、印加する
光電場の2乗、3乗あるいはそれ以上に比例する非線型
な光学応答のことであり、印加する光電場の2乗に比例
する2次の非線形光学効果としては、第二高調波発生
(SHG),光整流、フォトリフラクティブ効果、ポッ
ケルス効果、パラメトリック増幅、パラメトリック発
振、光和周波混合、光差周波混合などが知られている。
また印加する光電場の3乗に比例する3次の非線形光学
効果としては第三高調波発生(THG)、光カー効果、
自己誘起屈折率変化、2光子吸収などが挙げられる。
2. Description of the Related Art In general, a nonlinear optical effect is a nonlinear optical response proportional to the square of the applied electric field, the cube of the electric field, or more, and is proportional to the square of the applied electric field. As the following non-linear optical effects, second harmonic generation (SHG), optical rectification, photorefractive effect, Pockels effect, parametric amplification, parametric oscillation, optical sum frequency mixing, optical difference frequency mixing, etc. are known.
As the third-order nonlinear optical effect proportional to the cube of the applied electric field, third harmonic generation (THG), optical Kerr effect,
Examples include self-induced refractive index change and two-photon absorption.

【0003】これらの非線形光学効果を示す非線形光学
材料としてはこれまでに多数の無機材料が見い出されて
きた。ところが無機物においては、所望の非線形光学特
性や、素子製造のために必要な諸物性を最適化するため
のいわゆる分子設計が困難であることから実用するのは
非常に困難であった。一方、有機化合物は分子設計によ
り所望の非線形光学特性の最適化が可能であるのみなら
ず、その他の諸物性のコントロールも可能であるため、
実用の可能性が高く、有望な非線形光学材料として注目
を集めている。
As a non-linear optical material exhibiting these non-linear optical effects, many inorganic materials have been found so far. However, it has been very difficult to put the inorganic material into practical use because it is difficult to design a desired nonlinear optical characteristic and a so-called molecular design for optimizing various physical properties required for manufacturing an element. On the other hand, organic compounds can be optimized not only for desired nonlinear optical characteristics by molecular design, but also for controlling other physical properties.
It is highly promising for practical use and is attracting attention as a promising nonlinear optical material.

【0004】近年、有機化合物の非線形光学特性の中で
も3次の非線形光学効果が注目されており、その中でも
特に、非共鳴2光子吸収および非共鳴2光子発光が注目
を集めている。2光子吸収とは、化合物が2つの光子を
同時に吸収して励起される現象であり、化合物の(線
形)吸収帯が存在しないエネルギー領域で2光子の吸収
が起こる場合を非共鳴2光子吸収という。また、非共鳴
2光子発光とは、非共鳴2光子吸収により生成した励起
分子が、その励起状態の輻射失活過程において発する発
光をいう。なお、以下の記述において特に明記しなくて
も2光子吸収および2光子発光とは非共鳴2光子吸収お
よび非共鳴2光子発光を指す。ところで、非共鳴2光子
吸収の効率は印加する光電場の2乗に比例する(2光子
吸収の2乗特性)。このため、2次元平面にレーザーを
照射した場合においては、レーザースポットの中心部の
電界強度の高い位置のみで2光子の吸収が起こり、周辺
部の電界強度の弱い部分では2光子の吸収は全く起こら
ない。一方、3次元空間においては、レーザー光をレン
ズで集光した焦点の電界強度の大きな領域でのみ2光子
吸収が起こり、焦点から外れた領域では電界強度が弱い
ために2光子吸収が全く起こらない。印加された光電場
の強度に比例してすべての位置で励起が起こる線形吸収
に比べて、非共鳴2光子吸収では、この2乗特性に由来
して空間内部の1点のみで励起が起こるため、空間分解
能が著しく向上する。通常、非共鳴2光子吸収を誘起す
る場合には、化合物の(線形)吸収帯が存在する波長領
域よりも長波でかつ吸収の存在しない、近赤外領域の短
パルスレーザーを用いることが多い。化合物の(線形)
吸収帯が存在しない、いわゆる透明領域の近赤外光を用
いるため、励起光が吸収や散乱を受けずに試料内部まで
到達でき、非共鳴2光子吸収の2乗特性のために試料内
部の1点を極めて高い空間分解能で励起できるため、非
共鳴2光子吸収および非共鳴2光子発光は生体組織の2
光子造影や2光子フォトダイナミックセラピー(PD
T)などの応用面で期待されている。また、非共鳴2光
子吸収、2光子発光を用いると、入射した光子のエネル
ギーよりも高いエネルギーの光子を取り出せるため、波
長変換デバイスという観点からアップコンバージョンレ
ージングに関する研究も報告されている。
In recent years, among the nonlinear optical characteristics of organic compounds, the third-order nonlinear optical effect has attracted attention, and among them, non-resonant two-photon absorption and non-resonant two-photon emission have attracted attention. Two-photon absorption is a phenomenon in which a compound is excited by absorbing two photons at the same time, and the case where two-photon absorption occurs in an energy region where the (linear) absorption band of the compound does not exist is called non-resonant two-photon absorption. . Further, non-resonant two-photon luminescence refers to luminescence emitted by an excited molecule generated by non-resonant two-photon absorption in the radiation deactivation process of the excited state. In the following description, two-photon absorption and two-photon emission refer to non-resonant two-photon absorption and non-resonant two-photon emission, unless otherwise specified. By the way, the efficiency of non-resonant two-photon absorption is proportional to the square of the applied optical field (two-photon absorption squared characteristic). Therefore, when the laser is irradiated on the two-dimensional plane, the two-photon absorption occurs only at the position where the electric field strength is high in the central portion of the laser spot, and the absorption of the two-photon is completely lost at the peripheral portion where the electric field strength is weak. It won't happen. On the other hand, in the three-dimensional space, two-photon absorption occurs only in the region where the electric field strength of the focal point where the laser light is focused by the lens is large, and in the out-of-focus area the electric field strength is weak and no two-photon absorption occurs. . Compared to the linear absorption in which excitation occurs at all positions in proportion to the applied electric field intensity, in non-resonant two-photon absorption, excitation occurs at only one point inside space due to this squared characteristic. , The spatial resolution is significantly improved. Usually, in the case of inducing non-resonant two-photon absorption, a short pulse laser in the near-infrared region, which has a longer wavelength than the wavelength region in which the (linear) absorption band of the compound exists and does not have absorption, is often used. Compound (linear)
Since so-called near-infrared light in the transparent region where no absorption band exists is used, the excitation light can reach the inside of the sample without being absorbed or scattered, and due to the square characteristic of non-resonant two-photon absorption, Since the points can be excited with extremely high spatial resolution, non-resonant two-photon absorption and non-resonant two-photon emission are two
Photon contrast and two-photon photodynamic therapy (PD
T) and other applications are expected. Further, since non-resonant two-photon absorption and two-photon emission can be used to extract photons having higher energy than the energy of incident photons, research on upconversion lasing from the viewpoint of a wavelength conversion device has also been reported.

【0005】効率良く2光子発光やアップコンバージョ
ンレージングを示す有機化合物として、いわゆるスチル
バゾリウム誘導体が知られている(非特許文献1、非特
許文献2、非特許文献3、非特許文献4、非特許文献
5、非特許文献6、及び非特許文献7参照)。また、あ
る特定の構造を有するスチルバゾリウム化合物の2光子
発光を用いた種々の応用例は特許文献1に記載されてい
る。
A so-called stilbazolium derivative is known as an organic compound that efficiently exhibits two-photon emission and up-conversion lasing (Non-patent document 1, Non-patent document 2, Non-patent document 3, Non-patent document 4, Non-patent document). 5, Non-Patent Document 6 and Non-Patent Document 7). Further, various application examples using two-photon emission of a stilbazolium compound having a specific structure are described in Patent Document 1.

【0006】[0006]

【非特許文献1】He,G.S.et al.,App
l.Phys.Lett.1995,67,3703
[Non-Patent Document 1] He, G. S. et al. , App
l. Phys. Lett. 1995, 67, 3703

【非特許文献2】He,G.S.et al.,App
l.Phys.Lett.1995,67,2433
[Non-Patent Document 2] He, G. S. et al. , App
l. Phys. Lett. 1995, 67, 2433

【非特許文献3】He,G.S.et al.,App
l.Phys.Lett.1996,68,3549
[Non-Patent Document 3] He, G. S. et al. , App
l. Phys. Lett. 1996, 68, 3549

【非特許文献4】He,G.S.et al.,J.A
ppl.Phys.1997,81,2529
[Non-Patent Document 4] He, G. S. et al. J. A
ppl. Phys. 1997, 81, 2529

【非特許文献5】Prasad,P.N. et a
l.,Nonlinear Optics1999,2
1,39
[Non-Patent Document 5] Prasad, P. et al. N. et a
l. , Nonlinear Optics 1999, 2
1,39

【非特許文献6】Ren,Y.et al.,J.Ma
ter.Chem.2000,10,2025
[Non-Patent Document 6] Ren, Y. et al. J. Ma
ter. Chem. 2000, 10, 2025

【非特許文献7】Zhou、G.et al.,Jp
n.J.Appl.Phys.2001,40,125
[Non-Patent Document 7] Zhou, G .; et al. , Jp
n. J. Appl. Phys. 2001,40,125
0

【特許文献1】国際公開(WO)97/09043号パ
ンフレット
[Patent Document 1] International Publication (WO) 97/09043 pamphlet

【0007】非共鳴2光子発光を利用して生体組織の造
影、フォトダイナミックセラピー、アップコンバージョ
ンレージング等の応用を行う場合、用いる有機化合物の
2光子吸収効率(2光子吸収断面積)および2光子吸収
により生じた励起状態からの発光効率は高いことが必要
である。同一の有機化合物を用いて2倍の2光子発光強
度を得るためには、2光子吸収の2乗特性のために4倍
の励起光強度が必要になる。ところが、過度に強いレー
ザー光を照射すると、例えば生体組織の光損傷を招いた
り、また2光子発光色素そのものが光劣化を起こしてし
まう可能性が高くなるため望ましくない。従って、弱い
励起光強度で強い2光子発光を得るためには、効率よく
2光子吸収を行い2光子発光を発する有機化合物の開発
が必要である。スチルバゾリウム誘導体の2光子発光効
率は、実際的な使用に対しては未だ充分な性能を満たし
ていない。
In the case of applying non-resonant two-photon emission to the imaging of biological tissue, photodynamic therapy, up-conversion lasing, etc., the two-photon absorption efficiency (two-photon absorption cross section) and two-photon absorption of the organic compound used. It is necessary that the emission efficiency from the excited state generated by is high. In order to obtain double the two-photon emission intensity using the same organic compound, the four-fold excitation light intensity is required due to the square characteristic of the two-photon absorption. However, it is not desirable to irradiate an excessively strong laser beam because, for example, there is a high possibility that the biological tissue will be photodamaged and that the two-photon luminescent dye itself will be photodegraded. Therefore, in order to obtain strong two-photon emission with weak excitation light intensity, it is necessary to develop an organic compound that efficiently absorbs two-photons and emits two-photon emission. The two-photon emission efficiency of the stilbazolium derivative is not yet sufficient for practical use.

【0008】[0008]

【発明が解決しようとする課題】上に述べたように、非
共鳴2光子吸収および非共鳴2光子発光を利用すると、
極めて高い空間分解能を特徴とする種々の応用が可能で
あるが、現時点で利用可能な2光子発光化合物では、2
光子吸収能が低く、また2光子発光効率も悪いため、2
光子吸収および2光子発光を誘起する励起光源としては
非常に高出力のレーザーが必要である。
As described above, when non-resonant two-photon absorption and non-resonant two-photon emission are utilized,
Although it can be used for various applications characterized by extremely high spatial resolution, the currently available two-photon emission compounds are
Since the photon absorption capacity is low and the two-photon emission efficiency is poor, 2
A very high power laser is required as an excitation light source for inducing photon absorption and two-photon emission.

【0009】本発明の目的は、効率良く2光子を吸収す
る有機材料、すなわち2光子吸収断面積の大きな有機材
料を提供すること、および発光強度の大きな2光子発光
を示す有機材料を提供することである。
An object of the present invention is to provide an organic material that efficiently absorbs two-photons, that is, an organic material having a large two-photon absorption cross section, and an organic material that exhibits two-photon emission with a large emission intensity. Is.

【0010】[0010]

【課題を解決するための手段】本発明の発明者らの鋭意
検討の結果、本発明の上記目的は、下記の手段により達
成された。 (1)非共鳴2光子吸収を行うことを特徴とする下記一
般式(1)で表される化合物。 一般式(1) X2−(−CR4=CR3−)m−C(=O)−(−CR1=CR
2−)n−X1 (X1およびX2は置換もしくは無置換のアリール基、ま
たは置換もしくは無置換のヘテロ環基を表し、同一でも
それぞれ異なってもよく、R1、R2、R3およびR4はそ
れぞれ独立に、水素原子、または置換基を表し、R1
2、R3およびR 4 のうちのいくつかが互いに結合して
環を形成してもよく、nおよびmが2以上の場合、複数
個のR1、R2、R3およびR4は同一でもそれぞれ異なっ
てもよく、nおよびmはそれぞれ独立に1〜4の整数を
表す。)
Means for Solving the Problems The earnest efforts of the inventors of the present invention
As a result of examination, the above-mentioned object of the present invention was achieved by the following means.
Was made. (1) The following one characterized by performing non-resonant two-photon absorption
A compound represented by the general formula (1). General formula (1) X2-(-CRFour= CR3−)m-C (= O)-(-CR1= CR
2−)n-X1 (X1And X2Is a substituted or unsubstituted aryl group, or
Or represents a substituted or unsubstituted heterocyclic group, even if the same
Each may be different, R1, R2, R3And RFourHaso
Each independently represents a hydrogen atom or a substituent, R1,
R2, R3And R Four Some of them combine with each other
A ring may be formed, and when n and m are 2 or more, a plurality of rings may be formed.
R1, R2, R3And RFourAre the same but different
, N and m are each independently an integer of 1 to 4.
Represent )

【0011】(2)上記一般式(1)の構造を有するこ
とを特徴とする2光子発光化合物。
(2) A two-photon luminescent compound having the structure of the above general formula (1).

【0012】(3)上記一般式(1)で表される化合物
に、該化合物の有する線形吸収帯よりも長波長のレーザ
ー光を照射して非共鳴2光子吸収を誘起することを特徴
とする非共鳴2光子吸収誘起方法。
(3) The compound represented by the general formula (1) is characterized by irradiating a laser beam having a wavelength longer than the linear absorption band of the compound to induce non-resonant two-photon absorption. Non-resonant two-photon absorption induction method.

【0013】(4)上記一般式(1)で表される化合物
に、該化合物の有する線形吸収帯よりも長波長のレーザ
ー光を照射して非共鳴2光子吸収を誘起し、生成した励
起状態から発光を発生させることを特徴とする非共鳴2
光子発光発生方法。
(4) The compound represented by the general formula (1) is irradiated with laser light having a wavelength longer than the linear absorption band of the compound to induce non-resonant two-photon absorption, and the excited state generated Non-resonant 2 characterized by generating light emission from
Photon emission generation method.

【0014】[0014]

【発明の実施の形態】以下に、下記一般式(1)で表さ
れる本発明の化合物について詳しく説明する。 一般式(1) X2−(−CR4=CR3−)m−C(=O)−(−CR1=CR
2−)n−X1 (X1およびX2は置換または無置換のアリール基、置換
または無置換のヘテロ環基を表し、同一でもそれぞれ異
なってもよく、R1、R2、R3およびR4はそれぞれ独立
に、水素原子、または置換基を表し、R1、R2、R3
よびR4 のうちのいくつかが互いに結合して環を形成し
てもよく、nおよびmが2以上の場合、複数個のR1
2、R3およびR4は同一でもそれぞれ異なってもよ
く、nおよびmはそれぞれ独立に1〜4の整数を表
す。)
BEST MODE FOR CARRYING OUT THE INVENTION The compound of the present invention represented by the following general formula (1) is described in detail below. Formula (1) X 2 - (- CR 4 = CR 3 -) m -C (= O) - (- CR 1 = CR
2− ) n —X 1 (X 1 and X 2 represent a substituted or unsubstituted aryl group, a substituted or unsubstituted heterocyclic group, and they may be the same or different, and R 1 , R 2 , R 3 and R 4's each independently represent a hydrogen atom or a substituent, and some of R 1 , R 2 , R 3 and R 4 may combine with each other to form a ring, and n and m are 2 In the above case, a plurality of R 1 ,
R 2 , R 3 and R 4 may be the same or different, and n and m each independently represent an integer of 1 to 4. )

【0015】一般式(1)において、X1およびX2は置
換または無置換のアリール基、置換または無置換のヘテ
ロ環基を表す。
In the general formula (1), X 1 and X 2 represent a substituted or unsubstituted aryl group or a substituted or unsubstituted heterocyclic group.

【0016】一般式(1)のX1およびX2で表されるア
リール基としては、フェニル、ナフチル、アントラセニ
ル、またはフェナンスレニル等を挙げることができ、フ
ェニルまたはナフチルが好ましく、特にフェニルが好ま
しい。
Examples of the aryl group represented by X 1 and X 2 in the general formula (1) include phenyl, naphthyl, anthracenyl, phenanthrenyl and the like, with phenyl or naphthyl being preferable, and phenyl being particularly preferable.

【0017】一般式(1)のX1およびX2で表されるヘ
テロ環基としては、炭素数1〜15のヘテロ環基であ
り、更に好ましくは炭素数2〜12のヘテロ環基であ
り、ヘテロ原子として好ましいものは、窒素原子、酸素
原子または硫黄原子である。ヘテロ環の具体例として
は、例えばピロリジン、ピペリジン、ピペラジン、モル
ホリン、チオフェン、セレノフェン、フラン、ピロー
ル、イミダゾール、ピラゾール、ピリジン、ピラジン、
ピリダジン、ピリミジン、トリアゾール、トリアジン、
インドール、インダゾール、プリン、チアゾリン、チア
ゾール、チアジゾール、オキサゾリン、オキサゾール、
オキサジアゾール、キノリン、イソキノリン、フタラジ
ン、ナフチリジン、キノキサリン、キナゾリン、シンノ
リン、プテリジン、アクリジン、フェナントロリン、フ
ェナジン、テトラゾール、ベンゾイミダゾール、ベンゾ
オキサゾール、ベンゾチアゾール、ベンゾトリアゾー
ル、テトラザインデン、ベンゾインドレニン、カルバゾ
ール、ジベンゾフラン、フェノチアジン、ジュロリジン
および窒素原子が環を構成する場合には、その窒素原子
が4級化された4級オニウムカチオン等が挙げられる。
ヘテロ環として好ましくはピリジン、ピリミジン、ピラ
ジン、インドール、チオフェン、チアゾール、オキサゾ
ール、キノリン、アクリジン、ベンゾイミダゾール、ベ
ンゾオキサゾール、ベンゾチアゾール、ベンゾインドレ
ニン、カルバゾール、フェノチアジン、ジュロリジンお
よび窒素原子が環を構成する場合にその窒素原子が4級
化された4級オニウムカチオン等であり、より好ましく
は、カルバゾール、フェノチアジン、ジュロリジンであ
る。
The heterocyclic group represented by X 1 and X 2 in the general formula (1) is a heterocyclic group having 1 to 15 carbon atoms, more preferably a heterocyclic group having 2 to 12 carbon atoms. A preferable hetero atom is a nitrogen atom, an oxygen atom or a sulfur atom. Specific examples of the heterocycle include, for example, pyrrolidine, piperidine, piperazine, morpholine, thiophene, selenophene, furan, pyrrole, imidazole, pyrazole, pyridine, pyrazine,
Pyridazine, pyrimidine, triazole, triazine,
Indole, indazole, purine, thiazoline, thiazole, thiazizole, oxazoline, oxazole,
Oxadiazole, quinoline, isoquinoline, phthalazine, naphthyridine, quinoxaline, quinazoline, cinnoline, pteridine, acridine, phenanthroline, phenazine, tetrazole, benzimidazole, benzoxazole, benzothiazole, benzotriazole, tetrazaindene, benzoindolenin, carbazole, When dibenzofuran, phenothiazine, julolidine and a nitrogen atom form a ring, examples thereof include a quaternary onium cation in which the nitrogen atom is quaternized.
As the hetero ring, preferably, pyridine, pyrimidine, pyrazine, indole, thiophene, thiazole, oxazole, quinoline, acridine, benzimidazole, benzoxazole, benzothiazole, benzoindolenine, carbazole, phenothiazine, julolidine and a nitrogen atom form a ring. And a quaternary onium cation in which the nitrogen atom is quaternized, and more preferably carbazole, phenothiazine, and julolidine.

【0018】一般式(1)のX1およびX2は更に置換基
を有しても良く、該置換基の例としては、例えば以下に
記載のものを挙げることができる。炭素原子数1〜20
の鎖状または環状アルキル基(例えば、メチル、エチ
ル、n−プロピル、イソプロピル、n−ブチル)、炭素
数6〜18の置換または無置換のアリール基(例えば、
フェニル、クロロフェニル、アニシル、トルイル、1−
ナフチル)、炭素数2〜20のアルケニル基(例えばビ
ニル、2−メチルビニル)、炭素数2〜20のアルキニ
ル基(例えば、エチニル、2−メチルエチニル、2−フ
ェニルエチニル)、ハロゲン原子(例えば、F、Cl、
Br、I)、炭素数2〜20のアミノ基(例えばジメチ
ルアミノ、ジエチルアミノ、ジブチルアミノ、ジュロリ
ジノ)、シアノ基、ヒドロキシル基、カルボキシル基、
炭素数2〜10のアシル基(例えば、アセチル、ベンゾ
イル、サリチロイル、ピバロイル)、炭素数1〜20の
アルコキシ基(例えば、メトキシ、ブトキシ、シクロヘ
キシルオキシ)、炭素数6〜18のアリールオキシ基
(例えば、フェノキシ、1−ナフトキシ)、炭素数1〜
20のアルキルチオ基(例えば、メチルチオ、エチルチ
オ)、炭素数6〜18のアリールチオ基(例えば、フェ
ニルチオ、4−クロロフェニルチオ)、炭素数1〜20
のアルキルスルホニル基(例えば、メタンスルホニル、
ブタンスルホニル)、炭素数6〜18のアリールスルホ
ニル基(例えば、ベンゼンスルホニル、パラトルエンン
スルホニル)、炭素原子数1〜10のカルバモイル基、
炭素原子数1〜10のアミド基、炭素原子数2〜12の
イミド基、炭素原子数2〜10のアシルオキシ基、炭素
原子数2〜10のアルコキシカルボニル基、ヘテロ環基
(例えばピリジル、チエニル、フリル、チアゾリル、イ
ミダゾリル、ピラゾリルなどの芳香族ヘテロ環、ピロリ
ジン環、ピペリジン環、モルホリン環、ピラン環、チオ
ピラン環、ジオキサン環、ジチオラン環などの脂肪族ヘ
テロ環)。
X 1 and X 2 in the general formula (1) may further have a substituent, and examples of the substituent include those described below. 1 to 20 carbon atoms
A linear or cyclic alkyl group (for example, methyl, ethyl, n-propyl, isopropyl, n-butyl), a substituted or unsubstituted aryl group having 6 to 18 carbon atoms (for example,
Phenyl, chlorophenyl, anisyl, toluyl, 1-
Naphthyl), alkenyl group having 2 to 20 carbon atoms (e.g. vinyl, 2-methylvinyl), alkynyl group having 2 to 20 carbon atoms (e.g. ethynyl, 2-methylethynyl, 2-phenylethynyl), halogen atom (e.g. F, Cl,
Br, I), an amino group having 2 to 20 carbon atoms (for example, dimethylamino, diethylamino, dibutylamino, julolidino), a cyano group, a hydroxyl group, a carboxyl group,
An acyl group having 2 to 10 carbon atoms (eg, acetyl, benzoyl, salicyloyl, pivaloyl), an alkoxy group having 1 to 20 carbon atoms (eg, methoxy, butoxy, cyclohexyloxy), an aryloxy group having 6 to 18 carbon atoms (eg, , Phenoxy, 1-naphthoxy), 1 to 1 carbon atoms
20 alkylthio groups (eg, methylthio, ethylthio), arylthio groups having 6 to 18 carbon atoms (eg, phenylthio, 4-chlorophenylthio), 1 to 20 carbon atoms
An alkylsulfonyl group of (for example, methanesulfonyl,
Butanesulfonyl), an arylsulfonyl group having 6 to 18 carbon atoms (for example, benzenesulfonyl, paratoluenesulfonyl), a carbamoyl group having 1 to 10 carbon atoms,
An amide group having 1 to 10 carbon atoms, an imide group having 2 to 12 carbon atoms, an acyloxy group having 2 to 10 carbon atoms, an alkoxycarbonyl group having 2 to 10 carbon atoms, a heterocyclic group (for example, pyridyl, thienyl, Aromatic heterocycles such as furyl, thiazolyl, imidazolyl and pyrazolyl, pyrrolidine rings, piperidine rings, morpholine rings, pyran rings, thiopyran rings, dioxane rings, dithiolane rings and other aliphatic heterocycles).

【0019】一般式(1)において、X1およびX2の置
換基として好ましいものは、炭素数1〜16の鎖状また
は環状のアルキル基、炭素数6〜14のアリール基、炭
素数7〜15のアラルキル基、炭素数1〜16のアルコ
キシ基、炭素数6〜14のアリールオキシ基、炭素数2
〜20のアミノ基、ハロゲン原子、炭素数2〜17のア
ルコキシカルボニル基、炭素数1〜10のカルバモイル
基、炭素数1〜10のアミド基、ヘテロ環基であり、中
でも好ましいものは、炭素数1〜10の鎖状または環状
のアルキル基、炭素数7〜13のアラルキル基、炭素数
6〜10のアリール基、炭素数1〜10のアルコキシ
基、炭素数6〜10のアリールオキシ基、炭素数2〜1
0のアミノ基、塩素原子、臭素原子、炭素数2〜11の
アルコキシカルボニル基、炭素数1〜7のカルバモイル
基、炭素数1〜8のアミド基である。
In the general formula (1), preferred substituents for X 1 and X 2 are a linear or cyclic alkyl group having 1 to 16 carbon atoms, an aryl group having 6 to 14 carbon atoms, and 7 to 7 carbon atoms. 15 aralkyl group, C1-16 alkoxy group, C6-14 aryloxy group, C2
To an amino group having 20 to 20 carbon atoms, a halogen atom, an alkoxycarbonyl group having 2 to 17 carbon atoms, a carbamoyl group having 1 to 10 carbon atoms, an amide group having 1 to 10 carbon atoms, and a heterocyclic group. A chain or cyclic alkyl group having 1 to 10 carbon atoms, an aralkyl group having 7 to 13 carbon atoms, an aryl group having 6 to 10 carbon atoms, an alkoxy group having 1 to 10 carbon atoms, an aryloxy group having 6 to 10 carbon atoms, carbon Number 2 to 1
And an amino group having 0, a chlorine atom, a bromine atom, an alkoxycarbonyl group having 2 to 11 carbon atoms, a carbamoyl group having 1 to 7 carbon atoms, and an amide group having 1 to 8 carbon atoms.

【0020】一般式(1)において、X1およびX2の置
換基としてより好ましいものは、ハメットのσp値が負
であるものである。なお、ハメットのσp値は、例えばC
hem.Rev. 1991, 91, 165に記載されている。
In the general formula (1), more preferable substituents for X 1 and X 2 are those having a negative Hammett σ p value. The Hammett σ p value is, for example, C
hem. Rev. 1991, 91, 165.

【0021】一般式(1)において、R1、R2、R3
よびR4はそれぞれ独立に、水素原子、または置換基を
表し、R1、R2、R3およびR4のうちのいくつかが互い
に結合して環を形成してもよい。
In the general formula (1), R 1 , R 2 , R 3 and R 4 each independently represent a hydrogen atom or a substituent, and any one of R 1 , R 2 , R 3 and R 4 May combine with each other to form a ring.

【0022】一般式(1)においてR1,R2、R3およ
びR4で表される置換基としては、上述のX1およびX2
で表される基の置換基として挙げた基を挙げることがで
きる。
In the general formula (1), the substituents represented by R 1 , R 2 , R 3 and R 4 are the above-mentioned X 1 and X 2.
The groups mentioned as the substituents of the group represented by can be mentioned.

【0023】一般式(1)においてR1,R2、R3およ
びR4で挙げた置換基のうちの任意の2つが互いに結合
して環を形成してもよい。また、R1,R2、R3および
4で挙げた置換基のうちの任意の2つが互いに結合し
て環を形成する場合には、一般式(1)に示された中心
部分のカルボニル炭素原子に結合した炭素に結合してい
るR1およびR3が結合して環を形成することが好まし
い。
Any two of the substituents mentioned for R 1 , R 2 , R 3 and R 4 in the general formula (1) may be bonded to each other to form a ring. Further, in the case where any two of the substituents mentioned for R 1 , R 2 , R 3 and R 4 are bonded to each other to form a ring, the carbonyl of the central portion represented by the general formula (1) is It is preferred that R 1 and R 3 bonded to carbon bonded to a carbon atom be bonded to form a ring.

【0024】一般式(1)においてR1およびR3が結合
して環を形成する場合には、形成する環が6員環、5員
環または4員環であることが好ましく、5員環または4
員環であることが更に好ましい。
In the general formula (1), when R 1 and R 3 combine to form a ring, the ring formed is preferably a 6-membered ring, a 5-membered ring or a 4-membered ring. Or 4
A member ring is more preferred.

【0025】一般式(1)において、nおよびmが2以
上の場合、複数個のR1、R2、R3およびR4は同一でも
それぞれ異なってもよい。
In the general formula (1), when n and m are 2 or more, a plurality of R 1 , R 2 , R 3 and R 4 may be the same or different.

【0026】一般式(1)において、nおよびmはそれ
ぞれ独立に1〜5の整数を表し、その中でも2〜4が好
ましい。
In the general formula (1), n and m each independently represent an integer of 1 to 5, with 2 to 4 being preferred.

【0027】本発明の化合物は、ケトン化合物とアルデ
ヒド化合物とのアルドール縮合反応により合成した。以
下に、本発明で用いられる2光子吸収化合物および2光
子発光化合物の好ましい具体例を挙げるが、本発明はこ
れらに限定されるものではない。
The compound of the present invention was synthesized by an aldol condensation reaction between a ketone compound and an aldehyde compound. The preferred specific examples of the two-photon absorption compound and the two-photon emission compound used in the present invention are shown below, but the present invention is not limited thereto.

【0028】[0028]

【化1】 [Chemical 1]

【0029】[0029]

【化2】 [Chemical 2]

【0030】[0030]

【化3】 [Chemical 3]

【0031】[0031]

【化4】 [Chemical 4]

【0032】[0032]

【化5】 [Chemical 5]

【0033】[0033]

【化6】 [Chemical 6]

【0034】[0034]

【化7】 [Chemical 7]

【0035】[0035]

【化8】 [Chemical 8]

【0036】[0036]

【化9】 [Chemical 9]

【0037】[0037]

【化10】 [Chemical 10]

【0038】[0038]

【化11】 [Chemical 11]

【0039】[0039]

【化12】 [Chemical 12]

【0040】[0040]

【化13】 [Chemical 13]

【0041】[0041]

【化14】 [Chemical 14]

【0042】[0042]

【化15】 [Chemical 15]

【0043】[0043]

【化16】 [Chemical 16]

【0044】[0044]

【化17】 [Chemical 17]

【0045】[0045]

【実施例】以下に、本発明の具体的な実施例について実
験結果を基に説明する。 [化合物の合成]
EXAMPLES Specific examples of the present invention will be described below based on experimental results. [Synthesis of compound]

【0046】合成例1 化合物(1)の合成 p−(ジメチルアミノ)けい皮アルデヒド(17.5
g、0.1mol)とシクロペンタノン(4.2g、0.05
mol)をイソプロピルアルコール(2.4L )に溶解さ
せ、ナトリウムメトキシドのメタノール溶液(1ml)
を加え、40℃で1時間攪拌した。反応が進行するにと
もなって析出した結晶をろ過し、ろ別した結晶をクロロ
ホルムに溶解させた後、メタノールを加え、析出した結
晶をろ過した。濃赤色結晶11.0g(収率55%)。
得られた化合物は1H NMRにより構造を確認した。 1H NMR(CDCl3−d1)δ=2.86(2、4
H、シクロペンタン環)、3.01(s、12H、ジメ
チルアミノ基)、6.67(d、4H、ベンゼン環)、
7.39(d、4H、ベンゼン環)、6.76(t、2
H、メチン鎖)、6.90(d、2H、メチン鎖)、7.
24(d、2H,メチン鎖) 合成例2 化合物(17)の合成 合成例1に示したシクロペンタノンの替わりにアセトン
(2.9g、0.05mol)を用いる以外は合成例1と同
様にして化合物(17)を合成した。濃赤色結晶3.8
g(収率20%)。得られた化合物は1H NMRによ
り構造を確認した。 1H NMR(CDCl3−d1)δ=3.01(s、1
2H、ジメチルアミノ基)、6.67(d、4H、ベン
ゼン環)、7.38(d、4H、ベンゼン環)、6.46
(d、2H、メチン鎖)、6.76(m、2H、メチン
鎖)、6.90(d、2H,メチン鎖)、7.48(m、
2H,メチン鎖) 合成例3 化合物(31)の合成 合成例1に示したシクロペンタノンの替わりに、シクロ
ヘキサノン(4.9g、0.05mol)を用いる以外は合成
例1と同様にして化合物(31)を合成した。濃赤色結
晶7.2g(収率35%)。得られた化合物は1H NM
Rにより構造を確認した。 1H NMR(DMSO−d6)δ=1.85(m、2
H、シクロヘキサン環)、2.75(t、4H、シクロ
ヘキサン環)、3.00(s、12H、ジメチルアミノ
基)、6.66(d、4H、ベンゼン環)、7.39
(d、4H、ベンゼン環)、6.89(m、4H、メチ
ン鎖)、7.50(d、2H、メチン鎖) 本発明のその他の化合物についても、上記合成例の方法
に従って容易に合成できる。
Synthesis Example 1 Synthesis of Compound (1) p- (Dimethylamino) cinnamaldehyde (17.5)
g, 0.1 mol) and cyclopentanone (4.2 g, 0.05
mol) in isopropyl alcohol (2.4 L) and sodium methoxide in methanol (1 ml)
Was added and the mixture was stirred at 40 ° C. for 1 hour. The crystals precipitated as the reaction proceeded were filtered, the crystals separated by filtration were dissolved in chloroform, methanol was added, and the precipitated crystals were filtered. Dark red crystals 11.0 g (yield 55%).
The structure of the obtained compound was confirmed by 1 H NMR. 1H NMR (CDCl 3 −d 1 ) δ = 2.86 (2,4
H, cyclopentane ring), 3.01 (s, 12H, dimethylamino group), 6.67 (d, 4H, benzene ring),
7.39 (d, 4H, benzene ring), 6.76 (t, 2
H, methine chain), 6.90 (d, 2H, methine chain), 7.
24 (d, 2H, methine chain) Synthesis Example 2 Synthesis of compound (17) In the same manner as in Synthesis Example 1 except that acetone (2.9 g, 0.05 mol) was used instead of cyclopentanone shown in Synthesis Example 1. To synthesize the compound (17). Dark red crystals 3.8
g (yield 20%). The structure of the obtained compound was confirmed by 1 H NMR. 1H NMR (CDCl 3 −d 1 ) δ = 3.01 (s, 1
2H, dimethylamino group), 6.67 (d, 4H, benzene ring), 7.38 (d, 4H, benzene ring), 6.46
(D, 2H, methine chain), 6.76 (m, 2H, methine chain), 6.90 (d, 2H, methine chain), 7.48 (m,
2H, methine chain) Synthesis Example 3 Synthesis of compound (31) Compound (31) was prepared in the same manner as in Synthesis Example 1 except that cyclohexanone (4.9 g, 0.05 mol) was used instead of the cyclopentanone shown in Synthesis Example 1. 31) was synthesized. 7.2 g of dark red crystals (yield 35%). The obtained compound is 1 H NM
The structure was confirmed by R. 1H NMR (DMSO-d 6 ) δ = 1.85 (m, 2
H, cyclohexane ring), 2.75 (t, 4H, cyclohexane ring), 3.00 (s, 12H, dimethylamino group), 6.66 (d, 4H, benzene ring), 7.39
(D, 4H, benzene ring), 6.89 (m, 4H, methine chain), 7.50 (d, 2H, methine chain) Other compounds of the present invention can also be easily synthesized according to the method of the above synthesis example. it can.

【0047】[2光子吸収断面積の評価方法]本発明の
化合物の2光子吸収断面積の評価は、M. A. Albota et
al., Appl. Opt. 1998, 37,7352.記載の方法を参考に行
った。2光子吸収断面積測定用の光源には、Ti:sapphir
eパルスレーザー(パルス幅:100fs、繰り返し:80MH
z、平均出力:1W、ピークパワー:100kW)を用い、700n
mから1000nmの波長範囲で2光子吸収断面積を測定し
た。また、基準物質としてローダミンBおよびフルオレ
セインを測定し、得られた測定値をC. Xu et al., J. O
pt. Soc. Am. B 1996, 13, 481.に記載のローダミンBお
よびフルオレセインの2光子吸収断面積の値を用いて補
正することで、各化合物の2光子吸収断面積を得た。2
光子吸収測定用の試料には、1×10-2〜1×10-4Mの濃
度で化合物を溶かした溶液を用いた。
[Method for evaluating two-photon absorption cross section] The two-photon absorption cross section of the compound of the present invention is evaluated by MA Albota et.
The method described in al., Appl. Opt. 1998, 37, 7352. was used as a reference. The light source for measuring the two-photon absorption cross section is Ti: sapphir.
e-pulse laser (pulse width: 100fs, repetition: 80MH
z, average output: 1W, peak power: 100kW), 700n
The two-photon absorption cross section was measured in the wavelength range from m to 1000 nm. In addition, rhodamine B and fluorescein were measured as reference substances, and the obtained measured values were used as C. Xu et al., J. O.
The two-photon absorption cross section of each compound was obtained by correcting the two-photon absorption cross section values of rhodamine B and fluorescein described in pt. Soc. Am. B 1996, 13, 481. Two
A solution in which a compound was dissolved at a concentration of 1 × 10 −2 to 1 × 10 −4 M was used as a sample for measuring photon absorption.

【0048】〔実施例1〕本発明の化合物の2光子吸収
断面積を上記方法にて測定し、得られた結果をGM単位
で表1に示した(1GM = 1×10-50 cm4 s / photon)。
なお、表中に示した値は測定波長範囲内での2光子吸収
断面積の最大値である。
Example 1 The two-photon absorption cross section of the compound of the present invention was measured by the above method, and the obtained results are shown in Table 1 in GM units (1GM = 1 × 10 −50 cm 4 s). / photon).
The values shown in the table are the maximum values of the two-photon absorption cross section within the measurement wavelength range.

【0049】〔比較例1〕下記に示した構造を有する比
較化合物1および比較化合物2の2光子吸収断面積を上
記の方法で測定し、結果を表1に示した。
[Comparative Example 1] Two-photon absorption cross sections of Comparative Compound 1 and Comparative Compound 2 having the structures shown below were measured by the above method, and the results are shown in Table 1.

【0050】[0050]

【化18】 [Chemical 18]

【0051】[0051]

【表1】 [Table 1]

【0052】[2光子発光強度の評価方法]本発明の化
合物をクロロホルムに溶解させ、Nd:YAGレーザーの1064
nmのレーザーパルスを照射して得られる発光スペクトル
を測定し、得られた発光スペクトルの面積から非共鳴2
光子発光強度を求めた。
[Method for evaluating two-photon emission intensity] The compound of the present invention was dissolved in chloroform and 1064 of Nd: YAG laser was used.
The emission spectrum obtained by irradiating a laser pulse of nm is measured, and the non-resonance 2
The photon emission intensity was determined.

【0053】〔実施例2〕 試料1:本発明に係る前記化合物(1)0.40gを100mL
のクロロホルムに溶解させて1×10-2Mの溶液を調製し
た。
[Example 2] Sample 1: 100 mL of 0.40 g of the compound (1) according to the present invention
Was dissolved in chloroform to prepare a 1 × 10 −2 M solution.

【0054】試料2:本発明に係る前記化合物(31)
0.41gを100mlのクロロホルムに溶解させて1×10-2Mの
溶液を調製した。
Sample 2: the compound (31) according to the present invention
0.41 g was dissolved in 100 ml of chloroform to prepare a 1 × 10 −2 M solution.

【0055】比較試料1:強い2光子発光を発する化合
物として国際公開(WO)9709043号に記載の化合物(下記
化合物)0.59gを100mLのアセトニトリルに溶解させ
て1×10-2Mの溶液を調製した。
Comparative sample 1: As a compound emitting strong two-photon emission, 0.59 g of the compound described in International Publication (WO) 9709043 (the following compound) was dissolved in 100 mL of acetonitrile to obtain a 1 × 10 -2 M solution. Prepared.

【0056】[0056]

【化19】 [Chemical 19]

【0057】試料1、試料2および比較試料1に、それ
ぞれNd:YAGレーザーの1064nmのレーザーパルスを同条件
で照射し、非共鳴2光子発光スペクトルを測定した。得
られた発光スペクトルの面積(非共鳴2光子発光強度)
を、比較試料1の値を1としたときの相対比で表2に示
した。
Sample 1, Sample 2 and Comparative Sample 1 were each irradiated with a 1064 nm laser pulse of Nd: YAG laser under the same conditions, and the non-resonant two-photon emission spectrum was measured. Area of emission spectrum obtained (non-resonant two-photon emission intensity)
Is shown in Table 2 as a relative ratio when the value of Comparative Sample 1 is 1.

【0058】[0058]

【表2】 [Table 2]

【0059】表1に示したように、従来の材料をはるか
に陵駕する良好な特性が得られた。
As shown in Table 1, good characteristics far superior to those of conventional materials were obtained.

【0060】〔実施例3〕 試料3:本発明に係る前期化合物(17)0.37gを100m
lのクロロホルムに溶解させて1×10-2Mの溶液を調製し
た。
[Example 3] Sample 3: 0.37 g of the compound (17) of the present invention according to the present invention was added to 100 m.
1 × 10 −2 M solution was prepared by dissolving in 1 l of chloroform.

【0061】比較試料2:上記比較試料1に用いたASPT
0.59gを100mLのTHFに溶解させて1×10-2Mの溶液を
調製した。
Comparative Sample 2: ASPT used in Comparative Sample 1 above
0.59 g was dissolved in 100 mL of THF to prepare a 1 × 10 −2 M solution.

【0062】実施例1に示した試料1および試料2と試
料3および比較試料2に、それぞれNd:YAGレーザーの10
64nmのレーザーパルスを照射し、非共鳴2光子発光スペ
クトルを測定した。得られた発光スペクトルの面積を、
比較試料2の値を1としたときの相対比で表3に示し
た。
The samples 1 and 2 and the sample 3 and the comparative sample 2 shown in Example 1 were each manufactured by using an Nd: YAG laser of 10%.
A nonresonant two-photon emission spectrum was measured by irradiating a laser pulse of 64 nm. The area of the obtained emission spectrum is
The relative ratio is shown in Table 3 when the value of Comparative Sample 2 is 1.

【0063】[0063]

【表3】 [Table 3]

【0064】表3に示したように、従来の材料をはるか
に陵駕する良好な特性が得られた。
As shown in Table 3, good characteristics far superior to those of conventional materials were obtained.

【0065】[0065]

【発明の効果】本発明の化合物を用いることで、従来よ
りもはるかに強い非共鳴2光子発光を示す非共鳴2光子
発光材料を得ることができる。
INDUSTRIAL APPLICABILITY By using the compound of the present invention, a non-resonant two-photon light emitting material exhibiting much stronger non-resonant two-photon emission than ever before can be obtained.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 谷 武晴 神奈川県足柄上郡開成町宮台798番地 富 士写真フイルム株式会社内 (72)発明者 川俣 純 北海道札幌市北区北25条5丁目2―15― 701 Fターム(参考) 2K002 AB12 BA01 CA05 HA13 4H006 AA01 AB92 BJ20 BJ50 BR70 BU46    ─────────────────────────────────────────────────── ─── Continued front page    (72) Inventor Takeharu Tani             798 Miyadai, Kaisei-cho, Ashigarakami-gun, Kanagawa Prefecture             Shishi Film Co., Ltd. (72) Inventor Jun Kawamata             2-5-15, Kita 25, Kita-ku, Sapporo-shi, Hokkaido             701 F term (reference) 2K002 AB12 BA01 CA05 HA13                 4H006 AA01 AB92 BJ20 BJ50 BR70                       BU46

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】非共鳴2光子吸収を行うことを特徴とする
下記一般式(1)で表される化合物。 一般式(1) X2−(−CR4=CR3−)m−C(=O)−(−CR1=CR
2−)n−X1 (X1およびX2は置換もしくは無置換のアリール基、ま
たは置換もしくは無置換のヘテロ環基を表し、同一でも
それぞれ異なってもよく、R1、R2、R3およびR4はそ
れぞれ独立に、水素原子、または置換基を表し、R1
2、R3 およびR4のうちのいくつかが互いに結合して
環を形成してもよく、nおよびmが2以上の場合、複数
個のR1、R2、R3およびR4は同一でもそれぞれ異なっ
てもよく、nおよびmはそれぞれ独立に1〜4の整数を
表す。)
1. A compound represented by the following general formula (1), which exhibits non-resonant two-photon absorption. Formula (1) X 2 - (- CR 4 = CR 3 -) m -C (= O) - (- CR 1 = CR
2− ) n —X 1 (X 1 and X 2 represent a substituted or unsubstituted aryl group or a substituted or unsubstituted heterocyclic group, which may be the same or different, and are R 1 , R 2 and R 3; And R 4 each independently represent a hydrogen atom or a substituent, R 1 ,
Some of R 2 , R 3 and R 4 may combine with each other to form a ring, and when n and m are 2 or more, a plurality of R 1 , R 2 , R 3 and R 4 are They may be the same or different, and n and m each independently represent an integer of 1 to 4. )
【請求項2】請求項1に記載の一般式(1)で表される
ことを特徴とする2光子発光化合物。
2. A two-photon light emitting compound represented by the general formula (1) according to claim 1.
【請求項3】請求項1に記載の一般式(1)で表される
化合物に、該化合物の有する線形吸収帯よりも長波長の
レーザー光を照射して2光子吸収を誘起することを特徴
とする非共鳴2光子吸収誘起方法。
3. A compound represented by the general formula (1) according to claim 1 is irradiated with laser light having a wavelength longer than a linear absorption band of the compound to induce two-photon absorption. And a non-resonant two-photon absorption induction method.
【請求項4】請求項1に記載の一般式(1)で表される
化合物に、該化合物の有する線形吸収帯よりも長波長の
レーザー光を照射して非共鳴2光子吸収を誘起し、発光
を発生させることを特徴とする非共鳴2光子発光発生方
法。
4. A compound represented by the general formula (1) according to claim 1 is irradiated with laser light having a wavelength longer than a linear absorption band of the compound to induce non-resonant two-photon absorption, A method for generating non-resonant two-photon emission, which comprises emitting light.
JP2002251398A 2001-09-05 2002-08-29 Non-resonant two-photon absorption material, non-resonant two-photon light-emitting material, non-resonant two-photon absorption induction method, and non-resonant two-photon emission generation method Expired - Lifetime JP4244124B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002251398A JP4244124B2 (en) 2001-09-05 2002-08-29 Non-resonant two-photon absorption material, non-resonant two-photon light-emitting material, non-resonant two-photon absorption induction method, and non-resonant two-photon emission generation method

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2001-268991 2001-09-05
JP2001268991 2001-09-05
JP2002251398A JP4244124B2 (en) 2001-09-05 2002-08-29 Non-resonant two-photon absorption material, non-resonant two-photon light-emitting material, non-resonant two-photon absorption induction method, and non-resonant two-photon emission generation method

Publications (2)

Publication Number Publication Date
JP2003183213A true JP2003183213A (en) 2003-07-03
JP4244124B2 JP4244124B2 (en) 2009-03-25

Family

ID=27615143

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002251398A Expired - Lifetime JP4244124B2 (en) 2001-09-05 2002-08-29 Non-resonant two-photon absorption material, non-resonant two-photon light-emitting material, non-resonant two-photon absorption induction method, and non-resonant two-photon emission generation method

Country Status (1)

Country Link
JP (1) JP4244124B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004352770A (en) * 2003-05-27 2004-12-16 Fuji Photo Film Co Ltd Two-photon absorption color developing material, two-photon absorption light-emitting material, two-photon absorption color developing method and two-photon absorption light-emitting method
JP2007332043A (en) * 2006-06-12 2007-12-27 Yamaguchi Univ Two-photon-absorbing compound
US7432036B2 (en) * 2002-10-07 2008-10-07 Fujifilm Corporation Non-resonant two-photon absorbing material, non-resonant two-photon emitting material, and method for inducing absorption or generating emission of non-resonant two photons by using the material
CN109438265A (en) * 2018-12-06 2019-03-08 四川大学 A kind of compound and its preparation method and application with brown adipose tissue with affinity

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7432036B2 (en) * 2002-10-07 2008-10-07 Fujifilm Corporation Non-resonant two-photon absorbing material, non-resonant two-photon emitting material, and method for inducing absorption or generating emission of non-resonant two photons by using the material
JP2004352770A (en) * 2003-05-27 2004-12-16 Fuji Photo Film Co Ltd Two-photon absorption color developing material, two-photon absorption light-emitting material, two-photon absorption color developing method and two-photon absorption light-emitting method
JP4511126B2 (en) * 2003-05-27 2010-07-28 富士フイルム株式会社 Two-photon absorption coloring material and two-photon absorption coloring method
JP2007332043A (en) * 2006-06-12 2007-12-27 Yamaguchi Univ Two-photon-absorbing compound
CN109438265A (en) * 2018-12-06 2019-03-08 四川大学 A kind of compound and its preparation method and application with brown adipose tissue with affinity
CN109438265B (en) * 2018-12-06 2020-05-08 四川大学 Compound with affinity with brown adipose tissue and preparation method and application thereof

Also Published As

Publication number Publication date
JP4244124B2 (en) 2009-03-25

Similar Documents

Publication Publication Date Title
Meador et al. Water-soluble NIR absorbing and emitting indolizine cyanine and indolizine squaraine dyes for biological imaging
Fan et al. Exceptionally strong multiphoton-excited blue photoluminescence and lasing from ladder-type oligo (p-phenylene) s
Malval et al. Enhancement of the two-photon initiating efficiency of a thioxanthone derivative through a chevron-shaped architecture
US20050231776A1 (en) Non-resonant two-photon absorption induction method and process for emitting light thereby, optical data recording medium and process for recording data thereon
Yılmaz et al. The effect of charge transfer on the ultrafast and two-photon absorption properties of newly synthesized boron-dipyrromethene compounds
Tian et al. Two novel two-photon polymerization initiators with extensive application prospects
JP4244124B2 (en) Non-resonant two-photon absorption material, non-resonant two-photon light-emitting material, non-resonant two-photon absorption induction method, and non-resonant two-photon emission generation method
Hu et al. Synthesis and optical properties of two 2, 2′: 6′, 2 ″-terpyridyl-based two-photon initiators
JP2004224746A (en) Method for carrying out two-photon fluorescent labeling and two-photon absorption compound
JP5769151B2 (en) Two-photon absorbing material and use thereof
JP4299985B2 (en) Two-photon polymerizable composition and photopolymerization method thereof
Liu et al. Two-photon absorption properties of star-shaped molecules containing peripheral diarylthienylamines
JP4486776B2 (en) Non-resonant two-photon absorption material, non-resonant two-photon light-emitting material, and non-resonant two-photon absorption induction method and light emission generation method thereof
Dixit et al. Synthesis and photophysical properties of near infra-red absorbing BODIPy derivatives and their nanoaggregates
JP4074824B2 (en) Non-resonant two-photon absorption material, non-resonant two-photon light-emitting material, and non-resonant two-photon absorption induction method and light emission generation method thereby
JP2004250545A (en) Nonresonant two-photon absorption material and nonresonant two-photon luminescent material, methods for inducing nonresonant two-photon absorption and luminescence using the materials, and methine compound
Liu et al. Two-photon AIEgen based on dicyanoisophorone derivative: Synthesis, characterization and cells imaging
Zhao et al. Synthesis and characterization of novel 1, 4-bis (carbazolyl) benzene derivatives with blue-violet two-photon-excited fluorescence
JP4511126B2 (en) Two-photon absorption coloring material and two-photon absorption coloring method
US20040131969A1 (en) Non-resonant two-photon absorbing material, non-resonant two-photon emitting material, method for inducing absorption of non-resonant two-photons and method for generating emission of non-resonant two-photons
JP4115308B2 (en) Non-resonant two-photon absorption material, non-resonant two-photon light-emitting material, and non-resonant two-photon absorption induction method and light emission generation method thereby
JP5130514B2 (en) Two-photon absorption compound
JP2004279674A (en) Nonresonant two-photon absorbing material, and induction method of nonresonant two-photon absorption using the same
JP4317727B2 (en) Two-photon absorption material, non-resonant two-photon absorption induction method and light emission generation method therefor, and photon absorption optical recording material using the two-photon absorption three-dimensional volume display and two-photon absorption optical modeling composition
JP2004126441A (en) Non-resonance two-photon absorption compound, non-resonance two-photon emission compound, and non-resonance two-photon absorption induction method and light emission generating method by non-resonance two photon absorption

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050208

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20060324

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20061124

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20071108

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20071115

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20071122

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080514

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080514

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080711

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080806

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081003

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20081114

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20081209

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081225

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4244124

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120116

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120116

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130116

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130116

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140116

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term