JP2003171778A - Method for forming protective film of metal, and protective film of metal - Google Patents

Method for forming protective film of metal, and protective film of metal

Info

Publication number
JP2003171778A
JP2003171778A JP2001372484A JP2001372484A JP2003171778A JP 2003171778 A JP2003171778 A JP 2003171778A JP 2001372484 A JP2001372484 A JP 2001372484A JP 2001372484 A JP2001372484 A JP 2001372484A JP 2003171778 A JP2003171778 A JP 2003171778A
Authority
JP
Japan
Prior art keywords
metal
liquid composition
acid
forming
protective film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001372484A
Other languages
Japanese (ja)
Inventor
Hideo Susa
秀郎 諏佐
Mitsuomi Katori
光臣 香取
Hidekazu Horie
秀和 堀江
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Hyomen Kagaku KK
Original Assignee
Nippon Hyomen Kagaku KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Hyomen Kagaku KK filed Critical Nippon Hyomen Kagaku KK
Priority to JP2001372484A priority Critical patent/JP2003171778A/en
Publication of JP2003171778A publication Critical patent/JP2003171778A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2222/00Aspects relating to chemical surface treatment of metallic material by reaction of the surface with a reactive medium
    • C23C2222/10Use of solutions containing trivalent chromium but free of hexavalent chromium

Abstract

<P>PROBLEM TO BE SOLVED: To form a protective film combining uniform, satisfactory appearance and stable corrosion resistance equal to that by treatment with hexavalent chromium on the surfaces of Zn, Ni, Cu, Ag, Fe, Cd, Al, Mg, and their alloys without using harmful hexavalent chromium, nor using fluorine compounds having a strong corrosiveness as essential components. <P>SOLUTION: The method for forming a protective film of a metal has a process where the surface of a metal is coated with a layer chemically converted from an aqueous acid liquid solution, and a process where the aqueous acid liquid composition is dried without rinsing. The aqueous acidic liquid composition contains (A) at least one kind selected from the group consisting of Ti, V, Mn, Y, Zr, Nb, Mo, Tc, Ru, Rh, Pd, and W, and (B) at least one kind selected from the group consisting of organic acid and/or inorganic acid such as the oxyacid of phosphorus, nitric acid, sulfuric acid, hydrochloric acid, and boric acid and/or their salts, and (C) fluorine as an optional component. <P>COPYRIGHT: (C)2003,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は広く亜鉛、ニッケ
ル、銅、銀、鉄、カドミウム、アルミニウム、マグネシ
ウム及びこれらの合金ならびにこれらのめっきを施した
金属材料に関する。特にこれらの金属に亜鉛又は亜鉛合
金で表面を被覆した金属材料に関する。更には亜鉛又は
亜鉛合金で表面を被覆した鉄系材料に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention generally relates to zinc, nickel, copper, silver, iron, cadmium, aluminum, magnesium and their alloys, and their plated metal materials. In particular, it relates to a metal material in which the surface of these metals is coated with zinc or a zinc alloy. Furthermore, the present invention relates to an iron-based material whose surface is coated with zinc or a zinc alloy.

【0002】[0002]

【従来の技術】従来より鉄系材料の防錆方法として亜鉛
めっきまたは亜鉛−鉄合金めっき、亜鉛−ニッケル合金
めっき等の亜鉛系合金めっきが広く用いられており、建
材、自動車、家電などの広い分野で利用されている。亜
鉛めっきまたは亜鉛系合金めっきは鉄系材料よりも卑で
あるために陽極となり、優先的に自ら腐食を受け溶解す
ることにより鉄系材料の溶解を防止する犠牲防食効果に
より鉄系材料の腐食を抑制しているがゆえに、鉄系材料
上に亜鉛めっきまたは亜鉛系合金めっきを施しただけで
はめっき表面が短期間で腐食を受けてしまう。また、犠
牲防食効果は亜鉛の消失と同時に終了する。そこで、亜
鉛めっきまたは亜鉛系合金めっき表面の腐食を抑制する
ために、めっき後にクロメート処理を行うのが一般的で
ある。クロメート処理は電解クロメート処理、塗布型ク
ロメート処理、反応型クロメート処理の3種類に分類さ
れる。クロメート処理は亜鉛に限らずアルミニウムやカ
ドミウム、マグネシウムなどにも施される。
2. Description of the Related Art Conventionally, zinc plating or zinc alloy plating such as zinc-iron alloy plating and zinc-nickel alloy plating has been widely used as a rust preventive method for iron-based materials, and is widely used for building materials, automobiles, home appliances, etc. It is used in the field. Since zinc plating or zinc-based alloy plating is baser than iron-based materials, it becomes an anode and preferentially corrodes and melts itself to prevent the dissolution of iron-based materials. Because of the suppression, the plated surface will be corroded in a short period of time only by applying zinc plating or zinc alloy plating on the iron-based material. Moreover, the sacrificial anticorrosive effect ends at the same time as the disappearance of zinc. Therefore, in order to suppress the corrosion of the surface of zinc plating or zinc alloy plating, it is common to perform chromate treatment after plating. Chromate treatment is classified into three types: electrolytic chromate treatment, coating-type chromate treatment, and reactive-type chromate treatment. Chromate treatment is not limited to zinc, but can be applied to aluminum, cadmium, magnesium, etc.

【0003】クロメート処理の耐食性は非常に優れたも
のであるが、多くのクロメート処理は有害な六価クロム
を使用するため、処理液のみならず処理品から溶出する
六価クロムが人体や環境へ悪影響を与えるとして近年大
きな問題になっている。これは六価クロムを使用したク
ロメート皮膜が皮膜中の六価クロムにより耐食性を発揮
できる皮膜である以上、如何ともしがたい問題である。
このほかの問題として電解クロメート処理は、電解によ
りクロメート皮膜を化成させるため、常に付き周りの問
題が付いて回り、均一な皮膜化成が難しく、電流密度に
よる品質(性能)のバラツキが生じる可能性がある。ま
た、電解中に発生するクロム酸ミストは他の問題より深
刻な公害問題になり得る。塗布型クロメート処理はクロ
ム酸を主成分とする酸性水溶液を金属表面に塗布した
後、水洗せずに加熱乾燥する方法である。塗布型クロメ
ートは反応型クロメートのような金属表面を化成皮膜で
被覆する工程がないため、電解クロメート同様に複雑な
形状に不向きであり、均一な厚みで塗布を行うには対象
物の制限を受ける。しかし、鋼板などへの適用には支障
がない。これに対し反応型クロメートは外観の均一性や
複雑な形状の品物への適用性に優れており、安定した耐
食性が得られ塗装下地だけでなく単独で使用される場合
が多いが、六価クロムの公害上の課題を残している。こ
の問題を解決すべく、近年六価クロムを使用せず、害の
少ない三価クロムを使用した反応型クロメートやそれに
類した代替え処理剤さらにはクロムを全く使用しない代
替え防錆処理剤が開発され一定の成果をあげているが、
実用上の安定した耐食性が六価クロムを使用した反応型
クロメートには及ばないのが実状である。また、六価ク
ロムを使用せず、害の少ない三価クロムを使用した反応
型クロメートやそれに類した代替え処理剤さらにはクロ
ムを全く使用しない代替え防錆処理剤による処理は金属
の表面を水性酸性液状組成物から化成する層で被覆する
工程に要する時間が六価クロムを使用した反応型クロメ
ートによる処理よりも極端に長いため、現場ラインに導
入することが出来ない場合もある。
Although the corrosion resistance of chromate treatment is very excellent, since many chromate treatments use harmful hexavalent chromium, hexavalent chromium that elutes not only from the treatment liquid but also from the treated product is harmful to the human body and the environment. It has become a big problem in recent years because it has an adverse effect. This is a difficult problem because the chromate film using hexavalent chromium is a film that can exhibit corrosion resistance due to the hexavalent chromium in the film.
As another problem, electrolytic chromate treatment forms a chromate film by electrolysis, so there are always problems with the surroundings, and it is difficult to form a uniform film, and variations in quality (performance) due to current density may occur. is there. Also, chromate mist generated during electrolysis can be a more serious pollution problem than other problems. The coating type chromate treatment is a method in which an acidic aqueous solution containing chromic acid as a main component is coated on a metal surface and then heated and dried without washing with water. Since coating type chromate does not have a step of coating a metal surface with a chemical conversion film like reactive type chromate, it is not suitable for a complicated shape like electrolytic chromate, and the target object is limited to apply a uniform thickness. . However, there is no problem in applying it to steel sheets. On the other hand, reactive chromate has excellent appearance uniformity and applicability to products with complicated shapes, stable corrosion resistance is obtained, and it is often used not only as a coating base but also as a hexavalent chromium. The pollution problem of is left. In order to solve this problem, in recent years, a reactive chromate using trivalent chromium that does not use hexavalent chromium and less harm, and an alternative treatment agent similar to it, and an alternative antirust treatment agent that does not use chromium at all have been developed. Has achieved some results,
The fact is that the practical stable corrosion resistance does not reach that of the reactive chromate using hexavalent chromium. Also, the reaction chromate that does not use hexavalent chromium and less harmful trivalent chromium, an alternative treatment agent similar to it, or an alternative rust preventive agent that does not use chromium at all is used to treat the metal surface with an aqueous acid. Since the time required for the step of coating with the layer formed from the liquid composition is extremely longer than the treatment with the reactive chromate using hexavalent chromium, it may not be possible to introduce it into the field line.

【0004】[0004]

【発明が解決しようとする課題】本発明の目的は、亜
鉛、ニッケル、銅、銀、鉄、カドミウム、アルミニウ
ム、マグネシウム及びこれらの合金表面に保護皮膜を形
成させるに当たり、有害な六価クロムを用いず、腐食性
の強いフッ素化合物を必須成分とせず、均一で良好な外
観と六価クロムを用いた処理に匹敵する安定した耐食性
を兼ね備えた皮膜を生成させることにある。
The object of the present invention is to use harmful hexavalent chromium in forming a protective film on the surfaces of zinc, nickel, copper, silver, iron, cadmium, aluminum, magnesium and their alloys. In other words, a fluorine compound having a strong corrosive property is not included as an essential component, and a film having a uniform and good appearance and stable corrosion resistance comparable to the treatment using hexavalent chromium is formed.

【0005】[0005]

【課題を解決するための手段】本発明者らが鋭意研究し
た結果、特定の金属を主成分とした水性酸性液状組成物
を用いた方法により従来技術における問題を解決できる
ことを見いだした。すなわち、次の(A)又は(B)の
方法により、六価クロムを用いず、腐食性の強いフッ素
化合物を必須成分とせず、均一で良好な外観と六価クロ
ムを用いた処理以上の安定した耐食性を兼ね備えた皮膜
を生成させることが可能である上に、処理時間を現状の
六価クロムを使用した処理並に短くしてもこれに匹敵す
る安定した耐食性を有する皮膜が生成可能であることを
見いだした: (A) (A1)Ti、V、Mn、Y、Zr、Nb、Mo、Tc、R
u、Rh、Pd、Wから成る群から選択される少なくと
も一種と有機酸及び/若しくはリンの酸素酸、硝酸、硫
酸、塩酸、ホウ酸等の無機酸及び/若しくはこれらの塩
から成る群から選択される少なくとも一種、並びに任意
成分としてフッ素を含有する水性酸性液状組成物、又は
(A2)三価クロム、Ti、V、Mn、Y、Zr、Nb、M
o、Tc、Ru、Rh、Pd、Wから成る群から選択さ
れる少なくとも一種と有機酸及び/若しくはリンの酸素
酸、硝酸、硫酸、塩酸、ホウ酸等の無機酸及び/若しく
はこれらの塩から成る群から選択される少なくとも一種
並びにLi、Na、K、Be、Co、Mg、Ca、A
l、Ni、Siから成る群から選択される少なくとも一
種、更には任意成分としてフッ素を含有する水性酸性液
状組成物、又は(A3)0.01〜150g/Lの三価クロ
ム及び/若しくはコバルトと有機酸及び/若しくは硝酸
及び/若しくはこれらの塩から成る群から選択される少
なくとも一種と0.1〜300g/LのTi、V、M
n、Y、Zr、Nb、Mo、Tc、Ru、Rh、Pd、
W、Li、Na、K、Be、Mg、Ca、Al、Ni、
Siから成る群から選択される少なくとも一種、更には
任意成分としてフッ素を含有する水性酸性液状組成物に
より金属表面を化成皮膜で被覆する工程と、皮膜化成後
に水性酸性液状組成物の濯ぎを行わずにそのまま乾燥す
る工程からなる方法; (B) (B1)Ti、V、Mn、Y、Zr、Nb、Mo、Tc、R
u、Rh、Pd、Wから成る群から選択される少なくと
も一種と有機酸及び/若しくはリンの酸素酸、硝酸、硫
酸、塩酸、ホウ酸等の無機酸及び/若しくはこれらの塩
から成る群から選択される少なくとも一種、並びに任意
成分としてフッ素を含有する水性酸性液状組成物、又は
(B2)三価クロム、Ti、V、Mn、Y、Zr、Nb、M
o、Tc、Ru、Rh、Pd、Wから成る群から選択さ
れる少なくとも一種と有機酸及び/若しくはリンの酸素
酸、硝酸、硫酸、塩酸、ホウ酸等の無機酸及び/若しく
はこれらの塩から成る群から選択される少なくとも一種
並びにLi、Na、K、Be、Co、Mg、Ca、A
l、Ni、Siから成る群から選択される少なくとも一
種、更には任意成分としてフッ素を含有する水性酸性液
状組成物、又は(B3)0.01〜150g/Lの三価クロ
ム及び/若しくはコバルトと有機酸及び/若しくは硝酸
及び/若しくはこれらの塩から成る群から選択される少
なくとも一種と0.1〜300g/LのTi、V、M
n、Y、Zr、Nb、Mo、Tc、Ru、Rh、Pd、
W、Li、Na、K、Be、Mg、Ca、Al、Ni、
Siから成る群から選択される少なくとも一種、更には
任意成分としてフッ素を含有する水性酸性液状組成物に
より金属表面を化成皮膜で被覆した後、前記水性酸性液
状組成物と同組成及び/又は別組成で、三価クロム、T
i、V、Mn、Y、Zr、Nb、Mo、Tc、Ru、R
h、Pd、W、Li、Na、K、Be、Mg、Ca、A
l、Fe、Ni、Co、Si、Sr、In、Ag、Z
n、Cu、Sc、有機酸、無機酸、有機酸塩、無機酸
塩、アミノ酸、アミノ酸塩、フッ素、アミン類、アルコ
ール類、水溶性ポリマー、界面活性剤、シランカップリ
ング剤、カーボンパウダー、染料、顔料、有機コロイ
ド、無機コロイドから成る群から選択される少なくとも
一種以上を含有する水性液状組成物に一回又は複数回浸
漬し、最後の浸漬の後、濯ぎを行わずに乾燥する工程か
ら成る方法。また、皮膜形成後更にケイ素化合物含有水
溶液及び/若しくは樹脂及び/若しくは無機コロイドを
含有する水溶液、又はpHが7.5以上の水溶液を接触
させることにより更に耐食性が向上した保護皮膜が得ら
れることが判明した。また、本発明により得られた皮膜
は耐熱耐食性に優れており、従来のクロメート皮膜の欠
点であった加熱処理による耐食性の低下問題を解決する
ものであることが判明した。
Means for Solving the Problems As a result of intensive studies by the present inventors, they have found that the method using an aqueous acidic liquid composition containing a specific metal as a main component can solve the problems in the prior art. That is, according to the following method (A) or (B), hexavalent chromium is not used, a highly corrosive fluorine compound is not an essential component, and a uniform and good appearance and stability more than the treatment using hexavalent chromium are obtained. It is possible to form a film with excellent corrosion resistance, and it is possible to form a film with stable corrosion resistance comparable to this even if the treatment time is shortened to the level of the current treatment using hexavalent chromium. I found: (A) (A1) Ti, V, Mn, Y, Zr, Nb, Mo, Tc, R
at least one selected from the group consisting of u, Rh, Pd and W and an organic acid and / or an oxygen acid of phosphorus, an inorganic acid such as nitric acid, sulfuric acid, hydrochloric acid, boric acid and / or a salt thereof. And an aqueous acidic liquid composition containing fluorine as an optional component, or
(A2) Trivalent chromium, Ti, V, Mn, Y, Zr, Nb, M
from at least one selected from the group consisting of o, Tc, Ru, Rh, Pd and W, and an organic acid and / or an inorganic acid such as oxyacid of nitric acid, sulfuric acid, hydrochloric acid, boric acid and / or salts thereof. At least one selected from the group consisting of, Li, Na, K, Be, Co, Mg, Ca, A
1, at least one selected from the group consisting of Ni, Si, and further an aqueous acidic liquid composition containing fluorine as an optional component, or (A3) 0.01 to 150 g / L trivalent chromium and / or cobalt At least one selected from the group consisting of organic acids and / or nitric acid and / or salts thereof, and 0.1 to 300 g / L of Ti, V and M
n, Y, Zr, Nb, Mo, Tc, Ru, Rh, Pd,
W, Li, Na, K, Be, Mg, Ca, Al, Ni,
At least one selected from the group consisting of Si, and further, a step of coating the metal surface with a chemical conversion film with an aqueous acidic liquid composition containing fluorine as an optional component, without rinsing the aqueous acidic liquid composition after the film formation. (B) (B1) Ti, V, Mn, Y, Zr, Nb, Mo, Tc, R
at least one selected from the group consisting of u, Rh, Pd and W and an organic acid and / or an oxygen acid of phosphorus, an inorganic acid such as nitric acid, sulfuric acid, hydrochloric acid, boric acid and / or a salt thereof. And an aqueous acidic liquid composition containing fluorine as an optional component, or
(B2) Trivalent chromium, Ti, V, Mn, Y, Zr, Nb, M
from at least one selected from the group consisting of o, Tc, Ru, Rh, Pd and W, and an organic acid and / or an inorganic acid such as oxyacid of nitric acid, sulfuric acid, hydrochloric acid, boric acid and / or salts thereof. At least one selected from the group consisting of, Li, Na, K, Be, Co, Mg, Ca, A
1, at least one selected from the group consisting of Ni, Si, and further an aqueous acidic liquid composition containing fluorine as an optional component, or (B3) 0.01 to 150 g / L trivalent chromium and / or cobalt At least one selected from the group consisting of organic acids and / or nitric acid and / or salts thereof, and 0.1 to 300 g / L of Ti, V and M
n, Y, Zr, Nb, Mo, Tc, Ru, Rh, Pd,
W, Li, Na, K, Be, Mg, Ca, Al, Ni,
After coating the metal surface with a chemical conversion film by an aqueous acidic liquid composition containing at least one selected from the group consisting of Si and optionally fluorine, the same composition as the aqueous acidic liquid composition and / or another composition And trivalent chromium, T
i, V, Mn, Y, Zr, Nb, Mo, Tc, Ru, R
h, Pd, W, Li, Na, K, Be, Mg, Ca, A
l, Fe, Ni, Co, Si, Sr, In, Ag, Z
n, Cu, Sc, organic acid, inorganic acid, organic acid salt, inorganic acid salt, amino acid, amino acid salt, fluorine, amines, alcohols, water-soluble polymer, surfactant, silane coupling agent, carbon powder, dye , A pigment, an organic colloid, an inorganic colloid, and at least one or more selected from the group consisting of an aqueous liquid composition containing one or more times, after the final immersion, the step of drying without rinsing Method. Further, a protective film with further improved corrosion resistance can be obtained by contacting an aqueous solution containing a silicon compound and / or an aqueous solution containing a resin and / or an inorganic colloid after the film formation, or an aqueous solution having a pH of 7.5 or more. found. Further, it has been found that the film obtained by the present invention is excellent in heat and corrosion resistance, and solves the problem of deterioration of corrosion resistance due to heat treatment, which is a drawback of conventional chromate films.

【0006】[0006]

【発明の実施の形態】本発明の詳細を述べると次の通り
である。本発明の水性酸性液状組成物は、(1)Ti、
V、Mn、Y、Zr、Nb、Mo、Tc、Ru、Rh、
Pd、Wから成る群から選択される少なくとも一種と有
機酸及び/又はリンの酸素酸、硝酸、硫酸、塩酸、ホウ
酸等の無機酸及び/又はこれらの塩から成る群から選択
される少なくとも一種、並びに任意成分としてフッ素を
含有する組成物、(2)三価クロム、Ti、V、Mn、
Y、Zr、Nb、Mo、Tc、Ru、Rh、Pd、Wか
ら成る群から選択される少なくとも一種と有機酸及び/
又はリンの酸素酸、硝酸、硫酸、塩酸、ホウ酸等の無機
酸及び/又はこれらの塩から成る群から選択される少な
くとも一種、並びにLi、Na、K、Be、Co、M
g、Ca、Al、Ni、Siから成る群から選択される
少なくとも一種、更には任意成分としてフッ素を含有す
る組成物、(3)0.01〜150g/Lの三価クロム
及び/又はコバルトと有機酸及び/又は硝酸又はこれら
の塩から成る群から選択される少なくとも一種と0.1
〜300g/LのTi、V、Mn、Y、Zr、Nb、M
o、Tc、Ru、Rh、Pd、W、Li、Na、K、B
e、Mg、Ca、Al、Ni、Siから成る群から選択
される少なくとも一種、更には任意成分としてフッ素を
含有する組成物がある。
DETAILED DESCRIPTION OF THE INVENTION The details of the present invention are as follows. The aqueous acidic liquid composition of the present invention comprises (1) Ti,
V, Mn, Y, Zr, Nb, Mo, Tc, Ru, Rh,
At least one selected from the group consisting of Pd and W, and at least one selected from the group consisting of organic acids and / or inorganic acids such as oxygen acids of phosphoric acid, nitric acid, sulfuric acid, hydrochloric acid, boric acid, and / or salts thereof. And a composition containing fluorine as an optional component, (2) trivalent chromium, Ti, V, Mn,
At least one selected from the group consisting of Y, Zr, Nb, Mo, Tc, Ru, Rh, Pd and W and an organic acid and /
Or at least one selected from the group consisting of oxygen acids of phosphorus, inorganic acids such as nitric acid, sulfuric acid, hydrochloric acid, boric acid, and / or salts thereof, and Li, Na, K, Be, Co, M
At least one selected from the group consisting of g, Ca, Al, Ni and Si, and further a composition containing fluorine as an optional component, (3) 0.01 to 150 g / L of trivalent chromium and / or cobalt At least one selected from the group consisting of organic acids and / or nitric acid or salts thereof and 0.1
~ 300 g / L of Ti, V, Mn, Y, Zr, Nb, M
o, Tc, Ru, Rh, Pd, W, Li, Na, K, B
There is a composition containing at least one selected from the group consisting of e, Mg, Ca, Al, Ni and Si, and further fluorine as an optional component.

【0007】(1)の組成物における各成分の正確な挙
動は不明であるが、Ti、V、Mn、Y、Zr、Nb、
Mo、Tc、Ru、Rh、Pd、Wは水酸化物や塩とし
て析出したり、置換により金属表面に析出するなどして
皮膜の骨格をなすものと推定され、有機酸及び/又はリ
ンの酸素酸、硝酸、硫酸、塩酸、ホウ酸等の無機酸及び
/又はこれらの塩は金属成分の液中での安定性の確保並
びに亜鉛、ニッケル、銅、銀、鉄、カドミウム、アルミ
ニウム、マグネシウム及びこれらの合金表面を適度にエ
ッチングしスムーズな皮膜生成に寄与していると推測す
る。Ti、V、Mn、Y、Zr、Nb、Mo、Tc、R
u、Rh、Pd、Wは塩又は金属酸化物塩等例えば硫酸
チタン、チタン酸アンモニウム、バナジン酸ソーダ、塩
化マンガン、モリブデン酸アンモニウム等で供給される
が供給源を制限するものではない。これらは液中では一
部が電離し、適当な平衡状態を保っているものと推測す
る。また、これらの総量は0.01〜150g/Lで
0.5〜80g/Lが好ましい。これより少ないと良好
な皮膜生成が行われにくく、皮膜が生成しなかったり、
皮膜が薄く要求する性能が得られなかったりする。ま
た、これより多量な場合は皮膜外観・光沢性が低下した
り耐食性が低下したりする。加えるならばくみ出しによ
る経済的損失も大きくなり適当でない。
The exact behavior of each component in the composition (1) is unknown, but Ti, V, Mn, Y, Zr, Nb,
Mo, Tc, Ru, Rh, Pd, and W are presumed to form the skeleton of the film by depositing as a hydroxide or salt, or by being deposited on the metal surface by substitution, and oxygen of organic acid and / or phosphorus. Inorganic acids such as acids, nitric acid, sulfuric acid, hydrochloric acid, boric acid and / or their salts ensure the stability of metal components in a liquid and zinc, nickel, copper, silver, iron, cadmium, aluminum, magnesium and the like. It is presumed that the alloy surface of No. 3 is moderately etched and contributes to the smooth film formation. Ti, V, Mn, Y, Zr, Nb, Mo, Tc, R
u, Rh, Pd and W are supplied as salts or metal oxide salts such as titanium sulfate, ammonium titanate, sodium vanadate, manganese chloride and ammonium molybdate, but the supply source is not limited. It is presumed that some of these are ionized in the liquid and maintain an appropriate equilibrium state. The total amount of these is preferably 0.01 to 150 g / L and preferably 0.5 to 80 g / L. If it is less than this, it is difficult to form a good film, and a film does not form,
The film may be thin and the required performance may not be obtained. On the other hand, if the amount is larger than the above range, the appearance and gloss of the film are deteriorated and the corrosion resistance is deteriorated. If added, the economic loss due to pumping out will be large and it is not appropriate.

【0008】有機酸及び/又はリンの酸素酸、硝酸、硫
酸、塩酸、ホウ酸等の無機酸及び/又はこれらの塩とし
ては任意の薬品が使用可能であり、使用薬品を制限する
ものではない。これらの総量は0.01〜300g/L
で、1〜100g/Lが好ましい。これより少ないと良
好な皮膜生成が行われないばかりか、沈殿生成や平衡の
移動により液の安定性が低下する。これより多量な場合
は金属表面のオーバーエッチングによる処理外観不良が
発生する上に良好な耐食性も得られなくなる。pHは
0.1〜6.5で、1.0〜4.0が好ましい。これよ
り低いと均一な皮膜化成が難しくなり、高いとやや耐食
性が低下する傾向がある。pHの調整に用いる薬品とし
ては、高いpHの場合には硝酸、硫酸などの酸を、低い
pHの場合にはアンモニア水、水酸化ナトリウムなどの
アルカリを添加すれば良く、添加薬品を制限するもので
はない。
As organic acids and / or inorganic acids such as oxygen acids of phosphoric acid, nitric acid, sulfuric acid, hydrochloric acid, boric acid and / or salts thereof, any chemicals can be used, and the chemicals used are not limited. . The total amount of these is 0.01 to 300 g / L
Therefore, 1 to 100 g / L is preferable. If it is less than this range, not only good film formation is not carried out, but also the stability of the liquid is deteriorated due to precipitation formation and movement of equilibrium. If the amount is larger than the above range, a poor appearance of the treatment occurs due to over-etching of the metal surface, and good corrosion resistance cannot be obtained. The pH is 0.1 to 6.5, preferably 1.0 to 4.0. If it is lower than this, uniform film formation becomes difficult, and if it is higher, the corrosion resistance tends to be slightly lowered. As the chemicals used to adjust the pH, acids such as nitric acid and sulfuric acid may be added when the pH is high, and ammonia such as aqueous ammonia and sodium hydroxide may be added when the pH is low. is not.

【0009】(2)の組成物における各成分の正確な挙
動は不明であるが三価クロム、Ti、V、Mn、Y、Z
r、Nb、Mo、Tc、Ru、Rh、Pd、Wは水酸化
物や塩として析出したり、置換により金属表面に析出す
るなどして皮膜の骨格をなすものと推定され、有機酸及
び/又はリンの酸素酸、硝酸、硫酸、塩酸、ホウ酸等の
無機酸及び/又はこれらの塩は金属成分の液中での安定
性の確保及び亜鉛、ニッケル、銅、銀、鉄、カドミウ
ム、アルミニウム、マグネシウム及びこれらの合金表面
を適度にエッチングしスムーズな皮膜生成に寄与してい
ると推測する。加えてLi、Na、K、Be、Co、M
g、Ca、Al、Ni、Siは皮膜生成を制御し、皮膜
構造を腐食電流が分散しやすく変化させることにより耐
食性向上に寄与しているものと推測する。三価クロム、
Ti、V、Mn、Y、Zr、Nb、Mo、Tc、Ru、
Rh、Pd、Wは塩又は金属酸化物塩等例えば塩化クロ
ム、硫酸クロム、硫酸チタン、チタン酸アンモニウム、
バナジン酸ソーダ、塩化マンガン、モリブデン酸アンモ
ニウム等で供給されるが供給源を制限するものではな
い。これらは液中では一部が電離し、適当な平衡状態を
保っているものと推測する。また、これらの総量は0.
01〜150g/Lで0.5〜80g/Lが好ましい。
これより少ないと良好な皮膜生成が行われにくく、皮膜
が生成しなかったり、皮膜が薄く要求する性能が得られ
なかったりする。また、これより多量な場合は皮膜外観
・光沢性が低下したり耐食性が低下したりする。加える
ならばくみ出しによる経済的損失も大きくなり適当でな
い。
Although the exact behavior of each component in the composition of (2) is unknown, trivalent chromium, Ti, V, Mn, Y, Z
It is presumed that r, Nb, Mo, Tc, Ru, Rh, Pd, and W are deposited as hydroxides or salts, or are deposited on the metal surface by substitution to form the skeleton of the film. Alternatively, phosphorus acid oxygen acid, inorganic acid such as nitric acid, sulfuric acid, hydrochloric acid, boric acid, and / or salts thereof ensure the stability of the metal component in the liquid and zinc, nickel, copper, silver, iron, cadmium, aluminum. It is presumed that it contributes to the smooth film formation by appropriately etching the surfaces of magnesium, magnesium and their alloys. In addition, Li, Na, K, Be, Co, M
It is speculated that g, Ca, Al, Ni, and Si contribute to the improvement of corrosion resistance by controlling the film formation and changing the film structure so that the corrosion current is easily dispersed. Trivalent chromium,
Ti, V, Mn, Y, Zr, Nb, Mo, Tc, Ru,
Rh, Pd, W are salts or metal oxide salts such as chromium chloride, chromium sulfate, titanium sulfate, ammonium titanate,
It is supplied by sodium vanadate, manganese chloride, ammonium molybdate, etc., but the supply source is not limited. It is presumed that some of these are ionized in the liquid and maintain an appropriate equilibrium state. The total amount of these is 0.
01 to 150 g / L and 0.5 to 80 g / L are preferable.
If the amount is less than this, it is difficult to form a good film, the film is not formed, or the film is thin and the required performance is not obtained. On the other hand, if the amount is larger than the above range, the appearance and gloss of the film are deteriorated and the corrosion resistance is deteriorated. If added, the economic loss due to pumping out will be large and it is not appropriate.

【0010】有機酸及び/又はリンの酸素酸、硝酸、硫
酸、塩酸、ホウ酸等の無機酸及び/又はこれらの塩とし
ては任意の薬品が使用可能であり、使用薬品を制限する
ものではない。これらの総量は0.01〜300g/L
で、1〜100g/Lが好ましい。これより少ないと良
好な皮膜生成が行われないばかりか、沈殿生成や平衡の
移動により液の安定性が低下する。これより多量な場合
は金属表面のオーバーエッチングによる処理外観不良が
発生する上に良好な耐食性も得られなくなる。pHは
0.1〜6.5で、1.0〜4.0が好ましい。これよ
り低いと均一な皮膜化成が難しくなり、高いとやや耐食
性が低下する傾向がある。pHの調整に用いる薬品とし
ては、高いpHの場合には硝酸、硫酸などの酸を、低い
pHの場合にはアンモニア水、水酸化ナトリウムなどの
アルカリを添加すれば良く、添加薬品を制限するもので
はない。
As the organic acid and / or inorganic acid such as oxygen acid of phosphorus, nitric acid, sulfuric acid, hydrochloric acid, boric acid and / or salts thereof, any chemical can be used, and the chemicals used are not limited. . The total amount of these is 0.01 to 300 g / L
Therefore, 1 to 100 g / L is preferable. If it is less than this range, not only good film formation is not carried out, but also the stability of the liquid is deteriorated due to precipitation formation and movement of equilibrium. If the amount is larger than the above range, a poor appearance of the treatment occurs due to over-etching of the metal surface, and good corrosion resistance cannot be obtained. The pH is 0.1 to 6.5, preferably 1.0 to 4.0. If it is lower than this, uniform film formation becomes difficult, and if it is higher, the corrosion resistance tends to be slightly lowered. As the chemicals used to adjust the pH, acids such as nitric acid and sulfuric acid may be added when the pH is high, and ammonia such as aqueous ammonia and sodium hydroxide may be added when the pH is low. is not.

【0011】Li、Na、K、Be、Co、Mg、C
a、Al、Ni、Siは塩又は水酸化物、酸化物等例え
ば塩化ナトリウム、水酸化カリウム、硫酸コバルト、ケ
イ酸ナトリウム等で供給されるが供給源を制限するもの
ではない。これらの総量は0.1〜300g/Lで、1
〜200g/Lが好ましい。これより少ないと耐食性向
上効果が得られにくくなり、多いと処理外観が低下す
る。加えるならばくみ出しによる経済的損失も大きくな
り適当でない。
Li, Na, K, Be, Co, Mg, C
The a, Al, Ni, and Si are supplied as salts, hydroxides, oxides, etc., such as sodium chloride, potassium hydroxide, cobalt sulfate, sodium silicate, etc., but the supply source is not limited. The total amount of these is 0.1 to 300 g / L and 1
~ 200 g / L is preferred. If it is less than this range, it becomes difficult to obtain the effect of improving the corrosion resistance. If added, the economic loss due to pumping out will be large and it is not appropriate.

【0012】(3)の組成物における各成分の正確な挙
動は不明であるが、三価クロム、コバルトは水酸化物や
塩として析出したり、置換により金属表面に析出するな
どして皮膜の骨格をなすものと推定され、有機酸、硝
酸、これらの塩は金属成分の液中での安定性の確保並び
に亜鉛、ニッケル、銅、銀、鉄、カドミウム、アルミニ
ウム、マグネシウム及びこれらの合金表面を適度にエッ
チングしスムーズな皮膜生成に寄与していると推測す
る。加えてLi、Na、K、Be、Co、Mg、Ca、
Al、Ni、Siは皮膜生成を制御し、皮膜構造を腐食
電流が分散しやすく変化させることにより耐食性向上に
寄与しているものと推測する。三価クロム、コバルトは
塩等、例えば塩化クロム、硫酸クロム、硝酸クロム、塩
化コバルト、硫酸コバルト硝酸コバルト等で供給される
が供給源を制限するものではない。これらは液中では一
部が電離し、適当な平衡状態を保っているものと推測す
る。また、これらの総量は0.01〜150g/Lで
0.5〜80g/Lが好ましい。これより少ないと良好
な皮膜生成が行われにくく、皮膜が生成しなかったり、
皮膜が薄く要求する性能が得られなかったりする。ま
た、これより多量な場合は皮膜外観・光沢性が低下した
り耐食性が低下したりする。加えるならばくみ出しによ
る経済的損失も大きくなり適当でない。
Although the exact behavior of each component in the composition of (3) is unknown, trivalent chromium and cobalt are deposited as hydroxides or salts, or are deposited on the metal surface due to substitution, etc. It is presumed to form the skeleton, and organic acids, nitric acid, and their salts ensure the stability of metal components in liquids and protect zinc, nickel, copper, silver, iron, cadmium, aluminum, magnesium, and their alloy surfaces. It is presumed that it contributes to smooth film formation by etching moderately. In addition, Li, Na, K, Be, Co, Mg, Ca,
It is presumed that Al, Ni, and Si contribute to the improvement of corrosion resistance by controlling the film formation and changing the film structure so that the corrosion current is easily dispersed. Trivalent chromium and cobalt are supplied as salts such as chromium chloride, chromium sulfate, chromium nitrate, cobalt chloride, cobalt sulfate and cobalt nitrate, but the supply source is not limited. It is presumed that some of these are ionized in the liquid and maintain an appropriate equilibrium state. The total amount of these is preferably 0.01 to 150 g / L and preferably 0.5 to 80 g / L. If it is less than this, it is difficult to form a good film, and a film does not form,
The film may be thin and the required performance may not be obtained. On the other hand, if the amount is larger than the above range, the appearance and gloss of the film are deteriorated and the corrosion resistance is deteriorated. If added, the economic loss due to pumping out will be large and it is not appropriate.

【0013】有機酸及び/又は硝酸及び/又はこれらの
塩としては硝酸以外は任意の薬品を使用可能であり、使
用薬品を制限するものではない。これらは総量で0.0
1〜300g/L好ましくは1〜100g/Lを含有す
る必要がある。これより少ないと良好な皮膜生成が行わ
れないばかりか、沈殿生成や平衡の移動により液の安定
性が低下する。これより多量な場合は金属表面のオーバ
ーエッチングによる処理外観不良が発生する上に良好な
耐食性も得られなくなる。pHは0.1〜6.5好まし
くは1.0〜4.0が好ましい。これより低いと均一な
皮膜化成が難しくなり、高いとやや耐食性が低下する傾
向がある。pHの調整に用いる薬品としては、高いpH
の場合には硝酸、硫酸などの酸を、低いpHの場合には
アンモニア水、水酸化ナトリウムなどのアルカリを添加
すれば良く、添加薬品を制限するものではない。
As the organic acid and / or nitric acid and / or salts thereof, any chemical other than nitric acid can be used, and the chemicals used are not limited. These are 0.0 in total
It is necessary to contain 1 to 300 g / L, preferably 1 to 100 g / L. If it is less than this range, not only good film formation is not carried out, but also the stability of the liquid is deteriorated due to precipitation formation and movement of equilibrium. If the amount is larger than the above range, a poor appearance of the treatment occurs due to over-etching of the metal surface, and good corrosion resistance cannot be obtained. The pH is preferably 0.1 to 6.5, more preferably 1.0 to 4.0. If it is lower than this, uniform film formation becomes difficult, and if it is higher, the corrosion resistance tends to be slightly lowered. High pH for chemicals used to adjust pH
In such a case, an acid such as nitric acid or sulfuric acid may be added, and in the case of a low pH, an aqueous ammonia, an alkali such as sodium hydroxide may be added, and the chemicals to be added are not limited.

【0014】Li、Na、K、Be、Co、Mg、C
a、Al、Ni、Siは塩又は水酸化物、酸化物等例え
ば塩化ナトリウム、水酸化カリウム、硫酸コバルト、ケ
イ酸ナトリウム等で供給されるが供給源を制限するもの
ではない。これらの総量は0.1〜300g/L好まし
くは1〜200g/Lが望ましい。これより少ないと耐
食性向上効果が得られにくくなり、多いと処理外観が低
下する。加えるならばくみ出しによる経済的損失も大き
くなり適当でない。
Li, Na, K, Be, Co, Mg, C
The a, Al, Ni, and Si are supplied as salts, hydroxides, oxides, etc., such as sodium chloride, potassium hydroxide, cobalt sulfate, sodium silicate, etc., but the supply source is not limited. The total amount of these is 0.1 to 300 g / L, preferably 1 to 200 g / L. If it is less than this range, it becomes difficult to obtain the effect of improving the corrosion resistance. If added, the economic loss due to pumping out will be large and it is not appropriate.

【0015】皮膜生成の処理時間は非常に広い範囲で適
用可能である。例えば250秒程の長時間処理や、一般
的な六価クロムを使用した反応型クロメートの処理時間
である10〜30秒又はそれ以下でも適用可能である。
The treatment time for film formation can be applied within a very wide range. For example, a long-time treatment of about 250 seconds or a treatment time of a general reaction type chromate using hexavalent chromium, which is 10 to 30 seconds or less, can be applied.

【0016】皮膜生成処理後は濯ぎ工程を行わずに乾燥
することにより六価クロムを用いずに美しい光沢のある
外観と優れた耐食性を有する皮膜が生成可能であること
を見いだした。乾燥方法は温風乾燥、遠心乾燥等従来か
らの乾燥方法でよいが、その方法を制限するものではな
い。濯ぎ工程を行わずに乾燥することにより濯ぎ工程を
行った場合よりも大幅に耐食性が向上する。これは濯ぎ
による有効成分の溶出が起きないこと及び有効成分の付
着量増加によるものであると推測する。
It has been found that a film having a beautiful glossy appearance and excellent corrosion resistance can be formed without using hexavalent chromium by drying without a rinsing step after the film formation treatment. The drying method may be a conventional drying method such as warm air drying or centrifugal drying, but the method is not limited. By drying without performing the rinsing step, the corrosion resistance is significantly improved as compared with the case where the rinsing step is performed. It is speculated that this is due to the fact that the active ingredient is not eluted by rinsing and the amount of the active ingredient attached is increased.

【0017】また、金属の表面を前記各水性酸性液状組
成物から化成する層で被覆した後、前記各水性酸性液状
組成物と同組成及び/又は別組成の水性液状組成物に一
回又は複数回浸漬し、最後の浸漬の後、濯ぎを行わずに
乾燥する工程でも六価クロムを用いずに美しい光沢のあ
る外観と優れた耐食性を有する皮膜が生成可能であるこ
とを見いだした。前記水性液状組成物は三価クロム、T
i、V、Mn、Y、Zr、Nb、Mo、Tc、Ru、R
h、Pd、W、Li、Na、K、Be、Mg、Ca、A
l、Fe、Ni、Co、Si、Sr、In、Ag、Z
n、Cu、Sc、有機酸、無機酸、有機酸塩、無機酸
塩、アミノ酸、アミノ酸塩、フッ素、アミン類、アルコ
ール類、水溶性ポリマー、界面活性剤、シランカップリ
ング剤、カーボンパウダー、染料、顔料、有機コロイ
ド、無機コロイドから成る群から選択される少なくとも
一種以上を含有するものである。
Further, after coating the surface of the metal with a layer formed from each of the above-mentioned aqueous acidic liquid compositions, one or a plurality of times is applied to an aqueous liquid composition having the same composition and / or different composition from each of the above-mentioned aqueous acidic liquid compositions. It has been found that a film having a beautiful glossy appearance and excellent corrosion resistance can be formed without using hexavalent chromium even in the step of dipping once and, after the final dipping, drying without rinsing. The aqueous liquid composition is trivalent chromium, T
i, V, Mn, Y, Zr, Nb, Mo, Tc, Ru, R
h, Pd, W, Li, Na, K, Be, Mg, Ca, A
l, Fe, Ni, Co, Si, Sr, In, Ag, Z
n, Cu, Sc, organic acid, inorganic acid, organic acid salt, inorganic acid salt, amino acid, amino acid salt, fluorine, amines, alcohols, water-soluble polymer, surfactant, silane coupling agent, carbon powder, dye , A pigment, an organic colloid, and an inorganic colloid.

【0018】前記水性液状組成物の各成分の挙動は不明
であるが、三価クロム、Ti、V、Mn、Y、Zr、N
b、Mo、Tc、Ru、Rh、Pd、W、Li、Na、
K、Be、Mg、Ca、Al、Fe、Ni、Co、S
i、Sr、In、Ag、Zn、Cu、Sc、有機酸、無
機酸、有機酸塩、無機酸塩、アミノ酸、アミノ酸塩、フ
ッ素、アミン類、アルコール類、水溶性ポリマー、界面
活性剤、シランカップリング剤、カーボンパウダー、染
料、顔料、有機コロイド、無機コロイドは化成皮膜表面
に付着又は化成による層を形成することにより有効成分
の補強、カバリング性向上に寄与しているものと推測す
る。
The behavior of each component of the aqueous liquid composition is unknown, but trivalent chromium, Ti, V, Mn, Y, Zr and N are used.
b, Mo, Tc, Ru, Rh, Pd, W, Li, Na,
K, Be, Mg, Ca, Al, Fe, Ni, Co, S
i, Sr, In, Ag, Zn, Cu, Sc, organic acid, inorganic acid, organic acid salt, inorganic acid salt, amino acid, amino acid salt, fluorine, amines, alcohols, water-soluble polymer, surfactant, silane It is presumed that the coupling agent, carbon powder, dye, pigment, organic colloid, and inorganic colloid contribute to the reinforcement of active ingredients and the improvement of covering property by forming a layer by adhesion or chemical conversion on the surface of the chemical conversion film.

【0019】三価クロム、Ti、V、Mn、Y、Zr、
Nb、Mo、Tc、Ru、Rh、Pd、W、Li、N
a、K、Be、Mg、Ca、Al、Fe、Ni、Co、
Si、Sr、In、Ag、Zn、Cu、Sc、有機酸、
無機酸、有機酸塩、無機酸塩、アミノ酸、アミノ酸塩、
フッ素、アミン類、アルコール類、水溶性ポリマー、界
面活性剤、シランカップリング剤、カーボンパウダー、
染料、顔料、有機コロイド、無機コロイドは塩化クロ
ム、硫酸クロム、硝酸クロム、硫酸チタン、硫酸チタ
ン、チタン酸アンモニウム、バナジン酸ソーダ、塩化マ
ンガン、モリブデン酸アンモニウム、塩化ナトリウム、
水酸化カリウム、硫酸コバルト、ケイ酸ナトリウム、ク
エン酸、マロン酸、シュウ酸、アジピン酸、コハク酸、
酒石酸、アスコルビン酸、酢酸、塩酸、硫酸、硝酸、ホ
ウ酸、グリシン、フッ化ソーダ、アンモニア水、ジメチ
ルアミン、メタノール、ブタノール、ポリビニルアルコ
ール、ポリアクリルアマイド、β−ナフトールエチレン
オキサイト付加物、コロイダルアルミナ、コロイダルシ
リカ等のような様々な形で供給されるが、その供給源を
制限するものではない。また、その総量についても制限
するものではない。
Trivalent chromium, Ti, V, Mn, Y, Zr,
Nb, Mo, Tc, Ru, Rh, Pd, W, Li, N
a, K, Be, Mg, Ca, Al, Fe, Ni, Co,
Si, Sr, In, Ag, Zn, Cu, Sc, organic acid,
Inorganic acid, organic acid salt, inorganic acid salt, amino acid, amino acid salt,
Fluorine, amines, alcohols, water-soluble polymers, surfactants, silane coupling agents, carbon powder,
Dyes, pigments, organic colloids and inorganic colloids are chromium chloride, chromium sulfate, chromium nitrate, titanium sulfate, titanium sulfate, ammonium titanate, sodium vanadate, manganese chloride, ammonium molybdate, sodium chloride,
Potassium hydroxide, cobalt sulfate, sodium silicate, citric acid, malonic acid, oxalic acid, adipic acid, succinic acid,
Tartaric acid, ascorbic acid, acetic acid, hydrochloric acid, sulfuric acid, nitric acid, boric acid, glycine, sodium fluoride, ammonia water, dimethylamine, methanol, butanol, polyvinyl alcohol, polyacrylic amide, β-naphthol ethylene oxide adduct, colloidal alumina , Colloidal silica and the like, but the source is not limited. Also, the total amount is not limited.

【0020】また、前記各方法により皮膜形成後にケイ
素化合物及び/若しくは樹脂及び/若しくは無機コロイ
ド含有の水溶液、又はpHが7.5以上の水溶液に接触
させることにより、更に耐食性が向上した保護皮膜が得
られることが判明した。ケイ素化合物としては珪酸ナト
リウム、珪酸カリウム、珪酸リチウム、又は粒径が50
0nm以下のコロイダルシリカ(無機コロイドでもあ
る)などが挙げられ、粒径50nm以下のコロイダルシ
リカは特に安定した性能を示す傾向がある。これらの適
量は0.01〜500g/L好ましくは10〜150g
/Lである。樹脂としてはアクリル系、エポキシ系、セ
ルロース系、ポリビニルアルコール系、ウレタン系、フ
ッ素系等が挙げられるが、その種類、量を制限するもの
ではない。無機コロイドとしてはコロイダルアルミナ、
五酸化アンチモンゾル等が挙げられる。
Further, by contacting with an aqueous solution containing a silicon compound and / or a resin and / or an inorganic colloid or an aqueous solution having a pH of 7.5 or more after forming a film by each of the above methods, a protective film having further improved corrosion resistance can be obtained. It turned out to be obtained. As the silicon compound, sodium silicate, potassium silicate, lithium silicate, or a particle size of 50
Examples include colloidal silica having a particle size of 0 nm or less (also an inorganic colloid), and colloidal silica having a particle size of 50 nm or less tends to exhibit particularly stable performance. The appropriate amount of these is 0.01 to 500 g / L, preferably 10 to 150 g.
/ L. Examples of the resin include acrylic resins, epoxy resins, cellulose resins, polyvinyl alcohol resins, urethane resins, and fluorine resins, but the types and amounts thereof are not limited. Colloidal alumina as an inorganic colloid,
Examples thereof include antimony pentoxide sol.

【0021】本発明に規定する処理方法により生成され
た金属保護皮膜は水性酸性液状組成物が同じものであっ
ても、従来方法すなわち金属の表面を水性酸性液状組成
物から化成する層で被覆する工程後、濯ぎを行った後乾
燥する工程により生成された皮膜よりも高い耐食性を示
すことから、その工業的価値は従来方法により生成され
た金属保護皮膜を上回るものである。その皮膜構造につ
いては不明であるが、耐食性の違いから、従来方法によ
り生成された金属保護皮膜とは明らかに別のものであ
る。
The metal protective coating formed by the treatment method defined in the present invention has the same aqueous acidic liquid composition, but the conventional method, that is, the surface of the metal is coated with a layer formed from the aqueous acidic liquid composition. Since it has higher corrosion resistance than the film produced by the process of rinsing and then drying after the process, its industrial value exceeds that of the metal protective film produced by the conventional method. Although the film structure is unknown, it is clearly different from the metal protective film formed by the conventional method due to the difference in corrosion resistance.

【0022】本発明に規定する処理方法を用いることに
より、有害な六価クロムを使用せず、また腐食性の強い
フッ化物を必須成分とせず、従来のクロメートとほぼ同
一処理施設、処理条件で金属基材表面に強固な保護皮膜
を生成することが可能である。これにより処理物からの
六価クロム溶出を心配する一般ユーザーのみならず、従
来クロム酸の有害性にさらされていたクロメート製造業
者やクロメート処理業者の健康面での影響や野生生物へ
の影響に関する問題を解決する事が可能である。
By using the treatment method specified in the present invention, harmful hexavalent chromium is not used, and a highly corrosive fluoride is not an essential component, and the treatment facility and treatment conditions are almost the same as those of conventional chromate. It is possible to form a strong protective film on the surface of the metal substrate. This will not only affect general users who are concerned about the elution of hexavalent chromium from the treated products, but also the health effects of chromate manufacturers and chromate processors that have been exposed to the harmful effects of chromic acid, and the effects on wildlife. It is possible to solve the problem.

【0023】本発明以前の技術として六価クロムを使用
したクロメート処理法、六価クロムを使用せず、害の少
ない三価クロムを使用した反応型クロメートやそれに類
した代替え処理剤さらにはクロムを全く使用しない代替
え防錆処理剤が公知である。六価クロムを使用せず、害
の少ない三価クロムを使用した反応型クロメートは特開
昭61−587号公報などがあるが、これは六価クロム
を使用した反応型クロメートの中でも最も耐食性の低い
種類である光沢(青色)クロメートに該当するものであ
り、それを越える耐食性を要求される部分には使用でき
ない。それに類した代替え処理剤としては特開平10−
183364号公報などがあるが、これはほぼ実用的な
レベルの耐食性を有するものの現行の六価クロム使用反
応型クロメートの中で最も一般的な有色(黄色)クロメ
ートと比較するとわずかに劣るため、完全な代替え処理
剤とは言い難い。また、クロムを全く使用しない代替え
防錆処理剤としては特開2000−199077号公報
などがあるが、これらの耐食性は有色クロメートに及ば
ず、特に皮膜に傷が付いた際の耐食性低下が著しい。以
上の理由から、上記従来技術はいずれも本発明には及ば
ないものである。また、本発明により得られた皮膜は耐
熱耐食性に優れており、従来のクロメート皮膜の欠点で
あった加熱処理による耐食性の低下問題を解決すること
が判明した。
As a technique prior to the present invention, a chromate treatment method using hexavalent chromium, a reactive chromate using trivalent chromium which does not use hexavalent chromium and is less harmful, and an alternative treatment agent similar to that and chromium are used. Alternative anticorrosive agents that are not used at all are known. Reactive chromates using trivalent chromium, which does not use hexavalent chromium and is less harmful, are disclosed in JP-A-61-587, which has the highest corrosion resistance among reactive chromates using hexavalent chromium. It corresponds to low-grade gloss (blue) chromate, and cannot be used in parts requiring corrosion resistance exceeding it. As an alternative treating agent similar to that, JP-A-10-
Although there is 183364 gazette, etc., it has a corrosion resistance of practically practical level, but it is slightly inferior to the most common colored (yellow) chromate among the current reaction chromate using hexavalent chromium, so it is perfect. It is hard to say that it is an alternative treatment agent. Further, as an alternative rust preventive treatment agent which does not use chromium at all, there is JP-A-2000-199077 and the like, but the corrosion resistance thereof is not as high as that of the colored chromate, and particularly the corrosion resistance is remarkably lowered when the film is scratched. For the above reasons, none of the above-mentioned prior arts reach the present invention. Further, it has been found that the film obtained by the present invention has excellent heat resistance and corrosion resistance, and solves the problem of deterioration in corrosion resistance due to heat treatment, which is a drawback of conventional chromate films.

【0024】[0024]

【実施例】以下、実施例により本発明を説明する。試験
は試験片を脱脂、硝酸浸漬などの適当な処理を行った
後、以下に示すそれぞれの処理を行った。評価は外観及
び耐食性について行い、本発明の実施例の結果を表1
に、比較例の結果を表2に示す。
EXAMPLES The present invention will be described below with reference to examples. In the test, the test pieces were subjected to appropriate treatments such as degreasing and dipping in nitric acid, and then the following treatments were performed. The evaluation was performed on the appearance and corrosion resistance, and the results of the examples of the present invention are shown in Table 1.
Table 2 shows the results of the comparative example.

【0025】実施例1 電気亜鉛めっきした鉄板(50×100×1mm)を硫
酸チタン20g/L、バナジン酸ソーダ10g/L、リ
ン酸10g/L、硝酸5g/Lを含み、アンモニアでp
H2.3に調整した処理液に60秒間浸漬後、濯ぎ工程
を行わずに乾燥して試験片を作製した。外観を目視で評
価し、耐食性は塩水噴霧試験(JISZ 2371)に
おける240時間経過時点での表面状態により評価し
た。
Example 1 An electrogalvanized iron plate (50 × 100 × 1 mm) contains 20 g / L of titanium sulfate, 10 g / L of sodium vanadate, 10 g / L of phosphoric acid, and 5 g / L of nitric acid.
After dipping for 60 seconds in the treatment liquid adjusted to H2.3, it was dried without performing a rinsing step to prepare a test piece. The appearance was visually evaluated, and the corrosion resistance was evaluated by the surface condition after 240 hours in a salt spray test (JIS Z 2371).

【0026】実施例2 電気亜鉛めっきした鉄板(50×100×1mm)を硫
酸チタン20g/L、バナジン酸ソーダ10g/L、リ
ン酸10g/L、硝酸5g/Lを含み、アンモニアでp
H2.3に調整した処理液(実施例1記載の処理液と同
組成)に60秒間浸漬後、濯ぎ工程を行った後前記処理
液と同組成の処理液に5秒間浸漬し濯ぎ工程を行わずに
乾燥して試験片を作製した。外観を目視で評価し、耐食
性は塩水噴霧試験(JIS Z 2371)における2
40時間経過時点での表面状態により評価した。
Example 2 An electrogalvanized iron plate (50 × 100 × 1 mm) contains 20 g / L of titanium sulfate, 10 g / L of sodium vanadate, 10 g / L of phosphoric acid and 5 g / L of nitric acid, and p is added with ammonia.
After immersing in a treatment liquid adjusted to H2.3 (the same composition as the treatment liquid described in Example 1) for 60 seconds, a rinsing step is performed, and then immersing in a treatment liquid having the same composition as the treatment liquid for 5 seconds to perform a rinsing step. Without drying, a test piece was prepared. The appearance was visually evaluated, and the corrosion resistance was 2 in the salt spray test (JIS Z 2371).
It was evaluated by the surface condition after 40 hours.

【0027】実施例3 電気亜鉛めっきした鉄板(50×100×1mm)を硝
酸クロム20g/L、タングステン酸ソーダ3g/L、
グルコン酸ソーダ1g/L、リン酸20g/L、塩化カ
ルシウム2g/Lを含み、カ性ソーダでpH2.0に調
整した処理液に25秒間浸漬後、濯ぎ工程を行わずに乾
燥して試験片を作製した。外観を目視で評価し、耐食性
は塩水噴霧試験(JIS Z 2371)における24
0時間経過時点での表面状態により評価した。
Example 3 An electrogalvanized iron plate (50 × 100 × 1 mm) was placed on chromium nitrate 20 g / L, sodium tungstate 3 g / L,
Test pieces containing 1 g / L of sodium gluconate, 20 g / L of phosphoric acid and 2 g / L of calcium chloride, dipped in a treatment solution adjusted to pH 2.0 with caustic soda for 25 seconds, and then dried without a rinsing step Was produced. The appearance was visually evaluated, and the corrosion resistance was 24 in the salt spray test (JIS Z 2371).
The evaluation was made by the surface condition at the time of 0 hours.

【0028】実施例4 電気亜鉛めっきした鉄板(50×100×1mm)を硝
酸クロム20g/L、タングステン酸ソーダ3g/L、
グルコン酸ソーダ1g/L、リン酸20g/L、塩化カ
ルシウム2g/Lを含み、カ性ソーダでpH2.0に調
整した処理液(実施例3記載の処理液と同組成)に25
秒間浸漬後、濯ぎ工程を行った後、硝酸クロム10g/
L、タングステン酸ソーダ1.5g/L、グルコン酸ソ
ーダ0.5g/L、リン酸10g/L、塩化カルシウム
1g/Lを含みカ性ソーダでpH3.5に調整した処理
液に5秒間浸漬後濯ぎを行わずに乾燥して試験片を作製
した。外観を目視で評価し、耐食性は塩水噴霧試験(J
IS Z 2371)における240時間経過時点での
表面状態により評価した。
Example 4 An electrogalvanized iron plate (50 × 100 × 1 mm) was placed on chromium nitrate 20 g / L, sodium tungstate 3 g / L,
25 in a treatment liquid (same composition as the treatment liquid described in Example 3) containing 1 g / L of sodium gluconate, 20 g / L of phosphoric acid, 2 g / L of calcium chloride and adjusted to pH 2.0 with caustic soda.
After soaking for 2 seconds and after rinsing, chromium nitrate 10g /
After dipping for 5 seconds in a treatment solution containing L, sodium tungstate 1.5 g / L, sodium gluconate 0.5 g / L, phosphoric acid 10 g / L, calcium chloride 1 g / L and adjusted to pH 3.5 with caustic soda A test piece was prepared by drying without rinsing. The appearance is visually evaluated, and the corrosion resistance is evaluated by a salt spray test (J
It was evaluated by the surface condition after 240 hours in IS Z 2371).

【0029】実施例5 電気亜鉛めっきした鉄板(50×100×1mm)を硝
酸クロム20g/L、タングステン酸ソーダ3g/L、
グルコン酸ソーダ1g/L、リン酸20g/L、塩化カ
ルシウム2g/Lを含み、カ性ソーダでpH2.0に調
整した処理液(実施例3記載の処理液と同組成)に25
秒間浸漬後、濯ぎ工程を行わずに乾燥した後、更にpH
10.0のカ性ソーダ水溶液に浸漬し乾燥して試験片を
作製した。外観を目視で評価し、耐食性は塩水噴霧試験
(JIS Z 2371)における240時間経過時点
での表面状態により評価した。
Example 5 An electrogalvanized iron plate (50 × 100 × 1 mm) was placed on chromium nitrate 20 g / L, sodium tungstate 3 g / L,
25 in a treatment liquid (same composition as the treatment liquid described in Example 3) containing 1 g / L of sodium gluconate, 20 g / L of phosphoric acid, 2 g / L of calcium chloride and adjusted to pH 2.0 with caustic soda.
After soaking for 2 seconds and drying without rinsing,
A test piece was prepared by immersing it in a 10.0 sodium hydroxide aqueous solution and drying it. The appearance was visually evaluated, and the corrosion resistance was evaluated by the surface condition after 240 hours in a salt spray test (JIS Z 2371).

【0030】実施例6 電気亜鉛めっきした鉄板(50×100×1mm)をモ
リブデン酸アンモニウム10g/L、リン酸10g/
L、3号ケイ酸ソーダ10g/Lを含みアンモニアでp
H2.0に調整した処理液に60秒間浸漬後、濯ぎ工程
を行わずに乾燥して試験片を作製した。外観を目視で評
価し、耐食性は塩水噴霧試験(JIS Z2371)に
おける240時間経過時点での表面状態により評価し
た。
Example 6 An electrogalvanized iron plate (50 × 100 × 1 mm) was charged with ammonium molybdate (10 g / L) and phosphoric acid (10 g / L).
L, No. 3 sodium silicate 10g / L containing ammonia p
After dipping in the treatment liquid adjusted to H2.0 for 60 seconds, it was dried without performing a rinsing step to prepare a test piece. The appearance was visually evaluated, and the corrosion resistance was evaluated by the surface condition at the time of 240 hours in the salt spray test (JIS Z2371).

【0031】実施例7 電気亜鉛めっきした鉄板(50×100×1mm)をモ
リブデン酸アンモニウム10g/L、リン酸10g/
L、3号ケイ酸ソーダ10g/Lを含みアンモニアでp
H2.0に調整した処理液(実施例6記載の処理液と同
組成)に60秒間浸漬後、濯ぎ工程を行わず前記処理液
を2倍に希釈した水溶液に3秒間浸漬し、濯ぎ工程を行
わずに乾燥して試験片を作製した。外観を目視で評価
し、耐食性は塩水噴霧試験(JIS Z 2371)に
おける240時間経過時点での表面状態により評価し
た。
Example 7 An electrogalvanized iron plate (50 × 100 × 1 mm) was charged with ammonium molybdate 10 g / L and phosphoric acid 10 g / L.
L, No. 3 sodium silicate 10g / L containing ammonia p
After dipping for 60 seconds in a treatment liquid adjusted to H2.0 (the same composition as the treatment liquid described in Example 6), a rinsing step was performed by immersing the treatment liquid in a 2-fold diluted aqueous solution for 3 seconds without performing the rinsing step. Without performing, it dried and the test piece was produced. The appearance was visually evaluated, and the corrosion resistance was evaluated by the surface condition after 240 hours in a salt spray test (JIS Z 2371).

【0032】実施例8 電気亜鉛めっきした鉄板(50×100×1mm)を硝
酸クロム30g/L、硝酸ソーダ20g/L、塩化マン
ガン5g/Lを含みアンモニアでpH1.8に調整した
処理液に60秒間浸漬後、濯ぎ工程を行わずに乾燥して
試験片を作製した。外観を目視で評価し、耐食性は塩水
噴霧試験(JIS Z 2371)における240時間
経過時点での表面状態により評価した。
Example 8 An electrogalvanized iron plate (50 × 100 × 1 mm) was added to a treatment liquid containing 30 g / L of chromium nitrate, 20 g / L of sodium nitrate and 5 g / L of manganese chloride and adjusted to pH 1.8 with ammonia. After soaking for a second, it was dried without performing a rinsing step to prepare a test piece. The appearance was visually evaluated, and the corrosion resistance was evaluated by the surface condition after 240 hours in a salt spray test (JIS Z 2371).

【0033】実施例9 電気亜鉛めっきした鉄板(50×100×1mm)を硝
酸クロム30g/L、硝酸ソーダ20g/L、塩化マン
ガン5g/Lを含みアンモニアでpH1.8に調整した
処理液(実施例8記載の処理液と同組成)に60秒間浸
漬後、濯ぎ工程を行った後、硝酸クロム5g/Lを含む
処理液に5秒間浸漬し、濯ぎを行わずに硝酸クロム3g
/Lを含む処理液に5秒間浸漬し、濯ぎを行わずに乾燥
して試験片を作製した。外観を目視で評価し、耐食性は
塩水噴霧試験(JIS Z 2371)における240
時間経過時点での表面状態により評価した。
Example 9 An electrogalvanized iron plate (50 × 100 × 1 mm) containing 30 g / L of chromium nitrate, 20 g / L of sodium nitrate, and 5 g / L of manganese chloride and adjusted to pH 1.8 with ammonia was prepared. The same composition as the treatment solution described in Example 8) was soaked for 60 seconds, and then a rinsing step was performed, followed by soaking for 5 seconds in a treatment solution containing 5 g / L of chromium nitrate, and 3 g of chromium nitrate without rinsing.
A test piece was prepared by immersing in a treatment liquid containing / L for 5 seconds and drying without rinsing. The appearance was visually evaluated, and the corrosion resistance was 240 in a salt spray test (JIS Z 2371).
The evaluation was made by the surface condition at the time point.

【0034】実施例10 電気亜鉛めっきした鉄板(50×100×1mm)を硝
酸クロム20g/L、酒石酸10g/L、リン酸15g
/L、硫酸2g/L、硝酸コバルト10g/L、スノー
テックスC(日産化学工業(株)製コロイダルシリカ)
50g/Lを含みカ性ソーダでpH2.5に調整した処
理液に15秒間浸漬後、濯ぎ工程を行わずに乾燥して試
験片を作製した。外観を目視で評価し、耐食性は塩水噴
霧試験(JIS Z 2371)における240時間経
過時点での表面状態により評価した。
Example 10 An electrogalvanized iron plate (50 × 100 × 1 mm) was placed on chromium nitrate 20 g / L, tartaric acid 10 g / L, phosphoric acid 15 g.
/ L, sulfuric acid 2g / L, cobalt nitrate 10g / L, Snowtex C (Colloidal silica manufactured by Nissan Chemical Industries, Ltd.)
A test piece was prepared by immersing for 15 seconds in a treatment liquid containing 50 g / L and adjusted to pH 2.5 with caustic soda, and then dried without performing a rinsing step. The appearance was visually evaluated, and the corrosion resistance was evaluated by the surface condition after 240 hours in a salt spray test (JIS Z 2371).

【0035】実施例11 電気亜鉛めっきした鉄板(50×100×1mm)を硫
酸クロム20g/L、硝酸ソーダ15g/L、硫酸チタ
ン5g/L、スノーテックス20(日産化学工業(株)
製コロイダルシリカ)100g/Lを含み、カ性ソーダ
でpH2.0に調整した水溶液に20秒間浸漬後、濯ぎ
工程を行わずに乾燥して試験片を作製した。外観を目視
で評価し、耐食性は塩水噴霧試験(JIS Z 237
1)における240時間経過時点での表面状態により評
価した。
Example 11 An electrogalvanized iron plate (50 × 100 × 1 mm) was placed on chromium sulfate 20 g / L, sodium nitrate 15 g / L, titanium sulfate 5 g / L, Snowtex 20 (Nissan Chemical Industry Co., Ltd.).
(Colloidal silica produced by the present invention) was immersed in an aqueous solution containing 100 g / L and adjusted to pH 2.0 with caustic soda for 20 seconds, and then dried without a rinsing step to prepare a test piece. The appearance was visually evaluated, and the corrosion resistance was evaluated by a salt spray test (JIS Z 237).
The evaluation was made based on the surface condition after 240 hours in 1).

【0036】実施例12 電気亜鉛めっきした鉄板(50×100×1mm)を塩
化クロム15g/L、塩化コバルト8g/L、シュウ酸
5g/L、硝酸5g/L、塩化マグネシウム5g/Lを
含みアンモニア水でpH2.2に調整した処理液に40
秒間浸漬後、濯ぎ工程を行わずに乾燥して試験片を作製
した。外観を目視で評価し、耐食性は塩水噴霧試験(J
IS Z 2371)における240時間経過時点での
表面状態により評価した。
Example 12 An electrogalvanized iron plate (50 × 100 × 1 mm) containing 15 g / L of chromium chloride, 8 g / L of cobalt chloride, 5 g / L of oxalic acid, 5 g / L of nitric acid and 5 g / L of magnesium chloride, and ammonia. 40 to the treatment liquid adjusted to pH 2.2 with water
After soaking for a second, it was dried without performing a rinsing step to prepare a test piece. The appearance is visually evaluated, and the corrosion resistance is evaluated by a salt spray test (J
It was evaluated by the surface condition after 240 hours in IS Z 2371).

【0037】実施例13 電気亜鉛めっきした鉄板(50×100×1mm)を塩
化クロム15g/L、塩化コバルト8g/L、シュウ酸
5g/L、硝酸5g/L、塩化マグネシウム5g/Lを
含みアンモニア水でpH2.2に調整した処理液(実施
例12に記載の処理液と同組成)に40秒間浸漬後、濯
ぎ工程を行った後、塩化クロム5g/L、塩化コバルト
2g/L、硝酸2g/L、塩化マグネシウム1g/Lを
含みアンモニア水でpH4.0に調整した液に10秒間
浸漬し、濯ぎ工程を行わずに乾燥して試験片を作製し
た。外観を目視で評価し、耐食性は塩水噴霧試験(JI
SZ 2371)における240時間経過時点での表面
状態により評価した。
Example 13 An electrogalvanized iron plate (50 × 100 × 1 mm) containing 15 g / L of chromium chloride, 8 g / L of cobalt chloride, 5 g / L of oxalic acid, 5 g / L of nitric acid and 5 g / L of magnesium chloride, and ammonia. After immersing in a treatment liquid adjusted to pH 2.2 with water (the same composition as the treatment liquid described in Example 12) for 40 seconds, a rinsing step was performed, and then chromium chloride 5 g / L, cobalt chloride 2 g / L, nitric acid 2 g / L, 1 g / L of magnesium chloride, and a solution adjusted to pH 4.0 with aqueous ammonia for 10 seconds and dried without a rinsing step to prepare a test piece. The appearance is visually evaluated, and the corrosion resistance is evaluated by a salt spray test (JI
SZ 2371) evaluated the surface condition after 240 hours.

【0038】実施例14 電気亜鉛めっきした鉄板(50×100×1mm)を塩
化クロム10g/L、塩化コバルト10g/L、マロン
酸5g/L、硝酸5g/L、酢酸マグネシウム5g/L
を含みアンモニア水でpH2.2に調整した処理液に4
0秒間浸漬後、濯ぎ工程を行わずに乾燥して試験片を作
製した。外観を目視で評価し、耐食性は塩水噴霧試験
(JIS Z 2371)における240時間経過時点
での表面状態により評価した。
Example 14 An electrogalvanized iron plate (50 × 100 × 1 mm) was applied to chromium chloride 10 g / L, cobalt chloride 10 g / L, malonic acid 5 g / L, nitric acid 5 g / L, magnesium acetate 5 g / L.
4 to the treatment liquid containing ammonia and adjusted to pH 2.2 with aqueous ammonia.
After soaking for 0 second, it was dried without performing a rinsing step to prepare a test piece. The appearance was visually evaluated, and the corrosion resistance was evaluated by the surface condition after 240 hours in a salt spray test (JIS Z 2371).

【0039】実施例15 電気亜鉛めっきした鉄板(50×100×1mm)を塩
化クロム10g/L、塩化コバルト10g/L、マロン
酸5g/L、硝酸5g/L、酢酸マグネシウム5g/L
を含みアンモニア水でpH2.2に調整した処理液(実
施例14に記載の処理液と同組成)に40秒間浸漬後、
濯ぎ工程を行った後、塩化クロム10g/L、塩化コバ
ルト10g/L、マロン酸5g/L、酢酸マグネシウム
5g/Lを含みアンモニア水でpH3.0に調整した処
理液に10秒間浸漬し、濯ぎ工程を行わずに乾燥して試
験片を作製した。外観を目視で評価し、耐食性は塩水噴
霧試験(JIS Z 2371)における240時間経
過時点での表面状態により評価した。
Example 15 An electrogalvanized iron plate (50 × 100 × 1 mm) was applied to chromium chloride 10 g / L, cobalt chloride 10 g / L, malonic acid 5 g / L, nitric acid 5 g / L, magnesium acetate 5 g / L.
After dipping for 40 seconds in a treatment liquid (containing the same composition as the treatment liquid described in Example 14) containing ammonia and adjusted to pH 2.2 with ammonia water,
After performing the rinsing step, it is immersed for 10 seconds in a treatment solution containing 10 g / L of chromium chloride, 10 g / L of cobalt chloride, 5 g / L of malonic acid and 5 g / L of magnesium acetate and adjusted to pH 3.0 with ammonia water, and rinsed. A test piece was prepared by drying without any steps. The appearance was visually evaluated, and the corrosion resistance was evaluated by the surface condition after 240 hours in a salt spray test (JIS Z 2371).

【0040】実施例16 電気亜鉛めっきした鉄板(50×100×1mm)を硝
酸クロム30g/L、硝酸ソーダ20g/L、塩化マン
ガン5g/Lを含みアンモニアでpH1.8に調整した
処理液(実施例8記載の処理液と同組成)に60秒間浸
漬後、濯ぎ工程を行った後、硝酸クロム5g/Lを含む
処理液に5秒間浸漬し、濯ぎを行わずに硝酸クロム3g
/Lを含む処理液に5秒間浸漬し、濯ぎを行わずに乾燥
した後、更にスノーテックスC(日産化学工業(株)製
コロイダルシリカ)50g/L、カ性ソーダ2g/Lを
含む水溶液に浸漬し乾燥して試験片を作製した。外観を
目視で評価し、耐食性は塩水噴霧試験(JIS Z 2
371)における240時間経過時点での表面状態によ
り評価した。
Example 16 An electrogalvanized iron plate (50 × 100 × 1 mm) containing 30 g / L of chromium nitrate, 20 g / L of sodium nitrate and 5 g / L of manganese chloride and adjusted to pH 1.8 with ammonia was prepared. The same composition as the treatment solution described in Example 8) was soaked for 60 seconds, and then a rinsing step was performed, followed by soaking for 5 seconds in a treatment solution containing 5 g / L of chromium nitrate, and 3 g of chromium nitrate without rinsing.
/ L-containing treatment solution for 5 seconds, dried without rinsing, and then added to an aqueous solution containing Snowtex C (Nissan Chemical Co., Ltd. colloidal silica) 50 g / L and caustic soda 2 g / L. A test piece was prepared by immersing and drying. The appearance was visually evaluated, and the corrosion resistance was evaluated by a salt spray test (JIS Z 2
It was evaluated by the surface condition after the lapse of 240 hours in 371).

【0041】実施例17 電気亜鉛めっきした鉄板(50×100×1mm)をモ
リブデン酸アンモニウム10g/L、リン酸10g/
L、3号ケイ酸ソーダ10g/Lを含みアンモニアでp
H2.0に調整した処理液(実施例6記載の処理液と同
組成)に60秒間浸漬後、濯ぎ工程を行わず前記処理液
を2倍に希釈した水溶液に3秒間浸漬し、濯ぎ工程を行
わずに乾燥した後、更にスノーテックスC(日産化学工
業(株)製コロイダルシリカ)50g/L、カ性ソーダ
2g/Lを含む水溶液に浸漬し乾燥して試験片を作製し
た。外観を目視で評価し、耐食性は塩水噴霧試験(JI
SZ 2371)における240時間経過時点での表面
状態により評価した。
Example 17 An electrogalvanized iron plate (50 × 100 × 1 mm) was charged with ammonium molybdate (10 g / L) and phosphoric acid (10 g / L).
L, No. 3 sodium silicate 10g / L containing ammonia p
After dipping for 60 seconds in a treatment liquid adjusted to H2.0 (the same composition as the treatment liquid described in Example 6), a rinsing step was performed by immersing the treatment liquid in a 2-fold diluted aqueous solution for 3 seconds without performing the rinsing step. After drying without performing it, it was further dipped in an aqueous solution containing 50 g / L of Snowtex C (Colloidal silica manufactured by Nissan Chemical Industries, Ltd.) and 2 g / L of caustic soda and dried to prepare a test piece. The appearance is visually evaluated, and the corrosion resistance is evaluated by a salt spray test (JI
SZ 2371) evaluated the surface condition after 240 hours.

【0042】実施例18 電気亜鉛めっきした鉄板(50×100×1mm)を硫
酸チタン20g/L、塩化マンガン10g/L、リン酸
10g/L、硝酸5g/L、硝酸マグネシウム5g/L
を含み、アンモニアでpH2.0に調整した処理液に3
0秒間浸漬後、濯ぎ工程を行わずに乾燥した後、更にス
ノーテックスC(日産化学工業(株)製コロイダルシリ
カ)50g/L、カ性ソーダ2g/Lを含む水溶液に浸
漬し乾燥して試験片を作製した。外観を目視で評価し、
耐食性は塩水噴霧試験(JISZ 2371)における
240時間経過時点での表面状態により評価した。
Example 18 An electrogalvanized iron plate (50 × 100 × 1 mm) was used for titanium sulfate 20 g / L, manganese chloride 10 g / L, phosphoric acid 10 g / L, nitric acid 5 g / L, magnesium nitrate 5 g / L.
3 in a treatment liquid containing ammonia and adjusted to pH 2.0 with ammonia
After soaking for 0 seconds and drying without performing a rinsing step, it was further dipped in an aqueous solution containing 50 g / L of Snowtex C (Colloidal silica manufactured by Nissan Chemical Industries, Ltd.) and 2 g / L of caustic soda to be dried and tested. Pieces were made. Visually evaluate the appearance,
The corrosion resistance was evaluated by the surface condition after 240 hours in a salt spray test (JISZ 2371).

【0043】実施例19 電気亜鉛めっきした鉄板(50×100×1mm)を硝
酸クロム15g/L、グルコン酸ソーダ1g/L、リン
酸20g/L、バナジン酸ソーダ3g/Lを含み、カ性
ソーダでpH2.3に調整した処理液に25秒間浸漬
後、濯ぎ工程を行わずに乾燥した後、更に5G018
(日本表面化学(株)製、ケイ素含有、有機・無機複合
皮膜剤)に浸漬し乾燥して試験片を作製した。外観を目
視で評価し、耐食性は塩水噴霧試験(JIS Z 23
71)における240時間経過時点での表面状態により
評価した。
Example 19 An electrogalvanized iron plate (50 × 100 × 1 mm) containing 15 g / L of chromium nitrate, 1 g / L of sodium gluconate, 20 g / L of phosphoric acid and 3 g / L of sodium vanadate, and caustic soda After being dipped in the treatment solution adjusted to pH 2.3 with 25 seconds, dried without rinsing step, and then further treated with 5G018.
A test piece was prepared by immersing in (silicon surface-containing, organic-inorganic composite film forming agent manufactured by Japan Surface Chemical Co., Ltd.) and drying. The appearance was visually evaluated, and the corrosion resistance was evaluated by a salt spray test (JIS Z 23
The evaluation was carried out by the surface condition after the lapse of 240 hours in 71).

【0044】実施例20 電気亜鉛めっきした鉄板(50×100×1mm)を硝
酸クロム20g/L、タングステン酸ソーダ3g/L、
グルコン酸ソーダ1g/L、リン酸20g/L、塩化カ
ルシウム2g/Lを含み、カ性ソーダでpH2.0に調
整した処理液(実施例3記載の処理液と同組成)に25
秒間浸漬後、濯ぎ工程を行った後、硝酸クロム10g/
L、タングステン酸ソーダ1.5g/L、グルコン酸ソ
ーダ0.5g/L、リン酸10g/L、塩化カルシウム
1g/Lを含みカ性ソーダでpH3.5に調整した処理
液に5秒間浸漬後濯ぎを行わずに乾燥した後、更に5G
018(日本表面化学(株)製、ケイ素含有、有機・無
機複合皮膜剤)に浸漬し乾燥して試験片を作製した。外
観を目視で評価し、耐食性は塩水噴霧試験(JISZ
2371)における240時間経過時点での表面状態に
より評価した。
Example 20 An electrogalvanized iron plate (50 × 100 × 1 mm) was placed on chromium nitrate 20 g / L, sodium tungstate 3 g / L,
25 in a treatment liquid (same composition as the treatment liquid described in Example 3) containing 1 g / L of sodium gluconate, 20 g / L of phosphoric acid, 2 g / L of calcium chloride and adjusted to pH 2.0 with caustic soda.
After soaking for 2 seconds and after rinsing, chromium nitrate 10g /
After dipping for 5 seconds in a treatment solution containing L, sodium tungstate 1.5 g / L, sodium gluconate 0.5 g / L, phosphoric acid 10 g / L, calcium chloride 1 g / L and adjusted to pH 3.5 with caustic soda After drying without rinsing, another 5G
018 (manufactured by Japan Surface Chemical Co., Ltd., silicon-containing, organic / inorganic composite film agent) was dipped and dried to prepare a test piece. The appearance is visually evaluated, and the corrosion resistance is determined by a salt spray test (JISZ
2371) and the surface state after 240 hours.

【0045】実施例21 電気亜鉛めっきした鉄板(50×100×1mm)を硝
酸クロム15g/L、グルコン酸ソーダ1g/L、リン
酸20g/L、バナジン酸ソーダ3g/Lを含み、カ性
ソーダでpH2.3に調整した処理液(実施例19に記
載の処理液と同組成)に25秒間浸漬後、濯ぎ工程を行
わずに乾燥した後、更に5G018(日本表面化学
(株)製、ケイ素含有、有機・無機複合皮膜剤)に浸漬
し乾燥して試験片を作製した。外観を目視で評価し、耐
食性は塩水噴霧試験(JIS Z 2371)における
240時間経過時点での表面状態により評価した。
Example 21 An electrogalvanized iron plate (50 × 100 × 1 mm) containing 15 g / L of chromium nitrate, 1 g / L of sodium gluconate, 20 g / L of phosphoric acid and 3 g / L of sodium vanadate, and caustic soda After being immersed for 25 seconds in a treatment liquid (same composition as the treatment liquid described in Example 19) adjusted to pH 2.3 with 5G018 (manufactured by Nippon Surface Chemical Co., Ltd., silicon). The test piece was prepared by immersing it in an organic / inorganic composite coating agent). The appearance was visually evaluated, and the corrosion resistance was evaluated by the surface condition after 240 hours in a salt spray test (JIS Z 2371).

【0046】実施例22 電気亜鉛めっきした鉄板(50×100×1mm)を硫
酸クロム10g/L、硝酸コバルト5g/L、硝酸5g
/L、タングステン酸アンモニウム5g/Lを含みアン
モニア水でpH1.7に調整した処理液に15秒間浸漬
後、濯ぎ工程を行わずに乾燥した後、三号ケイ酸ソーダ
50g/Lとカ性ソーダ2g/Lを含む水溶液に30秒
間浸漬し乾燥して試験片を作製した。外観を目視で評価
し、耐食性は塩水噴霧試験(JIS Z 2371)に
おける240時間経過時点での表面状態により評価し
た。
Example 22 An electrogalvanized iron plate (50 × 100 × 1 mm) was placed on chromium sulfate 10 g / L, cobalt nitrate 5 g / L, nitric acid 5 g.
/ L, ammonium tungstate 5 g / L and dipping for 15 seconds in a treatment solution adjusted to pH 1.7 with ammonia water, and then dried without a rinsing step, and then No. 3 sodium silicate 50 g / L and caustic soda A test piece was prepared by immersing in an aqueous solution containing 2 g / L for 30 seconds and drying. The appearance was visually evaluated, and the corrosion resistance was evaluated by the surface condition after 240 hours in a salt spray test (JIS Z 2371).

【0047】実施例23 電気亜鉛めっきした鉄板(50×100×1mm)を硫
酸クロム20g/L、硝酸ソーダ10g/L、硫酸5g
/L、硫酸チタン5g/L、スノーテックス20(日産
化学工業(株)製コロイダルシリカ)100g/Lを含
み、カ性ソーダでpH2.0に調整した水溶液に20秒
間浸漬後、濯ぎ工程を行わずに乾燥した後、更にスノー
テックスC(日産化学工業(株)製コロイダルシリカ)
50g/L、カ性ソーダ2g/Lを含む水溶液に浸漬し
乾燥して試験片を作製した。外観を目視で評価し、耐食
性は塩水噴霧試験(JIS Z 2371)における2
40時間経過時点での表面状態により評価した。
Example 23 An electrogalvanized iron plate (50 × 100 × 1 mm) was placed on chromium sulfate 20 g / L, sodium nitrate 10 g / L, and sulfuric acid 5 g.
/ L, titanium sulfate 5 g / L, Snowtex 20 (Colloidal silica manufactured by Nissan Chemical Industries, Ltd.) 100 g / L, and immersed in an aqueous solution adjusted to pH 2.0 with caustic soda for 20 seconds, followed by a rinsing step. Without drying, Snowtex C (Colloidal silica manufactured by Nissan Chemical Industries, Ltd.)
A test piece was prepared by immersing in an aqueous solution containing 50 g / L and 2 g / L of caustic soda and drying. The appearance was visually evaluated, and the corrosion resistance was 2 in the salt spray test (JIS Z 2371).
It was evaluated by the surface condition after 40 hours.

【0048】実施例24 電気亜鉛めっきした鉄板(50×100×1mm)を塩
化クロム10g/L、塩化コバルト10g/L、マロン
酸5g/L、硝酸5g/L、酢酸マグネシウム5g/L
を含みアンモニア水でpH2.2に調整した処理液(実
施例15記載の処理液と同組成)に40秒間浸漬後、濯
ぎ工程を行わずに乾燥し、更に5G018(日本表面化
学(株)製、ケイ素含有、有機・無機複合皮膜剤)に浸
漬し乾燥して試験片を作製した。外観を目視で評価し、
耐食性は塩水噴霧試験(JISZ 2371)における
240時間経過時点での表面状態により評価した。
Example 24 An electrogalvanized iron plate (50 × 100 × 1 mm) was applied to chromium chloride 10 g / L, cobalt chloride 10 g / L, malonic acid 5 g / L, nitric acid 5 g / L, magnesium acetate 5 g / L.
After dipping for 40 seconds in a treatment solution (containing the same composition as the treatment solution described in Example 15) containing ammonia and adjusted to pH 2.2 with ammonia water, it was dried without a rinsing step, and further, 5G018 (manufactured by Nippon Surface Chemical Co., Ltd.). , A silicon-containing organic / inorganic composite coating agent) and dried to prepare a test piece. Visually evaluate the appearance,
The corrosion resistance was evaluated by the surface condition after 240 hours in a salt spray test (JISZ 2371).

【0049】実施例25 亜鉛−鉄合金めっきした鉄板(50×100×1mm)
を塩化クロム20g/L、クエン酸5g/L、硝酸5g
/L、チタン酸アンモニウム5g/L、酢酸マグネシウ
ム5g/Lを含みアンモニア水でpH2.2に調整した
処理液に40秒間浸漬後、濯ぎ工程を行わずに乾燥して
試験片を作製した。外観を目視で評価し、耐食性は塩水
噴霧試験(JIS Z 2371)における240時間
経過時点での表面状態により評価した。
Example 25 Zinc-iron alloy plated iron plate (50 × 100 × 1 mm)
20 g / L of chromium chloride, 5 g / L of citric acid, 5 g of nitric acid
/ L, ammonium titanate 5 g / L, and magnesium acetate 5 g / L were immersed for 40 seconds in a treatment liquid adjusted to pH 2.2 with aqueous ammonia, and then dried without a rinsing step to prepare test pieces. The appearance was visually evaluated, and the corrosion resistance was evaluated by the surface condition after 240 hours in a salt spray test (JIS Z 2371).

【0050】実施例26 亜鉛−鉄合金めっきした鉄板(50×100×1mm)
を塩化クロム20g/L、クエン酸5g/L、硝酸5g
/L、チタン酸アンモニウム5g/L、酢酸マグネシウ
ム5g/Lを含みアンモニア水でpH2.2に調整した
処理液(実施例25に記載の処理液と同組成)に40秒
間浸漬後、濯ぎ工程を行わずに乾燥した後、三号ケイ酸
ソーダ30g/L、カ性ソーダ1g/Lを含む水溶液に
40秒間浸漬し、乾燥したものを試験片とした。外観を
目視で評価し、耐食性は塩水噴霧試験(JIS Z 2
371)における240時間経過時点での表面状態によ
り評価した。
Example 26 Zinc-iron alloy plated iron plate (50 × 100 × 1 mm)
20 g / L of chromium chloride, 5 g / L of citric acid, 5 g of nitric acid
/ L, 5 g / L of ammonium titanate, 5 g / L of magnesium acetate and a pH of 2.2 adjusted with ammonia water (the same composition as the treatment liquid described in Example 25) for 40 seconds, followed by a rinsing step. After drying without performing, it was dipped in an aqueous solution containing 30 g / L of No. 3 sodium silicate and 1 g / L of caustic soda for 40 seconds and dried to obtain a test piece. The appearance was visually evaluated, and the corrosion resistance was evaluated by a salt spray test (JIS Z 2
It was evaluated by the surface condition after the lapse of 240 hours in 371).

【0051】実施例27 亜鉛−ニッケル合金めっきした鉄板(50×100×1
mm)を塩化クロム20g/L、塩化コバルト10g/
L、クエン酸5g/L、硝酸5g/L、酢酸カルシウム
5g/Lを含みカ性ソーダでpH1.5に調整した処理
液に40秒間浸漬後、濯ぎ工程を行わずに乾燥して試験
片を作製した。外観を目視で評価し、耐食性は塩水噴霧
試験(JIS Z 2371)における240時間経過
時点での表面状態により評価した。
Example 27 Zinc-nickel alloy plated iron plate (50 × 100 × 1)
mm) chromium chloride 20 g / L, cobalt chloride 10 g / L
L, 5 g / L of citric acid, 5 g / L of nitric acid, 5 g / L of calcium acetate and 5 g / L of calcium acetate soaked in a treatment solution adjusted to pH 1.5 with caustic soda for 40 seconds, and then dried without rinsing to give test pieces. It was made. The appearance was visually evaluated, and the corrosion resistance was evaluated by the surface condition after 240 hours in a salt spray test (JIS Z 2371).

【0052】実施例28 亜鉛−ニッケル合金めっきした鉄板(50×100×1
mm)を塩化クロム20g/L、塩化コバルト10g/
L、クエン酸5g/L、硝酸5g/L、酢酸カルシウム
5g/Lを含みカ性ソーダでpH1.5に調整した処理
液(実施例27記載の処理液と同組成)に40秒間浸漬
後、濯ぎ工程を行わずに乾燥し、更に5G018(日本
表面化学(株)製、ケイ素含有、有機・無機複合皮膜
剤)に浸漬し乾燥して試験片を作製した。外観を目視で
評価し、耐食性は塩水噴霧試験(JIS Z 237
1)における240時間経過時点での表面状態により評
価した。
Example 28 Zinc-nickel alloy-plated iron plate (50 × 100 × 1)
mm) chromium chloride 20 g / L, cobalt chloride 10 g / L
L, 5 g / L citric acid, 5 g / L nitric acid, 5 g / L calcium acetate and 5 g / L calcium acetate and adjusted to pH 1.5 with caustic soda (the same composition as the treatment liquid described in Example 27), after dipping for 40 seconds, It was dried without performing a rinsing step, further dipped in 5G018 (manufactured by Nippon Surface Chemical Co., Ltd., silicon-containing, organic / inorganic composite film agent) and dried to prepare a test piece. The appearance was visually evaluated, and the corrosion resistance was evaluated by a salt spray test (JIS Z 237).
The evaluation was made based on the surface condition after 240 hours in 1).

【0053】実施例29 電気亜鉛めっきした鉄板(50×100×1mm)を硝
酸クロム30g/L、硝酸ソーダ20g/L、塩化マン
ガン5g/Lを含みアンモニアでpH1.8に調整した
処理液に60秒間浸漬後、濯ぎ工程を行わずに乾燥した
ものを200℃の恒温槽中に1時間放置し試験片とし
た。外観を目視で評価し、耐食性は塩水噴霧試験(JI
S Z 2371)における240時間経過時点での表
面状態により評価した。
Example 29 An electrogalvanized iron plate (50 × 100 × 1 mm) was added to a treatment liquid containing 30 g / L of chromium nitrate, 20 g / L of sodium nitrate and 5 g / L of manganese chloride and adjusted to pH 1.8 with ammonia. After soaking for a second and then dried without a rinsing step, the dried one was left in a constant temperature bath at 200 ° C. for 1 hour to obtain a test piece. The appearance is visually evaluated, and the corrosion resistance is evaluated by a salt spray test (JI
It was evaluated by the surface condition of SZ2371) after 240 hours.

【0054】比較例1 亜鉛めっきした鉄板(50×100×1mm)に何の処
理も施さず試験片とし、塩水噴霧試験(JIS Z 2
371)における白錆発生までの時間を調査した。
Comparative Example 1 A galvanized iron plate (50 × 100 × 1 mm) was subjected to no treatment to obtain a test piece, and a salt spray test (JIS Z 2
The time until the occurrence of white rust in 371) was investigated.

【0055】比較例2 亜鉛めっきした鉄板(50×100×1mm)を市販の
六価クロムを使用したクロメート処理液(ローメイト6
2、日本表面化学(株)製)に15秒浸漬し、皮膜生成
後水洗し、乾燥したものを試験片とした。外観を目視で
評価し、耐食性は塩水噴霧試験(JIS Z 237
1)における240時間経過時点での表面状態により評
価した。
Comparative Example 2 A galvanized iron plate (50 × 100 × 1 mm) containing a commercially available hexavalent chromium chromate treatment solution (Romate 6) was used.
2. Immersed in Nihon Surface Chemical Co., Ltd. for 15 seconds, formed a film, washed with water, and dried to obtain a test piece. The appearance was visually evaluated, and the corrosion resistance was evaluated by a salt spray test (JIS Z 237).
The evaluation was made based on the surface condition after 240 hours in 1).

【0056】比較例3 亜鉛めっきした鉄板(50×100×1mm)を市販の
六価クロムを使用したクロメート処理液(ローメイト6
2、日本表面化学(株)製)に15秒浸漬し、皮膜生成
後濯ぎを行わずに乾燥したものを試験片とした。外観を
目視で評価し、耐食性は塩水噴霧試験(JIS Z 2
371)における240時間経過時点での表面状態によ
り評価した。
Comparative Example 3 A galvanized iron plate (50 × 100 × 1 mm) containing a commercially available hexavalent chromium chromate treatment solution (Romate 6) was used.
2. A test piece was obtained by immersing the film in Nihon Surface Chemical Co., Ltd. for 15 seconds and drying it without rinsing after film formation. The appearance was visually evaluated, and the corrosion resistance was evaluated by a salt spray test (JIS Z 2
It was evaluated by the surface condition after the lapse of 240 hours in 371).

【0057】比較例4 亜鉛めっきした鉄板(50×100×1mm)を市販の
三価クロムを使用した反応型クロメート処理液(4K0
49、日本表面化学(株)製)に40秒浸漬し、皮膜生
成後水洗し、乾燥したものを試験片とした。外観を目視
で評価し、耐食性は塩水噴霧試験(JIS Z 237
1)における白錆発生までの時間を評価した。
Comparative Example 4 A galvanized iron plate (50 × 100 × 1 mm) was used as a reaction type chromate treatment liquid (4K0) using commercially available trivalent chromium.
49, manufactured by Nippon Surface Chemical Co., Ltd.) for 40 seconds, washed with water after forming a film, and dried to obtain a test piece. The appearance was visually evaluated, and the corrosion resistance was evaluated by a salt spray test (JIS Z 237).
The time until the occurrence of white rust in 1) was evaluated.

【0058】比較例5 電気亜鉛めっきした鉄板(50×100×1mm)を硫
酸チタン20g/L、バナジン酸ソーダ10g/L、リ
ン酸10g/L、硝酸5g/Lを含み、アンモニアでp
H2.3に調整した処理液(実施例1記載の処理液と同
組成)に60秒間浸漬し皮膜生成水洗し、乾燥したもの
を試験片とした。外観を目視で評価し、耐食性は塩水噴
霧試験(JIS Z 2371)における240時間経
過時点での表面状態により評価した。
Comparative Example 5 An electrogalvanized iron plate (50 × 100 × 1 mm) containing 20 g / L of titanium sulfate, 10 g / L of sodium vanadate, 10 g / L of phosphoric acid, and 5 g / L of nitric acid was added.
A test piece was dipped in a treatment liquid adjusted to H2.3 (same composition as the treatment liquid described in Example 1) for 60 seconds, washed with water for film formation, and dried. The appearance was visually evaluated, and the corrosion resistance was evaluated by the surface condition after 240 hours in a salt spray test (JIS Z 2371).

【0059】比較例6 電気亜鉛めっきした鉄板(50×100×1mm)を硝
酸クロム20g/L、タングステン酸ソーダ3g/L、
グルコン酸ソーダ1g/L、リン酸20g/L、塩化カ
ルシウム2g/Lを含み、カ性ソーダでpH2.0に調
整した処理液(実施例2記載の処理液と同組成)に25
秒間浸漬し皮膜生成水洗し、乾燥したものを試験片とし
た。外観を目視で評価し、耐食性は塩水噴霧試験(JI
S Z2371)における240時間経過時点での表面
状態により評価した。
Comparative Example 6 An electrogalvanized iron plate (50 × 100 × 1 mm) was placed on chromium nitrate 20 g / L, sodium tungstate 3 g / L,
25 in a treatment liquid containing sodium gluconate 1 g / L, phosphoric acid 20 g / L, calcium chloride 2 g / L and adjusted to pH 2.0 with caustic soda (same composition as the treatment liquid described in Example 2).
The test piece was dipped for 2 seconds, washed with water for film formation, and dried. The appearance is visually evaluated, and the corrosion resistance is evaluated by a salt spray test (JI
S Z2371) was evaluated by the surface condition after 240 hours.

【0060】比較例7 電気亜鉛めっきした鉄板(50×100×1mm)を硝
酸クロム30g/L、硝酸ソーダ20g/L、塩化マン
ガン5g/Lを含みアンモニアでpH1.8に調整した
処理液(実施例5記載の処理液と同組成)に60秒間浸
漬し、皮膜生成後水洗し、乾燥したものを試験片とし
た。外観を目視で評価し、耐食性は塩水噴霧試験(JI
S Z 2371)における240時間経過時点での表
面状態により評価した。
Comparative Example 7 An electrogalvanized iron plate (50 × 100 × 1 mm) containing 30 g / L of chromium nitrate, 20 g / L of sodium nitrate, 5 g / L of manganese chloride and adjusted to pH 1.8 with ammonia was prepared. The test piece was dipped in the same composition as the treatment solution described in Example 5) for 60 seconds, washed with water after forming a film, and dried. The appearance is visually evaluated, and the corrosion resistance is evaluated by a salt spray test (JI
It was evaluated by the surface condition of SZ2371) after 240 hours.

【0061】比較例8 電気亜鉛めっきした鉄板(50×100×1mm)を硝
酸クロム20g/L、硝酸コバルト10g/L、酒石酸
10g/L、硝酸3g/L、硫酸2g/L、スノーテッ
クスC(日産化学工業(株)製コロイダルシリカ)50
g/Lを含みカ性ソーダでpH2.5に調整した処理液
に15秒間浸漬し、皮膜生成後水洗し、乾燥したものを
試験片とした。外観を目視で評価し、耐食性は塩水噴霧
試験(JIS Z 2371)における240時間経過
時点での表面状態により評価した。
Comparative Example 8 An electrogalvanized iron plate (50 × 100 × 1 mm) was placed on chromium nitrate 20 g / L, cobalt nitrate 10 g / L, tartaric acid 10 g / L, nitric acid 3 g / L, sulfuric acid 2 g / L, Snowtex C ( Nissan Chemical Industries colloidal silica) 50
A test piece was dipped in a treatment liquid containing g / L and adjusted to pH 2.5 with caustic soda for 15 seconds, washed with water after forming a film, and dried. The appearance was visually evaluated, and the corrosion resistance was evaluated by the surface condition after 240 hours in a salt spray test (JIS Z 2371).

【0062】比較例9 電気亜鉛めっきした鉄板(50×100×1mm)を硫
酸クロム10g/L、硝酸コバルト5g/L、硝酸5g
/L、タングステン酸アンモニウム5g/Lを含みアン
モニア水でpH1.7に調整した処理液(実施例12記
載の処理液と同組成)に15秒間浸漬し、皮膜生成後水
洗し、乾燥した後、三号ケイ酸ソーダ50g/Lとカ性
ソーダ2g/Lを含む水溶液に浸漬し乾燥して試験片を
作製した。外観を目視で評価し、耐食性は塩水噴霧試験
(JIS Z 2371)における240時間経過時点
での表面状態により評価した。
Comparative Example 9 An electrogalvanized iron plate (50 × 100 × 1 mm) was placed on chromium sulfate 10 g / L, cobalt nitrate 5 g / L, nitric acid 5 g.
/ L, 5 g / L ammonium tungstate and adjusted to pH 1.7 with ammonia water (the same composition as the treatment solution described in Example 12) for 15 seconds, washed with water after film formation and dried, A test piece was prepared by immersing in an aqueous solution containing 50 g / L of No. 3 sodium silicate and 2 g / L of caustic soda and drying. The appearance was visually evaluated, and the corrosion resistance was evaluated by the surface condition after 240 hours in a salt spray test (JIS Z 2371).

【0063】比較例10 電気亜鉛めっきした鉄板(50×100×1mm)を塩
化クロム10g/L、塩化コバルト10g/L、マロン
酸5g/L、硝酸5g/L、酢酸マグネシウム5g/L
を含みアンモニア水でpH2.2に調整した処理液(実
施例9及び14記載の処理液と同組成)に40秒間浸漬
し、皮膜生成後水洗し、乾燥した後、更に5G018
(日本表面化学(株)製、ケイ素含有、有機・無機複合
皮膜剤)に浸漬し乾燥して試験片を作製した。外観を目
視で評価し、耐食性は塩水噴霧試験(JIS Z 23
71)における240時間経過時点での表面状態により
評価した。
Comparative Example 10 An electrogalvanized iron plate (50 × 100 × 1 mm) was placed in chromium chloride 10 g / L, cobalt chloride 10 g / L, malonic acid 5 g / L, nitric acid 5 g / L, magnesium acetate 5 g / L.
After dipping for 40 seconds in a treatment solution (containing the same composition as the treatment solutions described in Examples 9 and 14) containing ammonia and adjusted to pH 2.2 with ammonia water, washed with water after film formation and dried, and then 5G018.
A test piece was prepared by immersing in (silicon surface-containing, organic-inorganic composite film forming agent manufactured by Japan Surface Chemical Co., Ltd.) and drying. The appearance was visually evaluated, and the corrosion resistance was evaluated by a salt spray test (JIS Z 23
The evaluation was carried out by the surface condition after the lapse of 240 hours in 71).

【0064】比較例11 亜鉛−鉄合金めっきした鉄板(50×100×1mm)
を塩化クロム20g/L、チタン酸アンモニウム5g/
L、クエン酸5g/L、硝酸5g/L、酢酸マグネシウ
ム5g/Lを含みアンモニア水でpH2.2に調整した
処理液(実施例15記載の処理液と同組成)に40秒間
浸漬し、皮膜生成後水洗し、乾燥して試験片を作製し
た。外観を目視で評価し、耐食性は塩水噴霧試験(JI
S Z 2371)における240時間経過時点での表
面状態により評価した。
Comparative Example 11 Zinc-iron alloy plated iron plate (50 × 100 × 1 mm)
Chromium chloride 20 g / L, ammonium titanate 5 g /
L, 5 g / L of citric acid, 5 g / L of nitric acid, 5 g / L of magnesium acetate and a pH of 2.2 with ammonia water (the same composition as that of the treatment liquid described in Example 15) for 40 seconds to form a film. After generation, it was washed with water and dried to prepare a test piece. The appearance is visually evaluated, and the corrosion resistance is evaluated by a salt spray test (JI
It was evaluated by the surface condition of SZ2371) after 240 hours.

【0065】比較例12 亜鉛−ニッケル合金めっきした鉄板(50×100×1
mm)を塩化クロム20g/L、塩化コバルト10g/
L、クエン酸5g/L、硝酸5g/L、酢酸カルシウム
5g/Lを含みカ性ソーダでpH1.5に調整した処理
液(実施例17及び18記載の処理液と同組成)に40
秒間浸漬し、皮膜生成後水洗し、乾燥して試験片を作製
した。外観を目視で評価し、耐食性は塩水噴霧試験(J
IS Z2371)における240時間経過時点での表
面状態により評価した。
Comparative Example 12 Zinc-nickel alloy plated iron plate (50 × 100 × 1)
mm) chromium chloride 20 g / L, cobalt chloride 10 g / L
L, citric acid 5 g / L, nitric acid 5 g / L, calcium acetate 5 g / L and a pH of 1.5 adjusted with caustic soda (the same composition as the treatment solutions described in Examples 17 and 18).
It was immersed for 2 seconds, washed with water after forming a film, and dried to prepare a test piece. The appearance is visually evaluated, and the corrosion resistance is evaluated by a salt spray test (J
It was evaluated according to the surface condition after 240 hours in IS Z2371).

【0066】比較例13 亜鉛−ニッケル合金めっきした鉄板(50×100×1
mm)を塩化クロム20g/L、塩化コバルト10g/
L、クエン酸5g/L、硝酸5g/L、酢酸カルシウム
5g/Lを含みカ性ソーダでpH1.5に調整した処理
液(実施例17及び18記載の処理液と同組成)に40
秒間浸漬後水洗し、乾燥して、更に5G018(日本表
面化学(株)製、有機・無機複合皮膜剤)に浸漬し乾燥
して試験片を作製した。外観を目視で評価し、耐食性は
塩水噴霧試験(JIS Z 2371)における240
時間経過時点での表面状態により評価した。
Comparative Example 13 Zinc-nickel alloy plated iron plate (50 × 100 × 1)
mm) chromium chloride 20 g / L, cobalt chloride 10 g / L
L, citric acid 5 g / L, nitric acid 5 g / L, calcium acetate 5 g / L and a pH of 1.5 adjusted with caustic soda (the same composition as the treatment solutions described in Examples 17 and 18).
It was immersed for 2 seconds, washed with water, dried, and further immersed in 5G018 (manufactured by Japan Surface Chemical Co., Ltd., organic / inorganic composite film agent) and dried to prepare a test piece. The appearance was visually evaluated, and the corrosion resistance was 240 in a salt spray test (JIS Z 2371).
The evaluation was made by the surface condition at the time point.

【0067】比較例14 亜鉛めっきした鉄板(50×100×1mm)を市販の
六価クロムを使用したクロメート処理液(ローメイト6
2、日本表面化学(株)製)に15秒浸漬し、皮膜生成
後水洗し、乾燥したものを200℃の恒温槽中に一時間
放置したものを試験片とした。外観を目視で評価し、耐
食性は塩水噴霧試験(JIS Z 2371)における
240時間経過時点での表面状態により評価した。
Comparative Example 14 A galvanized iron plate (50 × 100 × 1 mm) containing a commercially available chromate treatment solution containing hexavalent chromium (Romate 6)
2. Immersed in Nihon Surface Chemical Co., Ltd. for 15 seconds, formed a film, washed with water, dried and left in a constant temperature bath at 200 ° C. for 1 hour to obtain a test piece. The appearance was visually evaluated, and the corrosion resistance was evaluated by the surface condition after 240 hours in a salt spray test (JIS Z 2371).

【0068】[0068]

【表1】 [Table 1]

【表2】 [Table 2]

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) C23C 22/22 C23C 22/22 22/34 22/34 22/36 22/36 22/40 22/40 22/42 22/42 22/44 22/44 22/50 22/50 22/52 22/52 22/56 22/56 22/57 22/57 22/58 22/58 22/83 22/83 (72)発明者 堀江 秀和 神奈川県茅ヶ崎市萩園1136日本表面化学株 式会社茅ヶ崎工場内 Fターム(参考) 4D075 AB01 AE03 BB24Z BB73Y BB91Y CA33 CB04 DA06 DB01 DB02 DB05 DB06 DB07 EA06 EA07 EA12 EB02 EB07 EB16 EB19 EB22 EB33 EB38 EC01 EC03 EC07 EC35 EC45 EC53 EC54 4K026 AA01 AA02 AA06 AA07 AA09 AA11 BA01 BA02 BA12 BB08 CA18 CA19 CA23 CA26 CA28 CA29 CA30 CA31 CA32 CA33 CA37 CA38 CA39 CA41 DA02 DA11 EB02 EB08 ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 7 Identification code FI theme code (reference) C23C 22/22 C23C 22/22 22/34 22/34 22/36 22/36 22/40 22/40 22 / 42 22/42 22/44 22/44 22/50 22/50 22/52 22/52 22/56 22/56 22/57 22/57 22/58 22/58 22/83 22/83 (72) Inventor Hidekazu Horie 1136 Hagizono, Chigasaki-shi, Kanagawa Japan Surface Chemicals Co., Ltd. F-term inside Chigasaki Plant (reference) 4D075 AB01 AE03 BB24Z BB73Y BB91Y CA33 CB04 DA06 DB01 DB02 DB05 DB06 DB33 DB07 DB22 DB16 DB07 DB07 DB02 DB16 DB07 DB07 DB22 EC07 EC35 EC45 EC53 EC54 4K026 AA01 AA02 AA06 AA07 AA09 AA11 BA01 BA02 BA12 BB08 CA18 CA19 CA23 CA26 CA28 CA29 CA30 CA31 CA32 CA33 CA37 CA38 CA39 CA41 DA02 DA11 EB02 EB08

Claims (11)

【特許請求の範囲】[Claims] 【請求項1】 金属の表面を水性酸性液状組成物から化
成する層で被覆する工程および前記水性酸性液状組成物
を濯ぎを行わず乾燥する工程からなる金属の保護皮膜形
成方法であって、 前記水性酸性液状組成物が、(A)Ti、V、Mn、
Y、Zr、Nb、Mo、Tc、Ru、Rh、Pd、Wか
ら成る群から選択される少なくとも一種、(B)有機酸
及び/又は無機酸及び/又はこれらの塩から成る群から
選択される少なくとも一種、並びに(C)任意成分とし
てフッ素を含有するものである金属の保護皮膜形成方
法。
1. A method for forming a protective metal film, comprising the steps of coating the surface of a metal with a layer formed from an aqueous acidic liquid composition and drying the aqueous acidic liquid composition without rinsing. The aqueous acidic liquid composition is (A) Ti, V, Mn,
At least one selected from the group consisting of Y, Zr, Nb, Mo, Tc, Ru, Rh, Pd and W, and (B) selected from the group consisting of an organic acid and / or an inorganic acid and / or a salt thereof. A method of forming a metal protective film, which comprises at least one and (C) fluorine as an optional component.
【請求項2】 金属の表面を水性酸性液状組成物から化
成する層で被覆する工程および前記水性酸性液状組成物
を濯ぎを行わず乾燥する工程からなる金属の保護皮膜形
成方法であって、 前記水性酸性液状組成物が、(A)三価クロム、Ti、
V、Mn、Y、Zr、Nb、Mo、Tc、Ru、Rh、
Pd、Wから成る群から選択される少なくとも一種、
(B)有機酸及び/又は無機酸及び/又はこれらの塩か
ら成る群から選択される少なくとも一種、(C)Li、
Na、K、Be、Co、Mg、Ca、Al、Ni、Si
から成る群から選択される少なくとも一種、並びに
(D)任意成分としてフッ素を含有するものである金属
の保護皮膜形成方法。
2. A method for forming a protective metal film comprising the steps of coating the surface of a metal with a layer formed from an aqueous acidic liquid composition and drying the aqueous acidic liquid composition without rinsing. The aqueous acidic liquid composition is (A) trivalent chromium, Ti,
V, Mn, Y, Zr, Nb, Mo, Tc, Ru, Rh,
At least one selected from the group consisting of Pd and W,
(B) at least one selected from the group consisting of organic acids and / or inorganic acids and / or salts thereof, (C) Li,
Na, K, Be, Co, Mg, Ca, Al, Ni, Si
A method for forming a protective film of a metal, which comprises at least one selected from the group consisting of: and (D) fluorine as an optional component.
【請求項3】 金属の表面を水性酸性液状組成物から化
成する層で被覆する工程および前記水性酸性液状組成物
を濯ぎを行わず乾燥する工程からなる金属の保護皮膜形
成方法であって、 前記水性酸性液状組成物が、(A)0.01〜150g
/Lの三価クロム及び/又はコバルト、(B)有機酸及
び/又は硝酸及び/又はこれらの塩から成る群から選択
される少なくとも一種、(C)0.1〜300g/Lの
Ti、V、Mn、Y、Zr、Nb、Mo、Tc、Ru、
Rh、Pd、W、Li、Na、K、Be、Mg、Ca、
Al、Ni、Siから成る群から選択される少なくとも
一種、並びに(D)任意成分としてフッ素を含有するも
のである金属の保護皮膜形成方法。
3. A method for forming a protective metal film, comprising the steps of coating the surface of a metal with a layer formed from an aqueous acidic liquid composition and drying the aqueous acidic liquid composition without rinsing. Aqueous acidic liquid composition has (A) 0.01-150 g
/ L trivalent chromium and / or cobalt, (B) at least one selected from the group consisting of organic acids and / or nitric acid and / or salts thereof, (C) 0.1 to 300 g / L Ti, V , Mn, Y, Zr, Nb, Mo, Tc, Ru,
Rh, Pd, W, Li, Na, K, Be, Mg, Ca,
A method of forming a metal protective film, which comprises at least one selected from the group consisting of Al, Ni, and Si, and (D) fluorine as an optional component.
【請求項4】 金属の表面を水性酸性液状組成物から化
成する層で被覆した後、前記水性酸性液状組成物と同組
成及び/又は別組成の水性液状組成物に一回又は複数回
浸漬し、最後の浸漬の後、濯ぎを行わずに乾燥する工程
からなる金属の保護皮膜形成方法であって、 前記水性酸性液状組成物が、(A)Ti、V、Mn、
Y、Zr、Nb、Mo、Tc、Ru、Rh、Pd、Wか
ら成る群から選択される少なくとも一種、(B)有機酸
及び/又は無機酸及び/又はこれらの塩から成る群から
選択される少なくとも一種、並びに(C)任意成分とし
てフッ素を含有するものであり、 前記水性液状組成物が三価クロム、Ti、V、Mn、
Y、Zr、Nb、Mo、Tc、Ru、Rh、Pd、W、
Li、Na、K、Be、Mg、Ca、Al、Fe、N
i、Co、Si、Sr、In、Ag、Zn、Cu、S
c、有機酸、無機酸、有機酸塩、無機酸塩、アミノ酸、
アミノ酸塩、フッ素、アミン類、アルコール類、水溶性
ポリマー、界面活性剤、シランカップリング剤、カーボ
ンパウダー、染料、顔料、有機コロイド、無機コロイド
から成る群から選択される少なくとも一種以上を含有す
るものである金属の保護皮膜形成方法。
4. The surface of a metal is coated with a layer formed from an aqueous acidic liquid composition, and then immersed once or a plurality of times in an aqueous liquid composition having the same composition and / or a different composition from the aqueous acidic liquid composition. A method for forming a metal protective film, which comprises a step of drying after the final immersion without rinsing, wherein the aqueous acidic liquid composition comprises (A) Ti, V, Mn,
At least one selected from the group consisting of Y, Zr, Nb, Mo, Tc, Ru, Rh, Pd and W, and (B) selected from the group consisting of an organic acid and / or an inorganic acid and / or a salt thereof. At least one and (C) fluorine as an optional component, wherein the aqueous liquid composition is trivalent chromium, Ti, V, Mn,
Y, Zr, Nb, Mo, Tc, Ru, Rh, Pd, W,
Li, Na, K, Be, Mg, Ca, Al, Fe, N
i, Co, Si, Sr, In, Ag, Zn, Cu, S
c, organic acid, inorganic acid, organic acid salt, inorganic acid salt, amino acid,
Those containing at least one or more selected from the group consisting of amino acid salts, fluorine, amines, alcohols, water-soluble polymers, surfactants, silane coupling agents, carbon powders, dyes, pigments, organic colloids and inorganic colloids. A method for forming a protective film of a metal.
【請求項5】 金属の表面を水性酸性液状組成物から化
成する層で被覆した後、前記水性酸性液状組成物と同組
成及び/又は別組成の水性液状組成物に一回又は複数回
浸漬し、最後の浸漬の後、濯ぎを行わずに乾燥する工程
からなる金属の保護皮膜形成方法であって、 前記水性酸性液状組成物が、(A)三価クロム、Ti、
V、Mn、Y、Zr、Nb、Mo、Tc、Ru、Rh、
Pd、Wから成る群から選択される少なくとも一種、
(B)有機酸及び/又は無機酸及び/又はこれらの塩か
ら成る群から選択される少なくとも一種、(C)Li、
Na、K、Be、Co、Mg、Ca、Al、Ni、Si
から成る群から選択される少なくとも一種、並びに
(D)任意成分としてフッ素を含有するものであり、 前記水性液状組成物が三価クロム、Ti、V、Mn、
Y、Zr、Nb、Mo、Tc、Ru、Rh、Pd、W、
Li、Na、K、Be、Mg、Ca、Al、Fe、N
i、Co、Si、Sr、In、Ag、Zn、Cu、S
c、有機酸、無機酸、有機酸塩、無機酸塩、アミノ酸、
アミノ酸塩、フッ素、アミン類、アルコール類、水溶性
ポリマー、界面活性剤、シランカップリング剤、カーボ
ンパウダー、染料、顔料、有機コロイド、無機コロイド
から成る群から選択される少なくとも一種以上を含有す
るものである金属の保護皮膜形成方法。
5. The surface of a metal is coated with a layer formed from an aqueous acidic liquid composition, and then immersed once or a plurality of times in an aqueous liquid composition having the same composition and / or a different composition from the aqueous acidic liquid composition. A method for forming a metal protective film, which comprises a step of drying without rinsing after the final immersion, wherein the aqueous acidic liquid composition comprises (A) trivalent chromium, Ti,
V, Mn, Y, Zr, Nb, Mo, Tc, Ru, Rh,
At least one selected from the group consisting of Pd and W,
(B) at least one selected from the group consisting of organic acids and / or inorganic acids and / or salts thereof, (C) Li,
Na, K, Be, Co, Mg, Ca, Al, Ni, Si
At least one selected from the group consisting of, and (D) fluorine as an optional component, wherein the aqueous liquid composition is trivalent chromium, Ti, V, Mn,
Y, Zr, Nb, Mo, Tc, Ru, Rh, Pd, W,
Li, Na, K, Be, Mg, Ca, Al, Fe, N
i, Co, Si, Sr, In, Ag, Zn, Cu, S
c, organic acid, inorganic acid, organic acid salt, inorganic acid salt, amino acid,
Those containing at least one or more selected from the group consisting of amino acid salts, fluorine, amines, alcohols, water-soluble polymers, surfactants, silane coupling agents, carbon powders, dyes, pigments, organic colloids and inorganic colloids. A method for forming a protective film of a metal.
【請求項6】 金属の表面を水性酸性液状組成物から化
成する層で被覆した後、前記水性酸性液状組成物と同組
成及び/又は別組成の水性液状組成物に一回又は複数回
浸漬し、最後の浸漬の後、濯ぎを行わずに乾燥する工程
からなる金属の保護皮膜形成方法であって、 前記水性酸性液状組成物が、(A)0.01〜150g
/Lの三価クロム及び/又はコバルト、(B)有機酸及
び/又は硝酸及び/又はこれらの塩から成る群から選択
される少なくとも一種、(C)0.1〜300g/Lの
Ti、V、Mn、Y、Zr、Nb、Mo、Tc、Ru、
Rh、Pd、W、Li、Na、K、Be、Mg、Ca、
Al、Ni、Siから成る群から選択される少なくとも
一種、並びに(D)任意成分としてフッ素を含有するも
のであり、 前記水性液状組成物が三価クロム、Ti、V、Mn、
Y、Zr、Nb、Mo、Tc、Ru、Rh、Pd、W、
Li、Na、K、Be、Mg、Ca、Al、Fe、N
i、Co、Si、Sr、In、Ag、Zn、Cu、S
c、有機酸、無機酸、有機酸塩、無機酸塩、アミノ酸、
アミノ酸塩、フッ素、アミン類、アルコール類、水溶性
ポリマー、界面活性剤、シランカップリング剤、カーボ
ンパウダー、染料、顔料、有機コロイド、無機コロイド
から成る群から選択される少なくとも一種以上を含有す
るものである金属の保護皮膜形成方法。
6. The surface of a metal is coated with a layer formed from an aqueous acidic liquid composition, and then dipped once or a plurality of times in an aqueous liquid composition having the same composition and / or a different composition from the aqueous acidic liquid composition. A method for forming a protective metal film comprising a step of drying after the final immersion without rinsing, wherein the aqueous acidic liquid composition comprises (A) 0.01 to 150 g.
/ L trivalent chromium and / or cobalt, (B) at least one selected from the group consisting of organic acids and / or nitric acid and / or salts thereof, (C) 0.1 to 300 g / L Ti, V , Mn, Y, Zr, Nb, Mo, Tc, Ru,
Rh, Pd, W, Li, Na, K, Be, Mg, Ca,
At least one selected from the group consisting of Al, Ni and Si, and (D) fluorine as an optional component, wherein the aqueous liquid composition is trivalent chromium, Ti, V, Mn,
Y, Zr, Nb, Mo, Tc, Ru, Rh, Pd, W,
Li, Na, K, Be, Mg, Ca, Al, Fe, N
i, Co, Si, Sr, In, Ag, Zn, Cu, S
c, organic acid, inorganic acid, organic acid salt, inorganic acid salt, amino acid,
Those containing at least one or more selected from the group consisting of amino acid salts, fluorine, amines, alcohols, water-soluble polymers, surfactants, silane coupling agents, carbon powders, dyes, pigments, organic colloids and inorganic colloids. A method for forming a protective film of a metal.
【請求項7】 金属の表面を水性酸性液状組成物から化
成する層で被覆した後、前記水性酸性液状組成物と同組
成及び/又は別組成の水性液状組成物に一回又は複数回
浸漬し、最後の浸漬の後、濯ぎを行わずに乾燥する工程
からなる金属の保護皮膜形成方法であって、 前記水性酸性液状組成物から化成する層で被覆する工程
と前記水性液状組成物への最後の浸漬工程までの任意の
各浸漬工程間に濯ぎを行う又は行わない請求項4〜6の
いずれか一の請求項に記載の金属の保護皮膜形成方法。
7. The surface of a metal is coated with a layer formed from an aqueous acidic liquid composition, and then immersed once or a plurality of times in an aqueous liquid composition having the same composition and / or a different composition from the aqueous acidic liquid composition. A method for forming a metal protective film, which comprises a step of drying without rinsing after the final dipping, a step of coating with a layer formed from the aqueous acidic liquid composition and the last step of adding the aqueous liquid composition. The method for forming a metal protective film according to any one of claims 4 to 6, wherein rinsing is performed or is not performed between arbitrary immersion steps up to the immersion step.
【請求項8】 前記金属表面に請求項1〜7のいずれか
一に記載の方法により保護皮膜を形成した後、更にケイ
素化合物及び/若しくは樹脂及び/若しくは無機コロイ
ドを含有する水溶液、又はpHが7.5以上の水溶液を
接触させる金属の保護皮膜形成方法。
8. After forming a protective film on the metal surface by the method according to claim 1, an aqueous solution further containing a silicon compound and / or a resin and / or an inorganic colloid, or having a pH of A method for forming a metal protective film, which comprises contacting an aqueous solution of 7.5 or more.
【請求項9】 前記ケイ素化合物が珪酸ナトリウム、珪
酸カリウム、珪酸リチウム、又は粒径が500nm以下
のコロイダルシリカである請求項8に記載の金属の保護
皮膜形成方法。
9. The method for forming a metal protective film according to claim 8, wherein the silicon compound is sodium silicate, potassium silicate, lithium silicate, or colloidal silica having a particle size of 500 nm or less.
【請求項10】 前記金属がZn、Ni、Cu、Ag、
Fe、Cd、Al、Mg又はこれらの合金である請求項
1〜9のいずれか一の請求項に記載の金属の保護皮膜形
成方法。
10. The metal is Zn, Ni, Cu, Ag,
The method for forming a metal protective film according to any one of claims 1 to 9, which is Fe, Cd, Al, Mg or an alloy thereof.
【請求項11】 請求項1〜10のいずれか一の請求項
に記載の金属の保護皮膜形成方法により形成された金属
の保護皮膜。
11. A metal protective film formed by the method for forming a metal protective film according to any one of claims 1 to 10.
JP2001372484A 2001-12-06 2001-12-06 Method for forming protective film of metal, and protective film of metal Pending JP2003171778A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001372484A JP2003171778A (en) 2001-12-06 2001-12-06 Method for forming protective film of metal, and protective film of metal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001372484A JP2003171778A (en) 2001-12-06 2001-12-06 Method for forming protective film of metal, and protective film of metal

Publications (1)

Publication Number Publication Date
JP2003171778A true JP2003171778A (en) 2003-06-20

Family

ID=19181371

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001372484A Pending JP2003171778A (en) 2001-12-06 2001-12-06 Method for forming protective film of metal, and protective film of metal

Country Status (1)

Country Link
JP (1) JP2003171778A (en)

Cited By (36)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005085497A1 (en) * 2004-03-03 2005-09-15 Dipsol Chemicals Co., Ltd. Agent for reducing coating film overall friction coefficient for trivalent chromate treating solution, trivalent chromate treating solution and method for production thereof, and trivalent chromate coating film reduced in overall friction coefficient and method for production thereof
WO2006128154A1 (en) * 2005-05-26 2006-11-30 Pavco, Inc. Trivalent chromium conversion coating and method of application thereof
JP2007517982A (en) * 2004-01-08 2007-07-05 中國國際海運集装箱(集團)股▲フン▼有限公司 From-free passivating solution
WO2007080849A1 (en) * 2006-01-10 2007-07-19 Mitsui Mining & Smelting Co., Ltd. Method for chemical conversion treatment of the surface of aluminum material and aluminum material
EP1953264A3 (en) * 2006-12-28 2008-08-13 United Technologies Corporation Halogen-free trivalent chromium conversion coating
JP2009041092A (en) * 2007-08-10 2009-02-26 Daiwa Fine Chemicals Co Ltd (Laboratory) Chemical treatment liquid for galvanizing or galvannealing film, and method for forming corrosion protection coating using the same
JP2009041077A (en) * 2007-08-09 2009-02-26 Chemicoat & Co Ltd Solution composition of metal surface-treatment agent containing zirconium as main component, and surface-treatment method
WO2010001861A1 (en) 2008-07-01 2010-01-07 日本パーカライジング株式会社 Chemical conversion liquid for metal structure and surface treating method
JP2010111898A (en) * 2008-11-05 2010-05-20 Nippon Parkerizing Co Ltd Chemical conversion-treated metal sheet and method for producing the same
AU2005312758B2 (en) * 2004-12-08 2010-06-10 Henkel Kommanditgesellschaft Auf Aktien Composition for metal surface treatment, treating liquid for surface treatment, method of surface treatment, and surface-treated metallic material
WO2010114170A1 (en) 2009-03-31 2010-10-07 Jfeスチール株式会社 Zinc-coated steel sheet
WO2011002040A1 (en) 2009-07-02 2011-01-06 日本パーカライジング株式会社 Chromium- and fluorine-free chemical conversion treatment solution for metal surfaces, metal surface treatment method, and metal surface coating method
CN101629287B (en) * 2009-08-17 2011-03-23 浙江省缙云县三鼎实业有限公司 Magnesium alloy surface treatment process
WO2011052701A1 (en) 2009-10-27 2011-05-05 Jfeスチール株式会社 Zinc-coated steel plate
JP2011089177A (en) * 2009-10-22 2011-05-06 Jfe Steel Corp Method for manufacturing surface treated steel sheet excellent in rust prevention property
CN102239279A (en) * 2008-12-05 2011-11-09 油研工业股份有限公司 Composition for chemical conversion treatment, and process for production of members provided with anticorrosive coatings
US20110273252A1 (en) * 2008-07-30 2011-11-10 Hitachi Metals, Ltd. Corrosion-resistant magnet and method for producing the same
WO2011147447A1 (en) * 2010-05-26 2011-12-01 Atotech Deutschland Gmbh Process for forming corrosion protection layers on metal surfaces
WO2012042883A1 (en) 2010-09-29 2012-04-05 Jfeスチール株式会社 Production method for galvanized steel sheet and galvanized steel sheet
JP2012097329A (en) * 2010-11-02 2012-05-24 Nippon Hyomen Kagaku Kk Finishing agent for chemical film containing no hexavalent chromium
US8304092B2 (en) 2006-12-13 2012-11-06 Jfe Steel Corporation Surface-treated galvanized steel sheet with superior flat-portion corrosion resistance, blackening resistance, and appearance and corrosion resistance after press forming and aqueous surface-treatment liquid for galvanized steel sheet
JP2013007108A (en) * 2011-06-27 2013-01-10 Nippon Steel & Sumitomo Metal Corp Surface-treated aluminum plated steel sheet, and method for manufacturing the same
JP2013249528A (en) * 2012-06-04 2013-12-12 Dipsol Chemicals Co Ltd Trivalent chromium-conversion processing solution containing aluminum-modified colloidal silica
KR20140060573A (en) 2011-09-14 2014-05-20 제이에프이 스틸 가부시키가이샤 Surface-treatment solution for zinc or zinc alloy coated steel sheet, and zinc or zinc alloy coated steel sheet and method for manufacturing the same
EP2759621A1 (en) * 2013-01-24 2014-07-30 Yuken Industry Co., Ltd. Reactive-type chemical conversion treatment composition and production method of member with chemical conversion coated surface
JP2015004136A (en) * 2007-12-14 2015-01-08 株式会社ネオス Method for forming a corrosion resistant film on a zinc metal surface
JP2015098625A (en) * 2013-11-19 2015-05-28 新日鐵住金株式会社 Sn-BASED PLATED STEEL SHEET, AND AQUEOUS PROCESSING SOLUTION
US9127366B2 (en) 2010-09-29 2015-09-08 Jfe Steel Corporation Zinc-based metal coated steel sheet
CN105401144A (en) * 2015-11-04 2016-03-16 合肥海源机械有限公司 Composite acidized aluminum alloy cured film forming solution and preparation method thereof
CN105401145A (en) * 2015-11-04 2016-03-16 合肥海源机械有限公司 Fluorinated carbon nanotube aluminum alloy cured film forming solution and preparation method thereof
TWI605155B (en) * 2015-04-16 2017-11-11 新日鐵住金股份有限公司 Steel sheet for container and method of manufacturing the same
JP2017226925A (en) * 2017-10-05 2017-12-28 ディップソール株式会社 Trivalent chromium chemical conversion treatment liquid containing aluminum modified colloidal silica
US9915006B2 (en) 2015-07-10 2018-03-13 Yuken Industry Co., Ltd. Reactive-type chemical conversion treatment composition and production method of member with chemical conversion coated surface
CN108707887A (en) * 2018-05-09 2018-10-26 昆山秀博表面处理材料有限公司 Admiro trivalent chromium black passivation solution and preparation method thereof
CN109457261A (en) * 2019-01-07 2019-03-12 廊坊市海寰科技有限公司 The preparation method of steel and iron parts degreasing derusting rust-proofing one-step method treatment fluid
US10563311B2 (en) 2015-04-16 2020-02-18 Nippon Steel Corporation Steel sheet for container and method for producing steel sheet for container

Cited By (53)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007517982A (en) * 2004-01-08 2007-07-05 中國國際海運集装箱(集團)股▲フン▼有限公司 From-free passivating solution
KR100799845B1 (en) * 2004-03-03 2008-01-31 딥솔 가부시키가이샤 Agent for reducing conversion film overall friction coefficient for trivalent chromate treating solution, trivalent chromate treating solution and method for production thereof, and trivalent chromate conversion film reduced in overall friction coefficient and method for production thereof
WO2005085497A1 (en) * 2004-03-03 2005-09-15 Dipsol Chemicals Co., Ltd. Agent for reducing coating film overall friction coefficient for trivalent chromate treating solution, trivalent chromate treating solution and method for production thereof, and trivalent chromate coating film reduced in overall friction coefficient and method for production thereof
AU2005312758B2 (en) * 2004-12-08 2010-06-10 Henkel Kommanditgesellschaft Auf Aktien Composition for metal surface treatment, treating liquid for surface treatment, method of surface treatment, and surface-treated metallic material
WO2006128154A1 (en) * 2005-05-26 2006-11-30 Pavco, Inc. Trivalent chromium conversion coating and method of application thereof
JPWO2007080849A1 (en) * 2006-01-10 2009-06-11 三井金属鉱業株式会社 Chemical conversion treatment method for aluminum material surface and aluminum material
WO2007080849A1 (en) * 2006-01-10 2007-07-19 Mitsui Mining & Smelting Co., Ltd. Method for chemical conversion treatment of the surface of aluminum material and aluminum material
US8304092B2 (en) 2006-12-13 2012-11-06 Jfe Steel Corporation Surface-treated galvanized steel sheet with superior flat-portion corrosion resistance, blackening resistance, and appearance and corrosion resistance after press forming and aqueous surface-treatment liquid for galvanized steel sheet
EP1953264A3 (en) * 2006-12-28 2008-08-13 United Technologies Corporation Halogen-free trivalent chromium conversion coating
EP2264221A1 (en) * 2006-12-28 2010-12-22 United Technologies Corporation Process for forming a halogen-free trivalent chromium conversion coating
US8257510B2 (en) 2006-12-28 2012-09-04 United Technologies Corporation Halogen-free trivalent chromium conversion coating
US7989078B2 (en) 2006-12-28 2011-08-02 United Technologies Coporation Halogen-free trivalent chromium conversion coating
JP2009041077A (en) * 2007-08-09 2009-02-26 Chemicoat & Co Ltd Solution composition of metal surface-treatment agent containing zirconium as main component, and surface-treatment method
JP2009041092A (en) * 2007-08-10 2009-02-26 Daiwa Fine Chemicals Co Ltd (Laboratory) Chemical treatment liquid for galvanizing or galvannealing film, and method for forming corrosion protection coating using the same
JP2015004136A (en) * 2007-12-14 2015-01-08 株式会社ネオス Method for forming a corrosion resistant film on a zinc metal surface
WO2010001861A1 (en) 2008-07-01 2010-01-07 日本パーカライジング株式会社 Chemical conversion liquid for metal structure and surface treating method
US9275794B2 (en) * 2008-07-30 2016-03-01 Hitachi Metals, Ltd. Corrosion-resistant magnet and method for producing the same
US20110273252A1 (en) * 2008-07-30 2011-11-10 Hitachi Metals, Ltd. Corrosion-resistant magnet and method for producing the same
JP2010111898A (en) * 2008-11-05 2010-05-20 Nippon Parkerizing Co Ltd Chemical conversion-treated metal sheet and method for producing the same
JP5594732B2 (en) * 2008-12-05 2014-09-24 ユケン工業株式会社 Chemical conversion composition and method for producing member having antirust coating
CN102239279A (en) * 2008-12-05 2011-11-09 油研工业股份有限公司 Composition for chemical conversion treatment, and process for production of members provided with anticorrosive coatings
WO2010114170A1 (en) 2009-03-31 2010-10-07 Jfeスチール株式会社 Zinc-coated steel sheet
WO2011002040A1 (en) 2009-07-02 2011-01-06 日本パーカライジング株式会社 Chromium- and fluorine-free chemical conversion treatment solution for metal surfaces, metal surface treatment method, and metal surface coating method
US9879346B2 (en) 2009-07-02 2018-01-30 Henkel Ag & Co. Kgaa Chromium-and-fluorine-free chemical conversion treatment solution for metal surfaces, metal surface treatment method, and metal surface coating method
CN101629287B (en) * 2009-08-17 2011-03-23 浙江省缙云县三鼎实业有限公司 Magnesium alloy surface treatment process
JP2011089177A (en) * 2009-10-22 2011-05-06 Jfe Steel Corp Method for manufacturing surface treated steel sheet excellent in rust prevention property
US9051654B2 (en) 2009-10-27 2015-06-09 Jfe Steel Corporation Galvanized steel sheet
WO2011052701A1 (en) 2009-10-27 2011-05-05 Jfeスチール株式会社 Zinc-coated steel plate
CN102947486A (en) * 2010-05-26 2013-02-27 安美特德国有限公司 Process for forming corrosion protection layers on metal surfaces
WO2011147447A1 (en) * 2010-05-26 2011-12-01 Atotech Deutschland Gmbh Process for forming corrosion protection layers on metal surfaces
US9738790B2 (en) 2010-05-26 2017-08-22 Atotech Deutschland Gmbh Process for forming corrosion protection layers on metal surfaces
CN102947486B (en) * 2010-05-26 2016-03-23 安美特德国有限公司 The method of preservative coat is prepared in metallic surface
US9127366B2 (en) 2010-09-29 2015-09-08 Jfe Steel Corporation Zinc-based metal coated steel sheet
US9499914B2 (en) 2010-09-29 2016-11-22 Jfe Steel Corporation Method for manufacturing zinc or zinc alloy coated steel sheet and zinc or zinc alloy coated steel sheet manufactured by the method
WO2012042883A1 (en) 2010-09-29 2012-04-05 Jfeスチール株式会社 Production method for galvanized steel sheet and galvanized steel sheet
JP2012097329A (en) * 2010-11-02 2012-05-24 Nippon Hyomen Kagaku Kk Finishing agent for chemical film containing no hexavalent chromium
JP2013007108A (en) * 2011-06-27 2013-01-10 Nippon Steel & Sumitomo Metal Corp Surface-treated aluminum plated steel sheet, and method for manufacturing the same
US9187829B2 (en) 2011-09-14 2015-11-17 Jfe Steel Corporation Surface-treatment solution for zinc or zinc alloy coated steel sheet and method for manufacturing zinc or zinc alloy coated steel sheet
KR20140060573A (en) 2011-09-14 2014-05-20 제이에프이 스틸 가부시키가이샤 Surface-treatment solution for zinc or zinc alloy coated steel sheet, and zinc or zinc alloy coated steel sheet and method for manufacturing the same
EP2857553A4 (en) * 2012-06-04 2016-02-24 Dipsol Chem Trivalent chromium-conversion processing solution containing aluminum-modified colloidal silica
JP2013249528A (en) * 2012-06-04 2013-12-12 Dipsol Chemicals Co Ltd Trivalent chromium-conversion processing solution containing aluminum-modified colloidal silica
EP2759621A1 (en) * 2013-01-24 2014-07-30 Yuken Industry Co., Ltd. Reactive-type chemical conversion treatment composition and production method of member with chemical conversion coated surface
JP2014159627A (en) * 2013-01-24 2014-09-04 Yuken Industry Co Ltd Acidic composition for reaction-type chemical conversion treatment, and manufacturing method of member having chemical conversion coating on the surface
JP2015098625A (en) * 2013-11-19 2015-05-28 新日鐵住金株式会社 Sn-BASED PLATED STEEL SHEET, AND AQUEOUS PROCESSING SOLUTION
US10577705B2 (en) 2015-04-16 2020-03-03 Nippon Steel Corporation Steel sheet for container and method for producing steel sheet for container
US10563311B2 (en) 2015-04-16 2020-02-18 Nippon Steel Corporation Steel sheet for container and method for producing steel sheet for container
TWI605155B (en) * 2015-04-16 2017-11-11 新日鐵住金股份有限公司 Steel sheet for container and method of manufacturing the same
US9915006B2 (en) 2015-07-10 2018-03-13 Yuken Industry Co., Ltd. Reactive-type chemical conversion treatment composition and production method of member with chemical conversion coated surface
CN105401145A (en) * 2015-11-04 2016-03-16 合肥海源机械有限公司 Fluorinated carbon nanotube aluminum alloy cured film forming solution and preparation method thereof
CN105401144A (en) * 2015-11-04 2016-03-16 合肥海源机械有限公司 Composite acidized aluminum alloy cured film forming solution and preparation method thereof
JP2017226925A (en) * 2017-10-05 2017-12-28 ディップソール株式会社 Trivalent chromium chemical conversion treatment liquid containing aluminum modified colloidal silica
CN108707887A (en) * 2018-05-09 2018-10-26 昆山秀博表面处理材料有限公司 Admiro trivalent chromium black passivation solution and preparation method thereof
CN109457261A (en) * 2019-01-07 2019-03-12 廊坊市海寰科技有限公司 The preparation method of steel and iron parts degreasing derusting rust-proofing one-step method treatment fluid

Similar Documents

Publication Publication Date Title
JP2003171778A (en) Method for forming protective film of metal, and protective film of metal
CA2465701C (en) Post-treatment for metal coated substrates
JP3392008B2 (en) Metal protective film forming treatment agent and treatment method
EP1404894B1 (en) Corrosion resistant coatings for aluminum and aluminum alloys
JPS6352114B2 (en)
JPWO2002103080A1 (en) Treatment solution for surface treatment of metal and surface treatment method
JP3987633B2 (en) Metal protective film forming treatment agent and forming method
KR20070103492A (en) Surface-treated metallic material
JP2003213446A (en) Black film formation treatment agent for metallic surface and treatment method therefor
AU2005327549A1 (en) Process for preparing chromium conversion coatings for magnesium alloys
US4018628A (en) Process for coloring aluminium
JP2003313675A (en) Agent for forming rust preventive film on metal, and forming method
JP2005325401A (en) Surface treatment method for zinc or zinc alloy coated steel
JP5827792B2 (en) Chemically treated iron-based materials
JP2004010937A (en) Colored rust-preventive film forming agent and method for forming the same
JPH05214265A (en) Self-depositing water-based coating composition
JP2008214744A (en) Black rust prevention treatment liquid on galvanized or galvannealed metal surface, and black rust prevention film treatment method
JP3417653B2 (en) Pretreatment method for painting aluminum material
US20040115448A1 (en) Corrosion resistant magnesium and magnesium alloy and method of producing same
WO2006088518A2 (en) Process for preparing chromium conversion coatings for iron and iron alloys
JP3475908B2 (en) Method for improving the weather resistance of zinc-based plating materials
KR20080087477A (en) Trivalent chromate solution, chromated metal, and method for manufactring the chromated metal
JPH11152588A (en) Composition for forming rust preventive protective coating for metal and its formation
JP2003293156A (en) Phosphate treated steel sheet excellent in corrosion resistance, adhesion for coating material and corrosion resistance after coating, and production method therefor
JP7282975B1 (en) Chemical conversion agent

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20041112

Free format text: JAPANESE INTERMEDIATE CODE: A621

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060124

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060131

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20060530