JP2003165843A - Method for extracting sericin, the extract solution and method for modifying fiber or fabric - Google Patents

Method for extracting sericin, the extract solution and method for modifying fiber or fabric

Info

Publication number
JP2003165843A
JP2003165843A JP2001363542A JP2001363542A JP2003165843A JP 2003165843 A JP2003165843 A JP 2003165843A JP 2001363542 A JP2001363542 A JP 2001363542A JP 2001363542 A JP2001363542 A JP 2001363542A JP 2003165843 A JP2003165843 A JP 2003165843A
Authority
JP
Japan
Prior art keywords
sericin
electrolyzed water
extract
water
cocoon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001363542A
Other languages
Japanese (ja)
Other versions
JP3973886B2 (en
Inventor
Tsukasa Hasegawa
司 長谷川
Takashi Yamazaki
隆 山崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
BEST KOBO KK
OKAMOTO LACE KK
Original Assignee
BEST KOBO KK
OKAMOTO LACE KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by BEST KOBO KK, OKAMOTO LACE KK filed Critical BEST KOBO KK
Priority to JP2001363542A priority Critical patent/JP3973886B2/en
Publication of JP2003165843A publication Critical patent/JP2003165843A/en
Application granted granted Critical
Publication of JP3973886B2 publication Critical patent/JP3973886B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Peptides Or Proteins (AREA)
  • Treatments For Attaching Organic Compounds To Fibrous Goods (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To extract sericin from cocoon filaments at ordinary temperature without carrying out a physical treatment such as heating or a chemical treatment such as hydrolysis. <P>SOLUTION: This method for extracting the sericin immerses cocoon filaments in strong electrolyzed water produced by electrolyzing water, while dissolving a crystalline clay mineral in the water, thus extracting the sericin at the ordinary temperature. The obtained sericin extract solution contains the sericin having a high molecular weight in an approximately natural state, and can be used for modifying fibers or fabrics. <P>COPYRIGHT: (C)2003,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明が属する技術分野】本発明は、セリシン抽出方
法、その抽出液及び繊維又は布帛の改質加工方法に関す
る。
TECHNICAL FIELD The present invention relates to a method for extracting sericin, an extract thereof, and a method for modifying and processing fibers or cloth.

【0002】[0002]

【従来の技術】蚕が吐糸する繊維、すなわち繭糸は、タ
ンパク質の一種であるフィブロイン及びセリシンからな
り、その構造は、二条の繊維を構成するフィブロインを
核として、その周囲を被覆するセリシンの層からなるこ
とが知られている。家蚕の繭糸では、通常セリシンが2
0〜30重量%の割合で含まれている。フィブロイン
は、主にグリシン、アラニン、セリンといったアミノ酸
を多く含み、セリシンは、主にセリン、グリシン、アス
パラギン酸を多く含む。ここでは、フィブロイン及びセ
リシンを絹タンパク質と称する。また、本発明で用いる
「繭糸」は、繭を形成する繭糸自体の他に、繭自体、切
繭、毛羽等の養蚕や製糸の際に生じる繭由来の副産物及
び繭糸を複数本まとめた生糸を含むものとする。
2. Description of the Related Art The silkworm spit fibers, or cocoon threads, are composed of fibroin and sericin, which are a type of protein, and their structure is a layer of sericin that coats the fibroin that constitutes the two-strand fiber as the core. It is known to consist of. In silkworm cocoon thread, sericin is usually 2
It is contained in a proportion of 0 to 30% by weight. Fibroin mainly contains a large amount of amino acids such as glycine, alanine and serine, and sericin mainly contains a large amount of serine, glycine and aspartic acid. Here, fibroin and sericin are referred to as silk proteins. Further, the "cocoon thread" used in the present invention is, in addition to the cocoon thread itself which forms the cocoon, a cocoon itself, a cocoon, a cocoon, a fluff or the like silkworm-derived by-product and a raw silk obtained by collecting a plurality of cocoon threads. Shall be included.

【0003】絹糸の精錬工程では、繭糸のセリシンを除
去するため、炭酸ソーダ、珪酸ソーダなどのアルカリ性
溶液にマーセル石鹸などの界面活性剤を加えて、例えば
100℃で数時間かけて処理を行う。これは、セリシン
が常温では水に対して難溶性であるため、こうした処理
によりセリシンを加水分解して低分子量化し溶出させて
いる。これに対して、フィブロインは、水又は希アルカ
リ溶液に不溶であるため、セリシンが大部分除去される
ことで、その表面が露出し、絹特有の光沢及び風合いが
得られるようになる。
In the refining process of silk yarn, in order to remove sericin of cocoon yarn, a surfactant such as mercer soap is added to an alkaline solution such as sodium carbonate or sodium silicate, and the treatment is carried out at 100 ° C. for several hours, for example. This is because sericin is sparingly soluble in water at room temperature, and such treatment hydrolyzes sericin to lower the molecular weight and elutes it. On the other hand, since fibroin is insoluble in water or a dilute alkali solution, most of sericin is removed to expose the surface of the fibroin so that the luster and texture peculiar to silk can be obtained.

【0004】ところで、こうした絹タンパク質は、繊維
として用いられる以外に、適度な吸湿性及び放湿性を有
する点、人間に必要なアミノ酸を含んでいる点などの特
性に着目して、例えば、化粧品、医療品、食品などの素
材、または繊維、布帛などの改質加工にも用いられてい
る。そのため、絹タンパク質を分離する方法がいろいろ
と試みられている。
[0004] By the way, such silk proteins are not only used as fibers, but also have appropriate hygroscopicity and moisture releasing properties, and the fact that they contain amino acids necessary for humans. It is also used for the modification of materials such as medical products and foods, or fibers and cloths. Therefore, various methods for separating silk proteins have been tried.

【0005】特開平11−92564号公報では、高分
子量のセリシンを抽出して取得する方法として、繭糸な
どのセリシンを含有する原料を尿素水溶液に100℃を
超える温度で浸漬して、セリシンを抽出し、この抽出液
からクロマトグラフィー法などにより高分子量のセリシ
ンを選択的に回収する方法が記載されている。特開平1
0−29909号公報では、イオン水生成装置で得られ
たイオン水に繭糸などの原料を約90℃で浸漬して、セ
リシンを加水分解しセリシンペプチド溶液を得ることが
記載されている。特開平9−241399号公報では、
フィブロインを銅エチレンジアミン溶液を用いて溶解し
てフィブロイン溶液を作成し、その後不溶化処理により
フィブロイン膜を調製する方法が記載されている。特開
平8−27186号公報では、絹フィブロインを、15
0℃〜250℃の高圧水中で処理して加水分解させて絹
フィブロインペプチドを得る方法が記載されている。特
開平4−202435号公報では、化学精錬による絹精
錬廃液から、限外濾過や逆浸透膜などの方法により所定
の範囲の分子量を有するセリシン溶液を得る方法が記載
されている。
In Japanese Patent Laid-Open No. 11-92564, a method for extracting and obtaining high molecular weight sericin is to immerse a raw material containing sericin such as cocoon thread in an aqueous urea solution at a temperature exceeding 100 ° C. to extract sericin. Then, a method for selectively recovering high molecular weight sericin from this extract by a chromatography method or the like is described. JP-A-1
JP-A 0-29909 describes that a raw material such as cocoon thread is immersed in ionized water obtained by an ionized water generator at about 90 ° C. to hydrolyze sericin to obtain a sericin peptide solution. In Japanese Patent Laid-Open No. 9-241399,
A method is described in which fibroin is dissolved using a copper ethylenediamine solution to prepare a fibroin solution, and then a fibroin membrane is prepared by an insolubilization treatment. In Japanese Patent Laid-Open No. 8-27186, silk fibroin is disclosed in 15
A method for obtaining silk fibroin peptide by treatment in high-pressure water at 0 ° C to 250 ° C and hydrolysis is described. JP-A-4-202435 describes a method for obtaining a sericin solution having a molecular weight in a predetermined range from a silk smelting waste liquid by chemical smelting by a method such as ultrafiltration or a reverse osmosis membrane.

【0006】以上の従来技術をみると、絹タンパク質の
分離を行う場合に、人体に影響を与える物質をできるだ
け加えないようにするために、人体に無害な物質のみ用
いたり、人体に影響を与えるような物質を使用する場合
は処理後除去するようにしている。また、絹タンパク質
を加水分解し低分子量化することで易溶化して抽出効率
を向上するとともに、透析膜などへの目詰まり防止、保
存時の濁りやオリの発生防止を図っている。また、高分
子量のセリシンを得る場合にも、溶液からクロマトグラ
フィー法などの分離工程により高分子量のものを選択的
に分離して得ている。
In view of the above-mentioned conventional techniques, when separating silk proteins, only substances that are harmless to the human body are used or substances that affect the human body are used in order to minimize addition of substances that affect the human body. If such a substance is used, it is removed after the treatment. In addition, the silk protein is hydrolyzed to reduce its molecular weight so that it can be easily solubilized to improve extraction efficiency, prevent clogging of dialysis membranes, etc., and prevent turbidity or sediment during storage. Also, when obtaining high molecular weight sericin, the high molecular weight sericin is selectively separated from the solution by a separation step such as a chromatography method.

【0007】こうして得られた絹タンパク質を繊維の改
質加工に用いる場合、染色や洗濯などに対して耐久性に
劣る欠点があることから、固着剤を加えたり(特開平2
−277886号公報、特開平4−202855号公
報)、繊維に絹タンパク質を付着処理した後水不溶化処
理をしたり(特開平7−258973号公報)、樹脂に
より絹タンパク質を定着処理する(特開平11−247
068号公報)など繊維への付着力を強化するため別途
物質を加える加工方法が提案されている。
When the silk protein thus obtained is used for the modification of fibers, it has a drawback that it is inferior in durability against dyeing, washing, etc., and therefore, a sticking agent may be added (Japanese Patent Laid-Open No. Hei 2).
No. 277886, Japanese Patent Laid-Open No. 4-202855), water insolubilization treatment after silk protein is attached to fibers (Japanese Patent Laid-Open No. 7-258973), and silk protein is fixed by a resin (Japanese Patent Laid-Open No. H08-258973). 11-247
No. 068), there is proposed a processing method in which a substance is separately added in order to strengthen the adhesion to the fiber.

【0008】[0008]

【発明が解決しようとする課題】しかしながら、絹タン
パク質を低分子量化してしまうと、水に溶けやすくなる
ため、上述したように繊維の改質剤として用いる場合単
独では用いることができず、固着剤などが別途必要にな
る。さらに、低分子量化するために、加熱処理、高圧処
理、加水分解のための処理剤の添加及びその処理剤の除
去といったさまざまな処理工程を追加する必要があり、
量産のためにはより複雑な製造工程が必要とならざるを
得ない。
However, when the silk protein has a low molecular weight, it becomes easily soluble in water. Therefore, as described above, when it is used as a fiber modifier, it cannot be used alone. Etc. are required separately. Furthermore, in order to reduce the molecular weight, it is necessary to add various treatment steps such as heat treatment, high pressure treatment, addition of a treatment agent for hydrolysis and removal of the treatment agent,
For mass production, a more complicated manufacturing process is inevitable.

【0009】また、セリシン溶液から濾過などにより高
分子量のセリシンだけ回収することは可能であるが、高
分子量のものだけを選択的に分離する工程が必要になる
とともに回収率も減少するためコストアップ要因にな
る。そして、精密な分離工程が必要となるため、量産に
は向いていない。
Further, although it is possible to recover only high molecular weight sericin from the sericin solution by filtration or the like, a step for selectively separating only high molecular weight sericin is required and the recovery rate is reduced, resulting in an increase in cost. Becomes a factor. Further, since it requires a precise separation process, it is not suitable for mass production.

【0010】本発明は、このように低分子量化するため
の処理を行うことなく、セリシンを抽出する方法を提供
するとともに、その抽出液を用いて繊維または布帛を簡
単かつ確実に加工する方法を提供するものである。
The present invention provides a method for extracting sericin without such treatment for lowering the molecular weight, and a method for easily and surely processing a fiber or cloth using the extract. It is provided.

【0011】[0011]

【課題を解決するための手段】本発明に係るセリシン抽
出方法は、結晶性粘土鉱物を溶解させながら電気分解す
ることで生成した強電解水に、繭糸を浸漬することでセ
リシンを抽出することを特徴とする。さらに、前記セリ
シン抽出方法において、常温状態でセリシンを抽出する
ことを特徴とする。さらに、前記セリシン抽出方法にお
いて、繭糸を浸漬した状態において、繭糸に強電解水の
浸透を促進する浸透促進処理を行うことを特徴とする。
さらに、前記セリシン抽出方法において、浸透促進処理
は、減圧処理を含むことを特徴とする。
The method for extracting sericin according to the present invention comprises extracting sericin by immersing a cocoon thread in strongly electrolyzed water produced by electrolyzing while dissolving a crystalline clay mineral. Characterize. Further, in the above sericin extraction method, sericin is extracted at room temperature. Furthermore, the sericin extraction method is characterized in that the cocoon thread is subjected to a permeation promoting treatment for promoting permeation of the strong electrolyzed water in a state where the cocoon thread is immersed.
Further, in the sericin extraction method, the permeation promoting treatment includes a pressure reducing treatment.

【0012】さらに、本発明のセリシン抽出液は、前記
セリシン抽出方法により抽出されたセリシンを含むこと
を特徴とする。さらに、本発明のセリシン抽出液は、常
温状態において強電解水に繭糸を浸漬することで抽出さ
れた分子量3万以上で平均分子量6万7千のセリシンを
含むことを特徴とする。
Furthermore, the sericin extract of the present invention is characterized in that it contains sericin extracted by the sericin extraction method. Furthermore, the sericin extract of the present invention is characterized by containing sericin having a molecular weight of 30,000 or more and an average molecular weight of 67,000, which is extracted by immersing a cocoon thread in strong electrolyzed water at room temperature.

【0013】さらに、本発明の繊維の改質加工方法は、
前記セリシン抽出液により常温状態で繊維を処理するこ
とを特徴とする。さらに、本発明の布帛の改質加工方法
は、前記セリシン抽出液により常温状態で布帛を処理す
ることを特徴とする。
Further, the method for modifying and processing fibers according to the present invention is
The fiber is treated with the sericin extract at room temperature. Furthermore, the method for modifying and processing a cloth according to the present invention is characterized in that the cloth is treated with the above-mentioned sericin extract at room temperature.

【0014】ここで、電解水とは、一般に電解質(その
一部が溶媒に溶けて正・負イオンを生成する溶質)を含
む水に電流を流して生じる電気化学反応により水の物性
が変化したもので、変化する物性としては、pH、酸化
還元電位、クラスターの構造及び大きさ、表面張力など
が挙げられる。強電解水は、強く電解されたもので、一
般にpH3程度以下の強酸性のもの及びpH11程度以
上の強アルカリ性のものを総称している。
Here, electrolyzed water generally changes the physical properties of water by an electrochemical reaction caused by passing an electric current through water containing an electrolyte (a solute of which a part is dissolved in a solvent to generate positive and negative ions). The physical properties that change include pH, redox potential, structure and size of clusters, surface tension, and the like. The strongly electrolyzed water is a strongly electrolyzed water and is generally a generic name for strongly acidic water having a pH of about 3 or less and strong alkaline water having a pH of about 11 or more.

【0015】本発明で用いる強電解水は、結晶性粘土鉱
物を溶解させながら電気分解することで生成したもの
で、例えば特許第2949322号公報に記載された製
造方法が挙げられる。同公報に記載されているように、
この強電解水は強酸性または強アルカリ性のpH値を長
期にわたって安定的に維持することができる。
The strongly electrolyzed water used in the present invention is produced by electrolyzing while dissolving a crystalline clay mineral, and for example, the production method described in Japanese Patent No. 2949322 can be mentioned. As described in the publication,
This strongly electrolyzed water can stably maintain a strongly acidic or strongly alkaline pH value for a long period of time.

【0016】電解水は、一般に製造後からの経過時間、
空気接触、露光、攪拌、振動、接触材料といった要因に
よりpH値が変化し、中性化する欠点がある。強電解水
を製造したとしても、数時間〜数日で中性化してしま
い、攪拌を行うとその変化は早くなることが知られてい
る。また、接触材料として例えば繭糸を電解水に浸漬す
ると、電解水のpH値が変化し、弱酸性化または弱アル
カリ化する点が特開平10−29909号公報に記載さ
れている。
Electrolyzed water is generally the time that has elapsed since its production,
The pH value changes due to factors such as air contact, exposure, stirring, vibration, and contact materials, and there is a drawback that the pH value becomes neutral. It is known that even if strong electrolyzed water is produced, it will be neutralized within a few hours to a few days, and its change will be accelerated if agitated. Further, JP-A-10-29909 discloses that when a cocoon thread, for example, as a contact material is immersed in electrolyzed water, the pH value of the electrolyzed water changes to weakly acidify or weakly alkalize.

【0017】本発明者らは、結晶性粘土鉱物を溶解させ
ながら電気分解することで生成した強電解水が、上述の
ようにpH値を安定的に維持するだけでなく、強電解水
にいろいろな材料を入れて接触させたとしてもそのpH
値がほとんど変化しないこと、常温状態において物質を
抽出する作用が非常に強くかつその作用が継続すること
−といった新たな特性を種々の実験結果を通して知得す
ることができた。実験結果の一例としては、この強電解
水に朝鮮人参を浸漬した状態でガラス瓶に密封して3年
程度が経過しているが、pH値は当初のpH12からほ
とんど変化しておらず、朝鮮人参から種々の成分が抽出
されている。ここでいう「常温状態」とは、タンパク質
が分解せずに自然の状態で存在する温度状態で、一般に
約45℃以下の温度状態であるといわれている。従来の
セリシン抽出方法は、特開平10−29909号公報で
は、90〜95℃の温度で抽出を行っていること、特開
平11−92564号公報では、80℃の温度ではセリ
シンの抽出ができなかったことなどが記載されているこ
とからみても、常温状態でのセリシンの抽出は非常に困
難であり、高温状態で低分子量に分解してセリシン抽出
を行っていた。
The inventors of the present invention have found that the strong electrolyzed water produced by electrolyzing while dissolving the crystalline clay mineral not only maintains the stable pH value as described above, but also has various electrolysis properties. Even if you put in various materials and bring them into contact, their pH
Through various experimental results, new characteristics such as the fact that the value hardly changes, the action of extracting the substance at room temperature is very strong, and the action continues-can be obtained through various experimental results. As an example of the experimental results, it has been about 3 years since the ginseng was immersed in the strong electrolyzed water and sealed in a glass bottle, but the pH value has hardly changed from the initial pH of 12, and ginseng Various components have been extracted from. The "normal temperature state" here is a temperature state in which the protein exists in a natural state without being decomposed, and is generally said to be a temperature state of about 45 ° C or lower. In the conventional sericin extraction method, in JP-A-10-29909, extraction is performed at a temperature of 90 to 95 ° C, and in JP-A-11-92564, sericin cannot be extracted at a temperature of 80 ° C. It is very difficult to extract sericin at room temperature even from the fact that it is described, and sericin extraction was carried out by decomposing into low molecular weight at high temperature.

【0018】ところが、本発明によれば、上述した強電
解水の特性に関する新たな知見に基づいて、繭糸からセ
リシンを常温状態において抽出することができ、加熱や
高圧による物理的な処理、加水分解のための化学的な処
理は一切必要がない。そして、常温状態での抽出なの
で、セリシンを強制的に加水分解することがなく、より
自然に近い状態でセリシンが抽出される。このことは、
抽出液中のセリシンの分子量が3万以上で、平均分子量
6万7千であることから、本発明に係る抽出液がほぼ自
然の状態のセリシンを含んでいることを裏付けている。
さらに、人体に無害な水を用いているため、抽出後に有
害物質の除去といった処理を何らする必要がなく、安全
なセリシン抽出液を得ることができる。また、セリシン
を抽出した状態で抽出液を保存しても、強電解水の特性
がほとんど変化しないので、凝集物または沈殿物などが
ほとんど生じることがなく、安定した状態で抽出液を保
存することができる。
However, according to the present invention, sericin can be extracted from cocoon thread at room temperature based on the above-mentioned new knowledge about the characteristics of the strong electrolyzed water, and physical treatment by hydrolysis or hydrolysis by heating or high pressure can be performed. No chemical treatment is required for Since the extraction is carried out at room temperature, sericin is not forcedly hydrolyzed, and sericin is extracted in a more natural state. This is
Since the molecular weight of sericin in the extract is 30,000 or more and the average molecular weight is 67,000, it supports that the extract according to the present invention contains sericin in a substantially natural state.
Furthermore, since water that is harmless to the human body is used, there is no need to perform any treatment such as removal of harmful substances after extraction, and a safe sericin extract can be obtained. Also, even if the extract is stored with the sericin extracted, the characteristics of the strong electrolyzed water hardly change, so there are few aggregates or precipitates, and the extract should be stored in a stable state. You can

【0019】また、本発明で用いる強電解水は、繭糸を
浸漬して静置した状態でセリシンを抽出することが可能
であるが、減圧処理といった浸透促進処理を加えること
で抽出効率を向上させることができる。浸透促進処理と
しては、これらの処理以外にも、繭糸を強電解水の流水
中に置くこと、強電解水中で繭糸を振動させたり、圧縮
させたり、揺動させたりすることでも浸透を促進させる
ことができる。従来の電解水は、振動などの物理的操作
に対してpHが大きく変化するが、本発明の強電解水
は、こうした物理的操作に対しても安定しているため、
繭糸に浸透してセリシンの抽出効率を高めることができ
る。
Further, the strong electrolyzed water used in the present invention can extract sericin in a state where the cocoon thread is immersed and allowed to stand, but the extraction efficiency is improved by adding a permeation promoting treatment such as a pressure reduction treatment. be able to. In addition to these treatments, as the penetration promotion treatment, placing the cocoon thread in running water of strong electrolyzed water and vibrating, compressing or rocking the cocoon thread in strong electrolyzed water also promotes penetration. be able to. The pH of conventional electrolyzed water changes greatly with respect to physical operations such as vibration, but the strong electrolyzed water of the present invention is stable against such physical operations.
It can penetrate the cocoon thread and increase the extraction efficiency of sericin.

【0020】この抽出液を繊維の改質加工に用いた場
合、浸漬、塗布又は噴霧により繊維に常温状態で抽出液
を付着させた後乾燥することでセリシンが強固に繊維に
固着される。これは、セリシンが自然に近い状態で抽出
されているため、高分子量のセリシンが多く存在し、繊
維の表面に吸着する作用が強く働くことが要因の1つに
なっているものと考えられる。
When this extract is used for modifying the fiber, the extract is attached to the fiber at room temperature by dipping, coating or spraying and then dried to firmly fix sericin to the fiber. It is considered that this is because one of the factors is that sericin is extracted in a state close to nature, so that a large amount of high-molecular-weight sericin is present and the action of adsorbing it on the surface of the fiber is strong.

【0021】なお、本発明に係る繊維の改質加工方法
は、レーヨンに代表される再生繊維、綿に代表される天
然繊維、アセテート等の半合成繊維、ポリエチレンテレ
フタレートに代表されるポリエステル系合成繊維、ナイ
ロンに代表される脂肪族ポリアミド系合成繊維、アクリ
ル繊維あるいはこれらの混合繊維に適用することがで
き、また、本発明に係る布帛の改質加工方法は、これら
の繊維を用いて製造された織物、編物又は不織布に適用
できる。
The method for modifying and processing a fiber according to the present invention is a regenerated fiber typified by rayon, a natural fiber typified by cotton, a semi-synthetic fiber such as acetate, and a polyester-based synthetic fiber typified by polyethylene terephthalate. , An aliphatic polyamide synthetic fiber typified by nylon, an acrylic fiber, or a mixed fiber thereof, and the method for modifying a fabric according to the present invention is manufactured by using these fibers. It can be applied to woven, knitted or non-woven fabrics.

【0022】こうして、改質加工された繊維または布帛
は、衣料、インテリア製品、雑貨はもとより医療用の創
傷被覆材料(ガーゼ等)など人体に接触する部分に用い
る場合に好適である。セリシンが付着することで染料の
発色性が改善されるとともに、セリシンが人間に必要な
アミノ酸を含んでいることから、人体に接触することで
肌に好ましい影響を与えることができる。
Thus, the modified fiber or cloth is suitable for use in a portion that comes into contact with the human body such as clothing, interior products, miscellaneous goods, as well as medical wound covering materials (gauze, etc.). By adhering sericin, the color developability of the dye is improved, and since sericin contains amino acids necessary for humans, contact with the human body can have a favorable effect on the skin.

【0023】[0023]

【発明の実施の形態】本発明に用いる強電解水は、結晶
性粘土鉱物を溶解させながら電気分解する工程を陽極側
または陰極側のいずれか一方の極側において複数回行う
ことで生成されるが、具体的にその製造方法を説明する
と、図1に示すように、電解槽10内に電解セル11を
6個配列し、槽内を食塩水(濃度10%)で満たしてお
く。電解セル11は、図2に示すように、円筒容器状の
電解隔膜2の内面及び外面に、ステンレス鋼からなる円
筒状の電極1及び3を同心円状に配置して構成されてい
る。電解隔膜2は、褐色森林土85%程度、沖積土10
%程度、火山灰土2%程度及びその他の粘土成分3%程
度の混合割合の粘土を1025℃で焼成して作成されて
いる。
BEST MODE FOR CARRYING OUT THE INVENTION The strongly electrolyzed water used in the present invention is produced by performing the step of electrolyzing while dissolving a crystalline clay mineral a plurality of times on either the anode side or the cathode side. However, specifically explaining the manufacturing method, as shown in FIG. 1, six electrolytic cells 11 are arranged in an electrolytic bath 10 and the inside of the bath is filled with a saline solution (concentration: 10%). As shown in FIG. 2, the electrolysis cell 11 is configured by concentrically arranging cylindrical electrodes 1 and 3 made of stainless steel on the inner and outer surfaces of a cylindrical container-shaped electrolytic membrane 2. Electrolytic diaphragm 2 consists of brown forest soil 85% and alluvial soil 10
%, Volcanic ash soil of about 2% and other clay components of about 3% are mixed and burned at 1025 ° C.

【0024】左端の電解セル11には、注水管12が円
筒状電極1内に挿入され、地下水などの原料水が供給さ
れるようになっている。各電解セル11には、隣り合う
電解セルの円筒状電極1内にそれぞれ開口端を挿入する
通水管13が設けられている。右端の電解セル11に
は、排水管14が円筒状電極1内に挿入され、生成され
る強電解水を外部に排出するようになっている。
A water injection pipe 12 is inserted into the cylindrical electrode 1 in the leftmost electrolysis cell 11 so that raw material water such as ground water is supplied. Each electrolytic cell 11 is provided with a water pipe 13 into which the open end is inserted into the cylindrical electrode 1 of the adjacent electrolytic cell. A drain pipe 14 is inserted into the cylindrical electrode 1 in the electrolysis cell 11 at the right end to discharge the generated strong electrolyzed water to the outside.

【0025】注水管12より原料水を供給しながら、各
電解セル11の電極1及び3の間に全体で4.5A・h
/リットルの通電量で直流電流を供給すると、左端の電
解セル11で電解隔膜2より結晶性粘土鉱物が溶解しな
がら電気分解されて電解水が生成し、その電解水が順次
右側の電解セル11に通水管13を通して送水され、さ
らに結晶性粘土鉱物が溶解しながら電気分解されて最終
的に排水管14より強電解水が排水される。円筒状電極
1が陰極となるように通電すれば、pH12の強電解水
を得ることができる。こうして製造された強電解水は、
従来の電解水に比べ以下の点で優れた特性を備えてい
る。 (1)pHの経時変化 特許第2949322号公報にも記載されているよう
に、6ヶ月〜2年を経過してもpHの値はほとんど変化
しない。これに対して、従来の電解水は数時間〜数日で
pHが中性化してしまう場合がほとんどである。 (2)攪拌、振動等の物理的操作による影響 後述するように、減圧処理や繭糸の圧縮処理等強電解水
に物理的な影響を与えてもpHの変動はほとんどみられ
ない。これに対して、従来の電解水はこうした物理的操
作の影響を受けやすい。 (3)材料の浸漬による影響 後述するように、繭糸を浸漬したとしてもpHの中性化
はみられないが、従来の電解水は、特開平10−299
09号公報にも記載されているように、pH11〜12
程度のアルカリイオン水により繭糸のセリシンを加水分
解した結果pHが8程度のアルカリ性の溶液になること
が示されている。 (4)抽出液の経時変化 上述したように、本発明で用いる強電解水により朝鮮人
参から種々の成分が抽出した抽出液はpHに関してほと
んど変化していない。また、後述するように、セリシン
を抽出した抽出液もpHに関して変化は見られないこと
がわかる。一方、従来の電解水による抽出液は、特開平
10−29909号公報にも記載されているように、抽
出直後からpHが中性化している。
While supplying raw material water from the water injection pipe 12, a total of 4.5 A · h is provided between the electrodes 1 and 3 of each electrolysis cell 11.
When a direct current is supplied with an energizing amount of 1 / liter, electrolysis is performed in the leftmost electrolysis cell 11 while the crystalline clay mineral is dissolved from the electrolysis diaphragm 2 to produce electrolyzed water, and the electrolyzed water is sequentially placed on the right electrolysis cell 11 Water is sent through the water pipe 13, and the crystalline clay mineral is electrolyzed while being dissolved. Finally, the strong electrolyzed water is drained from the drain pipe 14. If electric current is applied so that the cylindrical electrode 1 serves as a cathode, strong electrolyzed water having a pH of 12 can be obtained. The strong electrolyzed water produced in this way is
Compared with conventional electrolyzed water, it has the following excellent characteristics. (1) Change of pH with time As described in Japanese Patent No. 2949322, the value of pH hardly changes even after 6 months to 2 years. On the other hand, in most cases, the pH of conventional electrolyzed water is neutralized in a few hours to a few days. (2) Effect of physical operations such as stirring and vibration As will be described later, even if a physical effect is exerted on strongly electrolyzed water such as depressurization treatment or cocoon yarn compression treatment, the pH hardly changes. In contrast, conventional electrolyzed water is susceptible to such physical manipulations. (3) Effect of Immersion of Material As will be described later, neutralization of pH is not observed even when cocoon thread is immersed, but conventional electrolyzed water is disclosed in JP-A-10-299.
As described in Japanese Patent Publication No. 09-09, pH 11-12
It has been shown that the alkaline solution having a pH of about 8 is obtained as a result of hydrolyzing sericin of cocoon yarn with about alkaline ionized water. (4) Change with time of extract As described above, the extract obtained by extracting various components from ginseng by the strongly electrolyzed water used in the present invention has almost no change in pH. Further, as will be described later, it can be seen that the extract obtained by extracting sericin also shows no change in pH. On the other hand, the pH of the conventional extract with electrolyzed water is neutralized immediately after extraction, as described in JP-A-10-29909.

【0026】以上のように、両者の特性に大きな相違が
認められる。これは、強電解水中に溶解した結晶性粘土
鉱物(硅酸4面体、アルミナ8面体など)が永久荷電状
態で安定したコロイド粒子となって浮遊しており、この
帯電したコロイド粒子に電気分解により発生したイオン
が結合することで、強アルカリ性または強酸性の状態が
維持されると考えられる。さらに、こうしたコロイド粒
子の存在により水分子のクラスターが縮小した状態に維
持されるため、非常に強い抽出作用が生じているのであ
ろう。いずれにしても、上述した対比から両者の特性の
違いは量的なものだけではなく、質的に大きく異なって
いることは明らかである。
As described above, a great difference is recognized in the characteristics of both. This is because crystalline clay minerals (silicic acid tetrahedron, alumina octahedron, etc.) dissolved in strong electrolyzed water are suspended as stable colloidal particles in a permanently charged state, and these charged colloidal particles are electrolyzed. It is considered that the strongly alkaline or strongly acidic state is maintained by combining the generated ions. Furthermore, the presence of these colloidal particles keeps the clusters of water molecules in a contracted state, which may result in a very strong extraction effect. In any case, it is clear from the above comparison that the difference in characteristics between the two is not only quantitative but also qualitatively different.

【0027】タンパク質の抽出作用に関して付言すれ
ば、タンパク質は、温度が45℃を超えると加水分解に
よる抽出作用が進むことから、例えば105℃の水道水
に繭糸を30分浸漬した場合でも17%程度のセリシン
が抽出できる。すなわち、タンパク質の抽出には温度が
大きな影響を及ぼすことから、温度が上昇すれば従来の
電解水でもある程度の抽出は可能である。しかしなが
ら、温度の上昇により抽出したセリシンは当然ながら低
分子量のものがほとんどである。したがって、本発明に
用いる強電解水のように45℃以下の常温状態では、セ
リシンの加水分解がほとんど進まずその抽出が非常に困
難であった。こうしたことからも、タンパク質の抽出作
用に関して本発明に用いる強電解水と従来の電解水とは
質的に大きな違いがあることは明らかである。
Regarding the protein extraction action, since the protein extraction action by hydrolysis proceeds when the temperature exceeds 45 ° C., for example, even when the cocoon thread is immersed in tap water at 105 ° C. for 30 minutes, about 17%. Can be extracted. That is, since the temperature has a great influence on the extraction of protein, if the temperature rises, conventional electrolyzed water can be extracted to some extent. However, most of the sericin extracted by the temperature rise is of low molecular weight. Therefore, in the case of strong electrolyzed water used in the present invention at room temperature of 45 ° C. or lower, hydrolysis of sericin hardly progressed, and its extraction was very difficult. From these facts, it is clear that there is a great qualitative difference between the strongly electrolyzed water used in the present invention and the conventional electrolyzed water in terms of the protein extracting action.

【0028】浸透促進処理として、減圧処理を用いるの
は、減圧により繭糸が膨らみ、繭糸を構成する繊維の間
の空間が広がることから、強電解水が浸透しやすくなる
ためである。特に、上述したように水分子のクラスター
が縮小した状態なので、より広範囲に浸透しやすくなっ
ている。そして、減圧状態を解除し常圧に戻せば、浸透
した水分子が繭糸から排出されるが、その際セリシンの
抽出が促進されるようになる。また、強電解水に浸漬し
た状態で繭糸を圧縮し解除すると、水分子が繭糸に入り
込んだり押し出されたりして強電解水の流動が生じるこ
とで、徐々に繭糸に浸透していき、セリシンの抽出が促
進される。
The reason why the reduced pressure treatment is used as the permeation promoting treatment is that the reduced pressure causes the cocoon yarn to swell and the space between the fibers constituting the cocoon yarn to expand, so that the strong electrolyzed water easily permeates. In particular, since the water molecule clusters are in a reduced state as described above, it is easy to permeate into a wider area. Then, when the depressurized state is released and the pressure is returned to normal pressure, the permeated water molecules are discharged from the cocoon thread, but at that time, the extraction of sericin is promoted. When the cocoon thread is compressed and released in the state of being immersed in strong electrolyzed water, water molecules enter and are pushed out of the cocoon thread, causing strong electrolyzed water to flow, gradually penetrating into the cocoon thread, and the sericin Extraction is facilitated.

【0029】[0029]

【実施例】図1に記載の製造装置において、常温の原料
水を注水管に供給しながら、電極隔膜の内面に位置する
電極が陰極となるように、4.5A・h/リットルの直
流電流を通電して、pH12の強電解水を10リットル
/分で生成した。
EXAMPLES In the manufacturing apparatus shown in FIG. 1, while supplying raw water at room temperature to a water injection pipe, a direct current of 4.5 A · h / liter was applied so that the electrode located on the inner surface of the electrode diaphragm became the cathode. To generate strong electrolyzed water of pH 12 at 10 liters / minute.

【0030】こうして生成された強電解水を用いて、表
1の試料A〜Fに示すような条件設定で繭糸からセリシ
ンの抽出を行った。抽出処理は45℃以下の常温状態で
行っており、具体的な数値は、開始時温度及び終了時温
度として表記している。タンパク質濃度は、ローリー法
により濃度測定を行った。
Using the strong electrolyzed water thus produced,
The sericin was extracted from the cocoon thread under the condition settings as shown in Samples A to F of 1. The extraction process is performed at a normal temperature of 45 ° C. or lower, and specific numerical values are shown as the starting temperature and the ending temperature. The protein concentration was measured by the Lowry method.

【0031】また、減圧処理は、吸引ポンプにより0.
075気圧まで減圧を3分間行い1気圧に戻す処理を2
0回繰り返すことで行った。
Further, the depressurization process is performed by a suction pump to a pressure of 0.
Depressurize to 075 atm for 3 minutes and return to 1 atm
It was repeated 0 times.

【0032】[0032]

【表1】 [Table 1]

【0033】試料A〜Cを比較すると、繭の使用量が増
加してもタンパク質濃度はそれほど増加しないが、浸漬
時間が増加するとタンパク質濃度が大きく増加してい
る。その傾向は、試料D〜Fのように浸漬時間の増加と
ともにタンパク質濃度が大きく増加していることからも
確認できる。また、減圧処理を行わない試料Cと減圧処
理を行っている試料D〜Fを比較すると、減圧処理をし
たほうが抽出効率が向上していることがわかる。
Comparing the samples A to C, the protein concentration does not increase so much even if the amount of cocoon used increases, but the protein concentration greatly increases as the immersion time increases. This tendency can also be confirmed from the fact that the protein concentration greatly increases as the immersion time increases as in Samples D to F. Further, comparing the sample C not subjected to the depressurization treatment with the samples D to F subjected to the depressurization treatment, it can be seen that the extraction efficiency is improved by the depressurization treatment.

【0034】また、pHに着目すると、抽出により若干
のpHの低下はあるものの、試料D〜Fにみられるよう
に浸漬時間が長くなってもpHはほぼ一定に維持されて
いることがわかる。
Further, focusing on the pH, it can be seen that although the pH is slightly lowered by the extraction, the pH is maintained substantially constant even when the immersion time is extended as seen in Samples D to F.

【0035】従来のセリシンの抽出においては、特開平
10−29909号公報では、90〜95℃の温度で抽
出を行っていること、特開平11−92564号公報で
は、80℃の温度ではセリシンの抽出ができなかったこ
となど、従来は常温ではセリシンの抽出は非常に困難だ
ったことと比較すれば、その差異は明らかである。
In the conventional extraction of sericin, in JP-A-10-29909, extraction is performed at a temperature of 90 to 95 ° C., and in JP-A-11-92564, the extraction of sericin is performed at a temperature of 80 ° C. Compared with the fact that extraction of sericin was very difficult at room temperature in the past, such as the inability to extract, the difference is clear.

【0036】以上のことから、本発明で用いる強電解水
の抽出作用は非常に強く、特に浸漬時間が長くなっても
pHが維持されるため、時間とともにタンパク質濃度が
大きく増加していく。
From the above, the extraction action of the strong electrolyzed water used in the present invention is very strong, and especially since the pH is maintained even when the immersion time is long, the protein concentration greatly increases with time.

【0037】次に、以下の3つの条件で繭糸よりセリシ
ンを抽出して得られた抽出液をSDSポリアクリルアミ
ドゲル電気泳動法(SDS−PAGE)によりその分子
量分布を測定した。 試料1;強電解水2,000mlに繭16gを1時間浸
漬後上述した減圧処理を20回 試料2;強電解水1,000mlに水道水1,000m
lを加えて繭16gを1時間浸漬後上述した減圧処理を
20回 試料3;強電解水を600mlに水道水1,400ml
を加えて繭16gを1時間浸漬後上述した減圧処理を2
0回 試料1〜3についてローリー法によるタンパク質の濃度
測定を行ったところ、それぞれ34.7μg/ml、2
3.8μg/ml、25.8μg/mlであった。水道
水を加えた場合には、タンパク質の濃度が低下すること
から、強電解水の抽出作用が大きく影響していることが
わかる。また、分子量については、試料1では、分子量
が43,000〜67,000の範囲に分布しており、
平均分子量が67,000であることがわかった。試料
2及び3でもこの範囲の分子量のタンパク質存在するこ
とを明瞭に示しており、試料3では分子量30,000
付近にもタンパク質が存在することが示された。以上の
分析結果から、高分子量のセリシンの抽出がなされたこ
とは明らかであり、具体的には分子量3万以上で、平均
分子量6万7千のセリシンがほぼ自然の状態で抽出され
ていることが明確に示されている。
Next, the molecular weight distribution of the extract obtained by extracting sericin from the cocoon thread under the following three conditions was measured by SDS polyacrylamide gel electrophoresis (SDS-PAGE). Sample 1; 16 g of cocoon was soaked in 2,000 ml of strong electrolyzed water for 1 hour, and the above-mentioned depressurization treatment was performed 20 times. Sample 2; 1,000 ml of strong electrolyzed water and 1,000 m of tap water.
1 g was added and 16 g of cocoon was soaked for 1 hour and then the above-described depressurization treatment was performed 20 times. Sample 3;
And 16 g of cocoon for 1 hour, and then apply the above-mentioned depressurization treatment to 2
When the protein concentration was measured by the Lowry method for Samples 1 to 3 for 0 times, it was 34.7 μg / ml and 2 respectively.
It was 3.8 μg / ml and 25.8 μg / ml. When tap water is added, the protein concentration decreases, which indicates that the extraction action of strongly electrolyzed water has a great influence. Regarding the molecular weight, in Sample 1, the molecular weight is distributed in the range of 43,000 to 67,000,
It was found that the average molecular weight was 67,000. Samples 2 and 3 also clearly show the presence of proteins in this range of molecular weight, and sample 3 has a molecular weight of 30,000.
It was shown that there is a protein in the vicinity. From the above analysis results, it is clear that high-molecular weight sericin was extracted. Specifically, sericin having a molecular weight of 30,000 or more and an average molecular weight of 67,000 was extracted in a substantially natural state. Is clearly shown.

【0038】比較例として、カネボウシルクの5%水溶
液を用いてSDSポリアクリルアミドゲル電気泳動法
(SDS−PAGE)によるタンパク質組成の測定試験
を行った。ローリー法によるタンパク質の濃度測定で
は、83.2mg/mlという高濃度であったためその
ままでは測定できなかったことから、4倍〜32倍にそ
れぞれ希釈した水溶液で測定を行った。測定結果をみる
と、分子量15,100、24,800、37,100
の3種類のタンパク質が含まれており、上述のような高
分子量のタンパク質は含まれていないことがわかった。
As a comparative example, a 5% aqueous solution of Kanebo silk was used to perform a protein composition measurement test by SDS polyacrylamide gel electrophoresis (SDS-PAGE). In the protein concentration measurement by the Lowry method, the concentration could not be measured as it was because the concentration was as high as 83.2 mg / ml. Therefore, the measurement was carried out with an aqueous solution diluted to 4 times to 32 times, respectively. Looking at the measurement results, the molecular weight is 15,100, 24,800, 37,100
It was found that the above three kinds of proteins were contained and the above-mentioned high molecular weight proteins were not contained.

【0039】以上のことから、本発明のセリシン抽出方
法を用いると、高分子量のセリシンが抽出されるととも
に、その分子量分布からみても、より自然に近い状態で
抽出されていることがわかる。
From the above, it can be seen that when the sericin extraction method of the present invention is used, high-molecular-weight sericin is extracted, and the molecular weight distribution shows that it is extracted in a more natural state.

【0040】次に、上述のように作成したセリシン抽出
液を用いた布帛の改質加工処理について説明する。綿繊
維からなる糸により織成された布片を複数用意し、この
布片をまず図1の製造装置で製造した強電解水(pH1
2)で煮沸して、布片の汚れ等を落とす。その後布片を
十分乾燥させてから、抽出液に180分浸漬した。ここ
で用いた抽出液は、強電解水(pH12)1,000m
lに繭45gを常温状態で48時間浸漬して作成したも
のである。浸漬した布片は自然状態で乾燥させて、改質
加工した布片を作成した。こうして作成した各布片は、
所定の洗濯方法(JIS L−0217 103に定め
られた方法)で、洗濯回数をそれぞれ0回、1回、5
回、10回、15回、20回と設定して行った。
Next, the modification processing of the cloth using the sericin extract prepared as described above will be explained. A plurality of cloth pieces woven with threads made of cotton fibers are prepared, and these cloth pieces are first produced with the strong electrolyzed water (pH 1
Boil in 2) to remove stains on the cloth pieces. Then, the cloth piece was sufficiently dried and then immersed in the extract for 180 minutes. The extract used here is 1,000m of strong electrolyzed water (pH 12).
It was made by soaking 45 g of cocoon in 1 for 48 hours at room temperature. The dipped cloth piece was naturally dried to prepare a modified cloth piece. Each piece of cloth created in this way
According to a predetermined washing method (method specified in JIS L-0217 103), the number of washing times is 0, 1 and 5 respectively.
The number of times was set to 10 times, 15 times, and 20 times.

【0041】そして、改質加工した布片のセリシンの付
着程度をニンヒドリン法により分析した。ニンヒドリン
溶液をベースに4種類の薬品(クエン酸・一水和物、苛
性ソーダ、塩化スズ・二水和物、2−メタキシエタノー
ル)を調合した試薬を布片とともに沸騰水浴中で20分
間加熱すると、タンパク質類の付着部分に茶褐色の呈色
反応が生じる。呈色反応が濃色であればあるほどタンパ
ク質類の付着量が多いことがわかる。洗濯を所定回数行
った各布片のニンヒドリン反応を肉眼で確認したとこ
ろ、いずれの布片にも均一な呈色反応が認められ、洗濯
回数が増加しても呈色反応に差異は認められなかった。
また、浸漬した状態で上述の減圧処理を20回行って作
成した布片についても上記静置した場合と同様の試験を
行ったが、同様の分析結果が得られた。
Then, the degree of adhesion of sericin on the modified fabric piece was analyzed by the ninhydrin method. When 4 kinds of chemicals (citric acid / monohydrate, caustic soda, tin chloride / dihydrate, 2-methoxyethanol) based on ninhydrin solution are mixed with a cloth and heated in a boiling water bath for 20 minutes. , A dark brown color reaction occurs on the part where proteins are attached. It can be seen that the darker the color reaction is, the greater the amount of proteins attached is. When the ninhydrin reaction of each piece of cloth that had been washed a predetermined number of times was confirmed with the naked eye, a uniform color reaction was observed on all cloth pieces, and no difference was observed in the color reaction even if the number of times of washing was increased. It was
Further, the same test as in the case of standing was also performed on the cloth piece prepared by performing the above-mentioned depressurization treatment 20 times in the immersed state, but the same analysis result was obtained.

【0042】さらに、ポリエステル繊維からなる糸によ
り織成された布片を用いて上記と同様の改質加工処理を
行ったが、洗濯を所定回数行った各布片についてニンヒ
ドリン反応を肉眼で確認したところ、いずれの布片にも
均一な呈色反応が認められ、洗濯回数が増加しても呈色
反応に差異は認められなかった。
Furthermore, the same modification treatment as above was carried out using a cloth piece woven from yarns made of polyester fibers, but the ninhydrin reaction was visually confirmed with respect to each cloth piece that had been washed a predetermined number of times. However, a uniform color reaction was observed in all the cloth pieces, and no difference was observed in the color reaction even if the number of washings was increased.

【0043】以上のことから、本発明のセリシン抽出液
による布帛の改質加工を行うと、セリシンが均一に布帛
に付着するとともにその付着力が強固なものであること
がわかる。特筆すべきは、セリシンの濃度が低い(0.
1〜0.2%程度)にもかかわらず、実用に耐えるだけ
の改質加工が可能となっていることである。このこと
は、本発明のセリシン抽出液には、高分子量のセリシン
が含まれるためと考えられ、低濃度の少ない量のセリシ
ンでも効率よく改質加工に用いることができる。さら
に、綿繊維のような親水性の強い天然繊維でも洗濯に対
して十分なセリシンの付着量が保持されていることか
ら、その他のさまざまな繊維の改質加工についても対応
することが可能である。また、ここでは布帛の状態で試
験を行ったが、繊維の状態で行っても同様の結果が得ら
れた。
From the above, it can be seen that when the fabric is modified with the sericin extract of the present invention, the sericin uniformly adheres to the fabric and its adhesive force is strong. Notably, the concentration of sericin is low (0.
Approximately 1 to 0.2%), but it is possible to carry out modification processing that can withstand practical use. This is considered to be because the sericin extract of the present invention contains high-molecular-weight sericin, and even a low concentration of a small amount of sericin can be efficiently used for modification processing. Furthermore, since even hydrophilic natural fibers such as cotton fibers retain a sufficient amount of attached sericin for washing, it is possible to deal with other various fiber modification processes. . Further, here, the test was performed in the state of the cloth, but the same result was obtained even when the test was performed in the state of the fiber.

【0044】[0044]

【発明の効果】以上説明したように本発明に係るセリシ
ン抽出方法は、本発明で用いる強電解水の非常に強い抽
出力により常温状態で繭糸からセリシンを抽出すること
が可能となり、より自然に近い状態のセリシン抽出液を
得ることができる。また、従来のように加熱などの物理
的処理、加水分解のための化学的処理を行うことがない
ので、工程管理が単純化されるとともに、人体に無害な
水を用いているので、抽出後の後処理も不要である。さ
らに、繭糸を浸漬した状態で減圧処理を行うとセリシン
の抽出効率を格段に向上させることができる。
As described above, the method for extracting sericin according to the present invention makes it possible to extract sericin from cocoon yarn at room temperature due to the extremely strong extraction power of the strong electrolyzed water used in the present invention, and more naturally. A sericin extract in a close state can be obtained. Also, unlike conventional methods, physical treatment such as heating and chemical treatment for hydrolysis are not performed, so process control is simplified and water that is harmless to the human body is used. No post-processing is required. Further, if the pressure reduction treatment is performed while the cocoon thread is immersed, the extraction efficiency of sericin can be significantly improved.

【0045】本発明に係るセリシン抽出方法により作成
されたセリシン抽出液は、pHがそのまま維持されるた
め長期間保存しても濁りや沈殿物が生じることがほとん
どない。また、分子量が3万以上で、平均分子量が6万
7千のセリシンが含まれていることから、本発明に係る
セリシン抽出液を用いて繊維または布帛を改質加工する
と、セリシンが均一に付着して絹の風合いを有する繊維
または布帛を得ることができる。特に、低濃度のセリシ
ン抽出液でも十分に効果を発揮できるので、少ない量の
セリシンでも効率よく改質加工処理に用いることが可能
となる。さらに、高分子量のセリシンを用いていること
から繊維または布帛へのタンパク質の付着力が強固とな
り、洗濯などに対しても十分な耐久性を有するものとな
る。洗濯回数に対する耐久性は、綿繊維のような親水性
の強い天然繊維でも維持されるとともにポリエステル繊
維のような合成繊維でも維持され、その他のさまざまな
繊維の改質加工処理に対応することができる。また、セ
リシンが均一に付着しているため発色性が改善されると
ともに、セリシンが人間に必要なアミノ酸成分を多く含
んでいることから、人体に接触する部分に用いることで
肌に対して好ましい影響を与えることができる。
Since the pH of the sericin extract prepared by the sericin extraction method of the present invention is maintained as it is, turbidity or precipitate hardly occurs even if it is stored for a long period of time. In addition, since sericin having a molecular weight of 30,000 or more and an average molecular weight of 67,000 is contained, when the fiber or cloth is modified by using the sericin extract according to the present invention, sericin is uniformly attached. Thus, a fiber or cloth having a silky texture can be obtained. In particular, even a low concentration of sericin extract can sufficiently exert the effect, so that even a small amount of sericin can be efficiently used for the modification processing. Furthermore, since the high-molecular weight sericin is used, the adhesive force of the protein to the fiber or cloth becomes strong, and it has sufficient durability against washing and the like. The durability against the number of times of washing is maintained not only in the hydrophilic natural fiber such as cotton fiber but also in the synthetic fiber such as polyester fiber, and it can correspond to various other fiber modification processing. . In addition, the color development is improved because sericin is evenly attached, and since sericin contains many amino acid components necessary for humans, it is preferable to use it on the part that comes into contact with the human body. Can be given.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に用いる強電解水を製造する装置に関す
る説明図
FIG. 1 is an explanatory view of an apparatus for producing strong electrolyzed water used in the present invention.

【図2】図1中の電解セルに関する説明図FIG. 2 is an explanatory diagram of an electrolytic cell in FIG.

【符号の説明】[Explanation of symbols]

1 内面側の円筒状電極 2 電解隔膜 3 外面側の円筒状電極 10 電解槽 11 電解セル 12 注水管 13 通水管 14 排水管 1 Cylindrical electrode on the inner surface side 2 Electrolytic diaphragm 3 Cylindrical electrode on the outer surface side 10 Electrolyzer 11 Electrolysis cell 12 Water injection pipe 13 water pipe 14 drainage pipe

───────────────────────────────────────────────────── フロントページの続き (72)発明者 山崎 隆 京都府京都市伏見区向島二ノ丸町151−30 −3A−506 Fターム(参考) 4H045 AA10 AA20 BA10 CA51 EA65 GA01 4L033 AA01 AA03 AA05 AA07 AA08 AB05 AB06 AB07 BA53 CA08   ─────────────────────────────────────────────────── ─── Continued front page    (72) Inventor Takashi Yamazaki             151-30 Minoshima Ninomaru-cho, Fushimi-ku, Kyoto-shi, Kyoto Prefecture             -3A-506 F term (reference) 4H045 AA10 AA20 BA10 CA51 EA65                       GA01                 4L033 AA01 AA03 AA05 AA07 AA08                       AB05 AB06 AB07 BA53 CA08

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】 結晶性粘土鉱物を溶解させながら電気分
解することで生成した強電解水に、繭糸を浸漬すること
でセリシンを抽出することを特徴とするセリシン抽出方
法。
1. A method for extracting sericin, which comprises extracting sericin by immersing a cocoon thread in strong electrolyzed water produced by electrolyzing while dissolving a crystalline clay mineral.
【請求項2】 常温状態でセリシンを抽出することを特
徴とする請求項1記載のセリシン抽出方法。
2. The sericin extraction method according to claim 1, wherein sericin is extracted at room temperature.
【請求項3】 繭糸を浸漬した状態において、繭糸に強
電解水の浸透を促進する浸透促進処理を行うことを特徴
とする請求項1または2記載のセリシン抽出方法。
3. The method for extracting sericin according to claim 1, wherein the cocoon yarn is subjected to a permeation promoting treatment for promoting permeation of the strong electrolyzed water in a state where the cocoon yarn is immersed.
【請求項4】 前記浸透促進処理は、減圧処理を含むこ
とを特徴とする請求項3記載のセリシン抽出方法。
4. The method for extracting sericin according to claim 3, wherein the permeation promoting treatment includes a pressure reducing treatment.
【請求項5】 請求項1乃至4のいずれかに記載の抽出
方法により抽出されたセリシンを含むことを特徴とする
セリシン抽出液。
5. A sericin extract, comprising sericin extracted by the extraction method according to any one of claims 1 to 4.
【請求項6】 常温状態において強電解水に繭糸を浸漬
することで抽出された分子量3万以上で平均分子量6万
7千のセリシンを含むことを特徴とするセリシン抽出
液。
6. A sericin extract containing sericin having a molecular weight of 30,000 or more and an average molecular weight of 67,000, which is extracted by immersing a cocoon thread in strong electrolyzed water at room temperature.
【請求項7】 請求項5または6記載のセリシン抽出液
により常温状態で繊維を処理することを特徴とする繊維
の改質加工方法。
7. A method for modifying and processing a fiber, which comprises treating the fiber with the sericin extract according to claim 5 or 6 at room temperature.
【請求項8】 請求項5または6記載のセリシン抽出液
により常温状態で布帛を処理することを特徴とする布帛
の改質加工方法。
8. A method for modifying and processing a cloth, which comprises treating the cloth with the sericin extract according to claim 5 or 6 at room temperature.
JP2001363542A 2001-11-29 2001-11-29 Method for extracting sericin, extract thereof and method for modifying fiber or fabric Expired - Lifetime JP3973886B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001363542A JP3973886B2 (en) 2001-11-29 2001-11-29 Method for extracting sericin, extract thereof and method for modifying fiber or fabric

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001363542A JP3973886B2 (en) 2001-11-29 2001-11-29 Method for extracting sericin, extract thereof and method for modifying fiber or fabric

Publications (2)

Publication Number Publication Date
JP2003165843A true JP2003165843A (en) 2003-06-10
JP3973886B2 JP3973886B2 (en) 2007-09-12

Family

ID=19173865

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001363542A Expired - Lifetime JP3973886B2 (en) 2001-11-29 2001-11-29 Method for extracting sericin, extract thereof and method for modifying fiber or fabric

Country Status (1)

Country Link
JP (1) JP3973886B2 (en)

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007509680A (en) * 2003-10-28 2007-04-19 スミス アンド ネフュー ピーエルシー Device for cleaning wounds in situ
WO2007098951A3 (en) * 2006-03-01 2007-10-18 Spintech Engineering Gmbh Method and apparatus for extraction of protein material from silkworm glands
US8105633B2 (en) 2006-03-01 2012-01-31 Spintec Engineering Gmbh Method and apparatus for extraction of arthropod gland
US8118794B2 (en) 2002-09-03 2012-02-21 Bluesky Medical Group, Inc. Reduced pressure treatment system
CN102585285A (en) * 2012-01-17 2012-07-18 苏州大学 Recovery method of silk glue and silk glue
US8282611B2 (en) 2004-04-05 2012-10-09 Bluesky Medical Group, Inc. Reduced pressure wound treatment system
US8449509B2 (en) 2004-04-05 2013-05-28 Bluesky Medical Group Incorporated Flexible reduced pressure treatment appliance
US8460255B2 (en) 2006-05-11 2013-06-11 Kalypto Medical, Inc. Device and method for wound therapy
US8663198B2 (en) 2009-04-17 2014-03-04 Kalypto Medical, Inc. Negative pressure wound therapy device
US8715256B2 (en) 2007-11-21 2014-05-06 Smith & Nephew Plc Vacuum assisted wound dressing
US8764732B2 (en) 2007-11-21 2014-07-01 Smith & Nephew Plc Wound dressing
US8795243B2 (en) 2004-05-21 2014-08-05 Bluesky Medical Group Incorporated Flexible reduced pressure treatment appliance
US8808274B2 (en) 2007-11-21 2014-08-19 Smith & Nephew Plc Wound dressing
US8829263B2 (en) 2005-09-07 2014-09-09 Smith & Nephew, Inc. Self contained wound dressing with micropump
US8834451B2 (en) 2002-10-28 2014-09-16 Smith & Nephew Plc In-situ wound cleansing apparatus
US8945074B2 (en) 2011-05-24 2015-02-03 Kalypto Medical, Inc. Device with controller and pump modules for providing negative pressure for wound therapy
US9058634B2 (en) 2011-05-24 2015-06-16 Kalypto Medical, Inc. Method for providing a negative pressure wound therapy pump device
US9061095B2 (en) 2010-04-27 2015-06-23 Smith & Nephew Plc Wound dressing and method of use
US9067003B2 (en) 2011-05-26 2015-06-30 Kalypto Medical, Inc. Method for providing negative pressure to a negative pressure wound therapy bandage
US9492326B2 (en) 2004-04-05 2016-11-15 Bluesky Medical Group Incorporated Reduced pressure wound treatment system
US10058642B2 (en) 2004-04-05 2018-08-28 Bluesky Medical Group Incorporated Reduced pressure treatment system
CN114249805A (en) * 2021-12-24 2022-03-29 中科国思生物科技研究(广州)有限公司 Preparation method of active macromolecular sericin and dry tablet thereof
CN114481595A (en) * 2022-03-11 2022-05-13 罗莱生活科技股份有限公司 Modified polyester fiber and preparation method and application thereof
CN114606766A (en) * 2022-03-02 2022-06-10 杭州路先非织造股份有限公司 Preparation method and application of sericin-finished spunlace nonwoven fabric

Cited By (81)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8545464B2 (en) 2002-09-03 2013-10-01 Bluesky Medical Group Incorporated Reduced pressure treatment system
US8118794B2 (en) 2002-09-03 2012-02-21 Bluesky Medical Group, Inc. Reduced pressure treatment system
US9211365B2 (en) 2002-09-03 2015-12-15 Bluesky Medical Group, Inc. Reduced pressure treatment system
US10265445B2 (en) 2002-09-03 2019-04-23 Smith & Nephew, Inc. Reduced pressure treatment system
US8628505B2 (en) 2002-09-03 2014-01-14 Bluesky Medical Group Incorporated Reduced pressure treatment system
US11376356B2 (en) 2002-09-03 2022-07-05 Smith & Nephew, Inc. Reduced pressure treatment system
US11298454B2 (en) 2002-09-03 2022-04-12 Smith & Nephew, Inc. Reduced pressure treatment system
US10842678B2 (en) 2002-10-28 2020-11-24 Smith & Nephew Plc Apparatus for aspirating, irrigating and cleansing wounds
US8834451B2 (en) 2002-10-28 2014-09-16 Smith & Nephew Plc In-situ wound cleansing apparatus
US9844474B2 (en) 2002-10-28 2017-12-19 Smith & Nephew Plc Apparatus for aspirating, irrigating and cleansing wounds
US9844473B2 (en) 2002-10-28 2017-12-19 Smith & Nephew Plc Apparatus for aspirating, irrigating and cleansing wounds
US10278869B2 (en) 2002-10-28 2019-05-07 Smith & Nephew Plc Apparatus for aspirating, irrigating and cleansing wounds
US9205001B2 (en) 2002-10-28 2015-12-08 Smith & Nephew Plc Apparatus for aspirating, irrigating and cleansing wounds
JP4680921B2 (en) * 2003-10-28 2011-05-11 スミス アンド ネフュー ピーエルシー Device for cleaning wounds in situ
US8569566B2 (en) 2003-10-28 2013-10-29 Smith & Nephew, Plc Wound cleansing apparatus in-situ
US8080702B2 (en) 2003-10-28 2011-12-20 Smith & Nephew Plc Wound cleansing apparatus in-situ
US7964766B2 (en) 2003-10-28 2011-06-21 Smith & Nephew Plc Wound cleansing apparatus in-situ
US9446178B2 (en) 2003-10-28 2016-09-20 Smith & Nephew Plc Wound cleansing apparatus in-situ
JP2007509680A (en) * 2003-10-28 2007-04-19 スミス アンド ネフュー ピーエルシー Device for cleaning wounds in situ
US10058642B2 (en) 2004-04-05 2018-08-28 Bluesky Medical Group Incorporated Reduced pressure treatment system
US10105471B2 (en) 2004-04-05 2018-10-23 Smith & Nephew, Inc. Reduced pressure treatment system
US10363346B2 (en) 2004-04-05 2019-07-30 Smith & Nephew, Inc. Flexible reduced pressure treatment appliance
US8303552B2 (en) 2004-04-05 2012-11-06 Bluesky Medical Group, Inc. Reduced pressure wound treatment system
US11730874B2 (en) 2004-04-05 2023-08-22 Smith & Nephew, Inc. Reduced pressure treatment appliance
US10842919B2 (en) 2004-04-05 2020-11-24 Smith & Nephew, Inc. Reduced pressure treatment system
US8282611B2 (en) 2004-04-05 2012-10-09 Bluesky Medical Group, Inc. Reduced pressure wound treatment system
US9492326B2 (en) 2004-04-05 2016-11-15 Bluesky Medical Group Incorporated Reduced pressure wound treatment system
US10350339B2 (en) 2004-04-05 2019-07-16 Smith & Nephew, Inc. Flexible reduced pressure treatment appliance
US9198801B2 (en) 2004-04-05 2015-12-01 Bluesky Medical Group, Inc. Flexible reduced pressure treatment appliance
US8449509B2 (en) 2004-04-05 2013-05-28 Bluesky Medical Group Incorporated Flexible reduced pressure treatment appliance
US9925313B2 (en) 2004-05-21 2018-03-27 Smith & Nephew, Inc. Flexible reduced pressure treatment appliance
US9272080B2 (en) 2004-05-21 2016-03-01 Bluesky Medical Group Incorporated Flexible reduced pressure treatment appliance
US8795243B2 (en) 2004-05-21 2014-08-05 Bluesky Medical Group Incorporated Flexible reduced pressure treatment appliance
US10207035B2 (en) 2004-05-21 2019-02-19 Smith & Nephew, Inc. Flexible reduced pressure treatment appliance
US11278658B2 (en) 2005-09-07 2022-03-22 Smith & Nephew, Inc. Self contained wound dressing with micropump
US11737925B2 (en) 2005-09-07 2023-08-29 Smith & Nephew, Inc. Self contained wound dressing with micropump
US10201644B2 (en) 2005-09-07 2019-02-12 Smith & Nephew, Inc. Self contained wound dressing with micropump
US8829263B2 (en) 2005-09-07 2014-09-09 Smith & Nephew, Inc. Self contained wound dressing with micropump
WO2007098951A3 (en) * 2006-03-01 2007-10-18 Spintech Engineering Gmbh Method and apparatus for extraction of protein material from silkworm glands
US8287913B2 (en) 2006-03-01 2012-10-16 Spin'tec Engineering Gmbh Method and apparatus for extraction of protein material from arthropod glands and a membrane formed therefrom
US8105633B2 (en) 2006-03-01 2012-01-31 Spintec Engineering Gmbh Method and apparatus for extraction of arthropod gland
JP2009528314A (en) * 2006-03-01 2009-08-06 スピンテック エンジニアリング ジーエムビーエイチ Arthropod gland extraction method and apparatus
US8460255B2 (en) 2006-05-11 2013-06-11 Kalypto Medical, Inc. Device and method for wound therapy
US11517656B2 (en) 2006-05-11 2022-12-06 Smith & Nephew, Inc. Device and method for wound therapy
US11179276B2 (en) 2007-11-21 2021-11-23 Smith & Nephew Plc Wound dressing
US9220822B2 (en) 2007-11-21 2015-12-29 Smith & Nephew Plc Wound dressing
US11364151B2 (en) 2007-11-21 2022-06-21 Smith & Nephew Plc Wound dressing
US10123909B2 (en) 2007-11-21 2018-11-13 Smith & Nephew Plc Wound dressing
US11351064B2 (en) 2007-11-21 2022-06-07 Smith & Nephew Plc Wound dressing
US10016309B2 (en) 2007-11-21 2018-07-10 Smith & Nephew Plc Wound dressing
US9962474B2 (en) 2007-11-21 2018-05-08 Smith & Nephew Plc Vacuum assisted wound dressing
US10231875B2 (en) 2007-11-21 2019-03-19 Smith & Nephew Plc Wound dressing
US8764732B2 (en) 2007-11-21 2014-07-01 Smith & Nephew Plc Wound dressing
US8715256B2 (en) 2007-11-21 2014-05-06 Smith & Nephew Plc Vacuum assisted wound dressing
US8808274B2 (en) 2007-11-21 2014-08-19 Smith & Nephew Plc Wound dressing
US11701266B2 (en) 2007-11-21 2023-07-18 Smith & Nephew Plc Vacuum assisted wound dressing
US9956121B2 (en) 2007-11-21 2018-05-01 Smith & Nephew Plc Wound dressing
US10555839B2 (en) 2007-11-21 2020-02-11 Smith & Nephew Plc Wound dressing
US10744041B2 (en) 2007-11-21 2020-08-18 Smith & Nephew Plc Wound dressing
US9844475B2 (en) 2007-11-21 2017-12-19 Smith & Nephew Plc Wound dressing
US11974902B2 (en) 2007-11-21 2024-05-07 Smith & Nephew Plc Vacuum assisted wound dressing
US11045598B2 (en) 2007-11-21 2021-06-29 Smith & Nephew Plc Vacuum assisted wound dressing
US11129751B2 (en) 2007-11-21 2021-09-28 Smith & Nephew Plc Wound dressing
US11110010B2 (en) 2007-11-21 2021-09-07 Smith & Nephew Plc Wound dressing
US8663198B2 (en) 2009-04-17 2014-03-04 Kalypto Medical, Inc. Negative pressure wound therapy device
US9579431B2 (en) 2009-04-17 2017-02-28 Kalypto Medical, Inc. Negative pressure wound therapy device
US10111991B2 (en) 2009-04-17 2018-10-30 Smith & Nephew, Inc. Negative pressure wound therapy device
US11090195B2 (en) 2010-04-27 2021-08-17 Smith & Nephew Plc Wound dressing and method of use
US11058587B2 (en) 2010-04-27 2021-07-13 Smith & Nephew Plc Wound dressing and method of use
US9808561B2 (en) 2010-04-27 2017-11-07 Smith & Nephew Plc Wound dressing and method of use
US9061095B2 (en) 2010-04-27 2015-06-23 Smith & Nephew Plc Wound dressing and method of use
US10159604B2 (en) 2010-04-27 2018-12-25 Smith & Nephew Plc Wound dressing and method of use
US9058634B2 (en) 2011-05-24 2015-06-16 Kalypto Medical, Inc. Method for providing a negative pressure wound therapy pump device
US8945074B2 (en) 2011-05-24 2015-02-03 Kalypto Medical, Inc. Device with controller and pump modules for providing negative pressure for wound therapy
US10300178B2 (en) 2011-05-26 2019-05-28 Smith & Nephew, Inc. Method for providing negative pressure to a negative pressure wound therapy bandage
US9067003B2 (en) 2011-05-26 2015-06-30 Kalypto Medical, Inc. Method for providing negative pressure to a negative pressure wound therapy bandage
CN102585285A (en) * 2012-01-17 2012-07-18 苏州大学 Recovery method of silk glue and silk glue
CN114249805A (en) * 2021-12-24 2022-03-29 中科国思生物科技研究(广州)有限公司 Preparation method of active macromolecular sericin and dry tablet thereof
CN114249805B (en) * 2021-12-24 2024-04-19 中科国思生物科技研究(广州)有限公司 Preparation method of active macromolecular sericin and dry sheet thereof
CN114606766A (en) * 2022-03-02 2022-06-10 杭州路先非织造股份有限公司 Preparation method and application of sericin-finished spunlace nonwoven fabric
CN114481595A (en) * 2022-03-11 2022-05-13 罗莱生活科技股份有限公司 Modified polyester fiber and preparation method and application thereof

Also Published As

Publication number Publication date
JP3973886B2 (en) 2007-09-12

Similar Documents

Publication Publication Date Title
JP2003165843A (en) Method for extracting sericin, the extract solution and method for modifying fiber or fabric
CN105601731B (en) Purify the method for ox heel string collagen and its preparation of sponge
JP2001163899A (en) Method for producing functional silk fibroin and its use
US20130071645A1 (en) Method for separating atelocollagen, method for preparing modified atelocollagen, atelocollagen prepared by using the same and collagen-based matrix
Men et al. New insights into membrane fouling during direct membrane filtration of municipal wastewater and fouling control with mechanical strategies
CN103418021A (en) In-situ-crossly-linked electrospun fibrous membrane dressing made from collangen I and preparation method of in-situ crosslinking electrospun fibrous membrane dressing
JP2001145880A (en) Concentrated solution of active oxygen eliminating agent, method of producing the same and active oxygen eliminating agent powder
CN102146136B (en) Method for extracting hirudin by stimulating living leech with electricity
CN106632665A (en) Method for extracting collagen from freshwater fish skin by lactic acid
JP2004353117A (en) Method for modification processing of material using sericin extract liquid and natural component
JPH1029909A (en) Sericin peptide solution and its production
JP2007167046A (en) Silk improving method
JP6261109B2 (en) Extraction and purification method of silkworm sericin
CN108203728A (en) A kind of preparation method of collagen peptide
CN107815480A (en) With the method for catfish fish guts protease extraction collagen
NL8105410A (en) REINFORCED FIBER ELECTROCHEMICAL CELL DIAPHRAGM AND A METHOD OF MANUFACTURING THESE.
JP2010236149A (en) Production method of reduction salting-out keratin fiber
JPH1136173A (en) Decoloration of colored clothes
CN1208348C (en) Process for extracting aloinose
JP2004238603A (en) Negative ion generating leather
CN205517290U (en) Column type membrane purifies integrative device with electrolysis function
CN107012526A (en) A kind of preparation method of the composite regenerated fiber repair materials of Goat Placenta
JP6698982B2 (en) Bath material and manufacturing method thereof
CN108048934A (en) It is a kind of for silk fiber of non-woven fabrics and preparation method thereof
CN108047322A (en) A kind of preparation method and application of sericin

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041007

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060725

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061010

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061209

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070515

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070613

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 3973886

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100622

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100622

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130622

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term