JP2003156395A - Infrared temperature sensor - Google Patents

Infrared temperature sensor

Info

Publication number
JP2003156395A
JP2003156395A JP2001354546A JP2001354546A JP2003156395A JP 2003156395 A JP2003156395 A JP 2003156395A JP 2001354546 A JP2001354546 A JP 2001354546A JP 2001354546 A JP2001354546 A JP 2001354546A JP 2003156395 A JP2003156395 A JP 2003156395A
Authority
JP
Japan
Prior art keywords
temperature
sensor
infrared
base
insulator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001354546A
Other languages
Japanese (ja)
Inventor
Hideki Tanaka
秀樹 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bio Echo Net Inc
Original Assignee
Bio Echo Net Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bio Echo Net Inc filed Critical Bio Echo Net Inc
Priority to JP2001354546A priority Critical patent/JP2003156395A/en
Publication of JP2003156395A publication Critical patent/JP2003156395A/en
Pending legal-status Critical Current

Links

Landscapes

  • Radiation Pyrometers (AREA)
  • Measuring And Recording Apparatus For Diagnosis (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an infrared temperature sensor that can be reduced further in size, can be attached to the front end of a measuring probe, because the sensor can be used without attaching any sensor frame nor waveguide to the sensor, and can measure the body temperature of the user of the sensor with high accuracy, without being affected by the ambient temperature. SOLUTION: This infrared temperature sensor is constituted of an insulator- made base which serves as the base of the sensor, an insulator-made sealing cap laminated upon the base, so that internal spaces are formed between the base and cap, and an infrared sensor and a temperature-compensating member arranged respectively in the internal spaces formed between the base and cap. The base and cap are respectively formed of materials, having proper thermal conductivity. The cold junction of the thermopile of the infrared sensor and the temperature-compensating member are respectively provided to have proper thermal conductivity between the base and cap and a heat-generating member is provided between the base and the jointing surface of the cap.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は非接触で測定する体温
計、特に、プローブ先端部を耳穴に挿入して鼓膜の温度
を測定する方式の体温計、或いは、体温計先端部を人体
に接触させて人体の表面温度を測定する体温計に使用す
るための赤外線温度センサーに関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a non-contact thermometer, and more particularly to a thermometer of the type in which the tip of the probe is inserted into the ear canal to measure the temperature of the eardrum, or the thermometer tip is brought into contact with the human body. It relates to an infrared temperature sensor for use in a thermometer for measuring the surface temperature of a.

【0002】[0002]

【従来の技術】 図3および4は従来の赤外線温度セン
サー(A)の構造を説明する図であり、図5は従来の赤
外線温度センサー(A)の取付方法を説明するための図
である。周知の如く、この種の温度測定に用いられる赤
外線センサーBは、ゼーベック効果、すなわち、複数の
熱電対から構成されたサーモパイルCの冷接点と温接点
の間に温度差が生じることにより冷接点と温接点の間に
温度差に応じた電位差が生じる現象を利用している。こ
のような赤外線センサーを温度測定用センサーとして用
いるためには、熱電対と同様に、サーモパイルCの冷接
点温度補償を行なうための手段D(一般的に、サーミス
タが使用される。)が必要となる。この温度補償手段D
は、赤外線センサーBと共に赤外線温度センサーAに内
蔵された形式や赤外線温度センサーAとは別に設けられ
る外付けの形式で適用される(図3および4の場合、内
蔵タイプである。)。
2. Description of the Related Art FIGS. 3 and 4 are views for explaining the structure of a conventional infrared temperature sensor (A), and FIG. 5 is a view for explaining a method of mounting the conventional infrared temperature sensor (A). As is well known, the infrared sensor B used for this type of temperature measurement has a cold junction due to the Seebeck effect, that is, a temperature difference occurs between the cold junction and the hot junction of the thermopile C composed of a plurality of thermocouples. It utilizes the phenomenon that a potential difference occurs between the hot junctions according to the temperature difference. In order to use such an infrared sensor as a temperature measuring sensor, a means D (generally a thermistor is used) for compensating for the cold junction temperature of the thermopile C is required as in the thermocouple. Become. This temperature compensation means D
Is applied in a form built in the infrared temperature sensor A together with the infrared sensor B or an external form provided separately from the infrared temperature sensor A (in the case of FIGS. 3 and 4, it is a built-in type).

【0003】赤外線センサーBの赤外線吸収体Eは、赤
外線透過フィルタFを通過した測定対象物(図示なし)
からの赤外線を吸収して温度が上昇するが、赤外線温度
センサーAのパッケージ頭部の壁面Gから放射されてい
る赤外線をも吸収して温度が上昇する。通常の使用法で
はパッケージ頭部の壁面Gは、赤外線センサーB自身と
同一の温度と理論上みなすこともできる。しかしなが
ら、実際には、外部からの要因によって急激な温度変化
が与えられると、パッケージの頭部とセンサー内部の赤
外線吸収体Eとの間に温度差が生じてしまい、結果とし
て赤外線温度センサー出力が過渡的に不安定となり、意
図しない不要な電圧を出力してしまうため、測定誤差を
生じる要因となっていた。また、環境温度上昇中のと
き、先端部は赤外線温度センサーよりも早く温度が高く
なるため正方向の誤差を生じ、一方、環境温度下降中の
ときは、先端部が赤外線温度センサーよりも早く温度が
低くなるため負方向の誤差を生じていた。
The infrared absorber E of the infrared sensor B is an object to be measured that has passed through the infrared transmission filter F (not shown).
The temperature rises by absorbing the infrared rays from the, but the temperature rises also by absorbing the infrared rays radiated from the wall surface G of the package head of the infrared temperature sensor A. In normal usage, the wall surface G of the package head can theoretically be regarded as the same temperature as the infrared sensor B itself. However, in reality, when a sudden temperature change is given by an external factor, a temperature difference occurs between the package head and the infrared absorber E inside the sensor, and as a result, the infrared temperature sensor output is It becomes transiently unstable and outputs an undesired unnecessary voltage, which causes a measurement error. Also, when the environmental temperature is rising, the tip temperature rises faster than the infrared temperature sensor, which causes a positive error.On the other hand, when the environmental temperature is falling, the tip temperature rises faster than the infrared temperature sensor. As a result, the error becomes negative.

【0004】このため、図5に示すように、赤外線温度
センサーAに温度変化が均一で緩やかに加わるように、
赤外線温度センサーA自身を良好な熱伝導度を有する金
属ホルダまたはセンサーフレームH内に設置し、さらに
測定対象物との間に断熱材としての空気やプラスチック
が介在するようにプローブIによって囲むように形成さ
れている。また、放射率が限りなく小さくなるように金
メッキされた金属管または導波管Jを赤外線温度センサ
ーAの前面に設け、測定対象物(人体)からの熱輻射の
影響を小さくしていた。しかしながら、赤外線温度セン
サーAの回りにセンサーフレームや断熱材を設けると共
に前面に導波管Jを設けることは測定プローブ(体温
計)としての製品寸法の大型化を招き、また、温度変化
の影響を実質的にゼロにするには寸法上の限界があるた
め、ある程度の測定誤差が含まれることになるのを容認
せざるを得なかった。
For this reason, as shown in FIG. 5, the temperature change of the infrared temperature sensor A is made uniform and gentle.
The infrared temperature sensor A itself is installed in a metal holder or a sensor frame H having good thermal conductivity, and is further surrounded by a probe I so that air or plastic as a heat insulating material is interposed between the infrared temperature sensor A and the sensor frame H. Has been formed. Further, a gold-plated metal tube or a waveguide J is provided in front of the infrared temperature sensor A so that the emissivity becomes as small as possible, and the influence of thermal radiation from the measurement object (human body) is reduced. However, providing a sensor frame and a heat insulating material around the infrared temperature sensor A and providing the waveguide J on the front surface leads to an increase in the size of the product as a measurement probe (thermometer), and the influence of the temperature change is substantial. Since there is a dimensional limit to making it practically zero, there was no choice but to allow some measurement error.

【0005】また、前述したように、冷接点温度補償手
段Dとして一般的にサーミスタが用いられるが、サーモ
パイルCの冷接点部KとサーミスタDの熱結合が悪い
と、両者間に温度差を生じてしまい、冷接点温度補償に
過不足を生じて正確な計測ができなくなる。このため、
最近の赤外線温度センサーでは、サーミスタDを赤外線
センサーBと同一パッケージ内に取り付けることによっ
て、赤外線センサーの冷接点部KとサーミスタDとの間
の熱結合度を高めていた。しかしながら、赤外線センサ
ーの冷接点部KとサーミスタDとが同一パッケージ内に
配置されているだけであるため、両者間の熱結合度は依
然として低く、両者間の温度差による測定誤差をなくす
には至らないものであった。
Further, as described above, a thermistor is generally used as the cold junction temperature compensating means D, but if the cold junction K of the thermopile C and the thermistor D are poor in thermal coupling, a temperature difference occurs between them. As a result, there will be an excess or deficiency in cold junction temperature compensation and accurate measurement will not be possible. For this reason,
In the recent infrared temperature sensor, by mounting the thermistor D in the same package as the infrared sensor B, the degree of thermal coupling between the cold junction K of the infrared sensor and the thermistor D is increased. However, since the cold junction K of the infrared sensor and the thermistor D are only arranged in the same package, the degree of thermal coupling between the two is still low, and the measurement error due to the temperature difference between the two cannot be eliminated. It was not there.

【0006】[0006]

【発明が解決しようとする課題】本発明は、赤外線温度
センサーの寸法をより一層小型化できると共に、センサ
ーフレームや導波管を付加することなしに使用でき、そ
れにより、測定プローブの先端に取り付けることを可能
にし、もって、環境温度に影響されない、高精度な体温
測定を可能にする赤外線温度センサーを提供しようとす
るものである。
The present invention allows the infrared temperature sensor to be made even smaller in size and can be used without the addition of a sensor frame or waveguide so that it can be attached to the tip of a measurement probe. Therefore, it is an object of the present invention to provide an infrared temperature sensor that enables highly accurate body temperature measurement that is not affected by environmental temperature.

【0007】[0007]

【課題を解決するための手段】本発明による赤外線温度
センサーは、基台となる絶縁体ベースと、該絶縁体ベー
スとの間に内部空間を形成するように積層され、かつ、
その中央部位に開口を有する絶縁体封止蓋と、前記絶縁
体ベースと絶縁体封止蓋の間の内部空間にそれぞれ配置
される赤外線センサーおよび温度補償部材とから構成さ
れる。赤外線センサーのサーモパイルの冷接点および温
度補償部材はそれぞれ絶縁体ベースとの間に良好な熱伝
導性を有して設けられる。絶縁体ベースおよび絶縁体封
止蓋は、良好な熱伝導性を有する材料によりそれぞれ形
成され、絶縁体ベースと絶縁体封止蓋の接合面間に発熱
部材が設けられる。
An infrared temperature sensor according to the present invention is laminated so as to form an internal space between an insulating base serving as a base and the insulating base, and
It is composed of an insulator sealing lid having an opening at its central portion, an infrared sensor and a temperature compensating member which are respectively arranged in the internal space between the insulator base and the insulator sealing lid. The cold junction and the temperature compensating member of the thermopile of the infrared sensor are respectively provided with good thermal conductivity between them and the insulator base. The insulator base and the insulator sealing lid are each made of a material having good thermal conductivity, and the heat generating member is provided between the joint surfaces of the insulator base and the insulator sealing lid.

【0008】温度を測定するには、発熱部材を発熱させ
ることにより絶縁体ベースおよび絶縁体封止蓋を加熱す
ることにより、赤外線センサーのサーモパイルの冷接点
および温度補償部材を所要の温度まで加熱する。赤外線
センサーが測定対象物からの赤外線に感応すると、赤外
線センサーの温度と測定対象物の温度との差に応じた相
対温度出力が発生する。この相対温度出力を検出すると
同時に、そのときのサーモパイルの冷接点温度に応じた
温度補償出力を温度補償部材から検出する。これら2つ
の出力を電気的に処理して温度補正を行なうことにより
測定対象物の温度が測定される。測定が終了すると、絶
縁体ベースおよび絶縁体封止蓋の加熱を停止して絶縁体
ベースおよび絶縁体封止蓋の温度を常温に戻し、次の測
定に備える。
In order to measure the temperature, the cold junction of the thermopile of the infrared sensor and the temperature compensating member are heated to a required temperature by heating the insulating base and the insulating sealing lid by heating the heating member. . When the infrared sensor is sensitive to infrared rays from the measurement object, a relative temperature output is generated according to the difference between the temperature of the infrared sensor and the temperature of the measurement object. At the same time as detecting this relative temperature output, a temperature compensating output corresponding to the cold junction temperature of the thermopile at that time is detected from the temperature compensating member. The temperature of the measurement object is measured by electrically processing these two outputs and performing temperature correction. When the measurement is completed, the heating of the insulator base and the insulator sealing lid is stopped and the temperature of the insulator base and the insulator sealing lid is returned to room temperature to prepare for the next measurement.

【0009】本赤外線温度センサーは、前述したよう
に、本赤外線温度センサー全体を均一に加熱して測定す
るため、環境温度変化の影響を受けにくく、測定プロー
ブの先端に直接設けることができる。また、赤外線セン
サーおよび温度補償部材は、絶縁体ベースと絶縁体封止
蓋から構成されるパッケージ内に封止された形態で設け
られ、加熱手段によってそのパッケージを直接加熱する
ことによって冷接点の温度を変えることができるため、
冷接点の温度を変えるのに必要な発熱部材の発熱量は最
小限に抑えることができ、冷接点の温度を変えるのに必
要な加熱時間もまた最小限に抑えることができる。これ
により、温度測定に要する時間を短縮することができ、
測定誤差の要因となり得る外部要因が悪影響を及ぼす可
能性を極力少なくし、もって、より正確な温度測定を行
うことができる。
As described above, since the present infrared temperature sensor heats the entire infrared temperature sensor uniformly, the infrared temperature sensor is hardly affected by changes in the ambient temperature and can be directly provided at the tip of the measuring probe. Further, the infrared sensor and the temperature compensation member are provided in a form sealed in a package composed of an insulator base and an insulator sealing lid, and the temperature of the cold junction is directly heated by heating the package by a heating means. Can be changed,
The amount of heat generated by the heat generating member required to change the temperature of the cold junction can be minimized, and the heating time required to change the temperature of the cold junction can also be minimized. As a result, the time required for temperature measurement can be shortened,
It is possible to minimize the possibility that an external factor, which may be a factor of measurement error, may adversely affect the temperature, and thus to perform more accurate temperature measurement.

【0010】本発明のより好適な適用形態としては、絶
縁体ベースおよび絶縁体封止蓋に用いられる良好な熱伝
導性を有する材料としてセラミックを使用し、そして、
絶縁体ベースおよび絶縁体封止蓋は加熱手段からの熱を
全体に良好に伝導するのに必要な厚さをそれぞれ有する
一方、より小さな熱容量となるようにそれぞれより小さ
な体積で成形することもできる。これにより、絶縁体ベ
ースおよび絶縁体封止蓋の加熱および常温への復帰をよ
り短時間に行なうことができる。
In a more preferable application form of the present invention, ceramic is used as a material having good thermal conductivity used for an insulator base and an insulator sealing lid, and
The insulator base and the insulator sealing lid each have a thickness necessary for conducting heat from the heating means to the whole well, but can also be molded in a smaller volume so as to have a smaller heat capacity. . Thereby, the heating of the insulating base and the insulating sealing lid and the return to normal temperature can be performed in a shorter time.

【0011】[0011]

【発明の実施の形態】本発明の実施例による赤外線温度
センサーは、図1および2に示すように、基台となる絶
縁体ベース1と、絶縁体ベース1との間に内部空間2を
形成する絶縁体封止蓋3と、内部空間2内の絶縁体ベー
ス1上に設けられる赤外線センサー4および温度補償部
材5と、絶縁体ベース1と絶縁体封止蓋3との間の接合
面間に設けられる発熱部材6とから構成される。
BEST MODE FOR CARRYING OUT THE INVENTION In an infrared temperature sensor according to an embodiment of the present invention, as shown in FIGS. 1 and 2, an internal space 2 is formed between an insulator base 1 serving as a base and an insulator base 1. Between the insulating sealing lid 3, the infrared sensor 4 and the temperature compensating member 5 provided on the insulating base 1 in the internal space 2, and the joint surface between the insulating base 1 and the insulating sealing lid 3. And a heat generating member 6 provided in the.

【0012】絶縁体ベース1および絶縁体封止蓋3は、
電気的な絶縁性を有し、かつ、良好な熱伝導性を有する
材料により形成されている。発熱部材6からの熱を全体
に良好に伝導するのに必要な厚さをそれぞれ有する一
方、より小さな熱容量となるようにそれぞれより小さな
体積で成形される。これらの全てを満足し得る材料とし
て、セラミックが好適である。絶縁体封止蓋3には、外
部から赤外線のみを赤外線センサー4に到達させるため
の赤外線透過フィルタ7を備えた開口8が設けられてい
る。
The insulator base 1 and the insulator sealing lid 3 are
It is made of a material having electrical insulation and good thermal conductivity. Each of them has a thickness necessary for good conduction of heat from the heat-generating member 6 while being molded in a smaller volume so as to have a smaller heat capacity. Ceramic is suitable as a material that can satisfy all of these. The insulator sealing lid 3 is provided with an opening 8 provided with an infrared transmission filter 7 for allowing only infrared rays to reach the infrared sensor 4 from the outside.

【0013】赤外線センサー4は、慣用の構造を有して
おり、サーモパイルを構成する複数の熱電対9と、赤外
線透過フィルタ7を透過した赤外線によって発熱する赤
外線吸収膜10とを備えた単一のウエハとして形成され
る。赤外線吸収膜10からの熱は熱電対9の温接点9a
に伝達される。熱電対9の温接点9aは絶縁体ベース1
および絶縁体封止蓋3から熱的に離間して配置される一
方、熱電対9の冷接点9bは絶縁体ベース1と熱的に接
続される。温度補償部材5は、一般的に、サーミスタが
使用されており、熱電対9の冷接点9bの温度と常に同
じ温度になるように絶縁体ベース1と熱的に接続され
る。
The infrared sensor 4 has a conventional structure and includes a plurality of thermocouples 9 forming a thermopile and an infrared absorption film 10 which generates heat by infrared rays transmitted through the infrared transmission filter 7. Formed as a wafer. The heat from the infrared absorption film 10 is the hot junction 9a of the thermocouple 9.
Be transmitted to. The hot junction 9a of the thermocouple 9 is the insulator base 1
Further, the cold junction 9b of the thermocouple 9 is thermally separated from the insulator sealing lid 3 and is thermally connected to the insulator base 1. As the temperature compensating member 5, a thermistor is generally used, and the temperature compensating member 5 is thermally connected to the insulator base 1 so that the temperature of the cold junction 9b of the thermocouple 9 is always the same.

【0014】熱電対9で生じた電位差は一対の端子11
a、11aから取り出され、温度補償部材5の補償出力
は一対の端子11b、11bから取り出される。一方、
発熱部材6は一対の端子11c、11cに通電すること
により発熱し、絶縁体ベース1および絶縁体封止蓋3を
加熱する。図示の場合、温度補償部材5の一方の端子1
1bは赤外線センサー4の下方にまで延びるように示さ
れているが、これは、単一のウエハとして供給されてい
る赤外線センサー4に設けられたヒートシンク12によ
ってサーモパイルの測定電位が不安定になるのを避ける
ために設けられた共通アースとしての機能を有してい
る。しかしながら、ヒートシンク12のない構造の赤外
線センサーを入手することができるならば、温度補償部
材5の共通アース端子11bは温度補償部材5のための
みの端子形状として設け、絶縁体ベース1の形状をヒー
トシンク12を含む形状に形成し、熱電対9の冷接点9
bが絶縁体ベース1に直接接合するように形成でき、そ
れにより、より効率よく熱的関係を維持できることは容
易に理解されよう。
The potential difference generated by the thermocouple 9 is due to the pair of terminals 11
a and 11a, and the compensation output of the temperature compensating member 5 is taken out from the pair of terminals 11b and 11b. on the other hand,
The heat generating member 6 generates heat by energizing the pair of terminals 11c, 11c, and heats the insulator base 1 and the insulator sealing lid 3. In the case shown, one terminal 1 of the temperature compensation member 5
1b is shown to extend below the infrared sensor 4 because the heat sink 12 provided on the infrared sensor 4 provided as a single wafer causes the measured potential of the thermopile to become unstable. It has a function as a common ground provided to avoid However, if an infrared sensor having a structure without the heat sink 12 is available, the common ground terminal 11b of the temperature compensating member 5 is provided as a terminal shape only for the temperature compensating member 5, and the shape of the insulator base 1 is the heat sink. Cold junction 9 of thermocouple 9 formed into a shape including 12
It will be readily appreciated that b can be formed to bond directly to the insulator base 1, thereby more efficiently maintaining the thermal relationship.

【0015】上述の如く構成される本発明の赤外線温度
センサーは、次のようにして測定対象物の温度を測定す
る。まず、発熱部材の端子11c、11cに通電するこ
とにより発熱部材6を発熱させて絶縁体ベース1および
絶縁体封止蓋3を加熱し、サーモパイルの冷接点9bお
よび温度補償部材5を所要の温度に加熱する。この加熱
によって上昇する温度は、環境温度、発熱部材6の発熱
量、赤外線温度センサーの熱容量等の種々の条件によっ
て決定されるが、結果的に、これらの条件によって決定
される一定の温度に保持される。赤外線温度センサーが
一定の温度に保持された状態で絶縁体封止蓋3の開口8
を測定対象物に近づけると、測定対象物(耳穴に入れた
場合、外耳道)からの赤外線が赤外線透過フィルタ7を
通って赤外線吸収膜10に吸収され、それにより赤外線
吸収膜10が発熱する。この発熱により変化したサーモ
パイルの温接点9aの温度と一定の温度に保持された冷
接点9bの温度との差に応じて発生される電位差を端子
11a、11aを介して検出する。それと同時に、冷接
点9bと同じ温度にある温度補償部材5の値(サーミス
タの場合、抵抗値)を端子11b、11bを介して検出
する。サーモパイルに発生した電位差の値を温度に換算
することによって赤外線温度センサーと測定対象物の間
の相対温度を算出する一方、温度補償部材5の値を温度
に換算することによって冷接点9bの温度を算定し、両
者の算定値を合わせることにより測定対象物の温度を算
定する。
The infrared temperature sensor of the present invention constructed as described above measures the temperature of the measuring object as follows. First, the heat generating member 6 is caused to generate heat by energizing the terminals 11c, 11c of the heat generating member to heat the insulator base 1 and the insulator sealing lid 3, and the cold contact 9b of the thermopile and the temperature compensating member 5 are heated to a desired temperature. Heat to. The temperature raised by this heating is determined by various conditions such as the environmental temperature, the amount of heat generated by the heat generating member 6, the heat capacity of the infrared temperature sensor, etc., and as a result, the temperature is maintained at a constant temperature determined by these conditions. To be done. The opening 8 of the insulator sealing lid 3 with the infrared temperature sensor kept at a constant temperature
When is brought close to the object to be measured, infrared rays from the object to be measured (external ear canal when placed in the ear canal) are absorbed by the infrared absorbing film 10 through the infrared transmitting filter 7, and thereby the infrared absorbing film 10 generates heat. The potential difference generated according to the difference between the temperature of the hot junction 9a of the thermopile changed by this heat generation and the temperature of the cold junction 9b held at a constant temperature is detected via the terminals 11a and 11a. At the same time, the value (resistance value in the case of a thermistor) of the temperature compensating member 5 at the same temperature as the cold junction 9b is detected via the terminals 11b and 11b. The relative temperature between the infrared temperature sensor and the object to be measured is calculated by converting the value of the potential difference generated in the thermopile into the temperature, while the temperature of the cold junction 9b is calculated by converting the value of the temperature compensation member 5 into the temperature. Calculate the temperature of the object to be measured by combining the calculated values of both.

【0016】測定誤差の因子の一つとなる温度補償部材
の性能のバラツキについて考察すると、一例として、5
℃〜36℃の環境温度で使用する体温計で非加熱状態で
測定する場合、従来のものでは、温度補償部材の温度補
償範囲は36℃−5℃=31℃である。温度補償部材5
にサーミスタを用いる場合、サーミスタはB定数(温度
−抵抗曲線の傾き)のバラツキがあり、広い温度範囲で
高精度を保つのは困難である。しかしながら、本発明の
場合、赤外線温度センサー(微視的には冷接点9b)を
32℃まで加熱するようにしたと仮定すると、サーミス
タの温度補償範囲は36℃−32℃=4℃で済み、温度
補償部材5のバラツキによる誤差をほとんど無視するこ
とができる。換言すると、絶縁体ベース1および絶縁体
封止蓋3を加熱して測定対象物の温度と赤外線温度セン
サーの温度を近づけることによって温度補償部材5の温
度補償範囲を狭くでき、それにより、冷接点に対する温
度補償精度を向上することができる。このため、絶縁体
ベース1および絶縁体封止蓋3は、全体を均一に加熱す
るように良好な熱伝導性を有すると共に、外部からの要
因によって急激な温度変化の影響を受けないような厚さ
を有する必要がある。その一方で、絶縁体ベース1およ
び絶縁体封止蓋3は、測定のための加熱並びに次の測定
のための常温への復帰をより短時間に行なうことができ
るように、より小さな熱容量となるようより小さな体積
に形成することが望ましい。
Considering the variation in the performance of the temperature compensation member, which is one of the factors of the measurement error, as an example, 5
When measuring in a non-heated state with a thermometer used at an ambient temperature of ℃ to 36 ℃, in the conventional case, the temperature compensation range of the temperature compensation member is 36 ℃ -5 ℃ = 31 ℃. Temperature compensation member 5
When a thermistor is used for the thermistor, the thermistor has variations in the B constant (the slope of the temperature-resistance curve), and it is difficult to maintain high accuracy in a wide temperature range. However, in the case of the present invention, assuming that the infrared temperature sensor (microscopically, the cold junction 9b) is heated to 32 ° C., the temperature compensation range of the thermistor is 36 ° C.-32 ° C. = 4 ° C., The error due to the variation of the temperature compensation member 5 can be almost ignored. In other words, the temperature compensation range of the temperature compensating member 5 can be narrowed by heating the insulator base 1 and the insulator sealing lid 3 to bring the temperature of the measuring object close to the temperature of the infrared temperature sensor. The temperature compensation accuracy with respect to can be improved. Therefore, the insulator base 1 and the insulator sealing lid 3 have good thermal conductivity so as to uniformly heat the entire body, and have a thickness that is not affected by a sudden temperature change due to an external factor. You need to have On the other hand, the insulator base 1 and the insulator sealing lid 3 have a smaller heat capacity so that the heating for the measurement and the return to the normal temperature for the next measurement can be performed in a shorter time. It is desirable to form a smaller volume.

【0017】また、絶縁体ベース1および絶縁体封止蓋
3を加熱して測定対象物の温度と赤外線温度センサーの
温度を近づけることにより、赤外線温度センサーが受け
る相対温度を小さくできる。このことは、測定時の相対
温度を小さくすることによって温度換算時におけるリニ
アライズの範囲を狭くすることができるため、非直線化
による誤差を抑えることができる。一例として、5℃の
環境温度で37℃の体温を測定すると、体温と赤外線温
度センサーの相対温度は32℃となる。赤外線温度セン
サーの出力は相対温度に対して非直線であるため、セン
サー出力をリニアライズ(直線化)して測定温度として
いる。この例でセンサーを32℃まで加熱するようにし
たと仮定すると体温とセンサーの相対温度は5℃とな
り、リニアライズの範囲を狭くすることができる。
Further, by heating the insulator base 1 and the insulator sealing lid 3 to bring the temperature of the measuring object close to the temperature of the infrared temperature sensor, the relative temperature received by the infrared temperature sensor can be reduced. This means that the range of linearization at the time of temperature conversion can be narrowed by reducing the relative temperature at the time of measurement, so that the error due to non-linearization can be suppressed. As an example, when a body temperature of 37 ° C. is measured at an ambient temperature of 5 ° C., the relative temperature between the body temperature and the infrared temperature sensor is 32 ° C. Since the output of the infrared temperature sensor is non-linear with respect to the relative temperature, the sensor output is linearized to obtain the measured temperature. Assuming that the sensor is heated to 32 ° C. in this example, the relative temperature between the body temperature and the sensor is 5 ° C., and the range of linearization can be narrowed.

【0018】本発明の赤外線温度センサー自体を直接加
熱制御する方式は、従来の加熱手段を持たない赤外線温
度センサーが抱えていたプローブ挿入時の外耳道におけ
る温度バランスの乱れ(プローブに外耳道の熱を奪われ
てしまう現象)に対して有効であり、結果的に測定誤差
を少なくすると言える。従って、具体的な方法として
は、体温計の電源投入時にあらかじめ体温に近い温度、
例えば32℃付近までセンサーを加熱しておき、その温
度を保つことで検温時の測定誤差を少なくするという手
法を取ることが可能である。
In the method of directly heating and controlling the infrared temperature sensor itself of the present invention, the temperature balance disorder in the ear canal at the time of inserting the probe, which the infrared temperature sensor having no conventional heating means has, is disturbed (the probe absorbs heat from the ear canal). It can be said that the measurement error is reduced as a result. Therefore, as a specific method, when turning on the power of the thermometer, the temperature close to the body temperature in advance,
For example, it is possible to heat the sensor up to around 32 ° C. and keep the temperature to reduce the measurement error during temperature measurement.

【0019】[0019]

【発明の効果】本発明によれば、絶縁パッケージを加熱
して被測定温度とセンサーの温度を近づけることができ
るため、高精度な体温測定が可能なる。また、従来の赤
外線温度センサーは、金属の薄いパッケージであったた
めに急激な温度変化が原因である温度分布変化が生じて
測定誤差の一因となってていたが、本発明では、絶縁体
ベースと絶縁体封止蓋からなる絶縁パッケージを用いる
ことにより、パッケージ全体に対して均一に熱を伝える
ことができるため、急激な環境温度変化の影響を受ける
ことはない。このため、従来におけるように、赤外線温
度センサーを金属ホルダー(センサーフレーム)内に納
める必要がなく、測定プローブの先端に取り付けること
ができ、従来におけるような導波管や導波管を保護する
ための導波管カバーを用いる必要がない。
According to the present invention, since the temperature to be measured and the temperature of the sensor can be brought close to each other by heating the insulating package, it is possible to measure the body temperature with high accuracy. Further, since the conventional infrared temperature sensor is a thin metal package, a rapid temperature change causes a change in temperature distribution, which causes a measurement error. By using the insulating package including the insulating cover and the insulating cover, heat can be evenly transmitted to the entire package, and thus is not affected by a sudden change in environmental temperature. Therefore, unlike the conventional case, the infrared temperature sensor does not need to be housed in the metal holder (sensor frame) and can be attached to the tip of the measurement probe to protect the waveguide or the waveguide as in the conventional case. It is not necessary to use the waveguide cover of.

【図面の簡単な説明】[Brief description of drawings]

【図1】 本発明の実施例による赤外線温度センサーを
示す部分破砕斜視図である。
FIG. 1 is a partially fragmented perspective view showing an infrared temperature sensor according to an embodiment of the present invention.

【図2】 本発明の実施例による赤外線温度センサーを
示す断面図である。
FIG. 2 is a sectional view showing an infrared temperature sensor according to an embodiment of the present invention.

【図3】 従来の赤外線温度センサーの構造を示す部分
破砕斜視図である。
FIG. 3 is a partially fragmented perspective view showing the structure of a conventional infrared temperature sensor.

【図4】 従来の赤外線温度センサーの構造を示す断面
図である。
FIG. 4 is a sectional view showing the structure of a conventional infrared temperature sensor.

【図5】 従来の赤外線温度センサーの取付方法を説明
するための部分断面図である。
FIG. 5 is a partial cross-sectional view for explaining a method of mounting a conventional infrared temperature sensor.

【符号の説明】[Explanation of symbols]

1 絶縁体ベース 2 内部空間 3 絶縁体封止蓋 4 赤外線セ
ンサー 5 温度補償部材 6 発熱部材 7 赤外線透過フィルタ 8 開口 9 熱電対 9a 温接点 9b 冷接点 10 赤外線
吸収膜 11a、11b、11c 発熱部材の端子
1 Insulator Base 2 Internal Space 3 Insulator Sealing Lid 4 Infrared Sensor 5 Temperature Compensating Member 6 Heating Member 7 Infrared Transmission Filter 8 Opening 9 Thermocouple 9a Hot Junction 9b Cold Junction 10 Infrared Absorption Film 11a, 11b, 11c Terminal

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 基台となる絶縁体ベースと、該絶縁体ベ
ースとの間に内部空間を形成するように積層されかつそ
の中央部位に開口を有する絶縁体封止蓋と、前記絶縁体
ベースと絶縁体封止蓋の間の内部空間にそれぞれ配置さ
れる赤外線センサーおよび温度補償部材とから構成さ
れ、前記絶縁体ベースおよび絶縁体封止蓋は良好な熱伝
導性を有する材料によりそれぞれ形成され、前記赤外線
センサーのサーモパイルの冷接点および温度補償部材は
絶縁体ベースとの間に良好な熱伝導性を有してそれぞれ
設けられ、前記絶縁体ベースと絶縁体封止蓋の接合面間
には発熱部材が設けられる、赤外線温度センサー。
1. An insulator base serving as a base, an insulator sealing lid which is laminated so as to form an internal space between the insulator base and has an opening at a central portion thereof, and the insulator base. And an infrared sensor and a temperature compensating member which are respectively disposed in an internal space between the insulating base and the insulating sealing lid, and the insulating base and the insulating sealing lid are respectively formed of a material having good thermal conductivity. The thermopile cold junction and the temperature compensating member of the infrared sensor are respectively provided with good thermal conductivity between the insulator base and the joint surface between the insulator base and the insulator sealing lid. An infrared temperature sensor provided with a heat generating member.
【請求項2】 前記良好な熱伝導性を有する材料はセラ
ミックであり、前記絶縁体ベースおよび絶縁体封止蓋は
発熱部材からの熱を全体に良好に伝導するのに必要な厚
さをそれぞれ有する一方、より小さな熱容量となるよう
にそれぞれより小さな体積で成形される、請求項1に記
載の赤外線温度センサー。
2. The material having good thermal conductivity is ceramics, and the insulator base and the insulator sealing lid each have a thickness necessary for good conduction of heat from the heat generating member. The infrared temperature sensor according to claim 1, wherein each of the infrared temperature sensors has a smaller heat capacity while having a smaller heat capacity.
JP2001354546A 2001-11-20 2001-11-20 Infrared temperature sensor Pending JP2003156395A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001354546A JP2003156395A (en) 2001-11-20 2001-11-20 Infrared temperature sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001354546A JP2003156395A (en) 2001-11-20 2001-11-20 Infrared temperature sensor

Publications (1)

Publication Number Publication Date
JP2003156395A true JP2003156395A (en) 2003-05-30

Family

ID=19166391

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001354546A Pending JP2003156395A (en) 2001-11-20 2001-11-20 Infrared temperature sensor

Country Status (1)

Country Link
JP (1) JP2003156395A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007505300A (en) * 2003-09-09 2007-03-08 ブラウン ゲーエムベーハー Heatable infrared sensor and infrared thermometer with infrared sensor
JP2012507007A (en) * 2008-10-23 2012-03-22 カズ ヨーロッパ エスエー Non-contact medical thermometer with stray radiation shield
JP5996139B1 (en) * 2016-03-31 2016-09-21 興和株式会社 Infrared thermometer
US20210364359A1 (en) * 2020-05-22 2021-11-25 Oriental System Technology Inc. Infrared temperature sensor
JP2021184801A (en) * 2017-05-26 2021-12-09 京セラ株式会社 measuring device
CN116940203A (en) * 2023-09-07 2023-10-24 深圳市美思先端电子有限公司 Pyroelectric infrared sensor

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007505300A (en) * 2003-09-09 2007-03-08 ブラウン ゲーエムベーハー Heatable infrared sensor and infrared thermometer with infrared sensor
KR101252909B1 (en) * 2003-09-09 2013-04-09 브라운 게엠베하 Heatable infrared sensor and infrared thermometer comprising such an infrared sensor
JP2012507007A (en) * 2008-10-23 2012-03-22 カズ ヨーロッパ エスエー Non-contact medical thermometer with stray radiation shield
JP5996139B1 (en) * 2016-03-31 2016-09-21 興和株式会社 Infrared thermometer
WO2017170837A1 (en) * 2016-03-31 2017-10-05 興和株式会社 Infrared thermometer
JP2021184801A (en) * 2017-05-26 2021-12-09 京セラ株式会社 measuring device
US20210364359A1 (en) * 2020-05-22 2021-11-25 Oriental System Technology Inc. Infrared temperature sensor
CN116940203A (en) * 2023-09-07 2023-10-24 深圳市美思先端电子有限公司 Pyroelectric infrared sensor

Similar Documents

Publication Publication Date Title
JP4214124B2 (en) Ear thermometer
US6203194B1 (en) Thermopile sensor for radiation thermometer or motion detector
US6129673A (en) Infrared thermometer
JP3743394B2 (en) Infrared sensor and electronic device using the same
CN101103907B (en) Thermal tympanic thermometer
US6152595A (en) Measuring tip for a radiation thermometer
KR100628283B1 (en) Infrared sensor stabilisable in temperature, and infrared thermometer with a sensor of this type
EP1333504A3 (en) Monolithically-integrated infrared sensor
KR20170022189A (en) Temperature sensor package
JP2003156395A (en) Infrared temperature sensor
JP4580562B2 (en) Non-contact temperature sensor and infrared thermometer using the same
JPS63318175A (en) Thermopile
JP3176798B2 (en) Radiant heat sensor
JPH075047A (en) Radiation heat sensor
JP4621363B2 (en) Infrared thermometer
JP2002156283A (en) Thermopile-type infrared sensor
JP2002195885A (en) Infrared sensor
JP2008026179A (en) Radiant heat sensor and method of measuring radiant heat
JPH11258040A (en) Thermopile type infrared ray sensor
US20230375418A1 (en) Thermopile laser sensor with response time acceleration and methods of use and manufacture
JPH10290790A (en) Radiation thermometer
JPS642884B2 (en)
JP2000186963A (en) Infrared sensor
JPH0536056B2 (en)

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041117

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060420

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060511

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060703

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060830

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20061226