JP2003170043A - Exhaust gas treatment catalyst and production method of the same - Google Patents

Exhaust gas treatment catalyst and production method of the same

Info

Publication number
JP2003170043A
JP2003170043A JP2001376175A JP2001376175A JP2003170043A JP 2003170043 A JP2003170043 A JP 2003170043A JP 2001376175 A JP2001376175 A JP 2001376175A JP 2001376175 A JP2001376175 A JP 2001376175A JP 2003170043 A JP2003170043 A JP 2003170043A
Authority
JP
Japan
Prior art keywords
exhaust gas
catalyst
honeycomb substrate
catalyst carrier
gas purifying
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2001376175A
Other languages
Japanese (ja)
Inventor
Hiroshi Tamura
央 田村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2001376175A priority Critical patent/JP2003170043A/en
Publication of JP2003170043A publication Critical patent/JP2003170043A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Exhaust Gas After Treatment (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Catalysts (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a ventilation type exhaust gas treatment catalyst with improved exhaust gas treatment capability and excellent durability without increasing the pressure loss of an exhaust gas. <P>SOLUTION: The exhaust gas treatment catalyst is a ventilation type exhaust gas treatment catalyst composed of a catalyst carrier and catalytic components deposited on a honeycomb substrate in a manner that at least 90% by mass of the catalyst carrier and the catalytic components respectively are deposited in pores of the cell walls of the honeycomb substrate. Preferably, the honeycomb substrate has a porosity of the cell walls in a range from 40 to 75% and D50 pore diameter in a range from 10 to 50 μm and the pores of the cell walls of the honeycomb substrate are practically nonpenetrating holes. Such an exhaust gas treatment catalyst can be produced by preparing a slurry of particles having D90 particle diameter smaller than the D50 pore diameter of the cell walls of the honeycomb substrate and washing-coating the honeycomb substrate with the slurry. <P>COPYRIGHT: (C)2003,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、流通式の排気ガス
浄化用触媒、とりわけ、自動車用エンジン等の内燃機関
から排出される排気ガスを低い圧力損失で効率よく浄化
するための排気ガス浄化用触媒に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a flow-type exhaust gas purification catalyst, and more particularly to an exhaust gas purification catalyst for efficiently purifying exhaust gas discharged from an internal combustion engine such as an automobile engine with a low pressure loss. Regarding catalysts.

【0002】[0002]

【従来の技術】自動車用エンジン等の内燃機関から排出
される排気ガスには、一酸化炭素(CO)、炭化水素(H
C)、窒素酸化物(NOX)等が含まれ、これらの有害物質
は、一般に、白金(Pt)、ロジウム(Rh)、パラジウム
(Pd)等の貴金属を触媒成分とする排気ガス浄化用触媒
によって浄化される。こうした排気ガス浄化用触媒は、
通常、多数のセルを備えたコージェライト製等のハニカ
ム基材に、γ-アルミナ等の触媒担体をコートし、さら
に上記の触媒成分を担持して構成される。
2. Description of the Related Art Exhaust gas emitted from an internal combustion engine such as an automobile engine contains carbon monoxide (CO), hydrocarbon (H
C), nitrogen oxides (NO x ), etc., and these harmful substances are generally platinum (Pt), rhodium (Rh), palladium.
It is purified by an exhaust gas purification catalyst containing a noble metal such as (Pd) as a catalyst component. Such exhaust gas purification catalyst
Usually, a honeycomb substrate made of cordierite or the like having a large number of cells is coated with a catalyst carrier such as γ-alumina, and the above catalyst components are further carried.

【0003】しかるに、環境保護のため、こうした排気
ガス浄化用触媒の浄化性能に対して各種の改良が重ねら
れている。この改良の方策の1つとして、ハニカム基材
のセル密度を増加させ、それによって、触媒成分の排気
ガスとの接触効率を高めることが行われてきた。
However, in order to protect the environment, various improvements have been made on the purification performance of such exhaust gas purification catalysts. As one of the measures for this improvement, it has been attempted to increase the cell density of the honeycomb substrate and thereby increase the contact efficiency of the catalyst component with the exhaust gas.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、ハニカ
ム基材のセル密度は既に相当に増加されており、さらに
セル数を増加させることは、排気ガス流路の断面に占め
るセル壁断面の割合をかなり増加させることになる。こ
のため、さらにセル密度を増加させることは、排気ガス
浄化用触媒を流通する排気ガスの圧力損失を増大させ、
燃費の悪化を招くことになる。また、排気ガス浄化用触
媒は、長期間にわたって振動等の機械的作用に耐える必
要がある。
However, the cell density of the honeycomb substrate has already been considerably increased, and increasing the number of cells further increases the proportion of the cell wall cross section in the cross section of the exhaust gas passage. Will be increased. Therefore, increasing the cell density further increases the pressure loss of the exhaust gas flowing through the exhaust gas purification catalyst,
This leads to deterioration of fuel efficiency. Further, the exhaust gas purifying catalyst needs to endure mechanical action such as vibration for a long period of time.

【0005】ところで、本出願人は、先に、特開平9−
94434号公報において、ディーゼルエンジンの排気
ガスに含まれるパティキュレート等を浄化することを目
的とし、セルが1つ置きに栓詰めされ、排気ガスが開気
孔のセル壁を貫通して流れるウォールフロー型排気ガス
浄化用フィルタを提案している。しかし、この公報にお
いては、流通式の排気ガス浄化用触媒における浄化性
能、圧力損失、耐久性については特段の記載をしていな
い。
By the way, the applicant of the present invention has previously disclosed that the Japanese Patent Laid-Open No. 9-
Japanese Patent No. 94434 discloses a wall-flow type in which every other cell is plugged and exhaust gas flows through a cell wall of an open hole for the purpose of purifying particulates and the like contained in exhaust gas of a diesel engine. An exhaust gas purification filter is proposed. However, this publication makes no particular mention of purification performance, pressure loss, and durability of the flow-type exhaust gas purification catalyst.

【0006】したがって、本発明は、流通式の排気ガス
浄化用触媒において、排気ガス浄化用触媒を流れる排気
ガスの圧力損失を増大させず、触媒成分の排気ガスとの
接触効率を高めることによって排気ガス浄化性能を向上
させ、耐久性にも優れる排気ガス浄化用触媒を提供する
ことを目的とする。
Therefore, according to the present invention, in a flow-type exhaust gas purifying catalyst, the pressure loss of the exhaust gas flowing through the exhaust gas purifying catalyst is not increased, and the contact efficiency of the catalyst component with the exhaust gas is increased to improve the exhaust gas. An object of the present invention is to provide an exhaust gas purifying catalyst that has improved gas purification performance and excellent durability.

【0007】[0007]

【課題を解決するための手段】上記の目的は、ハニカム
基材に触媒担体と触媒成分が担持されてなる排気ガス浄
化用触媒であって、前記触媒担体と前記触媒成分のそれ
ぞれ少なくとも90質量%が前記ハニカム基材のセル壁
の気孔内に配置されたことを特徴とする流通式の排気ガ
ス浄化用触媒によって達成される。
The above object is an exhaust gas purifying catalyst in which a catalyst carrier and a catalyst component are supported on a honeycomb substrate, wherein the catalyst carrier and the catalyst component are each at least 90% by mass. Are disposed in the pores of the cell wall of the honeycomb substrate, which is achieved by the flow-through type exhaust gas purifying catalyst.

【0008】即ち、本発明の排気ガス浄化用触媒は、多
数のセルを有するハニカム基材を基本的な構成材料とし
て備え、セルの両端は排気ガスが流通するように開口
し、ハニカム基材のセル壁の気孔内に、γ-アルミナ等
の触媒担体と白金等の触媒成分のそれぞれ少なくとも9
0質量%が配置された排気ガス浄化用触媒である。
That is, the exhaust gas purifying catalyst of the present invention comprises a honeycomb base material having a large number of cells as a basic constituent material, and both ends of the cells are opened so that exhaust gas flows, and the honeycomb base material In the pores of the cell wall, at least 9 parts each of a catalyst carrier such as γ-alumina and a catalyst component such as platinum are contained.
This is an exhaust gas purifying catalyst in which 0 mass% is arranged.

【0009】図1は、本発明の排気ガス浄化用触媒をモ
デル的に示すものであり、触媒担体と触媒成分が、セル
壁の気孔内に配置されることで、排気ガスの流路を狭く
することなく、ハニカム基材に触媒担体と触媒成分が配
置・固定される。図2は、従来技術の排気ガス浄化用触
媒をモデル的に示すものであり、触媒担体と触媒成分が
セル壁の上に配置され、排気ガスの流路が狭くなるた
め、排気ガスの圧力損失の増大を招くことになる。
FIG. 1 shows a model of the exhaust gas purifying catalyst of the present invention. By arranging the catalyst carrier and the catalyst components in the pores of the cell wall, the flow path of the exhaust gas is narrowed. Without doing so, the catalyst carrier and the catalyst component are arranged and fixed on the honeycomb substrate. FIG. 2 is a model view of a conventional exhaust gas purifying catalyst, in which a catalyst carrier and a catalyst component are arranged on a cell wall and an exhaust gas passage is narrowed, so that the exhaust gas pressure loss is reduced. Will be increased.

【0010】また、従来技術の排気ガス浄化用触媒で
は、図2に示すように、セルのコーナーの箇所で触媒担
体が厚くコートされ、このコーナーの箇所には排気ガス
が実質的に流通しないため、圧力損失の増大を招くのみ
ならず、触媒担体と触媒成分が無駄になり、さらに、排
気ガス浄化用触媒の熱容量の不必要な増加をもたらすこ
とにもなる。
Further, in the conventional exhaust gas purifying catalyst, as shown in FIG. 2, the catalyst carrier is thickly coated at the corners of the cell, and the exhaust gas does not substantially flow at the corners. Not only does this lead to an increase in pressure loss, but the catalyst carrier and catalyst components are wasted, and the heat capacity of the exhaust gas purifying catalyst is unnecessarily increased.

【0011】好ましい態様において、本発明の排気ガス
浄化用触媒を構成するハニカム基材のセル壁は、40〜
75%の気孔率と10〜50μmのD50気孔径を有す
る。ハニカム基材の気孔率とD50気孔径がこれらの範囲
にある場合、ハニカム基材は触媒担体と触媒成分を良好
に担持すると同時に、触媒成分に排気ガスとの高い接触
効率を与えることができる。
In a preferred embodiment, the cell wall of the honeycomb base material which constitutes the exhaust gas purifying catalyst of the present invention is 40 to
It has a porosity of 75% and a D50 pore size of 10 to 50 μm. When the porosity and the D50 pore diameter of the honeycomb substrate are within these ranges, the honeycomb substrate can favorably support the catalyst carrier and the catalyst component, and at the same time, can provide the catalyst component with high contact efficiency with exhaust gas.

【0012】また、好ましい態様において、ハニカム基
材のセル壁の気孔は実質的に非貫通孔である。触媒担体
と触媒成分がハニカム基材のセル壁の気孔内に配置され
ることによって、触媒担体と触媒成分がそれらを囲むセ
ル壁によって保持され、これに加えて、この気孔が非貫
通孔であることにより、振動等の機械的作用による触媒
担体と触媒成分、及びセル壁の部分的な脱落が抑制さ
れ、高い耐久性を発揮することができるものと考えられ
る。
Further, in a preferred embodiment, the pores of the cell wall of the honeycomb substrate are substantially non-penetrating pores. By placing the catalyst carrier and the catalyst component in the pores of the cell wall of the honeycomb substrate, the catalyst carrier and the catalyst component are held by the cell walls surrounding them, and in addition, the pores are non-through holes. Therefore, it is considered that the catalyst carrier and the catalyst components and the cell wall are partially prevented from falling off due to mechanical action such as vibration, and high durability can be exhibited.

【0013】こうした本発明の排気ガス浄化用触媒は、
後述の実施例に示すように、排気ガスの圧力損失が少な
く、排気ガス浄化性能にも優れることが実証されてい
る。この圧力損失が少ないことは、排気ガスの流路を狭
めないためであり、排気ガス浄化性能が優れることは、
触媒成分の排気ガスとの接触効率が向上するためと考え
られる。
Such an exhaust gas purifying catalyst of the present invention is
As shown in Examples described later, it has been proved that the pressure loss of exhaust gas is small and the exhaust gas purification performance is excellent. This low pressure loss is because the flow path of the exhaust gas is not narrowed, and the excellent exhaust gas purification performance is
It is considered that this is because the contact efficiency of the catalyst component with the exhaust gas is improved.

【0014】即ち、本発明の排気ガス浄化用触媒におい
て、触媒成分は、セル壁内に存在して、むしろセル壁に
埋設された状態で担持されるが、セル壁の気孔が曲面の
担持面を提供するため、担持面積が増加し、また、気孔
体積により排気ガスの滞留時間が増加するため、全体と
して排気ガスとの高い接触効率を提供することができる
ものと考えられる。
That is, in the exhaust gas purifying catalyst of the present invention, the catalyst component is carried in the state of being present in the cell wall and being buried in the cell wall, but the pores of the cell wall are curved. Therefore, it is considered that the supporting area is increased and the residence time of the exhaust gas is increased due to the pore volume, so that high contact efficiency with the exhaust gas can be provided as a whole.

【0015】また、こうした本発明の排気ガス浄化用触
媒は、上記の従来技術におけるセルのコーナーにおける
触媒担体と触媒成分の無駄が解消されるといった長所を
有する。さらに、この無駄に由来する熱容量の不必要な
増加もまた解消される。したがって、早期暖機性が改良
され、エンジン排気口の近くに配置されるスタートアッ
プ触媒としても好適に使用されることができる。
Further, the exhaust gas purifying catalyst of the present invention has an advantage in that the waste of the catalyst carrier and the catalyst component at the corner of the cell in the above-mentioned conventional technique is eliminated. Furthermore, the unnecessary increase in heat capacity resulting from this waste is also eliminated. Therefore, the early warm-up property is improved, and it can be suitably used also as a start-up catalyst arranged near the engine exhaust port.

【0016】なお、ハニカム基材のセルの形状は、通常
の四角形であることができ、また、図3に示す六角形そ
の他の多角形であることができる。本発明は、セル壁に
触媒担体と触媒成分を担持するものであるため、多角形
にしてセル壁の断面の周長が増すことが、触媒担体と触
媒成分の担持量の増加をもたらすためである。
The shape of the cells of the honeycomb substrate may be a regular quadrangle, or may be the hexagonal shape shown in FIG. 3 or another polygonal shape. Since the present invention supports the catalyst carrier and the catalyst component on the cell wall, the polygonal shape increases the circumferential length of the cross section of the cell wall, which leads to an increase in the supported amount of the catalyst carrier and the catalyst component. is there.

【0017】[0017]

【発明の実施の形態】本発明の排気ガス浄化用触媒は、
ハニカム基材に触媒担体と触媒成分が担持され、これら
の触媒担体と触媒成分のそれぞれ少なくとも90質量%
が、ハニカム基材のセル壁の気孔内に配置されて構成さ
れる。
BEST MODE FOR CARRYING OUT THE INVENTION The exhaust gas purifying catalyst of the present invention comprises:
A catalyst carrier and a catalyst component are supported on a honeycomb substrate, and each of the catalyst carrier and the catalyst component is at least 90% by mass.
Are arranged in the pores of the cell walls of the honeycomb substrate.

【0018】ハニカム基材としては、コージェライト、
アルミナ、ジルコニア、炭化ケイ素のような耐熱性のあ
るセラミック材料からなるものが好適に使用可能であ
る。このハニカム基材は、両端が開口した多数のセルを
有するものが使用され、ハニカム基材のセル密度は、本
発明においては特に限定される必要はなく、約200セ
ル/平方インチのような中密度のもの、1000セル/
平方インチ以上のように高密度のものが使用されること
ができる。
As the honeycomb substrate, cordierite,
A material made of a heat-resistant ceramic material such as alumina, zirconia, or silicon carbide can be preferably used. The honeycomb base material used has a large number of cells having open ends, and the cell density of the honeycomb base material is not particularly limited in the present invention, and is about 200 cells / square inch. High density, 1000 cells /
High densities such as square inches or more can be used.

【0019】触媒担体としては、アルミナ、ジルコニ
ア、セリアのような酸化物のほか、ジルコニア-セリ
ア、アルミナ-セリア-ジルコニア、セリア-ジルコニア-
イットリア、ジルコニア-カルシアのような複合酸化物
からなるものが好適に使用可能である。
Examples of the catalyst carrier include oxides such as alumina, zirconia and ceria, as well as zirconia-ceria, alumina-ceria-zirconia and ceria-zirconia.
Those composed of composite oxides such as yttria and zirconia-calcia can be preferably used.

【0020】触媒成分としては、周期律表の3A〜7A
族、貴金属を含む8族、1B族、及びf-ブロック元素
を含む遷移金属が好適に使用可能であり、マンガン(M
n)、鉄(Fe)、コバルト(Co)、ニッケル(Ni)、銅
(Cu)、イットリウム(Y)、ジルコニウム(Zr)、ニオ
ブ(Nb)、モリブデン(Mo)、ハフニウム(Hf)、タン
タル(Ta)、タングステン(W)、ランタン(La)、セリ
ウム(Ce)、プラセオジウム(Pr)、ネオジム(Nd)、
及び白金(Pt)、金(Au)、パラジウム(Pd)、ルテニ
ウム(Ru)、ロジウム(Rh)等の貴金属が例示され、好
ましくは、マンガン、鉄、コバルト、ニッケル、銅、白
金、金、パラジウム、ルテニウム、及びロジウムから選
択された少なくとも1種の遷移金属である。
The catalyst component is 3A to 7A in the periodic table.
Group, group 8 including noble metals, group 1B, and transition metals including f-block elements can be preferably used, and manganese (M
n), iron (Fe), cobalt (Co), nickel (Ni), copper
(Cu), yttrium (Y), zirconium (Zr), niobium (Nb), molybdenum (Mo), hafnium (Hf), tantalum (Ta), tungsten (W), lanthanum (La), cerium (Ce), praseodymium. (Pr), Neodymium (Nd),
And noble metals such as platinum (Pt), gold (Au), palladium (Pd), ruthenium (Ru), and rhodium (Rh) are exemplified, and preferably manganese, iron, cobalt, nickel, copper, platinum, gold, palladium. And at least one transition metal selected from ruthenium, and rhodium.

【0021】好ましくは、上記のハニカム基材のセル壁
が、40〜75%の気孔率と10〜50μmのD50気孔
径を有する。ここで、本発明における用語「セル壁の気
孔率」とは、水銀ポロシメーターを用いて水銀圧入法に
したがって測定された気孔率を意味し、用語「セル壁の
D50気孔径」とは、この水銀ポロシメーターを用いた方
法にしたがって測定された気孔径分布における累積体積
が50%の気孔径を意味する。
[0021] Preferably, the cell wall of the above-mentioned honeycomb substrate has a porosity of 40 to 75% and a D50 pore diameter of 10 to 50 µm. Here, the term "porosity of cell wall" in the present invention means a porosity measured by a mercury porosimetry using a mercury porosimeter, and the term "D50 pore diameter of cell wall" means this mercury. It means a pore size having a cumulative volume of 50% in the pore size distribution measured according to the method using a porosimeter.

【0022】また、好ましくは、ハニカム基材のセル壁
に存在する気孔は実質的に非貫通孔である。ここで、本
発明における用語「実質的に非貫通孔」とは、排気ガス
の流れ方向に垂直な方向のセル壁の断面において観察さ
れる気孔において、個数平均で少なくとも70%、より
好ましくは、少なくとも90%が、セル壁の両壁を貫通
していないことを意味する。このセル壁の気孔が貫通孔
であるか否かは、後述の実施例で示すように、セル壁の
断面を観察することによって評価することができる。
Also, preferably, the pores existing in the cell wall of the honeycomb substrate are substantially non-through holes. Here, the term “substantially non-through holes” in the present invention refers to pores observed in a cross section of a cell wall in a direction perpendicular to a flow direction of exhaust gas, and has a number average of at least 70%, and more preferably, At least 90% means not penetrating both walls of the cell wall. Whether or not the pores of the cell wall are through-holes can be evaluated by observing the cross section of the cell wall, as shown in Examples described later.

【0023】こうしたハニカム基材とそれを使用した本
発明の排気ガス浄化用触媒は、例えば、以下のようにし
て製造することができる。ハニカム基材は、ハニカム金
型を用いてセラミック原料配合物を押出成形し、次いで
乾燥・焼成を行うことによって得ることができる。ここ
で、例えば、原料配合物の中に粒子径が調整された焼失
性の材料を所定量で配合しておけば、得られるハニカム
基材のセル壁の気孔率とD50気孔径を目的の範囲に制御
することが可能である。
The honeycomb substrate and the exhaust gas purifying catalyst of the present invention using the honeycomb substrate can be manufactured, for example, as follows. The honeycomb substrate can be obtained by extruding a ceramic raw material mixture using a honeycomb mold, and then performing drying and firing. Here, for example, if a burnable material having a controlled particle size is blended in a predetermined amount in the raw material mixture, the porosity of the cell wall and the D50 pore size of the resulting honeycomb substrate are within the target range. It is possible to control.

【0024】この焼失性の材料としては、例えば、黒鉛
粒子、カーボンブラック、炭素繊維チョップ等が挙げら
れ、これらは、粒子径や長さが所望の範囲に調整された
ものが、比較的容易に入手可能である。
Examples of the burnable material include graphite particles, carbon black, carbon fiber chops, and the like, which have a particle diameter or length adjusted to a desired range, but are relatively easy. It is available.

【0025】また、セル壁の気孔が実質的に非貫通孔の
ハニカム基材は、好ましくは、粒子径分布の比較的狭い
黒鉛粒子又はカーボンブラックを用い、これらの焼失性
材料が配合物中で凝集しないように必要により分散剤を
加えて原料配合物を調製し、次いで上記の押出成形、乾
燥・焼成を行うことにより得ることができる。また、セ
ル壁の厚さよりも短い炭素繊維チョップを用いることに
より、同様にして、一次元的に延びる非貫通孔を備えた
ハニカム基材を得ることができる。
Further, the honeycomb substrate in which the pores of the cell walls are substantially non-through holes is preferably graphite particles or carbon black having a relatively narrow particle size distribution, and these burnable materials are used in the composition. It can be obtained by preparing a raw material mixture by adding a dispersant as necessary so as not to agglomerate, and then performing the above-mentioned extrusion molding and drying / firing. Further, by using a carbon fiber chop shorter than the cell wall thickness, it is possible to obtain a honeycomb substrate having a non-through hole that extends one-dimensionally in the same manner.

【0026】このようにして得られたハニカム基材に、
触媒担体と触媒成分が担持される。これらの担持は、例
えば、次のようにして行うことができる。上記のアルミ
ナ、ジルコニア、セリア-ジルコニア等の粉末を用いて
スラリーを調製し、このスラリーにハニカム基材を浸漬
してスラリーをハニカム基材に含浸させる。あるいは、
このスラリーにハニカム基材を浸漬してスラリーを減圧
する、又はハニカム基材に超音波等の機械的振動を与え
ることにより、スラリーをハニカム基材に強制的に含浸
させる。
On the honeycomb substrate thus obtained,
A catalyst carrier and a catalyst component are supported. The loading of these can be performed, for example, as follows. A slurry is prepared using the above-mentioned powder of alumina, zirconia, ceria-zirconia, etc., and the honeycomb substrate is immersed in this slurry to impregnate the honeycomb substrate with the slurry. Alternatively,
The honeycomb substrate is forcibly impregnated with the slurry by dipping the honeycomb substrate in the slurry to reduce the pressure of the slurry or by applying mechanical vibration such as ultrasonic waves to the honeycomb substrate.

【0027】次いで、このスラリーを含浸したハニカム
基材を乾燥・焼成して触媒担体をコートした後、例え
ば、上記の各種の触媒成分の硝酸塩、塩化物等を用い、
蒸発乾固法、沈殿法、吸着法、イオン交換法、還元析出
法等によって触媒成分を担持する。
Next, the honeycomb substrate impregnated with this slurry is dried and fired to coat a catalyst carrier, and then, for example, nitrates, chlorides, etc. of the above various catalyst components are used,
The catalyst component is supported by evaporation dryness method, precipitation method, adsorption method, ion exchange method, reduction precipitation method, or the like.

【0028】ここで、スラリー中で触媒担体が、ハニカ
ム基材のセル壁のD50気孔径を下回るD90粒子径を有す
るスラリーを調製し、次いでこのスラリーをハニカム基
材にウォッシュコートし、次いで触媒成分を前記触媒担
体に担持する方法によれば、触媒担体と触媒成分のそれ
ぞれ少なくとも90%が、ハニカム基材のセル壁の気孔
内に配置された本発明の排気ガス浄化用触媒を、比較的
容易に得ることができる。
Here, a slurry is prepared in which the catalyst carrier in the slurry has a D90 particle size smaller than the D50 pore size of the cell wall of the honeycomb substrate, and then the slurry is wash-coated on the honeycomb substrate, and then the catalyst component is prepared. According to the method of supporting the catalyst on the catalyst carrier, the exhaust gas purifying catalyst of the present invention in which at least 90% of each of the catalyst carrier and the catalyst component is arranged in the pores of the cell wall of the honeycomb substrate is relatively easy. Can be obtained.

【0029】この触媒担体のスラリーの「D90粒子径」
とは、調製されたスラリーにおける触媒担体の90%累
積質量の粒子径を意味する。ここで、スラリー中の粒度
の測定法には、動的光散乱法、光回折散乱法、ガスクロ
マトグラフィー法、沈降法等が挙げられるが、本発明に
おける「D90粒子径」は、光回折散乱法によって測定さ
れた値とする。
"D90 particle size" of the slurry of this catalyst carrier
Means the particle size of 90% cumulative mass of the catalyst carrier in the prepared slurry. Here, the method for measuring the particle size in the slurry includes a dynamic light scattering method, a light diffraction scattering method, a gas chromatography method, a sedimentation method and the like, and the "D90 particle size" in the present invention is the light diffraction scattering. The value measured by the method.

【0030】スラリー中の触媒担体のD90粒子径は、ス
ラリーをミリングする時間や強度、あるいは分散剤の添
加により、所望のレベルまで低下させることができる。
以下、実施例によって本発明をより具体的に説明する。
The D90 particle size of the catalyst carrier in the slurry can be reduced to a desired level by milling the slurry, the strength and the addition of a dispersant.
Hereinafter, the present invention will be described more specifically with reference to Examples.

【0031】[0031]

【実施例】実施例1 酸化物原料として350質量部のカオリン、300質量
部のタルク、100質量部のアルミナを用い、これらに
300質量部の水、バインダーとして30質量部のメチ
ルセルロース、及び造孔材としてD50粒子径が10μm
の黒鉛粒子10質量部を加え、これらを混練機によって
2時間混練し、ハニカム基材の原料配合物を調製した。
Example 1 350 parts by weight of kaolin, 300 parts by weight of talc, and 100 parts by weight of alumina were used as oxide raw materials, and 300 parts by weight of water, 30 parts by weight of methyl cellulose as a binder, and pore-forming material were used. Material has D50 particle size of 10 μm
10 parts by mass of the graphite particles of No. 1 were added, and these were kneaded with a kneader for 2 hours to prepare a raw material mixture for the honeycomb substrate.

【0032】この配合物を押出成形し、1450℃の大
気雰囲気中で20時間焼成し、直径80mm×長さ95
mm、セル密度300セル/平方インチ、セル壁厚さ2
00μmのコージェライト組成のハニカム基材を得た。
得られたハニカム基材の気孔状態を、水銀ポロシメータ
ー(マイクロメリティック社製オートポア9420)を用
いて水銀圧入法にしたがって測定した結果、気孔率は4
2%、D50気孔径は20μmであった。
This compound was extruded and fired for 20 hours at 1450 ° C. in an air atmosphere to obtain a diameter of 80 mm × length of 95.
mm, cell density 300 cells / inch 2, cell wall thickness 2
A honeycomb substrate having a cordierite composition of 00 μm was obtained.
The porosity of the obtained honeycomb substrate was measured by a mercury porosimeter (Autopore 9420 manufactured by Micromeritic Co., Ltd.) according to the mercury porosimetry.
2%, D50 pore diameter was 20 μm.

【0033】次に、以下のようにしてこのハニカム基材
に触媒担体と触媒成分を担持した。50質量部のγ-ア
ルミナ(比表面積:約150m2/g、D50粒子径:20
μm)と50質量部のセリア-ジルコニア(比表面積:約
100m2/g、CeO2/ZrO2=1/1のモル比)に
200質量部のイオン交換水を加え、ボールミルにて5
0時間にわたって粉砕した。
Next, a catalyst carrier and a catalyst component were loaded on this honeycomb substrate as follows. 50 parts by mass of γ-alumina (specific surface area: about 150 m 2 / g, D50 particle size: 20
μm) and 50 parts by mass of ceria-zirconia (specific surface area: about 100 m 2 / g, CeO 2 / ZrO 2 = 1/1 molar ratio), and 200 parts by mass of ion-exchanged water, and the mixture is mixed with a ball mill at 5
Milled for 0 hours.

【0034】この混合粉末のD50粒子径は2μm、D90
粒子径は15μmであった。この混合粉末にアルミナゾ
ル(日産化学製A-200)を、アルミナゾルの固形分が
混合粉末との合計質量を基準に3%となる量で加え、さ
らにイオン交換水を添加して固形分25%の触媒担体ス
ラリーを得た。D50粒子径とD90粒子径の測定は、光回
折散乱法(オリバ製LA−920) によって測定した。
The D50 particle diameter of this mixed powder was 2 μm, and the D90
The particle size was 15 μm. Alumina sol (A-200 manufactured by Nissan Chemical Industries, Ltd.) was added to this mixed powder in an amount such that the solid content of the alumina sol was 3% based on the total mass of the mixed powder, and ion-exchanged water was further added to obtain 25% solid content. A catalyst carrier slurry was obtained. The D50 particle diameter and the D90 particle diameter were measured by a light diffraction scattering method (LA-920 manufactured by Oliver).

【0035】次に、上記のハニカム基材をこの触媒担体
スラリーに浸漬した後、高圧空気によって余分なスラリ
ーを吹き払い、400℃の大気雰囲気中で1時間焼成
し、触媒担体をウォッシュコートした。この結果、ハニ
カム基材に80gの触媒担体をコートした(160gの
触媒担体/1リットルの担体)。
Next, the above honeycomb substrate was immersed in this catalyst carrier slurry, and then excess slurry was blown off by high-pressure air and fired in an air atmosphere at 400 ° C. for 1 hour to wash coat the catalyst carrier. As a result, the honeycomb substrate was coated with 80 g of catalyst carrier (160 g of catalyst carrier / 1 liter of carrier).

【0036】次に、このハニカム基材上の触媒担体に白
金ジニトロジアンミンPt(NH3)2(NO2)2と硝酸ロジ
ウムRh(NO3)3の溶液を含浸し、乾燥の後、400℃
の大気雰囲気中で1時間焼成し、ハニカム基材1リット
ルあたり1.5gのPtと0.3gのRhを担持した。以
上の工程により、ハニカム基材上に触媒担体のγ-アル
ミナとセリア-ジルコニア、及び触媒成分のPtとPh
が担持された本発明の排気ガス浄化用触媒を得た。
Next, the catalyst carrier on the honeycomb substrate was impregnated with a solution of platinum dinitrodiammine Pt (NH 3 ) 2 (NO 2 ) 2 and rhodium nitrate Rh (NO 3 ) 3 and dried, and then 400 ° C.
Was fired for 1 hour in the air atmosphere to carry 1.5 g of Pt and 0.3 g of Rh per liter of the honeycomb substrate. Through the above steps, the catalyst carrier γ-alumina and ceria-zirconia and the catalyst components Pt and Ph are formed on the honeycomb substrate.
Thus, an exhaust gas purifying catalyst of the present invention carrying the above was obtained.

【0037】実施例2〜6及び比較例1 実施例1における配合物の調製において、黒鉛粒子の配
合量を変えた以外は実施例1と同様にして、表1に摘要
を示す配合物を調製し、次いで実施例1と同様にして、
ハニカム基材を作成し、これに触媒担体のγ-アルミナ
とセリア-ジルコニア及び触媒成分のPtとPhを担持
して、表1に摘要を示す実施例と比較例の排気ガス浄化
用触媒を得た。
Examples 2 to 6 and Comparative Example 1 In the preparation of the blend in Example 1, a blend whose summary is shown in Table 1 was prepared in the same manner as in Example 1 except that the blending amount of graphite particles was changed. And then in the same manner as in Example 1,
A honeycomb substrate was prepared, and γ-alumina and ceria-zirconia as catalyst carriers and Pt and Ph as catalyst components were carried on the honeycomb substrate to obtain exhaust gas purifying catalysts of Examples and Comparative Examples whose summary is shown in Table 1. It was

【0038】実施例7〜12及び比較例2 実施例1における配合物の調製において、粒子径の異な
る黒鉛粒子を配合した以外は実施例1と同様にして、表
2に摘要を示す配合物を調製し、次いで実施例1と同様
にして、ハニカム基材を作成し、これに触媒担体のγ-
アルミナとセリア-ジルコニア及び触媒成分のPtとP
hを担持して、表2に摘要を示す実施例と比較例の排気
ガス浄化用触媒を得た。
Examples 7 to 12 and Comparative Example 2 In the preparation of the compound in Example 1, the compound whose summary is shown in Table 2 was prepared in the same manner as in Example 1 except that graphite particles having different particle sizes were compounded. A honeycomb base material was prepared and then processed in the same manner as in Example 1, and the catalyst support γ-
Alumina and ceria-zirconia and catalyst components Pt and P
By carrying h, the exhaust gas purifying catalysts of Examples and Comparative Examples whose summary is shown in Table 2 were obtained.

【0039】参考例3 実施例1におけるγ-アルミナとセリア-ジルコニアの触
媒担体スラリーの調製において、ボールミルによる50
時間の粉砕に代えて5時間の粉砕を行い、D90粒子径が
35μmの混合粉末のスラリーを用いて触媒担体をコー
トした以外は実施例1と同様にして、表2に摘要を示す
参考例の排気ガス浄化用触媒を得た。
Reference Example 3 In the preparation of the catalyst carrier slurry of γ-alumina and ceria-zirconia in Example 1, 50 using a ball mill was used.
Instead of time crushing, crushing for 5 hours was carried out, and the procedure of Example 1 was repeated except that the catalyst carrier was coated with the slurry of the mixed powder having D90 particle size of 35 μm. An exhaust gas purification catalyst was obtained.

【0040】−触媒成分と触媒担体の担持量の測定− 表1〜2に示す触媒担体と触媒成分の「気孔内担持量」
は、各排気ガス浄化用触媒を切断し、セル壁の外側に位
置する触媒担体を削り取って、その質量の測定と含まれ
る触媒成分のICP発光分析による定量によってセル壁
の気孔外の触媒担体と触媒成分の質量を求め、最初に担
持した量からこの量を差し引いて算出した値である。
-Measurement of supported amounts of catalyst component and catalyst carrier- "Supported amount in pores" of catalyst carrier and catalyst component shown in Tables 1 and 2.
Cuts each exhaust gas purification catalyst, scrapes off the catalyst carrier located outside the cell wall, and measures the mass of the catalyst carrier and ICP emission analysis of the contained catalyst component to determine the catalyst carrier outside the pores of the cell wall. It is a value calculated by obtaining the mass of the catalyst component and subtracting this amount from the amount initially loaded.

【0041】−ハニカム基材内の組織観察− 実施例4の排気ガス浄化用触媒にエポキシ樹脂を含浸さ
せ、硬化させた後に排気ガスの流れ方向に直角に切断し
た。この断面の走査型電子顕微鏡像を図4〜5に示す。
図4〜5から、触媒担体の殆どがセル壁の気孔内に配置
されていることが分かり、また、ハニカム基材の気孔
は、いずれもセル壁を貫通していない非貫通孔であるこ
とが分かる。
-Observation of Structure in Honeycomb Substrate-The catalyst for purifying exhaust gas of Example 4 was impregnated with epoxy resin and cured, and then cut at a right angle to the flow direction of exhaust gas. Scanning electron microscope images of this cross section are shown in FIGS.
It can be seen from FIGS. 4 to 5 that most of the catalyst carrier is arranged in the pores of the cell wall, and that the pores of the honeycomb substrate are all non-penetrating pores that do not penetrate the cell wall. I understand.

【0042】−圧力損失の測定− 実施例と比較例の各排気ガス浄化用触媒に7m3/分の
流量で空気を流通させ、排気ガス浄化用触媒の前後の差
圧を測定した。この結果を表1〜2にまとめて示す。結
果より、気孔内担持量の多い実施例の排気ガス浄化用触
媒は、気孔内担持量の少ない比較例の排気ガス浄化用触
媒よりも、圧力損失が少ないことが明らかに分かる。
-Measurement of Pressure Loss-Air was circulated at a flow rate of 7 m 3 / min through the exhaust gas purifying catalysts of Examples and Comparative Examples, and the differential pressure before and after the exhaust gas purifying catalyst was measured. The results are summarized in Tables 1 and 2. The results clearly show that the exhaust gas purifying catalyst of the example having a large amount of supported pores has a smaller pressure loss than the exhaust gas purifying catalyst of the comparative example having a small amount of supported pores.

【0043】−触媒性能の評価− 実施例と比較例の各排気ガス浄化用触媒について、それ
ぞれ中央部分から直径30mm×長さ50mmのサンプ
ルを切り出し、下記のモデル排気ガスによってC36
浄化率を評価した。その結果を50%C36浄化温度
(T50)として表1〜2にまとめて示す。 0.16%CO+2400ppmC36+1000ppmNO
+14.5%CO2+0.57%O2+10%H2O (残
余N2
-Evaluation of catalyst performance-For each of the exhaust gas purifying catalysts of Examples and Comparative Examples, a sample having a diameter of 30 mm and a length of 50 mm was cut out from each central portion, and C 3 H 6 was purified by the following model exhaust gas. The rate was evaluated. The result is 50% C 3 H 6 purification temperature
(T50) is shown collectively in Tables 1 and 2. 0.16% CO + 2400ppm C 3 H 6 + 1000ppm NO
+ 14.5% CO 2 + 0.57% O 2 + 10% H 2 O (residual N 2 )

【0044】表1〜2に示した結果より、気孔内担持量
の多い実施例の排気ガス浄化用触媒は、気孔内担持量の
少ない比較例の排気ガス浄化用触媒よりも、C36浄化
性能が高いことが分かる。この理由は、気孔内では触媒
担体は曲面の気孔内壁に担持されるため、セル壁表面に
平坦に担持されるよりも、排気ガスとの接触効率が高め
られるものと考えられる。
From the results shown in Tables 1 and 2, the exhaust gas purifying catalyst of the example having a large amount of supported pores had a C 3 H 6 content higher than that of the exhaust gas purifying catalyst of the comparative example having a small amount of supported pores. It can be seen that the purification performance is high. The reason for this is considered to be that since the catalyst carrier is supported on the curved inner wall of the pores in the pores, the contact efficiency with the exhaust gas is higher than when the catalyst carrier is supported flat on the cell wall surface.

【0045】[0045]

【発明の効果】流通式の排気ガス浄化用触媒において、
排気ガスの圧力損失を増大させることなく、排気ガスと
触媒成分の接触効率を高めることによって排気ガス浄化
性能を向上させ、耐久性にも優れる排気ガス浄化用触媒
を提供することができる。
INDUSTRIAL APPLICABILITY In a flow-type exhaust gas purifying catalyst,
It is possible to provide an exhaust gas purifying catalyst that improves the exhaust gas purifying performance by increasing the contact efficiency between the exhaust gas and the catalyst component without increasing the pressure loss of the exhaust gas and has excellent durability.

【0046】[0046]

【表1】 [Table 1]

【0047】[0047]

【表2】 [Table 2]

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の排気ガス浄化用触媒をモデル的に示す
図である。
FIG. 1 is a model view of an exhaust gas purifying catalyst of the present invention.

【図2】従来技術の排気ガス浄化用触媒をモデル的に示
す図である。
FIG. 2 is a model view of a conventional exhaust gas purifying catalyst.

【図3】本発明の排気ガス浄化用触媒の別な態様をモデ
ル的に示す図である。
FIG. 3 is a model view showing another embodiment of the exhaust gas purifying catalyst of the present invention.

【図4】本発明の排気ガス浄化用触媒におけるセラミッ
ク材料の組織を示す走査型電子顕微鏡写真である。
FIG. 4 is a scanning electron micrograph showing the structure of a ceramic material in the exhaust gas purifying catalyst of the present invention.

【図5】図4のセラミック材料の組織を高倍率で示す走
査型電子顕微鏡写真である。
5 is a scanning electron micrograph showing the structure of the ceramic material of FIG. 4 at high magnification.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) F01N 3/10 B01D 53/36 104A 3/28 301 ZAB 102B Fターム(参考) 3G091 AB01 BA01 GA06 GA16 GB06W GB07W GB17X 4D048 AA06 AA13 AA18 AB05 BA02Y BA03X BA08X BA10X BA12Y BA18Y BA19X BA28Y BA30X BA31Y BA32Y BA33X BA34Y BA35Y BA36Y BA38Y BA41Y BA42X BB02 BB17 4G069 AA03 AA08 BA01A BA01B BA05A BA05B BA13A BA13B BB02B BB04A BB06A BB06B BC09A BC16A BC16B BC31A BC33A BC40A BC43A BC43B BC51A BC51B BC62A BC65A BC66A BC67A BC68A BC69A BC70A BC71A BC71B BC72A BC75A BC75B CA03 CA09 EA19 EB05 EB12X EB12Y EC06X EC06Y EC17X EC17Y EC27 FA03 FB14 FB15 FB23 FB78 ─────────────────────────────────────────────────── ─── Continuation of front page (51) Int.Cl. 7 Identification code FI theme code (reference) F01N 3/10 B01D 53/36 104A 3/28 301 ZAB 102B F term (reference) 3G091 AB01 BA01 GA06 GA16 GB06W GB07W GB17X 4D048 AA06 AA13 AA18 AB05 BA02Y BA03X BA08X BA10X BA12Y BA18Y BA19X BA28Y BA30X BA31Y BA32Y BA33X BA34Y BA35Y BA36Y BA38Y BA41Y BA42X BB02 BB17 4G069 AA03 AA08 BA01A BA01B BA05A BA05B BA13A BA13B BB02B BB04A BB06A BB06B BC09A BC16A BC16B BC31A BC33A BC40A BC43A BC43B BC51A BC51B BC62A BC65A BC66A BC67A BC68A BC69A BC70A BC71A BC71B BC72A BC75A BC75B CA03 CA09 EA19 EB05 EB12X EB12Y EC06X EC06Y EC17X EC17Y EC27 FA03 FB14 FB15 FB23 FB78

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 ハニカム基材に触媒担体と触媒成分が担
持されてなる排気ガス浄化用触媒であって、前記触媒担
体と前記触媒成分のそれぞれ少なくとも90質量%が、
前記ハニカム基材のセル壁の気孔内に配置されたことを
特徴とする流通式の排気ガス浄化用触媒。
1. An exhaust gas purifying catalyst in which a catalyst carrier and a catalyst component are carried on a honeycomb substrate, wherein at least 90% by mass of each of the catalyst carrier and the catalyst component is
A flow-type exhaust gas purifying catalyst, which is arranged in the pores of the cell wall of the honeycomb substrate.
【請求項2】 ハニカム基材のセル壁が、40〜75%
の気孔率と10〜50μmのD50気孔径を有する請求項
1に記載に排気ガス浄化用触媒。
2. The cell wall of the honeycomb substrate is 40 to 75%.
The exhaust gas purifying catalyst according to claim 1, having a porosity of 10 to 50 µm and a D50 pore diameter of 10 to 50 µm.
【請求項3】 ハニカム基材のセル壁の気孔が実質的に
非貫通孔である請求項1又は2に記載の排気ガス浄化用
触媒。
3. The exhaust gas purifying catalyst according to claim 1, wherein the pores in the cell wall of the honeycomb substrate are substantially non-penetrating pores.
【請求項4】 触媒担体が、アルミナ、ジルコニア、セ
リア、ジルコニア-セリア、アルミナ-セリア-ジルコニ
ア、セリア-ジルコニア-イットリア、及びジルコニア-
カルシアから選択された少なくとも1種である請求項1
〜3のいずれか1項に記載の排気ガス浄化用触媒。
4. The catalyst carrier is alumina, zirconia, ceria, zirconia-ceria, alumina-ceria-zirconia, ceria-zirconia-yttria, and zirconia-.
It is at least 1 sort (s) selected from the calcia.
The exhaust gas purifying catalyst according to any one of 3 to 3.
【請求項5】 スラリー中で触媒担体が、ハニカム基材
のセル壁のD50気孔径を下回るD90粒子径を有するスラ
リーを調製し、次いで前記スラリーを前記ハニカム基材
にウォッシュコートし、次いで触媒成分を前記触媒担体
に担持することを特徴とする請求項1〜4のいずれか1
項に記載の排気ガス浄化用触媒の製造方法。
5. A slurry in which the catalyst carrier has a D90 particle size smaller than the D50 pore size of the cell wall of the honeycomb substrate is prepared, and then the slurry is wash-coated on the honeycomb substrate, and then the catalyst component is prepared. 5. The catalyst carrier is carried on the catalyst carrier.
Item 6. A method for producing an exhaust gas purifying catalyst according to item.
JP2001376175A 2001-12-10 2001-12-10 Exhaust gas treatment catalyst and production method of the same Withdrawn JP2003170043A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001376175A JP2003170043A (en) 2001-12-10 2001-12-10 Exhaust gas treatment catalyst and production method of the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001376175A JP2003170043A (en) 2001-12-10 2001-12-10 Exhaust gas treatment catalyst and production method of the same

Publications (1)

Publication Number Publication Date
JP2003170043A true JP2003170043A (en) 2003-06-17

Family

ID=19184423

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001376175A Withdrawn JP2003170043A (en) 2001-12-10 2001-12-10 Exhaust gas treatment catalyst and production method of the same

Country Status (1)

Country Link
JP (1) JP2003170043A (en)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1538313A1 (en) * 2003-12-06 2005-06-08 DaimlerChrysler AG Carrier for a catalyst
WO2008114637A1 (en) * 2007-03-20 2008-09-25 Ngk Insulators, Ltd. Method of producing sealed honeycomb structure
JP2013513485A (en) * 2009-12-15 2013-04-22 エスディーシー マテリアルズ インコーポレイテッド Catalyst production method and system
US9427732B2 (en) 2013-10-22 2016-08-30 SDCmaterials, Inc. Catalyst design for heavy-duty diesel combustion engines
US9433938B2 (en) 2011-02-23 2016-09-06 SDCmaterials, Inc. Wet chemical and plasma methods of forming stable PTPD catalysts
US9511352B2 (en) 2012-11-21 2016-12-06 SDCmaterials, Inc. Three-way catalytic converter using nanoparticles
US9517448B2 (en) 2013-10-22 2016-12-13 SDCmaterials, Inc. Compositions of lean NOx trap (LNT) systems and methods of making and using same
US9522388B2 (en) 2009-12-15 2016-12-20 SDCmaterials, Inc. Pinning and affixing nano-active material
US9533299B2 (en) 2012-11-21 2017-01-03 SDCmaterials, Inc. Three-way catalytic converter using nanoparticles
US9533289B2 (en) 2009-12-15 2017-01-03 SDCmaterials, Inc. Advanced catalysts for automotive applications
US9586179B2 (en) 2013-07-25 2017-03-07 SDCmaterials, Inc. Washcoats and coated substrates for catalytic converters and methods of making and using same
US9592492B2 (en) 2007-10-15 2017-03-14 SDCmaterials, Inc. Method and system for forming plug and play oxide catalysts
US9599405B2 (en) 2005-04-19 2017-03-21 SDCmaterials, Inc. Highly turbulent quench chamber
US9687811B2 (en) 2014-03-21 2017-06-27 SDCmaterials, Inc. Compositions for passive NOx adsorption (PNA) systems and methods of making and using same
JP2020040033A (en) * 2018-09-12 2020-03-19 イビデン株式会社 Honeycomb structure
DE102021119964A1 (en) 2020-08-05 2022-02-10 Denso Corporation MONOLITH SUBSTRATE, METHOD OF MANUFACTURE OF MONOLITH SUBSTRATE, AND EMISSION CONTROL CATALYST COMPRISING MONOLITH SUBSTRATE

Cited By (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1538313A1 (en) * 2003-12-06 2005-06-08 DaimlerChrysler AG Carrier for a catalyst
US9599405B2 (en) 2005-04-19 2017-03-21 SDCmaterials, Inc. Highly turbulent quench chamber
US9719727B2 (en) 2005-04-19 2017-08-01 SDCmaterials, Inc. Fluid recirculation system for use in vapor phase particle production system
WO2008114637A1 (en) * 2007-03-20 2008-09-25 Ngk Insulators, Ltd. Method of producing sealed honeycomb structure
JPWO2008114637A1 (en) * 2007-03-20 2010-07-01 日本碍子株式会社 Method for manufacturing plugged honeycomb structure
US8003035B2 (en) 2007-03-20 2011-08-23 Ngk Insulators, Ltd. Method of manufacturing plugged honeycomb structure
JP5184509B2 (en) * 2007-03-20 2013-04-17 日本碍子株式会社 Method for manufacturing plugged honeycomb structure
US9597662B2 (en) 2007-10-15 2017-03-21 SDCmaterials, Inc. Method and system for forming plug and play metal compound catalysts
US9592492B2 (en) 2007-10-15 2017-03-14 SDCmaterials, Inc. Method and system for forming plug and play oxide catalysts
US9737878B2 (en) 2007-10-15 2017-08-22 SDCmaterials, Inc. Method and system for forming plug and play metal catalysts
US9533289B2 (en) 2009-12-15 2017-01-03 SDCmaterials, Inc. Advanced catalysts for automotive applications
US9522388B2 (en) 2009-12-15 2016-12-20 SDCmaterials, Inc. Pinning and affixing nano-active material
JP2013513485A (en) * 2009-12-15 2013-04-22 エスディーシー マテリアルズ インコーポレイテッド Catalyst production method and system
US9433938B2 (en) 2011-02-23 2016-09-06 SDCmaterials, Inc. Wet chemical and plasma methods of forming stable PTPD catalysts
US9533299B2 (en) 2012-11-21 2017-01-03 SDCmaterials, Inc. Three-way catalytic converter using nanoparticles
US9511352B2 (en) 2012-11-21 2016-12-06 SDCmaterials, Inc. Three-way catalytic converter using nanoparticles
US9586179B2 (en) 2013-07-25 2017-03-07 SDCmaterials, Inc. Washcoats and coated substrates for catalytic converters and methods of making and using same
US9566568B2 (en) 2013-10-22 2017-02-14 SDCmaterials, Inc. Catalyst design for heavy-duty diesel combustion engines
US9517448B2 (en) 2013-10-22 2016-12-13 SDCmaterials, Inc. Compositions of lean NOx trap (LNT) systems and methods of making and using same
US9427732B2 (en) 2013-10-22 2016-08-30 SDCmaterials, Inc. Catalyst design for heavy-duty diesel combustion engines
US9950316B2 (en) 2013-10-22 2018-04-24 Umicore Ag & Co. Kg Catalyst design for heavy-duty diesel combustion engines
US9687811B2 (en) 2014-03-21 2017-06-27 SDCmaterials, Inc. Compositions for passive NOx adsorption (PNA) systems and methods of making and using same
US10086356B2 (en) 2014-03-21 2018-10-02 Umicore Ag & Co. Kg Compositions for passive NOx adsorption (PNA) systems and methods of making and using same
US10413880B2 (en) 2014-03-21 2019-09-17 Umicore Ag & Co. Kg Compositions for passive NOx adsorption (PNA) systems and methods of making and using same
JP2020040033A (en) * 2018-09-12 2020-03-19 イビデン株式会社 Honeycomb structure
DE102021119964A1 (en) 2020-08-05 2022-02-10 Denso Corporation MONOLITH SUBSTRATE, METHOD OF MANUFACTURE OF MONOLITH SUBSTRATE, AND EMISSION CONTROL CATALYST COMPRISING MONOLITH SUBSTRATE
CN114054012A (en) * 2020-08-05 2022-02-18 丰田自动车株式会社 Monolith substrate, method for producing monolith substrate, and exhaust gas purifying catalyst using monolith substrate
US11498056B2 (en) 2020-08-05 2022-11-15 Toyota Jidosha Kabushiki Kaisha Monolith substrate, method for producing monolith substrate, and exhaust gas purification catalyst comprising monolith substrate

Similar Documents

Publication Publication Date Title
JP5273446B2 (en) Exhaust gas purification catalyst and method for producing the same
CN107921417B (en) Exhaust gas purifying catalyst
CN107427826B (en) Catalyst for exhaust gas purification
US10252246B2 (en) Porous ceramic structural body
JP2003170043A (en) Exhaust gas treatment catalyst and production method of the same
EP2108439A1 (en) Catalytic diesel particulate filter and manufacturing method thereof
EP3581271A1 (en) Exhaust gas purification catalyst
CN107405615B (en) Catalyst for exhaust gas purification
CN111801163B (en) Exhaust gas purifying catalyst
CN113631267B (en) Catalyst for exhaust gas purification
JP6514112B2 (en) Exhaust gas purification catalyst
JP2006231280A (en) Solid oxidation catalyst for combustion
CN112218719B (en) Exhaust gas purifying catalyst
JP2006205002A (en) Catalyst for cleaning exhaust gas
JP3876731B2 (en) Catalyst carrier structure and exhaust gas purification catalyst
EP3081297B1 (en) Exhaust gas purifying catalyst
JP6050703B2 (en) Exhaust gas purification catalyst
CN112218718B (en) Exhaust gas purifying catalyst
EP3795249A1 (en) Exhaust gas purification catalyst and method for producing same
EP4265315A1 (en) Fine particle filter, method for removing particulate material from exhaust gas of internal combustion engine, and method for producing fine particle filter
JP4665458B2 (en) Exhaust gas purification catalyst and method for producing the same
JP2006051475A (en) Exhaust gas purification catalyst and method for manufacturing the same
JP2015047518A (en) Particulate filter with catalyst and production method thereof
EP4134161A1 (en) Exhaust gas purification catalyst
JP2022042673A (en) Porous ceramic structure

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040514

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20061220

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070104