JP2003128835A - Method for decomposing polyolefin resin - Google Patents

Method for decomposing polyolefin resin

Info

Publication number
JP2003128835A
JP2003128835A JP2001328658A JP2001328658A JP2003128835A JP 2003128835 A JP2003128835 A JP 2003128835A JP 2001328658 A JP2001328658 A JP 2001328658A JP 2001328658 A JP2001328658 A JP 2001328658A JP 2003128835 A JP2003128835 A JP 2003128835A
Authority
JP
Japan
Prior art keywords
polyolefin resin
laccase
treatment
mediator
days
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001328658A
Other languages
Japanese (ja)
Inventor
Tomoaki Nishida
友昭 西田
Makoto Kahata
信 加畑
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Kasei Corp
Original Assignee
Asahi Kasei Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Kasei Corp filed Critical Asahi Kasei Corp
Priority to JP2001328658A priority Critical patent/JP2003128835A/en
Publication of JP2003128835A publication Critical patent/JP2003128835A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J11/00Recovery or working-up of waste materials
    • C08J11/04Recovery or working-up of waste materials of polymers
    • C08J11/10Recovery or working-up of waste materials of polymers by chemically breaking down the molecular chains of polymers or breaking of crosslinks, e.g. devulcanisation
    • C08J11/105Recovery or working-up of waste materials of polymers by chemically breaking down the molecular chains of polymers or breaking of crosslinks, e.g. devulcanisation by treatment with enzymes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2323/00Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers
    • C08J2323/02Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers not modified by chemical after treatment
    • C08J2323/04Homopolymers or copolymers of ethene
    • C08J2323/06Polyethene
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/62Plastics recycling; Rubber recycling

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Separation, Recovery Or Treatment Of Waste Materials Containing Plastics (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for decomposing a polyolefin resin in a short period of time without generating problems of environmental pollution. SOLUTION: The polyolefin resin is subjected to at least one treatment selected from pulverization, treatment for imparting porous structure and treatment for imparting hydrophilic property to obtain a treated material. The treated material is buried in the soil in a dumping ground before a mixed solution of laccase and mediator is sprayed, or the treated material is charged into the mixed solution of laccase and mediator to decompose the polyolefin resin by the action of the mixed solution.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、ポリオレフィン系
樹脂の分解方法に関するものであり、更に詳細にはポリ
オレフィン系樹脂を酵素とメディエーターの存在下で処
理して環境汚染問題を生じさせずに常温で短期間に分解
する方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for decomposing a polyolefin resin, and more particularly to treating the polyolefin resin in the presence of an enzyme and a mediator at room temperature without causing environmental pollution problems. Regarding the method of decomposing in a short period of time.

【0002】[0002]

【従来の技術】現在、日本では年間に約1500万トン
のプラスチックが生産されており、そのうちポリエチレ
ンやポリプロピレンを主とするポリオレフィン系樹脂は
約40%を占めている。ポリオレフィン系樹脂は、水や
油、薬品に強く、成形加工性に優れており、軟質から硬
質まで種々のグレードがあり、薄肉化すると透明になり
内容物が見え、厚肉化すると剛性の必要な製品にもなる
といったように極めて広範囲の製品分野への対応が可能
で、フィルムや日用品だけでなく、電線の被覆やパイ
プ、ケーブルの被覆、自動車などの工業部品、発泡させ
て緩衝材や断熱材などにも使用されている。
2. Description of the Related Art Currently, in Japan, about 15 million tons of plastics are produced annually, and about 40% of these are polyolefin resins mainly composed of polyethylene and polypropylene. Polyolefin resins are resistant to water, oil, chemicals, and have excellent moldability. There are various grades from soft to hard. When thinning, the contents become transparent and the contents are visible, and when thickening, rigidity is required. It can be applied to an extremely wide range of product fields, such as products, and can be used not only for films and daily necessities, but also for electric wire coverings, pipes, cable coverings, industrial parts such as automobiles, foaming cushioning materials and heat insulating materials. It is also used for.

【0003】ところが、近年プラスチック廃棄物が環境
に与える問題が深刻化するにつれ、廃棄物となったポリ
オレフィン系樹脂の処理が問題となってきている。現
在、処理方法としては焼却、処分場への埋め立て、リサ
イクルが実施されている。しかし、オレフィン系樹脂の
焼却は紙などに比べて高い燃焼エネルギーを発生するた
め焼却炉を痛めたり、環境汚染問題を生じさせることが
指摘されている。
However, as the problems of plastic wastes on the environment have become more serious in recent years, the treatment of waste polyolefin resin has become a problem. Currently, incineration, landfill in the disposal site, and recycling are implemented as treatment methods. However, it has been pointed out that incineration of an olefin resin causes a higher combustion energy than paper and the like, which damages the incinerator and causes an environmental pollution problem.

【0004】又、処分場への埋め立ては新たな処分場の
確保が難しいという問題がある。ポリオレフィン系樹脂
は難分解性の樹脂であり埋め立て後数十年経ても分解さ
れないことが確認されている。このため埋め立てが不充
分であると廃棄物が飛散して環境汚染の問題を生じる恐
れがある。そしてリサイクルは多種多様なポリオレフィ
ン系樹脂を分別して回収し処理するまでには至っていな
い。
In addition, it is difficult to secure a new landfill for landfilling in the landfill. It has been confirmed that polyolefin resins are hard to decompose and do not decompose even after decades of landfill. For this reason, if landfilling is insufficient, waste may be scattered and cause a problem of environmental pollution. Recycling has not yet reached the point where various polyolefin resins are separated, collected, and processed.

【0005】このため、ポリオレフィン系樹脂を微生物
の生分解能を利用して分解しようとする検討もなされて
いる。例えば、特開平6−70783号公報には、木材
腐朽性担子菌によりポリオレフィン系高分子化合物を分
解する方法に関する技術が開示されている。しかしなが
ら、この方法は、特殊な微生物を用いる必要があり、ま
たその培養条件にも制限があることに加えて分解までに
時間がかかるなど汎用的に適用できる技術ではなかっ
た。
For this reason, studies have been made to decompose polyolefin resins by utilizing the biodegradability of microorganisms. For example, Japanese Patent Application Laid-Open No. 6-70783 discloses a technique relating to a method of decomposing a polyolefin polymer compound with a wood-destroying basidiomycete. However, this method is not a technique that can be applied to a general purpose because it requires the use of special microorganisms, the culture conditions are limited, and it takes time to decompose.

【0006】又、特開平11−158318号公報に
は、バシラス属に属する特定の微生物により低密度ポリ
エチレンを分解する方法に関する技術が開示されてい
る。しかし、この方法は、分解を進めるためには特定培
養条件下で長期間(数ヶ月)処理しなければならないも
のであった。
Further, Japanese Patent Laid-Open No. 11-158318 discloses a technique relating to a method for decomposing low density polyethylene by a specific microorganism belonging to the genus Bacillus. However, this method requires long-term treatment (several months) under specific culture conditions in order to proceed with decomposition.

【0007】[0007]

【発明が解決しようとする課題】本発明は、環境汚染問
題を生じさせずに常温で短期間にポリオレフィン系樹脂
を分解する方法を提供することを目的とする。
SUMMARY OF THE INVENTION It is an object of the present invention to provide a method for decomposing a polyolefin resin at room temperature in a short period of time without causing a problem of environmental pollution.

【0008】[0008]

【課題を解決するための手段】本発明者は、上記課題を
解決するため鋭意研究を重ねた結果、ラッカーゼとメデ
ィエーターの存在下でポリオレフィン系樹脂を処理する
ことにより環境汚染問題を生じさせずに常温で短期間に
分解することが出来ることを見出し、本発明を完成させ
るに至った。
Means for Solving the Problems The inventors of the present invention have conducted extensive studies to solve the above problems, and as a result, by treating a polyolefin resin in the presence of a laccase and a mediator, an environmental pollution problem is not caused. They have found that they can decompose at room temperature in a short period of time, and have completed the present invention.

【0009】すなわち、本発明は次の態様からなる。 (1)ポリオレフィン系樹脂をラッカーゼとメディエー
ターの存在下で処理し、分解することを特徴とするポリ
オレフィン系樹脂の分解方法。 (2)前記ポリオレフィン系樹脂が親水化処理、粉末化
処理及び多孔質化処理から選ばれる少なくとも1種の処
理が施されていることを特徴とする上記(1)に記載の
ポリオレフィン系樹脂の分解方法。
That is, the present invention comprises the following aspects. (1) A method for decomposing a polyolefin resin, which comprises treating the polyolefin resin in the presence of a laccase and a mediator and decomposing it. (2) Decomposition of the polyolefin resin according to (1), wherein the polyolefin resin has been subjected to at least one treatment selected from a hydrophilic treatment, a powdering treatment and a porosifying treatment. Method.

【0010】[0010]

【発明の実施の形態】以下、本願発明について具体的に
説明する。本発明の分解方法を適用する対象となるポリ
オレフィン系樹脂とは、エチレン、プロピレン、ブテ
ン、メチルペンテン等のオレフィンを単独に重合して得
られる高分子、2種以上のオレフィンを共重合して得ら
れる高分子、1種あるいは2種以上のオレフィンとカル
ボン酸、カルボン酸塩あるいはカルボン酸アルキルエス
テル等を共重合して得られる高分子等を言う。
BEST MODE FOR CARRYING OUT THE INVENTION The present invention will be described in detail below. The polyolefin resin to which the decomposition method of the present invention is applied is a polymer obtained by homopolymerizing olefins such as ethylene, propylene, butene, and methylpentene, and is obtained by copolymerizing two or more kinds of olefins. A polymer obtained by copolymerizing a carboxylic acid, a carboxylic acid salt, a carboxylic acid alkyl ester or the like with one or more olefins.

【0011】このような樹脂の例としては、低密度ポリ
エチレン、線状低密度ポリエチレン、高密度ポリエチレ
ン、ポリプロピレン、ポリブテン−1、ポリメチルペン
テン−1、エチレン−プロピレン共重合体、エチレン−
ブテン共重合体等のエチレン−αオレフィン共重合体、
エチレン−酢酸ビニル共重合体、エチレン−メタクリル
酸メチル共重合体等がある。
Examples of such resins include low density polyethylene, linear low density polyethylene, high density polyethylene, polypropylene, polybutene-1, polymethylpentene-1, ethylene-propylene copolymer, ethylene-
Ethylene-α-olefin copolymers such as butene copolymers,
Examples thereof include ethylene-vinyl acetate copolymers and ethylene-methyl methacrylate copolymers.

【0012】また、これらポリオレフィン系樹脂の重合
方法も限定されるものはなく、高圧ラジカル重合法、チ
ーグラー系触媒による低圧重合法、メタロセン触媒によ
る低圧あるいは高圧重合法等によるポリオレフィン系樹
脂を用いることが出来る。
The method for polymerizing these polyolefin resins is not limited, and it is possible to use a polyolefin resin by a high pressure radical polymerization method, a low pressure polymerization method using a Ziegler catalyst, a low pressure or high pressure polymerization method using a metallocene catalyst, and the like. I can.

【0013】ポリオレフィン系樹脂の形態としては、粉
末状、ペレット状、フィルム状、繊維状、多孔質状、板
状等のいずれでも良いが、粉末状、ペレット状、繊維
状、多孔質状のものがラッカーゼあるいはメディエータ
ーとの接触面積を大きくとれるため好ましく、更に粉末
状、多孔質状あるいは親水化したものがより好ましい。
粉末化の方法には、クラッシャー、ハンマーミル、ジェ
ットミル等の粉砕機で粉体とする方法がある。
The form of the polyolefin resin may be any of powder, pellet, film, fiber, porous, plate, etc., but powder, pellet, fiber, porous Is preferable because it can have a large contact area with laccase or a mediator, and more preferably powdered, porous or hydrophilized.
As a method of pulverizing, there is a method of pulverizing with a crusher such as a crusher, a hammer mill or a jet mill.

【0014】粉末化前のポリオレフィン系樹脂の形態と
してはペレット状、シート状、板状等種々のものが使用
出来る。多孔質化はポリオレフィン系樹脂に相溶性の悪
い添加剤等を二軸押出機等で混練して添加剤を微分散
後、添加剤を適当な溶媒で洗浄抽出することにより行う
ことが出来る。
As the form of the polyolefin resin before pulverization, various forms such as pellet form, sheet form and plate form can be used. The porosity can be obtained by kneading an additive or the like having poor compatibility with the polyolefin resin by a twin-screw extruder or the like to finely disperse the additive, and then washing and extracting the additive with a suitable solvent.

【0015】ラッカーゼ及びメディエーターは親水性で
あり、ポリオレフィン系樹脂を親水化することにより、
ラッカーゼあるいはメディエーターとの親和性が増大し
て分解が促進される。親水化の方法としては、極性基を
持ったシリカのような物質の添加、コロナ処理や火炎処
理による樹脂への極性基の導入等の手段を用いることが
出来る。
Laccase and mediator are hydrophilic, and by making the polyolefin resin hydrophilic,
The affinity with laccase or mediator is increased and the decomposition is promoted. As a method of hydrophilizing, a means such as addition of a substance having a polar group such as silica, introduction of a polar group into the resin by corona treatment or flame treatment can be used.

【0016】ポリオレフィン系樹脂の分解を促進するた
め、これら粉末化、多孔質化、親水化の処理の内の少な
くとも1つの処理を行うことが好ましく、粉末化、多孔
質化、親水化の処理を全て行うものがより好ましい。
In order to accelerate the decomposition of the polyolefin resin, it is preferable to carry out at least one of the powdering, porosifying and hydrophilizing treatments. The powdering, porosifying and hydrophilizing treatments are carried out. It is more preferable to do everything.

【0017】本発明で用いるラッカーゼとは、フェノー
ルオキシダーゼの一種であり、活性中心に銅を有する分
子量約6万1000の銅タンパク酵素である。本酵素
は、分子状酸素を2分子の水まで還元する間に基質とな
るフェノール性水酸基を有する化合物を4電子酸化す
る。
The laccase used in the present invention is a kind of phenol oxidase, and is a copper protein enzyme having a molecular weight of about 61,000 and having copper at the active center. This enzyme performs 4-electron oxidation of a compound having a phenolic hydroxyl group as a substrate while reducing molecular oxygen to 2 molecules of water.

【0018】ラッカーゼはウルシ科のRhus vernicifera
DCの乳液中から最初に発見された青色を呈し植物(ウ
ルシ、野菜、果実など)やカビなどに由来する酵素であ
る。また近年、木材腐朽性担子菌由来のラッカーゼは、
天然高分子であるリグニンの分解に関与する酵素の1つ
として注目されている。
Laccase is a rhus family Rhus vernicifera
It is an enzyme that is first discovered in DC emulsion and has a blue color and is derived from plants (such as sumac, vegetables and fruits) and mold. In recent years, laccase derived from wood-destroying basidiomycetes
It has attracted attention as one of the enzymes involved in the decomposition of lignin, which is a natural polymer.

【0019】本発明において用いるラッカーゼは事前に
木材腐朽性担子菌などの微生物の培養物から分離精製し
たものを用いても良いし、培養物を用いても良い。又、
この他、培養物の処理物も使用することが出来る。ここ
で培養物とは、微生物を培養して得た菌体及び培養液の
混合物を指すが、本発明においては、菌体培養物から分
離したウェットケーキ等の菌体、その残渣及び固体物を
全て除去した培養液を利用することも出来る。又その処
理物とは、培養液を濃縮、乾燥、又は希釈したもの全て
を指すものである。
The laccase used in the present invention may be one that has been separated and purified from a culture of a microorganism such as wood-destroying basidiomycete in advance, or the culture may be used. or,
In addition to this, a treated product of the culture can also be used. Here, the culture refers to a mixture of bacterial cells and a culture solution obtained by culturing a microorganism, but in the present invention, bacterial cells such as wet cake separated from the bacterial cell culture, its residue and solid matter. It is also possible to use a culture solution that has been completely removed. In addition, the processed product refers to all of the concentrated, dried, or diluted culture solution.

【0020】本発明において用いるメディエーターと
は、上述のラッカーゼの作用により、それ自身はラジカ
ルとなる性質を持つ化合物を言う。ここでラジカルとは
1個またはそれ以上の不対電子を有する分子を言う。
The mediator used in the present invention refers to a compound having a property of itself becoming a radical by the action of the above-mentioned laccase. Here, a radical refers to a molecule having one or more unpaired electrons.

【0021】このようなメディエーターの例としては、
1−ヒドロキシベンゾトリアゾール(HBT)、N−ヒ
ドロキシ−N−フェニルアセトアミド、N−アセチル−
N−フェニルヒドロキシルアミン、ビオルル酸、N−ヒ
ドロキシアセトアニリド、2,2‘−アジノビス(3−
エチルベンゾチアゾリン−6−スルホネート)、ベンゾ
トリアゾール、レマゾールブリリアントブルー、クロル
プロマジン、プロマジン、1−ニトロソ−2−ナフトー
ル−3,6−ジスルホン酸、2−ニトロソ−1−ナフト
ール−4−スルホン酸、3−ヒドロキシアントラニル酸
等の化合物とこれらの誘導体があげられる。この中で
も、分子内にN−ヒドロキシ、オキシム、N−オキシド
構造を含むものが好ましく、1−ビトロキシベンゾトリ
アゾール(HBT)あるいはその誘導体がより好まし
い。
Examples of such mediators are:
1-hydroxybenzotriazole (HBT), N-hydroxy-N-phenylacetamide, N-acetyl-
N-phenylhydroxylamine, violuric acid, N-hydroxyacetanilide, 2,2′-azinobis (3-
Ethylbenzothiazoline-6-sulfonate), benzotriazole, remazole brilliant blue, chlorpromazine, promazine, 1-nitroso-2-naphthol-3,6-disulfonic acid, 2-nitroso-1-naphthol-4-sulfonic acid, 3 Examples include compounds such as -hydroxyanthranilic acid and derivatives thereof. Among these, those containing an N-hydroxy, oxime, or N-oxide structure in the molecule are preferable, and 1-vitroxybenzotriazole (HBT) or its derivative is more preferable.

【0022】本発明の分解方法によって、ポリオレフィ
ン系樹脂を効率的に分解させるためには、ラッカーゼと
メディエーターとを同時に存在させて処理する必要があ
る。これはラッカーゼの作用により、メディエーターが
酸化されてラジカルを発生し、このラジカルがポリオレ
フィン系樹脂を酸化的に攻撃して主鎖を切断し分解が連
鎖的に進行するものと推定されるためである。
In order to efficiently decompose the polyolefin resin by the decomposition method of the present invention, it is necessary to treat the laccase and the mediator at the same time. This is because it is presumed that the action of laccase oxidizes the mediator to generate a radical, and this radical oxidatively attacks the polyolefin resin to cleave the main chain and the decomposition proceeds in a chain. .

【0023】本発明の分解方法において、分解処理を行
うポリオレフィンに対するラッカーゼの添加量として
は、ポリオレフィン1mgに対して0.13nkat〜
25nkatの範囲が好ましい(kat:katal
酵素活性を表す国際単位、1katは1秒間に1モルの
基質を分解又は合成出来る活性量)。又、本発明におい
てラッカーゼと共に添加するメディエーターの量として
は、ラッカーゼ1nkatに対して4×10-5mM〜4
×10-3mMの範囲が好ましい。
In the decomposition method of the present invention, the amount of laccase added to the polyolefin to be decomposed is 0.13 nkat to 1 mg of the polyolefin.
A range of 25 nkat is preferred (kat: katal
International unit of enzyme activity, 1kat is the amount of activity that can decompose or synthesize 1 mol of substrate per second). In the present invention, the amount of the mediator added together with laccase is 4 × 10 −5 mM to 4 laccase / nkat.
The range of × 10 -3 mM is preferable.

【0024】本発明の分解方法による分解処理は、ラッ
カーゼとメディエーターとを接触させることによって行
われる。具体的には、ポリオレフィン系樹脂を処分場等
で土壌中に埋め立てて、ラッカーゼとメディエーターと
の混合液を散布する方法、ラッカーゼとメディエーター
との混合液中にポリオレフィン系樹脂を基質として含有
させ分解する方法等がある。混合液とポリアミド樹脂と
の混合物について混合、攪拌、振とうを行うことにより
更に分解効率を上げることができる。この場合の混合液
は、例えばリン酸、クエン酸、マロン酸等の緩衝液にラ
ッカーゼとメディエーターを添加して調製することが出
来る。緩衝液を使用することによりpH値をある範囲に
保ち、ラッカーゼの酵素活性を適切な範囲に維持するこ
とが出来る。ラッカーゼの供給源としてラッカーゼ産生
の微生物を用いる場合には、この他に微生物を培養する
ために必要な窒素源や無機塩類等を適宜使用する。
The decomposition treatment by the decomposition method of the present invention is carried out by bringing laccase and a mediator into contact with each other. Specifically, a method of landfilling a polyolefin resin in soil at a disposal site, etc., and spraying a mixed solution of laccase and mediator, containing a polyolefin resin as a substrate in the mixed solution of laccase and mediator and decomposing it There are ways. The decomposition efficiency can be further increased by mixing, stirring and shaking the mixture of the mixed liquid and the polyamide resin. In this case, the mixed solution can be prepared by adding a laccase and a mediator to a buffer solution such as phosphoric acid, citric acid or malonic acid. By using a buffer solution, the pH value can be kept within a certain range and the enzyme activity of laccase can be kept within an appropriate range. When a laccase-producing microorganism is used as a laccase source, a nitrogen source, inorganic salts, etc. necessary for culturing the microorganism are appropriately used.

【0025】本発明における分解処理条件は、温度15
〜45℃、pH4.0〜7.0で行えばラッカーゼの酵
素活性あるいは微生物の増殖速度の点から常温で短期間
に分解が行え好ましい。更に温度25〜45℃、pH
4.5〜5.0の条件がより好ましい。この条件下では
処理日数として5〜10日程度の短期間でポリオレフィ
ン系樹脂を環境汚染問題を生じさせずに分解することが
出来る。次に本発明で用いる評価方法について述べる。
The decomposition treatment condition in the present invention is that the temperature is 15
It is preferable that the treatment is carried out at ˜45 ° C. and pH 4.0 to 7.0 because the enzyme activity of laccase or the growth rate of microorganisms can be decomposed at room temperature in a short period of time. Further temperature 25-45 ℃, pH
The condition of 4.5 to 5.0 is more preferable. Under these conditions, the polyolefin resin can be decomposed in a short period of about 5 to 10 days without causing environmental pollution problems. Next, the evaluation method used in the present invention will be described.

【0026】<生分解性評価1>ポリオレフィン系樹脂
の生分解性は、JIS K 7127に準拠したシート
状試料の引張試験方法により伸度および強度を測定し、
未処理試料のそれぞれの値を100として%で表した。
試料のサイズは長さ60mm、幅10mmで、引張試験
条件は、引張速度10mm/分、チャック間距離は30
mmで行った。
<Biodegradability Evaluation 1> Regarding the biodegradability of the polyolefin resin, the elongation and strength were measured by a tensile test method for a sheet-shaped sample according to JIS K 7127,
The value of each untreated sample was defined as 100 and expressed as a percentage.
The size of the sample is 60 mm in length and 10 mm in width. Tensile test conditions are a tensile speed of 10 mm / min and a chuck-to-chuck distance of 30.
mm.

【0027】<生分解性評価2>ポリオレフィン系樹脂
の生分解性を樹脂のGPC測定による重量平均分子量及
び数平均分子量の変化で評価した。ポリオレフィン系樹
脂がポリエチレンの場合の測定条件は次の通りである。
測定装置はWaters社製ALC/GPC150C
型、カラムは昭和電工製AT−807S(1本)と東ソ
ー製GMH−HT6(2本)を直列に接続した。移動相
はトリクロロベンゼン(TCB)を用い、カラム温度1
40℃、流量1.0ml/分、試料濃度20〜30mg
(PE)/20ml(TCB)で測定した。検出器は示
差屈折計を用いた。
<Biodegradability Evaluation 2> The biodegradability of the polyolefin resin was evaluated by the change in the weight average molecular weight and the number average molecular weight of the resin measured by GPC. The measurement conditions when the polyolefin resin is polyethylene are as follows.
Measuring device is Waters ALC / GPC150C
As for the mold and column, Showa Denko AT-807S (1 piece) and Tosoh GMH-HT6 (2 pieces) were connected in series. The mobile phase is trichlorobenzene (TCB) and the column temperature is 1
40 ° C, flow rate 1.0 ml / min, sample concentration 20-30 mg
(PE) / 20 ml (TCB). A differential refractometer was used as a detector.

【0028】以下実施例により本発明を説明する。The present invention will be described below with reference to examples.

【実施例1】マロン酸緩衝液(濃度50mモルの水溶
液)50mlとラッカーゼ500nkatを含む100
mlの三角フラスコに、ポリエチレン膜(旭化成株式会
社製ハイポアPE−1100A、ポリエチレンにシリカ
を添加して親水化した後多孔質化したもので空隙率は約
50%、長さ60mm、幅10mm)を10枚(1枚当
りの重量約40mg)添加し、メディエーターとして1
−ヒドロキシベンゾトリアゾール(HBT)を0.2m
モル添加して30℃で5日間振とう(150回/分)し
て分解処理を行った。
Example 1 100 including malonic acid buffer solution (concentration of 50 mmol aqueous solution) 50 ml and laccase 500 nkat
A polyethylene membrane (Hypore PE-1100A manufactured by Asahi Kasei Corporation, which was made hydrophilic by adding silica to polyethylene and then made porous to have a porosity of about 50%, a length of 60 mm, and a width of 10 mm) was placed in a ml Erlenmeyer flask. Add 10 sheets (weight of about 40mg per sheet) and add 1 as a mediator.
-Hydroxybenzotriazole (HBT) 0.2m
A mole was added, and the mixture was shaken at 30 ° C. for 5 days (150 times / min) for decomposition treatment.

【0029】処理日数が0日(未処理)、1日、2日、
3日、5日の各試料につき生分解性評価1の方法に従
い、引張試験を行い、伸度と強度の変化を評価した。結
果を表1に示す。又、生分解性評価2の方法に従い、処
理日数が0日(未処理)、1日、3日、5日の各試料に
つき平均分子量の変化を評価した。結果を表2に示す。
The number of processing days is 0 (unprocessed), 1 day, 2 days,
According to the method of biodegradability evaluation 1 for each sample for 3 days and 5 days, a tensile test was performed to evaluate changes in elongation and strength. The results are shown in Table 1. In addition, according to the method of biodegradability evaluation 2, the change in average molecular weight was evaluated for each sample having 0 days of treatment (untreated), 1 day, 3 days, and 5 days. The results are shown in Table 2.

【0030】[0030]

【比較例1】1−ヒドロキシベンゾトリアゾールを無添
加とした以外は実施例1と同様にして処理を行った。処
理日数が0日(未処理)、1日、2日、3日、5日の各
試料につき生分解性評価1の方法に従い評価した。結果
を表1に示す。
Comparative Example 1 The same treatment as in Example 1 was carried out except that 1-hydroxybenzotriazole was not added. Each sample was treated for 0 days (untreated), 1 day, 2 days, 3 days, and 5 days, and evaluated according to the method of biodegradability evaluation 1. The results are shown in Table 1.

【0031】[0031]

【表1】 [Table 1]

【0032】[0032]

【表2】 [Table 2]

【0033】表1から明らかなように、ラッカーゼとメ
ディエーター(HBT)の存在下でポリエチレン膜を処
理すると処理2日後で伸度はほぼ0に低下し、強度も未
処理の場合の約60%にまで低下する。処理3日を越え
るとポリエチレン膜は崩壊し5日後には粉状となり、分
解が常温で短期間に進んでいることがわかる。一方、メ
ディエーターを添加していないものは、処理5日後でも
伸度は未処理の80%、強度は未処理とほぼ同等で分解
が進んでいないことは明らかである。又、表2から明ら
かなように、本発明の処理方法により重量平均分子量2
58,000のポリエチレンが処理5日で重量平均分子
量19,600と短期間に分解されていることがわか
る。
As is clear from Table 1, when the polyethylene membrane was treated in the presence of laccase and mediator (HBT), the elongation was reduced to almost 0 after 2 days of treatment, and the strength was about 60% of that of the untreated case. Falls to. It can be seen that the polyethylene film disintegrates after 3 days of treatment and becomes powdery after 5 days, and the decomposition proceeds at room temperature for a short period of time. On the other hand, it is clear that even after 5 days of treatment, the elongation without addition of the mediator is 80% of the untreated, the strength is almost the same as that of the untreated, and the decomposition is not progressed. Further, as is clear from Table 2, the weight average molecular weight of 2 according to the treatment method of the present invention.
It can be seen that 58,000 polyethylene was decomposed in a short time with a weight average molecular weight of 19,600 after 5 days of treatment.

【0034】[0034]

【発明の効果】本発明の分解方法により、従来難分解性
であったポリオレフィン系樹脂を環境汚染問題を生じさ
せずに常温で5日〜10日の短期間で分解することが出
来、近年問題となっているプラスチック廃棄物処理問題
の解決に有用である。
EFFECTS OF THE INVENTION According to the decomposition method of the present invention, it is possible to decompose a polyolefin resin, which has been difficult to decompose in the past, at room temperature in a short period of 5 to 10 days without causing an environmental pollution problem. It is useful for solving the problem of plastic waste treatment.

フロントページの続き Fターム(参考) 4F301 AA12 AA13 AA14 CA04 CA09 CA10 CA11 CA12 CA23 CA33 CA72 Continued front page    F-term (reference) 4F301 AA12 AA13 AA14 CA04 CA09                       CA10 CA11 CA12 CA23 CA33                       CA72

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 ポリオレフィン系樹脂をラッカーゼとメ
ディエーターの存在下で処理し、分解することを特徴と
するポリオレフィン系樹脂の分解方法。
1. A method for decomposing a polyolefin resin, which comprises treating a polyolefin resin in the presence of a laccase and a mediator to decompose the resin.
【請求項2】 前記ポリオレフィン系樹脂が親水化処
理、粉末化処理及び多孔質化処理から選ばれる少なくと
も1種の処理が施されていることを特徴とする請求項1
に記載のポリオレフィン系樹脂の分解方法。
2. The polyolefin resin has been subjected to at least one treatment selected from hydrophilization treatment, powderization treatment and porosification treatment.
The method for decomposing a polyolefin resin as described in 1.
JP2001328658A 2001-10-26 2001-10-26 Method for decomposing polyolefin resin Pending JP2003128835A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001328658A JP2003128835A (en) 2001-10-26 2001-10-26 Method for decomposing polyolefin resin

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001328658A JP2003128835A (en) 2001-10-26 2001-10-26 Method for decomposing polyolefin resin

Publications (1)

Publication Number Publication Date
JP2003128835A true JP2003128835A (en) 2003-05-08

Family

ID=19144687

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001328658A Pending JP2003128835A (en) 2001-10-26 2001-10-26 Method for decomposing polyolefin resin

Country Status (1)

Country Link
JP (1) JP2003128835A (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010144431A1 (en) * 2009-06-10 2010-12-16 Ppg Industries Ohio, Inc. Microporous material derived from renewable polymers and articles prepared therefrom
WO2013186392A1 (en) 2012-06-15 2013-12-19 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Method for activating a surface by increasing the hydrophilicity and/or for the bonding of target structures
CN103980535A (en) * 2014-05-26 2014-08-13 北京航空航天大学 Method of degrading polyethylene by extracellular laccase of bacillus
WO2014167562A1 (en) * 2013-04-11 2014-10-16 B.G Negev Technologies Ltd. Compositions and methods for biodegrading plastic
WO2016097325A1 (en) * 2014-12-19 2016-06-23 Carbios Plastic compound and preparation process
US10287561B2 (en) 2014-10-21 2019-05-14 Carbios Polypeptide having a polyester degrading activity and uses thereof
US10385183B2 (en) 2014-05-16 2019-08-20 Carbios Process of recycling mixed PET plastic articles
US10508269B2 (en) 2015-03-13 2019-12-17 Carbios Polypeptide having a polyester degrading activity and uses thereof
US10717996B2 (en) 2015-12-21 2020-07-21 Carbios Recombinant yeast cells producing polylactic acid and uses thereof
US10723848B2 (en) 2015-06-12 2020-07-28 Carbios Masterbatch composition comprising a high concentration of biological entities
US10767026B2 (en) 2016-05-19 2020-09-08 Carbios Process for degrading plastic products

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010144431A1 (en) * 2009-06-10 2010-12-16 Ppg Industries Ohio, Inc. Microporous material derived from renewable polymers and articles prepared therefrom
WO2010144410A1 (en) * 2009-06-10 2010-12-16 Ppg Industries Ohio, Inc. Microporous material having degradation properties and articles prepared therefrom
US9067384B2 (en) 2009-06-10 2015-06-30 Ppg Industries Ohio, Inc. Microporous material having degradation properties and articles prepared therefrom
WO2013186392A1 (en) 2012-06-15 2013-12-19 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Method for activating a surface by increasing the hydrophilicity and/or for the bonding of target structures
WO2014167562A1 (en) * 2013-04-11 2014-10-16 B.G Negev Technologies Ltd. Compositions and methods for biodegrading plastic
EP2984168A4 (en) * 2013-04-11 2016-11-23 B G Negev Technologies Ltd Compositions and methods for biodegrading plastic
US10385183B2 (en) 2014-05-16 2019-08-20 Carbios Process of recycling mixed PET plastic articles
CN103980535A (en) * 2014-05-26 2014-08-13 北京航空航天大学 Method of degrading polyethylene by extracellular laccase of bacillus
US10287561B2 (en) 2014-10-21 2019-05-14 Carbios Polypeptide having a polyester degrading activity and uses thereof
WO2016097325A1 (en) * 2014-12-19 2016-06-23 Carbios Plastic compound and preparation process
US10626242B2 (en) 2014-12-19 2020-04-21 Carbios Plastic compound and preparation process
US10508269B2 (en) 2015-03-13 2019-12-17 Carbios Polypeptide having a polyester degrading activity and uses thereof
US10723848B2 (en) 2015-06-12 2020-07-28 Carbios Masterbatch composition comprising a high concentration of biological entities
US11198767B2 (en) 2015-06-12 2021-12-14 Carbios Process for preparing a biodegradable plastic composition
US11802185B2 (en) 2015-06-12 2023-10-31 Carbios Masterbatch composition comprising a high concentration of biological entities
US10717996B2 (en) 2015-12-21 2020-07-21 Carbios Recombinant yeast cells producing polylactic acid and uses thereof
US10767026B2 (en) 2016-05-19 2020-09-08 Carbios Process for degrading plastic products
US11377533B2 (en) 2016-05-19 2022-07-05 Carbios Process for degrading plastic products

Similar Documents

Publication Publication Date Title
Miri et al. Biodegradation of microplastics: Better late than never
Lim et al. Biodegradation of polymers in managing plastic waste—A review
Liu et al. On the degradation of (micro) plastics: Degradation methods, influencing factors, environmental impacts
Osman et al. Degradation of polyester polyurethane by Aspergillus sp. strain S45 isolated from soil
Nowak et al. Biodegradation of poly (ethylene terephthalate) modified with polyester" Bionolle®" by Penicillium funiculosum
Koutny et al. Biodegradation of polyethylene films with prooxidant additives
JP2003128835A (en) Method for decomposing polyolefin resin
Krishnaswamy et al. Cellulase enzyme catalyst producing bacterial strains from vermicompost and its application in low-density polyethylene degradation
Mukherjee et al. Anionic surfactant induced oxidation of low density polyethylene followed by its microbial bio-degradation
US20150038611A1 (en) Biodegradable nanocomposites containing nanoclay and titanium dioxide nanoparticles
Singh et al. Biodegradation of plastic: an innovative solution to safe the human health and environment
JP3054702B2 (en) Method for decomposing aromatic polyester, method for reducing weight of aromatic polyester fiber, aromatic polyester fiber and bacteria for decomposing aromatic polyester
Ke et al. Thermal and in vitro degradation properties of the NH2-containing PHBV films
Bharathiraja et al. Biodegradation of Poly (vinyl alcohol) using Pseudomonas alcaligenes
Kim et al. Enzymatic oxidation of aqueous pentachlorophenol
JP3866468B2 (en) Degradation method of polylactic acid
Kumar et al. Photo-/bio-degradability of agro waste and ethylene–propylene copolymers composites under abiotic and biotic environments
Naka et al. Amphiphilic Block Copolymer-Horseradish Peroxidase Aggregate as a New Polymer-Enzyme Hybrid in Organic Solvents.
JP2003128836A (en) Method for decomposing polyamide resin
Sun et al. Microbial metabolism induced chain shortening of polyacrylamide with assistance of bioelectricity generation
JP3692455B2 (en) Novel microorganism having polylactic acid resin resolution and method for decomposing polylactic acid resin
JP3354432B2 (en) Method for decolorizing wastewater and treating hardly decomposable substances using hydrogen peroxide
FI90558B (en) Biodegradable cover film and process for making such cover film
JP2005060530A (en) Method for degrading polymer
Harahap et al. Comparison of weight loss in natural rubber latex film (rubber dam) filled nanocrystal cellulose and synthetic dyes with soil burial methods

Legal Events

Date Code Title Description
RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20040315