JP2003160308A - Method for refining hydrogen using carbonaceous molecular sieve membrane - Google Patents

Method for refining hydrogen using carbonaceous molecular sieve membrane

Info

Publication number
JP2003160308A
JP2003160308A JP2001355786A JP2001355786A JP2003160308A JP 2003160308 A JP2003160308 A JP 2003160308A JP 2001355786 A JP2001355786 A JP 2001355786A JP 2001355786 A JP2001355786 A JP 2001355786A JP 2003160308 A JP2003160308 A JP 2003160308A
Authority
JP
Japan
Prior art keywords
hydrogen
molecular sieve
membrane
carbon monoxide
carbon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001355786A
Other languages
Japanese (ja)
Other versions
JP3855044B2 (en
Inventor
Hiroaki Hatori
浩章 羽鳥
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST filed Critical National Institute of Advanced Industrial Science and Technology AIST
Priority to JP2001355786A priority Critical patent/JP3855044B2/en
Publication of JP2003160308A publication Critical patent/JP2003160308A/en
Application granted granted Critical
Publication of JP3855044B2 publication Critical patent/JP3855044B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)
  • Hydrogen, Water And Hydrids (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)
  • Silicates, Zeolites, And Molecular Sieves (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for refining hydrogen to obtain extremely high purity hydrogen by separating and removing impurities such as carbon monoxide and the like mixed with hydrogen molecules. <P>SOLUTION: The method uses a carbonaceous molecular sieve membrane having fine pores whose diameters are 0.2-0.35 nm and which are obtained by converting a polymer material to carbon. Hydrogen obtained by the method is useful for removing carbon monoxide contained as impurities in fuel hydrogen to be fed to a fuel cell. <P>COPYRIGHT: (C)2003,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、分子篩炭素膜を用
いて水素を精製する方法に関するものである。
TECHNICAL FIELD The present invention relates to a method for purifying hydrogen using a molecular sieve carbon membrane.

【0002】[0002]

【従来の技術】近年、地球温暖化問題からクリーンエネ
ルギーの利用拡大が急務になってきており、次世代のゼ
ロエミッションエネルギー利用社会においては、水素エ
ネルギーは究極のクリーン燃料と言えるものである。現
在、外部に何らかのエネルギー媒体を必要とする分散型
のエネルギー利用形態である自動車分野あるいは家庭用
電源などの民生用分野における有望なエネルギー転換シ
ステムでは、水素を燃料とするクリーンかつ高効率な燃
料電池の開発が極めて重要な技術的課題となっている。
2. Description of the Related Art In recent years, there has been an urgent need to expand the use of clean energy due to the problem of global warming, and it can be said that hydrogen energy is the ultimate clean fuel in the next-generation zero-emission energy utilization society. At present, a promising energy conversion system in the field of automobiles, which is a decentralized energy use form that requires some kind of energy medium outside, or in the field of consumer use such as household power supply, is a clean and highly efficient fuel cell that uses hydrogen as a fuel. Development has become an extremely important technical issue.

【0003】現状では、燃料電池の燃料となる水素の供
給は、ガソリン、天然ガスあるいはメタノールなどの有
機資源を改質して利用せざるを得ない状況にあり、自動
車用あるいは小型民生用に開発が進められている固体高
分子型燃料電池システムでは、燃料水素に混在する微量
の一酸化炭素が、触媒被毒を引き起こし電池性能を著し
く低下させている。現在、燃料電池自動車では、上述し
た有機資源を改質器で変換した水素を燃料に利用する方
法が最も実用性の高い選択肢となっているが、固体高分
子型燃料電池電極の白金触媒は、その実用作動温度であ
る100℃以下においても、水素分子中に僅か数10p
pm程度の微量の一酸化炭素が含まれていても触媒被毒
が起こるという問題がある。
At present, the supply of hydrogen, which is the fuel for fuel cells, is unavoidable due to reforming and utilizing organic resources such as gasoline, natural gas or methanol, and it is developed for automobiles or small consumers. In the polymer electrolyte fuel cell system, the amount of carbon monoxide mixed in the fuel hydrogen causes catalyst poisoning, which significantly deteriorates the cell performance. Currently, in a fuel cell vehicle, the method of using hydrogen obtained by converting the above-mentioned organic resources in a reformer as a fuel is the most practical option. However, the platinum catalyst of the polymer electrolyte fuel cell electrode is Even at a practical operating temperature of 100 ° C or lower, only a few tens of p
There is a problem that catalyst poisoning occurs even if a small amount of carbon monoxide of about pm is contained.

【0004】現在のところ、燃料電池への水素供給シス
テムには一酸化炭素の選択酸化による除去装置が設置さ
れているが、一酸化炭素濃度を10ppm以下に低下さ
せるには、装置負荷が極めて大きくなり燃料効率の低下
を招くことになる。さらに、触媒被毒という問題の性質
上、電池の耐久性の向上という観点から一酸化炭素濃度
は限りなく無に近い状態にすることが望ましい。
At present, a hydrogen supply system for a fuel cell is equipped with a device for removing carbon monoxide by selective oxidation. However, in order to reduce the carbon monoxide concentration to 10 ppm or less, the device load is extremely large. This leads to a decrease in fuel efficiency. Further, in view of the problem of catalyst poisoning, it is desirable that the carbon monoxide concentration be infinitely close to zero from the viewpoint of improving battery durability.

【0005】一方、分子篩膜を用いて混合ガスを分離す
る方法が知られている。 一般に、分子径に近い大きさ
の均一な細孔を持つゼオライト、炭素などの無機膜は、
その細孔径より大きな分子径を持つ分子を大きさで篩分
ける機能を有することから分子篩膜と呼ばれる。このよ
うな膜、例えば細孔径が0.5nmの膜では、ガス透過
において窒素、酸素等に比べてプロパンやブタン、二酸
化炭素の選択透過性に優れている。
On the other hand, a method of separating a mixed gas using a molecular sieve membrane is known. In general, inorganic membranes such as zeolite and carbon that have uniform pores with a size close to the molecular diameter are
It is called a molecular sieve membrane because it has a function of sieving molecules having a larger molecular diameter than the pore diameter according to size. Such a film, for example, a film having a pore diameter of 0.5 nm, is superior in selective permeation of propane, butane and carbon dioxide to gas permeation as compared with nitrogen and oxygen.

【0006】ところで、プロパンやブタン、あるいは酸
素、窒素、二酸化炭素などの無機ガスは、分子の大きさ
が0.5nm以下であるから、この場合の分離作用は、
分子の大きさで篩分ける真の意味の分子篩ではなく、ガ
ス分子の細孔への吸着現象が関与する吸着拡散機構によ
るものである。このような大きさの細孔を持つ膜では、
より細孔に吸着し易い分子、すなわち高分子量分子が細
孔内に優先的に入り込み、水素のように吸着し難い分子
をブロックするため、分子運動速度が遅いと予想される
高分子量分子の方が、分子運動速度が速いと予想される
低分子量分子よりも透過し易いという逆転現象が起こる
ことがある。
By the way, since the molecular size of propane, butane, or an inorganic gas such as oxygen, nitrogen or carbon dioxide is 0.5 nm or less, the separating action in this case is as follows.
This is not due to the true meaning of sieving based on the size of the molecule, but due to the adsorption / diffusion mechanism involving the phenomenon of adsorption of gas molecules into the pores. In a membrane with pores of this size,
Molecules that are more likely to be adsorbed in the pores, that is, high molecular weight molecules preferentially enter the pores, and block molecules that are difficult to adsorb, such as hydrogen, so that molecular weight molecules that are expected to have slower molecular kinetics However, a reversal phenomenon may occur in which it is more permeable than a low molecular weight molecule that is expected to have a high molecular motion velocity.

【0007】その吸着拡散機構により分離ガスの吸着量
が大きいほど選択透過性が高まり、プロパン、ブタン等
の炭化水素類と水素の混合気体の分離では、水素に比べ
てプロパンが20倍、ブタンが100倍という透過速度
差が生じる。このような膜では、二酸化炭素の透過性が
酸素や窒素よりも明らかに高いのもこの吸着拡散機構に
よるものである。また、このような分離性能は分子の吸
着特性に依存するものであり、水素との吸着量差の小さ
い一酸化炭素などを含むガスでは、一段の膜分離で純粋
に近い高純度の水素を得ることは不可能である。
Due to the adsorption / diffusion mechanism, the larger the adsorption amount of the separation gas, the higher the selective permeability. In the separation of the mixed gas of hydrocarbons such as propane and butane and hydrogen, propane is 20 times as much as hydrogen and butane is more than hydrogen. A transmission speed difference of 100 times occurs. It is due to this adsorption / diffusion mechanism that the permeability of carbon dioxide in such a membrane is obviously higher than that of oxygen or nitrogen. Further, such separation performance depends on the adsorption property of molecules, and in the case of a gas containing carbon monoxide or the like, which has a small difference in the adsorption amount with hydrogen, one-stage membrane separation yields highly pure hydrogen of near purity. Is impossible.

【0008】さらに、ガス分離技術として、物理的な大
きさで篩分けを行うという極めてシンプルな機構による
方法も知られている。しかし、これまでの研究でも、細
孔径が0.4nm未満の分子篩膜による膜分離は全く未
知の領域である。実際、異なる大きさの分子を吸着させ
て細孔径の解析を行うことが分子篩特性解析の定法とさ
れているが、ガス分離用無機膜を用い、二酸化炭素の最
小分子直径(0.33nm)以下の細孔について評価し
た報告は皆無である。現在、無機膜の開発では、ガス分
離に適した1nm以下の細孔径を制御すること及びガス
分離性能を著しく低下させるピンホールの除去が重要な
問題である。また、素材面からは、セラミックやゼオラ
イトは、微結晶自体の細孔を制御することは容易である
反面、結晶性が高いために明確な粒界が生じやすく、そ
の集合体膜では、粒界に1nm以上のピンホール(1n
m以上の細孔)の発生を抑えることは難しい。
Further, as a gas separation technique, a method using an extremely simple mechanism of performing sieving with a physical size is also known. However, even in the studies so far, membrane separation by a molecular sieve membrane having a pore size of less than 0.4 nm is a completely unknown region. Actually, it is a standard method of molecular sieve characteristics analysis to adsorb molecules of different sizes to analyze the pore size, but using an inorganic membrane for gas separation, the minimum molecular diameter of carbon dioxide (0.33 nm) or less is used. There is no report that evaluates the pores. Currently, in the development of inorganic membranes, controlling the pore size of 1 nm or less suitable for gas separation and removing pinholes that significantly reduce gas separation performance are important problems. From the viewpoint of the material, ceramics and zeolites are easy to control the pores of the microcrystals themselves, but due to their high crystallinity, clear grain boundaries are likely to occur, and in the aggregate film, the grain boundaries are Pinhole of 1 nm or more (1n
It is difficult to suppress the generation of pores of m or more).

【0009】すなわち、水素分子とほぼ同等の細孔径を
有する分子篩膜では、水素より分子径の大きな分子は物
理的に細孔に進入することが不可能であることから、水
素分子のみ(ヘリウムも透過できるが水素製造ガスにヘ
リウムが混在する系は無い)が膜を透過できることにな
る。先に、本発明者らは、芳香族ポリイミド系フィルム
から得られた分子篩炭素膜(特許第2021957号)を開発
したが、この膜の応用例としては炭化水素の異性体混合
物の分離などについて開示しているに過ぎない。
That is, in a molecular sieve membrane having a pore diameter almost equal to that of hydrogen molecules, it is impossible for a molecule having a larger molecular diameter than hydrogen to physically enter the pores. Although it is permeable, there is no system in which helium is mixed in the hydrogen production gas), but it will be permeable to the membrane. Previously, the present inventors have developed a molecular sieve carbon membrane (Patent No. 2021957) obtained from an aromatic polyimide-based film, and disclosed an application example of this membrane is separation of a mixture of hydrocarbon isomers and the like. I'm just doing it.

【0010】[0010]

【発明が解決しようとする課題】本発明は、従来の技術
における上記した問題点を解消するためになされたもの
である。すなわち、本発明の目的は、水素分子中に混在
する一酸化炭素などの不純物を分離除去して極めて高純
度の水素を得る水素の精製方法を提供することにある。
また、本発明の他の目的は、燃料電池自動車や家庭用・
携帯用などの小型燃料電池に採用し得るコンパクトかつ
省エネルギー型の水素精製装置として用いられ、100
℃以下の作動温度で十分な分離性能を有する水素の精製
方法を提供するものである。
SUMMARY OF THE INVENTION The present invention has been made to solve the above-mentioned problems in the prior art. That is, an object of the present invention is to provide a method for purifying hydrogen by separating and removing impurities such as carbon monoxide mixed in hydrogen molecules to obtain hydrogen of extremely high purity.
Further, another object of the present invention is to provide a fuel cell vehicle, a home,
It is used as a compact and energy-saving hydrogen purifier that can be used in small fuel cells for portable use.
The present invention provides a method for purifying hydrogen having sufficient separation performance at an operating temperature of ℃ or less.

【0011】[0011]

【課題を解決するための手段】本発明者は、上記の課題
を解決すべく鋭意研究を重ねた結果、特定の材料から得
られた分子篩膜を用いることにより、混合ガス中に含ま
れる微量の不純物を十分に分離除去できることを見出
し、本発明を完成するに至った。すなわち、本発明によ
れば、高分子材料を炭素化して得られた孔径0.2〜
0.35nmの微細孔を有する分子篩炭素膜を用いたこ
とを特徴とする水素の精製方法が提供される。
Means for Solving the Problems As a result of intensive studies to solve the above problems, the present inventor has found that by using a molecular sieve membrane obtained from a specific material, the trace amount of gas contained in a mixed gas can be reduced. The inventors have found that impurities can be sufficiently separated and removed, and have completed the present invention. That is, according to the present invention, the pore size obtained by carbonizing the polymer material is 0.2 to
Provided is a method for purifying hydrogen, which comprises using a molecular sieve carbon membrane having 0.35 nm fine pores.

【0012】[0012]

【発明の実施の形態】本発明に用いられる分子篩炭素膜
は、高分子材料のシート状物を高温で熱処理して炭素化
させることにより得られるものであって、孔径0.2〜
0.35nmの微細孔を有するものである。その原料と
して用いられる高分子材料としては、芳香族ポリイミド
類、芳香族ポリアミド類、フェノール系樹脂などが挙げ
られ、これらの高分子材料のシート単独、或いはこれら
を多孔質体などに支持された複合シートなどが用いられ
る。
BEST MODE FOR CARRYING OUT THE INVENTION The molecular sieve carbon membrane used in the present invention is obtained by heat treating a sheet material of a polymer material at a high temperature to carbonize it, and has a pore size of 0.2 to
It has fine pores of 0.35 nm. Examples of the polymer material used as the raw material include aromatic polyimides, aromatic polyamides, phenolic resins, and the like, and a sheet of these polymer materials alone or a composite in which these are supported by a porous body or the like. Sheets are used.

【0013】本発明のように、水素ガス中に含まれる一
酸化炭素を、それらの粒子径の差異により物理的に分離
除去するには、水素分子径(0.28nm)と一酸化炭
素分子径(0.33nm)とは、極めて近似しているば
かりでなく、極微細であることから、水素分子が膜内部
に入るのに対し、一酸化炭素分子は膜内部に入ることの
ない0.2〜0.35nmの微細孔が発達した分子篩炭
素膜を用いる必要がある。
As in the present invention, in order to physically separate and remove carbon monoxide contained in hydrogen gas due to the difference in particle size, the hydrogen molecular diameter (0.28 nm) and the carbon monoxide molecular diameter are (0.33 nm) is not only extremely close, but also extremely fine, so that hydrogen molecules enter inside the film, whereas carbon monoxide molecules do not enter inside the film. It is necessary to use a molecular sieve carbon membrane with developed micropores of ~ 0.35 nm.

【0014】ところが、 一般に、上記した高分子材料
のシートを熱処理して炭化させると、そのシート形状を
保持した状態で収縮し、1nm(10Å)以下の均質な
細孔を有する分子篩炭素膜が得られるものの、通常の炭
素化処理では孔径0.2〜0.35nmに調整された微
細孔を有する分子篩炭素膜を容易に得ることは困難であ
る。そこで、本発明において、水素ガス中に不純物とし
て含まれる微量の一酸化炭素をも分離により除去するに
は、0.2〜0.35nmの微細孔が発達した分子篩炭
素膜が得られるように細心の注意を払って作製し、これ
を用いて高純度の水素を得るものである。このような
0.2〜0.35nmの微細孔が発達した分子篩炭素膜
は、窒素、アルゴンなどの不活性ガス中、比較的高温で
熱処理することにより得られるが、その処理温度として
は、使用する原料高分子材料の種類により若干変動する
が、一定の昇温速度に調整し、900〜1300℃、好
ましくは1000〜1200℃程度にまで上昇させて焼
成することにより得ることができる。
However, in general, when the above-mentioned polymer material sheet is heat-treated and carbonized, it shrinks while maintaining the sheet shape, and a molecular sieve carbon membrane having uniform pores of 1 nm (10 Å) or less is obtained. However, it is difficult to easily obtain a molecular sieve carbon membrane having fine pores adjusted to have a pore diameter of 0.2 to 0.35 nm by a conventional carbonization treatment. Therefore, in the present invention, in order to remove even a small amount of carbon monoxide contained as an impurity in hydrogen gas by separation, the molecular sieve carbon membrane with fine pores of 0.2 to 0.35 nm should be carefully prepared. It is produced by paying attention to the above and is used to obtain high-purity hydrogen. Such a molecular sieve carbon membrane with developed 0.2-0.35 nm fine pores can be obtained by heat treatment at a relatively high temperature in an inert gas such as nitrogen or argon. It can be obtained by adjusting the temperature rising rate to a constant value and increasing the temperature to 900 to 1300 ° C., preferably 1000 to 1200 ° C., and firing the temperature, though it varies slightly depending on the type of the starting polymer material.

【0015】本発明に用いる炭素膜は、他の素材に比べ
て300〜400℃を越える酸素共存下においては耐熱
性が低いものの、有機高分子材料を出発原料としている
ことから高分子材料と同等の優れた成形性を有するは
か、元来炭素の有する特性であるアモルファス性から明
確な粒界が存在せず、バルクの膜としてピンホールレス
な膜を作成できるという利点がある。
The carbon film used in the present invention has low heat resistance in the coexistence of oxygen exceeding 300 to 400 ° C. as compared with other materials, but is equivalent to a polymer material because it uses an organic polymer material as a starting material. It has an excellent moldability, or has an advantage that a pinholeless film can be formed as a bulk film because there is no clear grain boundary because of the amorphous property which is a characteristic of carbon originally.

【0016】本発明方法は、水素分子ガス中に含まれる
一酸化炭素、二酸化炭素などの不純物を、上記した分子
篩炭素膜を用いることにより容易に分離除去して高純度
の水素を得ることができるから、燃料電池に燃料として
供給される改質水素中に含まれる一酸化炭素などの分離
除去などに極めて有用である。燃料電池用水素では、特
に一酸化炭素濃度を10ppm以下にするという厳しい
条件が設けられているが、本発明における細孔径が0.
33nmの分子篩炭素膜を用いると、1000を超える
水素/一酸化炭素分離係数を示す。分離効率に関わる水
素の透過速度は、細孔径が大きければより速くなるが、
分子篩による高い分離係数は、細孔径が一酸化炭素分子
と同等以下の大きさになった時に発現するものである。
In the method of the present invention, impurities such as carbon monoxide and carbon dioxide contained in hydrogen molecular gas can be easily separated and removed by using the above-mentioned molecular sieve carbon membrane to obtain high purity hydrogen. Therefore, it is extremely useful for separating and removing carbon monoxide and the like contained in the reformed hydrogen supplied as fuel to the fuel cell. Hydrogen for fuel cells has a strict condition that the carbon monoxide concentration is 10 ppm or less, but the pore diameter in the present invention is not more than 0.
With a 33 nm molecular sieve carbon membrane, it shows a hydrogen / carbon monoxide separation factor of over 1000. The permeation rate of hydrogen, which is related to the separation efficiency, becomes faster if the pore size is large,
The high separation coefficient obtained by the molecular sieve is exhibited when the pore size becomes equal to or smaller than that of the carbon monoxide molecule.

【0017】現に、孔径0.33nmの微細孔が主に発
達した炭素膜では、水素透過係数(透過速度)は、高温
水素分離用の膜として開発された耐熱性高分子膜のそれ
と同等ないしは数倍でありながら、水素/一酸化炭素分
離係数は数十〜百倍という高性能である。通常、メタノ
ールの水蒸気改質で得られる水素燃料ガス中には1%の
一酸化炭素が混在するが、1000以上の分離係数を示
す膜は、膜透過によって1%の一酸化炭素濃度を10pp
m以下に削減できることを示している。
Actually, in a carbon membrane in which fine pores with a pore diameter of 0.33 nm are mainly developed, the hydrogen permeation coefficient (permeation rate) is equal to or several times that of a heat resistant polymer membrane developed as a membrane for high temperature hydrogen separation. However, the hydrogen / carbon monoxide separation coefficient is as high as several tens to one hundred times. Normally, 1% of carbon monoxide is mixed in hydrogen fuel gas obtained by steam reforming of methanol, but a membrane showing a separation coefficient of 1000 or more has a 1% carbon monoxide concentration of 10 pp due to membrane permeation.
It shows that it can be reduced to m or less.

【0018】実施例1 芳香族ポリイミド系フィルムを、アルゴン気流中、10
00℃で熱処理して厚さ0.1mmの炭素膜を得た。二
酸化炭素分子よりも大きな直径を有する細孔について
は、一般的に用いられている分子プローブ法によって細
孔径分布解析を行った。すなわち、最小分子直径(Mini
mum Molecular Dimension)の異なる4種類のガスの2
5℃における吸着等温線を測定し、さらにそれぞれのガ
スが吸着される細孔の容積を算出することによってミク
ロ孔の細孔径を評価した。これら全てのガスについて飽
和蒸気圧までの吸着等温線を測定することは事実上困難
であるため、大気圧付近までの吸着測定を行い、その結
果をジュビニン−ラジュシュケビック(Duvinin-Radush
kevich:DR)式に適用することにより吸着限界容積
(Wo)を求めた[ TANSO 1995、No.167、p94-100参
照.]。二酸化炭素分子より小さな細孔の評価について
は、水素の吸着等温線の解析により行った。水素は室温
における吸着量が少ないため、77Kにおいて測定した
吸着等温線から水素の吸着容積を求めた。これらの分子
をプローブとして求めた累積の細孔容積分布を図1に示
す。この結果から、1000℃で熱処理した分子篩炭素
膜中の細孔は、二酸化炭素の最小分子直径である0.3
3nmより小さい細孔を主体に構成されていることが解
った。
Example 1 An aromatic polyimide film was placed in an argon stream at 10
It heat-processed at 00 degreeC and obtained the carbon film of thickness 0.1mm. For the pores having a diameter larger than that of carbon dioxide molecules, the pore size distribution analysis was performed by the commonly used molecular probe method. That is, the minimum molecular diameter (Mini
2 of 4 kinds of gas with different mum Molecular Dimension)
The pore size of the micropores was evaluated by measuring the adsorption isotherm at 5 ° C. and calculating the volume of the pores in which each gas was adsorbed. Since it is practically difficult to measure the adsorption isotherms up to the saturated vapor pressure for all of these gases, adsorption measurements up to near atmospheric pressure were performed, and the results were used for Duvinin-Radush Kevic (Duvinin-Radush
The adsorption limit volume (Wo) was determined by applying the kevich: DR equation [TANSO 1995, No.167, p94-100]. The evaluation of pores smaller than the carbon dioxide molecule was performed by analyzing the adsorption isotherm of hydrogen. Since hydrogen has a small adsorption amount at room temperature, the adsorption volume of hydrogen was determined from the adsorption isotherm measured at 77K. The cumulative pore volume distribution obtained by using these molecules as a probe is shown in FIG. From this result, the pores in the molecular sieve carbon membrane heat-treated at 1000 ° C. have a minimum molecular diameter of carbon dioxide of 0.3.
It was found that the structure was mainly composed of pores smaller than 3 nm.

【0019】また、図2に示すように、この分子篩炭素
膜は、アモルファス状で均質な組織を有しており、吸着
解析の結果で示されたような分子レベルの細孔のみが存
在し、膜分離性能を低下させるようなピンホールの無い
構造であった。ガス透過性能の評価は、前処理として試
料を 110℃、10−4Pa 以下で排気した後、高真
空法によって行った。透過係数 Pは(1)式により定義さ
れる。ただし、qは単位面積あたりのガスの透過速度(mo
l・m-2・s-1)、l は膜の厚さ、pi は加圧側の圧力であ
る。 q= P・ p / l (1) 1000℃で熱処理して得られた炭素膜の50℃におけ
る水素透過係数PH2は、6.22 × 10−15
olm−1−1Pa−1であり、また、一酸化炭素に
対する分離係数PH2/PCOは、1770であった。
Further, as shown in FIG. 2, this molecular sieve carbon membrane has an amorphous and homogeneous structure, and only the pores at the molecular level as shown in the results of the adsorption analysis are present. The structure did not have pinholes that would deteriorate the membrane separation performance. The gas permeation performance was evaluated by a high vacuum method after the sample was evacuated at 110 ° C. and 10 −4 Pa or less as a pretreatment. The transmission coefficient P is defined by the equation (1). However, q is the gas permeation rate per unit area (mo
l · m −2 · s −1 ), l is the film thickness, and p i is the pressure on the pressure side. q = is P · p i / l (1 ) hydrogen permeability coefficient P H2 at 50 ° C. of the carbon film obtained was heat-treated at 1000 ℃, 6.22 × 10 -15 m
olm −1 s −1 Pa −1 , and the separation coefficient PH 2 / P CO for carbon monoxide was 1770.

【0020】[0020]

【発明の効果】本発明方法は、低コストかつ簡便なシス
テムである膜分離において、水素分子中の一酸化炭素を
十分に除去できることから、広範な分野における水素製
造システムに利用可能である。特に、本発明による水素
の精製方法は、自動車用、家庭用、携帯用の電源装置な
どとして利用が期待されている小型軽量の固体高分子型
燃料電池に必要な水素精製システムとして、既存の選択
酸化による一酸化炭素除去装置を置き換えることができ
るものである。
INDUSTRIAL APPLICABILITY The method of the present invention can be used for hydrogen production systems in a wide range of fields, because carbon monoxide in hydrogen molecules can be sufficiently removed in membrane separation, which is a low cost and simple system. In particular, the hydrogen purification method according to the present invention is an existing selection as a hydrogen purification system required for a small and lightweight polymer electrolyte fuel cell that is expected to be used as a power source device for automobiles, households, and portable devices. The carbon monoxide removing device by oxidation can be replaced.

【図面の簡単な説明】[Brief description of drawings]

【図1】 実施例に記載の分子篩炭素膜の細孔径分布を
示すグラフである。図中には、異なる大きさの分子に対
する吸着容量をプロットしたもので、細孔分布の積分曲
線と同義である。
FIG. 1 is a graph showing a pore size distribution of a molecular sieve carbon membrane described in Examples. In the figure, adsorption capacities for molecules of different sizes are plotted, which is synonymous with the integral curve of pore distribution.

【図2】 本発明により得られた分子篩炭素膜の組織が
均一なアモルファス組織であり、またピンホールとなる
ような細孔を発生させる結晶粒界が発生していないこと
を示す電子顕微鏡写真である。
FIG. 2 is an electron micrograph showing that the structure of the molecular sieve carbon film obtained by the present invention is a uniform amorphous structure and that no crystal grain boundaries that generate pores that become pinholes are generated. is there.

フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) H01M 8/04 H01M 8/04 J 5H027 8/10 8/10 Fターム(参考) 4D006 GA41 HA41 JA02A JA02C MA03 MA22 MB04 MB06 MC05 MC05X NA39 PA01 PA05 PB18 PB64 PB67 PC80 4G040 FA04 FB04 FC01 FE01 4G046 CA04 CB03 CB05 CB08 4G073 BA62 BB13 BB49 BD18 CZ53 FB50 FE04 UA06 5H026 AA06 HH04 5H027 AA06 BA16 Front page continuation (51) Int.Cl. 7 Identification code FI theme code (reference) H01M 8/04 H01M 8/04 J 5H027 8/10 8/10 F term (reference) 4D006 GA41 HA41 JA02A JA02C MA03 MA22 MB04 MB06 MC05 MC05X NA39 PA01 PA05 PB18 PB64 PB67 PC80 4G040 FA04 FB04 FC01 FE01 4G046 CA04 CB03 CB05 CB08 4G073 BA62 BB13 BB49 BD18 CZ53 FB50 FE04 UA06 5H026 AA06 HH04 5H027 AA06 BA16

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 高分子材料を炭素化して得られた孔径
0.2〜0.35nmの微細孔を有する分子篩炭素膜を
用いたことを特徴とする水素の精製方法。
1. A method for purifying hydrogen, which comprises using a molecular sieve carbon membrane having fine pores with a pore diameter of 0.2 to 0.35 nm obtained by carbonizing a polymer material.
【請求項2】 水素が、燃料電池に供給される燃料水素
であることを特徴とする請求項1に記載の水素の精製方
法。
2. The method for purifying hydrogen according to claim 1, wherein the hydrogen is fuel hydrogen supplied to a fuel cell.
【請求項3】 水素が、一酸化炭素を不純物として含む
水素であることを特徴とする請求項1又は2に記載の水
素の精製方法。
3. The method for purifying hydrogen according to claim 1, wherein the hydrogen is hydrogen containing carbon monoxide as an impurity.
JP2001355786A 2001-11-21 2001-11-21 Purification method of hydrogen by molecular sieve carbon membrane Expired - Lifetime JP3855044B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001355786A JP3855044B2 (en) 2001-11-21 2001-11-21 Purification method of hydrogen by molecular sieve carbon membrane

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001355786A JP3855044B2 (en) 2001-11-21 2001-11-21 Purification method of hydrogen by molecular sieve carbon membrane

Publications (2)

Publication Number Publication Date
JP2003160308A true JP2003160308A (en) 2003-06-03
JP3855044B2 JP3855044B2 (en) 2006-12-06

Family

ID=19167425

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001355786A Expired - Lifetime JP3855044B2 (en) 2001-11-21 2001-11-21 Purification method of hydrogen by molecular sieve carbon membrane

Country Status (1)

Country Link
JP (1) JP3855044B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005021876A (en) * 2003-06-09 2005-01-27 Nissan Motor Co Ltd Hydrogen storage material, hydrogen storage device, hydrogen storage system, fuel cell vehicle and manufacturing method for hydrogen storage material
JP2005041769A (en) * 2003-07-07 2005-02-17 Toyo Tanso Kk Carbonized material and method of manufacturing the same
JP2005213087A (en) * 2004-01-29 2005-08-11 Nippon Oil Corp Method for producing high purity hydrogen
WO2006011619A1 (en) * 2004-07-26 2006-02-02 Ngk Insulators, Ltd. Separator and membrane reactor
JP2007005172A (en) * 2005-06-24 2007-01-11 National Institute Of Advanced Industrial & Technology Fuel cell
JP2008513712A (en) * 2004-09-21 2008-05-01 ワシントン サバンナ リバー カンパニー リミテッド ライアビリティ カンパニー Hollow porous wall glass microspheres for hydrogen storage
JP2008264697A (en) * 2007-04-20 2008-11-06 National Institute Of Advanced Industrial & Technology Noble metal particle carrier and hydrogenation catalyst using it
JPWO2015080259A1 (en) * 2013-11-29 2017-03-16 国立研究開発法人物質・材料研究機構 NF or RO membrane made of hard carbon membrane, filtration filter, two-layer bonded filtration filter, and production method thereof

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4685940A (en) * 1984-03-12 1987-08-11 Abraham Soffer Separation device
JP2000237562A (en) * 1999-02-23 2000-09-05 Kanebo Ltd Molecular sieve carbon membrane and its production, and pervaporation separation method

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4685940A (en) * 1984-03-12 1987-08-11 Abraham Soffer Separation device
JP2000237562A (en) * 1999-02-23 2000-09-05 Kanebo Ltd Molecular sieve carbon membrane and its production, and pervaporation separation method

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005021876A (en) * 2003-06-09 2005-01-27 Nissan Motor Co Ltd Hydrogen storage material, hydrogen storage device, hydrogen storage system, fuel cell vehicle and manufacturing method for hydrogen storage material
JP2005041769A (en) * 2003-07-07 2005-02-17 Toyo Tanso Kk Carbonized material and method of manufacturing the same
JP2005213087A (en) * 2004-01-29 2005-08-11 Nippon Oil Corp Method for producing high purity hydrogen
WO2006011619A1 (en) * 2004-07-26 2006-02-02 Ngk Insulators, Ltd. Separator and membrane reactor
JP2008513712A (en) * 2004-09-21 2008-05-01 ワシントン サバンナ リバー カンパニー リミテッド ライアビリティ カンパニー Hollow porous wall glass microspheres for hydrogen storage
JP2007005172A (en) * 2005-06-24 2007-01-11 National Institute Of Advanced Industrial & Technology Fuel cell
JP2008264697A (en) * 2007-04-20 2008-11-06 National Institute Of Advanced Industrial & Technology Noble metal particle carrier and hydrogenation catalyst using it
JPWO2015080259A1 (en) * 2013-11-29 2017-03-16 国立研究開発法人物質・材料研究機構 NF or RO membrane made of hard carbon membrane, filtration filter, two-layer bonded filtration filter, and production method thereof

Also Published As

Publication number Publication date
JP3855044B2 (en) 2006-12-06

Similar Documents

Publication Publication Date Title
Li et al. Engineered transport in microporous materials and membranes for clean energy technologies
Zhang et al. Hydrogen selective NH2‐MIL‐53 (Al) MOF membranes with high permeability
Kim et al. Polysulfone and functionalized carbon nanotube mixed matrix membranes for gas separation: theory and experiment
Ockwig et al. Membranes for hydrogen separation
Shao et al. Polymeric membranes for the hydrogen economy: contemporary approaches and prospects for the future
Seema et al. Highly selective CO2 capture by S-doped microporous carbon materials
Yeung et al. Zeolites and mesoporous materials in fuel cell applications
Kianfar et al. Recent advances in properties and applications of nanoporous materials and porous carbons
Cheng et al. g-C3N4 nanosheets with tunable affinity and sieving effect endowing polymeric membranes with enhanced CO2 capture property
Shah et al. Evolution in the membrane-based materials and comprehensive review on carbon capture and storage in industries
JP3855044B2 (en) Purification method of hydrogen by molecular sieve carbon membrane
Cai et al. Metal-free core-shell structured N-doped carbon/carbon heterojunction for efficient CO2 capture
Tang et al. Hydrophilic carbon monoliths derived from metal-organic frameworks@ resorcinol-formaldehyde resin for atmospheric water harvesting
Anuar et al. Carbon nanoflake hybrid for biohydrogen CO2 capture: Breakthrough adsorption test
Chang et al. Charge controlled switchable CO2/N2 separation for g-C10N9 membrane: Insights from molecular dynamics simulations
Zhang et al. Multicomponent adsorptive separation of CO2, CH4, N2, and H2 over M-MOF-74 and AX-21@ M-MOF-74 composite adsorbents
Sun et al. Pyrolyzing soft template-containing poly (ionic liquid) into hierarchical n-doped porous carbon for electroreduction of carbon dioxide
Ren et al. Hierarchical porous polystyrene-based activated carbon spheres for CO 2 capture
Yuan et al. KOH-activated graphite nanofibers as CO 2 adsorbents
Wang et al. Design of N-doped carbon materials using self-template strategy for high-performance supercapacitor electrodes and CO2 capture
Hägg et al. Carbon molecular sieve membranes for gas separation
WO2006134193A3 (en) Gas adsorbents based on microporous coordination polymers
Shou et al. Ordered mesoporous carbon: Fabrication, characterization, and application as adsorbents
Gugliuzza et al. Membrane processes for biofuel separation: an introduction
Najimu et al. Separation performance of CO2 by hybrid membrane comprising nanoporous carbide derived carbon

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060428

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060516

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060713

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060815

R150 Certificate of patent or registration of utility model

Ref document number: 3855044

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term