JP2003124680A - Electromagnetic wave absorption material and its manufacturing method - Google Patents

Electromagnetic wave absorption material and its manufacturing method

Info

Publication number
JP2003124680A
JP2003124680A JP2001316982A JP2001316982A JP2003124680A JP 2003124680 A JP2003124680 A JP 2003124680A JP 2001316982 A JP2001316982 A JP 2001316982A JP 2001316982 A JP2001316982 A JP 2001316982A JP 2003124680 A JP2003124680 A JP 2003124680A
Authority
JP
Japan
Prior art keywords
magnetic
electromagnetic wave
wave absorbing
thickness
absorbing material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001316982A
Other languages
Japanese (ja)
Inventor
Akihisa Hosoe
晃久 細江
Shinji Inasawa
信二 稲沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP2001316982A priority Critical patent/JP2003124680A/en
Publication of JP2003124680A publication Critical patent/JP2003124680A/en
Pending legal-status Critical Current

Links

Landscapes

  • Shielding Devices Or Components To Electric Or Magnetic Fields (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an electromagnetic wave absorption material which has a high absorption efficiency of an electromagnetic wave having the specific frequency of a higher frequency band, which exhibits good electromagnetic wave absorption characteristics, which can be reduced in thickness and which can sufficiently deal with requests for further increasing the density, the frequency and down sizing of a device, and to provide a method for manufacturing the same. SOLUTION: The electromagnetic wave absorption material comprises an insulating layer 11 having a predetermined thickness, and a laminate 1 obtained by alternatively stacking many flat magnetic materials 2 each having a predetermined planar shape and a predetermined thickness and disposed on the same planar surface so as not to be brought into contact with each other by orienting the materials 2 in the same direction and magnetic material distribution layers 12 of the structure in which the insulator 12a having the same thickness are filled between the materials 2. The method for manufacturing the electromagnetic wave absorption material comprises the steps of forming many vent holes arriving at a substrate corresponding to the planar shape of the magnetic material by a photolithography on a resist film, forming the magnetic material in which the magnetic materials are filled in the vent holes, and forming the magnetic material distribution layer by further polishing the magnetic materials and the resist film to a predetermined thickness.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、磁性体と絶縁体と
を含む複合構造の電磁波吸収材料に関するものである。
TECHNICAL FIELD The present invention relates to an electromagnetic wave absorbing material having a composite structure including a magnetic body and an insulator.

【0002】[0002]

【従来の技術】電子機器、通信装置等の機能を安定化さ
せるべく、その障害となる電磁波を吸収する電磁波吸収
材料が広く用いられる。とくに携帯機器においては、そ
のさらなる小型、軽量化の要求に対応するために、電磁
波吸収材料についても、厚み数十μm程度の超薄型のシ
ート状にすることが要望されている。電磁波吸収材料と
しては従来、フェライト系材料が中心に用いられてき
た。その理由は、電磁波のうち特に問題となるのが磁界
成分、すなわち高周波磁界であり、軟磁性が高くかつ電
気抵抗の高いフェライト系材料は、かかる磁界成分の吸
収特性に優れていたためである。
2. Description of the Related Art In order to stabilize the functions of electronic devices, communication devices, etc., an electromagnetic wave absorbing material which absorbs an electromagnetic wave which becomes an obstacle is widely used. Particularly in mobile devices, in order to meet the demand for further reduction in size and weight, the electromagnetic wave absorbing material is also required to be in the form of an ultrathin sheet having a thickness of about several tens of μm. Ferrite materials have been mainly used as the electromagnetic wave absorbing material. The reason is that the magnetic field component, that is, the high-frequency magnetic field, is particularly problematic among electromagnetic waves, and the ferrite material having high soft magnetism and high electric resistance was excellent in absorption characteristics of the magnetic field component.

【0003】電磁波吸収材料において、電磁波吸収特性
に関与する材料パラメータとしては、高周波における複
素誘電率と複素透磁率とがあるが、磁界成分の吸収には
複素透磁率μ=μ'−jμ"の虚数成分である磁気損失項
μ"が強く関わっている。さらに電波のような高周波磁
界に対して透磁率を左右するのは、電磁波吸収材料内の
磁気モーメントの回転であり、磁気モーメントの回転に
対する共鳴周波数の近傍で高いμ"が得られる。
In the electromagnetic wave absorbing material, there are the complex permittivity and the complex magnetic permeability at a high frequency as material parameters involved in the electromagnetic wave absorbing characteristic, but the complex magnetic permeability μ = μ'-jμ "is required for absorbing the magnetic field component. The magnetic loss term μ ", which is an imaginary component, is strongly related. Further, it is the rotation of the magnetic moment in the electromagnetic wave absorbing material that influences the magnetic permeability with respect to a high frequency magnetic field such as a radio wave, and a high μ "is obtained near the resonance frequency with respect to the rotation of the magnetic moment.

【0004】ところが近年の電子機器や通信機器の発達
により、フェライト系材料では電磁波吸収特性が十分と
はいえなくなってきた。その理由は次の2点にある。第
1に、フェライト系材料には、高周波磁界に対してスネ
ークの限界と呼ばれる特性上の限界があり、共鳴周波数
がせいぜい0.2GHzと低いことが挙げられる。近年
の電子機器、通信機器においては、0.8〜2GHz程
度の電磁波が問題になることが多く、フェライト系材料
ではこれに対応できないのである。
However, with the recent development of electronic devices and communication devices, it has become difficult to say that ferrite-based materials have sufficient electromagnetic wave absorption characteristics. There are two reasons for this. First, ferrite-based materials have a characteristic limit called a snake limit for high-frequency magnetic fields, and the resonance frequency is as low as 0.2 GHz at most. In recent electronic devices and communication devices, electromagnetic waves of about 0.8 to 2 GHz often cause problems, and ferrite-based materials cannot cope with this.

【0005】また第2に、フェライト系材料は磁気損失
項μ"を左右する磁気モーメントの数、すなわち飽和磁
化が小さいために、高いμ"を期待できないことが挙げ
られる。今後、電磁波吸収材料についてはさらなる高吸
収率が要望されることが予想されるのに対し、上記のよ
うにフェライト系材料の飽和磁化では十分とはいえなく
なっているのが現状である。
Secondly, a ferrite material cannot be expected to have a high μ "because the number of magnetic moments that influence the magnetic loss term μ", that is, the saturation magnetization is small. In the future, it is expected that even higher absorptance will be required for electromagnetic wave absorbing materials, but the saturation magnetization of ferrite materials as described above is not sufficient at present.

【0006】そこで高い磁気損失を得るために、磁気損
失の原因となる磁気モーメントの数が多い、すなわち飽
和磁化の大きい金属系の軟磁性材料からなる電磁波吸収
材料が検討された。金属軟磁性材料を用いた電磁波吸収
材料においては、より高い周波数帯域で、渦電流損失を
いかに小さくして高い透磁率を確保するかが求められて
きた。そして磁性体を薄膜化して、その複数層を、誘電
体の膜を介して積層する方向と、粉体化して樹脂等の絶
縁体中に分散させる方向の2つの技術的な方向に沿って
開発が進められてきた〔「新電波吸収体の最新技術と応
用 エレクトロニクス材料・技術シリーズ」橋本修監
修、(株)シーエムシー、1999年3月1日発行〕。
Therefore, in order to obtain a high magnetic loss, an electromagnetic wave absorbing material made of a metallic soft magnetic material having a large number of magnetic moments causing the magnetic loss, that is, a large saturation magnetization has been studied. In an electromagnetic wave absorbing material using a metal soft magnetic material, it has been required to reduce eddy current loss in a higher frequency band to secure a high magnetic permeability. Developed along two technical directions: thinning the magnetic material and stacking multiple layers through a dielectric film, and pulverizing it to disperse it in an insulator such as resin. [The latest technology and application of new wave absorbers, electronic materials and technology series, supervised by Osamu Hashimoto, CMC Co., Ltd., published March 1, 1999].

【0007】その結果、薄膜状の磁性体の積層体におい
て、積層構造に由来して発生する変位電流による透磁率
特性の阻害を防止すべく、上記文献の第134頁図1e
に記載されているように、カラム状の積層構造を持つ構
造体が考えられた。この構造体は、現時点で最も優れた
高周波用の電磁波吸収材料の1つである。しかしこの構
造体は、構造が複雑で安価かつ容易に製造することが困
難であるため、実用化されるには至っていない。
As a result, in a laminated body of thin film magnetic materials, in order to prevent the magnetic permeability characteristic from being hindered by the displacement current generated due to the laminated structure, FIG.
As described in, a structure having a column-shaped laminated structure was considered. This structure is one of the most excellent electromagnetic wave absorbing materials for high frequencies at the present time. However, since this structure has a complicated structure and is difficult to manufacture inexpensively and easily, it has not been put to practical use.

【0008】[0008]

【発明が解決しようとする課題】そこで、上記積層体と
近似した構造を有するものとして、上記文献の同頁図1
iに記載された、樹脂等の絶縁体中に、金属軟磁性材料
からなる扁平な磁性体粉末を多数、同一方向に配向させ
た状態で分散させた分散構造を有する電磁波吸収材料が
開発された(特開平9−93034号公報)。かかる分
散型の電磁波吸収材料においては、個々の磁性体粉末の
寸法および形状ができるだけ揃っており、しかも図1i
に見るように各磁性体粉末がそれぞれ接触せずに独立し
て、できるだけ等間隔で、そして上記のように同一方向
に配向した状態で、絶縁体中に分散しているのが理想的
である。
Therefore, it is assumed that the structure has a structure similar to that of the above-mentioned laminated body, and FIG.
An electromagnetic wave absorbing material having a dispersion structure in which a large number of flat magnetic powders made of a metal soft magnetic material are dispersed in an insulator such as a resin described in i. (JP-A-9-93034). In such a dispersion type electromagnetic wave absorbing material, the size and shape of individual magnetic powders are as uniform as possible, and
It is ideal that the magnetic powders are dispersed in the insulator independently without being in contact with each other, as uniformly spaced as possible, and oriented in the same direction as described above. .

【0009】しかし実際には以下に述べる種々の問題が
あるため、上記のような理想的な電磁波吸収材料を得る
ことは困難であった。すなわち扁平状の磁性体粉末は、
前記公報の実施例に記載されているように、水アトマイ
ズ法などによって得られる球状の原料粉末を、ボールミ
ルなどを用いて機械的に粉砕、延伸並びに引裂加工する
ことで、扁平に変形して製造される。しかし、原料であ
る球状の原料粉末の粒径をほぼ一定に揃えたとしても、
次工程で原料粉末に加わる粉砕、延伸および引裂加工の
強度が個々の粉末ごとに異なるため、製造される磁性体
粉末は、各粉末間での径と厚みのばらつきが大きい上、
個々の粉末の形状が不規則で、同一粉末内でも径と厚み
が一定しないものとなる。
However, in reality, it is difficult to obtain the above-mentioned ideal electromagnetic wave absorbing material because of the various problems described below. That is, the flat magnetic powder is
As described in the examples of the publication, spherical raw material powder obtained by a water atomizing method or the like is mechanically crushed using a ball mill or the like, mechanically crushed, stretched and torn to produce a flattened deformed product. To be done. However, even if the particle size of the spherical raw material powder, which is the raw material, is made almost constant,
Since the strength of pulverization, stretching and tearing applied to the raw material powder in the next step is different for each powder, the magnetic powder produced has a large variation in diameter and thickness between the powders.
The shape of each powder is irregular, and the diameter and thickness are not constant even within the same powder.

【0010】また分散型の電磁波吸収材料は、例えば絶
縁材料として樹脂を使用する場合、これも前記公報の実
施例に記載されているように、磁性体粉末と樹脂と溶剤
とを混合して形成したペーストを基材上に塗布し、乾燥
して溶剤を除去することで製造される。また他の製造方
法として、押出機を用いて、磁性体粉末と樹脂とを溶
融、混練して押出成型する方法もある。しかしこのいず
れの方法でも、樹脂中で磁性体粉末が凝集しやく、複数
の粉末が互いに接触するのを完全に防止することができ
ない。また接触しないまでも、粉末の分散状態がどうし
ても不均一になって、樹脂中に、磁性体粉末の密度の高
いところと低いところとを生じやすい。
When a resin is used as an insulating material, the dispersion type electromagnetic wave absorbing material is formed by mixing magnetic powder, resin and solvent as described in the examples of the above publications. It is manufactured by coating the paste on a base material and drying it to remove the solvent. As another manufacturing method, there is also a method of melting and kneading the magnetic powder and the resin using an extruder and extrusion-molding. However, none of these methods can completely prevent magnetic powders from agglomerating in the resin and a plurality of powders coming into contact with each other. Further, even if they do not come into contact with each other, the dispersed state of the powder is inevitably non-uniform, and a high density portion and a low density portion of the magnetic substance powder are likely to occur in the resin.

【0011】さらに前記公報では、成膜時に磁性体粉末
を同一方向に配向させるべく、ペーストを、ドクターブ
レード法などによって応力を加えながら層状に塗布し、
さらにプレスして成膜しているが、それでもなお、全て
の磁性体粉末を同一方向に配向させることはできない。
また押出成形法では、押出時の応力によって磁性体粉末
を同一方向に配向させているが、この方法でもやはり、
全ての磁性体粉末を同一方向に配向させることはできな
い。
Further, in the above-mentioned publication, in order to orient the magnetic powder in the same direction during film formation, the paste is applied in layers by applying stress by a doctor blade method or the like,
Although the film is further pressed to form a film, it is still impossible to orient all the magnetic powders in the same direction.
In the extrusion molding method, the magnetic powder is oriented in the same direction due to the stress during extrusion.
Not all magnetic powders can be oriented in the same direction.

【0012】しかも、磁性体粉末をペースト中に分散さ
せる際の応力や、ペーストの塗布およびプレスによって
磁性体粉末を配向させる際の応力、あるいは磁性体粉末
を樹脂と溶融、混練して押出成型する際の応力などによ
って、磁性体粉末が変形したり破損したりしやすいた
め、径と厚みのばらつきがさらに増幅されるおそれもあ
る。分散型の電磁波吸収材料の周波数特性は、主として
磁性体粉末の径と厚みとに依存する。このため前記のよ
うに径と厚みの、個々の磁性体粉末間および粉末内での
ばらつきが大きかったり、あるいは複数の粉末が互いに
接触して実質的な径や厚みがさらに変動したりすると、
周波数特性が粉末間で平均化されることになる。すなわ
ち電磁波吸収材料は、特定周波数の電磁波に対して尖鋭
なピークを有するのでなく、幅広い周波数帯域に渡るブ
ロードな分布を有するものとなる。このため特定周波数
の電磁波に対する吸収効率が低下する。
Moreover, the stress when the magnetic powder is dispersed in the paste, the stress when the magnetic powder is oriented by applying and pressing the paste, or the magnetic powder is melted and kneaded with the resin and extruded. The magnetic powder is likely to be deformed or damaged due to stress at the time, and thus the variation in diameter and thickness may be further amplified. The frequency characteristics of the dispersion type electromagnetic wave absorbing material mainly depend on the diameter and thickness of the magnetic powder. Therefore, as described above, when the diameter and the thickness vary widely among the individual magnetic powders and within the powder, or when a plurality of powders come into contact with each other and the substantial diameter or thickness further varies,
The frequency characteristics will be averaged between the powders. That is, the electromagnetic wave absorbing material does not have a sharp peak for an electromagnetic wave of a specific frequency, but has a broad distribution over a wide frequency band. Therefore, the absorption efficiency for electromagnetic waves of a specific frequency is reduced.

【0013】また前記のように磁性体粉末は、その形
状、とくに平面形状が不規則であったり、厚みがばらつ
いて、スキンデプス以上の厚みを有する粉末が含まれて
いたりする上、凝集しやすいため、電磁波の吸収効率を
決めるもう1つの要因である、樹脂中での占積率をあま
り高くすることができない。その上、全ての磁性体粉末
を同一方向に配向できず、異なった方向を向いた、電磁
波吸収に寄与しない磁性体粉末が生じるため、電磁波の
吸収効率がさらに低下する。
Further, as described above, the magnetic powder has an irregular shape, particularly a planar shape, and has a variation in thickness and contains powder having a thickness of skin depth or more, and is easily aggregated. Therefore, the space factor in the resin, which is another factor that determines the electromagnetic wave absorption efficiency, cannot be increased so much. Moreover, all the magnetic powders cannot be oriented in the same direction, and magnetic powders that are directed in different directions and do not contribute to electromagnetic wave absorption are generated, so that the electromagnetic wave absorption efficiency is further reduced.

【0014】このため分散型の構成では、期待される電
磁波吸収特性を発揮しうる電磁波吸収材料を得ることは
難しい。今後、電子機器においてはデバイスのさらなる
高密度化、高周波数化の方向に向かうことが明らかであ
るが、電子機器内部のクロストークの問題に対し、上記
のように既存の電磁波吸収材料では十分とは言えない状
況である。また、例えば携帯電話に代表されるように漏
洩電磁波が人体に与える影響などから、一層の電磁波対
策が要求されることが予想される。またダウンサイジン
グが要求される中、電磁波吸収材料についても極力小さ
く(薄く)することが求められる。しかし既存の電磁波
吸収材料では、かかる要求に十分に対応することも難し
い状況である。
Therefore, it is difficult to obtain an electromagnetic wave absorbing material capable of exhibiting expected electromagnetic wave absorbing characteristics in the dispersion type structure. In the future, it is clear that in electronic equipment, the density and frequency of devices will continue to increase, but with regard to the problem of crosstalk inside electronic equipment, existing electromagnetic wave absorbing materials as described above are sufficient. It is a situation that cannot be said. Further, it is expected that further measures against electromagnetic waves will be required due to the influence of leaked electromagnetic waves on the human body, as represented by, for example, mobile phones. Further, as downsizing is required, the electromagnetic wave absorbing material is also required to be as small (thin) as possible. However, it is difficult for existing electromagnetic wave absorbing materials to sufficiently meet such requirements.

【0015】本発明は、より高周波数の帯域の、特定周
波数の電磁波に対する吸収効率が高く、良好な電磁波吸
収特性を示す上、薄型化が可能であり、デバイスのさら
なる高密度化、高周波数化、ダウンサイジング化などの
要求に十分に対応できる新規な電磁波吸収材料と、その
効率的な製造方法とを提供することを目的とする。
The present invention has a high absorption efficiency for electromagnetic waves of a specific frequency in a higher frequency band, exhibits excellent electromagnetic wave absorption characteristics, and can be thinned, and the device can be made even higher in density and frequency. It is an object of the present invention to provide a novel electromagnetic wave absorbing material that can sufficiently meet requirements such as downsizing and an efficient manufacturing method thereof.

【0016】[0016]

【課題を解決するための手段および発明の効果】請求項
1記載の発明は、(1) 絶縁材料からなり、厚みが一定
である絶縁層と、(2) 所定の平面形状と一定の厚みと
を有する扁平状の微細な磁性体を多数、同一平面上に、
同一方向に配向させて互いに接触しないように配置する
とともに、各磁性体間を、絶縁材料からなり、磁性体と
同じ厚みを有する連続した層状の絶縁体で充てんした構
造を有する磁性体分布層と、を複数層ずつ交互に積層し
た積層体からなることを特徴とする電磁波吸収材料であ
る。
[Means for Solving the Problems and Effects of the Invention] The invention according to claim 1 is (1) an insulating layer made of an insulating material and having a constant thickness, and (2) a predetermined planar shape and a constant thickness. A large number of flat fine magnetic substances having
Aligned in the same direction so as not to contact each other, and a magnetic material distribution layer having a structure in which each magnetic material is made of an insulating material and is filled with a continuous layered insulator having the same thickness as the magnetic material. An electromagnetic wave absorbing material comprising a laminated body in which a plurality of layers are alternately laminated.

【0017】請求項1の電磁波吸収材料は、例えばフォ
トリソグラフ法などの、微細なプリント配線板を製造す
る際の技術を応用して製造することができる。それゆえ
多数の磁性体を、所定の平面形状と、とくにスキンデプ
ス以下の一定の厚みとを有する扁平状に揃えることがで
きる。また多数の磁性体を、1層の磁性体分布層中で、
互いに接触せず、しかも占積率を極力高くできるよう高
密度に配置することもできる。
The electromagnetic wave absorbing material of claim 1 can be manufactured by applying a technique for manufacturing a fine printed wiring board, such as a photolithography method. Therefore, a large number of magnetic bodies can be arranged in a flat shape having a predetermined planar shape and, in particular, a constant thickness equal to or less than the skin depth. In addition, a large number of magnetic materials in one magnetic material distribution layer,
They can also be arranged in high density so that they do not contact each other and the space factor can be maximized.

【0018】さらに多数の磁性体を、1層の磁性体分布
層中で、同一平面上に、同一方向に配向させて配置する
とともに、複数層の磁性体分布層を、厚みが一定である
絶縁層を介して積層しているため、電磁波吸収材料を構
成する全ての磁性体分布層中の、全ての磁性体を、同一
方向に配向させることもできる。このため電磁波吸収材
料は、特定周波数の電磁波に対して尖鋭なピークを有す
るものとなる。
Further, a large number of magnetic bodies are arranged in the same magnetic plane in the same plane, oriented in the same direction, and the plurality of magnetic body distribution layers are insulated with a constant thickness. Since the layers are laminated via the layers, it is possible to orient all the magnetic bodies in all the magnetic body distribution layers constituting the electromagnetic wave absorbing material in the same direction. Therefore, the electromagnetic wave absorbing material has a sharp peak for an electromagnetic wave of a specific frequency.

【0019】したがって請求項1の構成によれば、これ
までよりも特定周波数の電磁波に対する吸収効率が高
く、良好な電磁波吸収特性を示す上、薄型化が可能であ
り、デバイスのさらなる高密度化、高周波数化、ダウン
サイジング化などの要求に十分に対応できる電磁波吸収
材料が得られる。請求項6記載の発明は、上記請求項1
記載の電磁波吸収材料を製造する方法であって、下地層
上に、絶縁材料を含む絶縁層を形成する工程と、下地層
上に、絶縁体の元になる絶縁材料を含むレジスト膜を形
成し、当該レジスト膜に、フォトリソグラフ法によっ
て、磁性体の平面形状に対応した、下地に達する多数の
通孔を形成したのち、この通孔に磁性材料を充てんして
磁性体を形成し、さらに磁性体およびレジスト膜を一定
の厚みに研磨して磁性体分布層を形成する工程と、を交
互に実施して積層体を形成することを特徴とする電磁波
吸収材料の製造方法である。
Therefore, according to the structure of claim 1, the absorption efficiency for the electromagnetic wave of the specific frequency is higher than that of the prior art, the electromagnetic wave absorption characteristics are excellent, and the device can be made thin. It is possible to obtain an electromagnetic wave absorbing material that can sufficiently meet the demands for higher frequencies and downsizing. The invention according to claim 6 is the above-mentioned claim 1.
A method for producing the electromagnetic wave absorbing material as described above, comprising the step of forming an insulating layer containing an insulating material on the underlayer, and forming a resist film containing the insulating material from which the insulator is formed on the underlayer. After forming a large number of through holes in the resist film corresponding to the planar shape of the magnetic body to reach the underlying layer by the photolithography method, the through holes are filled with a magnetic material to form a magnetic body. A method of manufacturing an electromagnetic wave absorbing material, which comprises alternately performing a step of forming a magnetic material distribution layer by polishing a body and a resist film to a constant thickness to form a laminated body.

【0020】請求項6の構成では、磁性体の形状を規定
するためのレジスト膜を、そのまま磁性体分布層を構成
する絶縁体として利用しつつ、プリント配線板の製造方
法のうちいわゆるアディティブ法により、絶縁層と磁性
体分布層との積層体を形成して、請求項1記載の発明の
電磁波吸収材料を製造することができる。したがって請
求項6の構成によれば、例えば従来のカラム状の積層構
造を持つ構造体の製造などに比べてより効率的に、しか
も安価かつ容易に、請求項1記載の発明の電磁波吸収材
料を製造することが可能となる。
According to the sixth aspect of the present invention, the resist film for defining the shape of the magnetic substance is used as it is as an insulator constituting the magnetic substance distribution layer, and the so-called additive method is used in the method for manufacturing a printed wiring board. The electromagnetic wave absorbing material of the present invention can be manufactured by forming a laminate of the insulating layer and the magnetic material distribution layer. Therefore, according to the structure of claim 6, the electromagnetic wave absorbing material of the invention of claim 1 can be used more efficiently, cheaply and easily as compared with, for example, the conventional manufacturing of a structure having a column-shaped laminated structure. It becomes possible to manufacture.

【0021】[0021]

【発明の実施の形態】(電磁波吸収材料)図1(a)は、
本発明の電磁波吸収材料の、実施の形態の一例を示す断
面図、図1(b)は、図1(a)の電磁波吸収材料のうち、磁
性体分布層の表面を示す平面図である。これらの図に見
るように、この例の電磁波吸収材料は、絶縁層11と、
多数の磁性体2を含む磁性体分布層12とを、複数層ず
つ交互に積層した積層体1からなるものである。
DETAILED DESCRIPTION OF THE INVENTION (Electromagnetic Wave Absorbing Material) FIG.
A cross-sectional view showing an example of an embodiment of an electromagnetic wave absorbing material of the present invention, and FIG. 1 (b) is a plan view showing a surface of a magnetic material distribution layer in the electromagnetic wave absorbing material of FIG. 1 (a). As shown in these figures, the electromagnetic wave absorbing material of this example includes the insulating layer 11 and
A magnetic body distribution layer 12 including a large number of magnetic bodies 2 and a laminated body 1 in which a plurality of layers are alternately laminated are provided.

【0022】積層体1の、上下の最表層は絶縁層11と
される。積層体1の最表層に磁性体2が露出した場合に
は、電磁波の反射を引き起こして吸収効率が低下するた
めである。なお図では、絶縁層11と磁性体分布層12
とを交互に、合計17層(絶縁層11が9層、磁性体分
布層12が8層)積層して電磁波吸収材料を形成してい
るが、層数は図の例には限定されない。電磁波吸収特性
を向上するためには、スペースの許す限り、層数を多く
するのが好ましい。例えば後述する実施例では、両層を
交互に、合計41層(絶縁層11が21層、磁性体分布
層12が20層)積層している。しかもそれでもなお積
層体1の全体の厚みは30.5μmと小さいことから、
本発明の構成によれば、電磁波吸収材料の薄型化が可能
であることがわかる。
The upper and lower outermost layers of the laminate 1 are insulating layers 11. This is because, when the magnetic body 2 is exposed at the outermost layer of the laminate 1, electromagnetic waves are reflected and the absorption efficiency is reduced. In the figure, the insulating layer 11 and the magnetic material distribution layer 12 are shown.
The electromagnetic wave absorbing material is formed by alternately stacking and 17 layers in total (9 layers of the insulating layer 11 and 8 layers of the magnetic material distribution layer 12), but the number of layers is not limited to the example of the figure. In order to improve the electromagnetic wave absorption characteristics, it is preferable to increase the number of layers as long as the space allows. For example, in an example described later, a total of 41 layers (21 insulating layers 11 and 20 magnetic material distribution layers 12) are alternately laminated. Moreover, since the total thickness of the laminated body 1 is still as small as 30.5 μm,
According to the configuration of the present invention, it can be seen that the electromagnetic wave absorbing material can be thinned.

【0023】絶縁層11は、絶縁材料からなり、その厚
みが一定とされる。この理由は先に述べたとおりであ
る。また絶縁層11の厚みは、可能な限り薄くするのが
好ましい。磁性体と絶縁体とを含む複合構造の電磁波吸
収材料では、磁気損失項μ"が、磁性体の占積率に応じ
て指数関数的に増加する。このため高いμ"を得るため
には、磁性体の占積率をできるだけ高くする必要があ
り、そのためには絶縁層11の厚みを薄くするのが望ま
しい。
The insulating layer 11 is made of an insulating material and has a constant thickness. The reason for this is as described above. The thickness of the insulating layer 11 is preferably as thin as possible. In an electromagnetic wave absorbing material having a composite structure including a magnetic substance and an insulator, the magnetic loss term μ ″ increases exponentially according to the space factor of the magnetic substance. Therefore, in order to obtain a high μ ″, It is necessary to make the space factor of the magnetic material as high as possible, and for that purpose, it is desirable to make the thickness of the insulating layer 11 thin.

【0024】磁性体分布層12は、所定の平面形状と一
定の厚みとを有する扁平状の微細な磁性体2を多数、同
一平面上(絶縁層11上)に、同一方向に配向させて互
いに接触しないように配置するとともに、各磁性体2間
を、絶縁材料からなり、磁性体2と同じ厚みを有する連
続した層状の絶縁体12aで充てんした構造を有してい
る。このうち磁性体2は、図に示した円盤状であるのが
好ましい。
The magnetic material distribution layer 12 includes a large number of flat, fine magnetic materials 2 having a predetermined planar shape and a constant thickness, which are oriented in the same plane (on the insulating layer 11) in the same direction. The magnetic members 2 are arranged so as not to come into contact with each other, and the magnetic members 2 are filled with a continuous layered insulating member 12a made of an insulating material and having the same thickness as the magnetic members 2. Of these, the magnetic body 2 is preferably disk-shaped as shown in the figure.

【0025】高周波、とくに数百MHz以上の周波数帯
域での磁気損失の大きさは、磁性体中の磁気モーメント
の挙動に依存する。すなわち磁気モーメントの回転が電
磁波の周波数と共鳴を起こした時に大きな磁気損失が得
られることが知られている。磁気モーメントの共鳴周波
数は、磁性体内部にある異方性磁界によって決定され
る。そして磁気モーメントを面内に揃える方向に異方性
磁界がかかっている状態が好ましいと言われている。こ
のような方向の異方性磁界を個々の磁気モーメントが均
一に受けるようにするには、磁性体2の形状は、円盤状
や正多角形薄板状などが好ましく、中でも円盤状が最も
好ましい。
The magnitude of magnetic loss at high frequencies, particularly in the frequency band of several hundred MHz or more, depends on the behavior of the magnetic moment in the magnetic material. That is, it is known that a large magnetic loss is obtained when the rotation of the magnetic moment resonates with the frequency of the electromagnetic wave. The resonance frequency of the magnetic moment is determined by the anisotropic magnetic field inside the magnetic material. It is said that a state in which an anisotropic magnetic field is applied in the direction in which the magnetic moment is aligned in the plane is preferable. In order to uniformly receive the anisotropic magnetic field in such a direction by each magnetic moment, the shape of the magnetic body 2 is preferably a disk shape or a regular polygonal thin plate shape, and the disk shape is most preferable.

【0026】磁性体2の厚みは、導電率、透磁率、およ
び周波数に依存するスキンデプス以下であるのが好まし
い。スキンデプス以上の厚みは、電磁波吸収に対して有
効に機能しないためスペース的に無駄となる。スキンデ
プスはσ/(μ・f)〔式中σは導電率、μは透磁率、
fは周波数である。〕に比例する。磁性体2のアスペク
ト比(直径/厚み)は、10〜200であるのが好まし
い。アスペクト比が10未満では、磁気モーメントが同
一面内に揃わず、回転がランダムとなるため、高い磁気
損失が得られないおそれがある。またアスペクト比が2
00を超える場合には、磁性体2の直径が大きくなるた
め、金属としての、電気抵抗が低く電磁波を反射しやす
いという性質が強くなって、電磁波の吸収効率が低下す
るおそれがある。
The thickness of the magnetic body 2 is preferably equal to or less than the skin depth which depends on the electric conductivity, magnetic permeability and frequency. A thickness greater than the skin depth is wasted in terms of space because it does not function effectively for electromagnetic wave absorption. Skin depth is σ / (μ · f) [where σ is conductivity, μ is magnetic permeability,
f is the frequency. ] Proportional to The aspect ratio (diameter / thickness) of the magnetic body 2 is preferably 10 to 200. When the aspect ratio is less than 10, the magnetic moments are not aligned in the same plane and the rotation becomes random, so that high magnetic loss may not be obtained. Also, the aspect ratio is 2
If it exceeds 00, the diameter of the magnetic body 2 becomes large, so that the property of the metal having a low electric resistance and easy reflection of electromagnetic waves becomes strong, and the electromagnetic wave absorption efficiency may decrease.

【0027】なおここでいう直径とは、円盤状の磁性体
粉末の場合は、そのまま円の直径を指す。また正多角形
薄板状その他の、円盤状以外の平面形状を有する磁性体
粉末の場合は、その平面形状から求められる面積と一致
する面積を有する円の直径を指す。磁性体2の形成材料
としては、前記のように飽和磁化の大きい金属系の軟磁
性材料が好ましい。金属軟磁性材料としては、例えば
(a) Ni、FeまたはCoのいずれか1種の金属、も
しくは(b) 上記金属の少なくとも1種を含む、2種以
上の金属の合金などが挙げられる。また(b)の合金とし
ては、Ni、FeまたはCoのうち2種ないしは3種の
金属のみからなる合金と、Ni、FeまたはCoのうち
1〜3種の金属とその他の金属との合金とがあげられ
る。
The diameter here means the diameter of a circle as it is in the case of a disk-shaped magnetic substance powder. In the case of magnetic powder having a planar shape other than a disk shape such as a regular polygonal thin plate shape, the diameter of a circle having an area matching the area obtained from the planar shape is indicated. As a material for forming the magnetic body 2, a metallic soft magnetic material having a large saturation magnetization as described above is preferable. As the metal soft magnetic material, for example,
Examples thereof include (a) one metal selected from Ni, Fe, and Co, or (b) an alloy of two or more metals containing at least one of the above metals. Further, as the alloy of (b), an alloy consisting of only two or three metals among Ni, Fe or Co, and an alloy of one to three metals among Ni, Fe or Co and other metals. Can be given.

【0028】1層の磁性体分布層12中では、隣り合う
磁性体2間の距離がいずれの方向も等しくなるように各
磁性体2を配置するのが、均一な電磁波吸収特性を得る
上で、また先に述べた磁性体の占積率を向上する上で好
ましい。例えば円盤状の磁性体2では、図1(b)に示す
ように隣り合う3つの磁性体2の中心が、それぞれ図中
二点鎖線で示す正三角形の頂点に位置するように配置す
ると、隣り合う磁性体2間の距離がいずれの方向も等し
くなる。このため磁性体分布層12における電磁波吸収
特性を均一化することができる。また余分な隙間が生じ
ないので、隣り合う磁性体2間の最短の間隔D1を小さ
くすることにより、磁性体分布層12における磁性体の
密度を向上して、電磁波吸収材料における磁性体2の占
積率を向上することができる。
In the one magnetic substance distribution layer 12, it is preferable to arrange the magnetic substances 2 so that the distances between the adjacent magnetic substances 2 are equal to each other in order to obtain uniform electromagnetic wave absorption characteristics. Also, it is preferable for improving the space factor of the magnetic material described above. For example, in the case of a disc-shaped magnetic body 2, if the centers of three adjacent magnetic bodies 2 are located at the vertices of an equilateral triangle indicated by the chain double-dashed line in the figure as shown in FIG. The distance between the matching magnetic bodies 2 becomes equal in all directions. Therefore, the electromagnetic wave absorption characteristics of the magnetic material distribution layer 12 can be made uniform. Further, since no extra gap is generated, the shortest distance D1 between the adjacent magnetic bodies 2 is reduced, so that the density of the magnetic bodies in the magnetic body distribution layer 12 is improved and the space occupied by the magnetic bodies 2 in the electromagnetic wave absorbing material is increased. The product ratio can be improved.

【0029】また1層の絶縁層11を挟む上下の磁性体
分布層12中の磁性体2は、その面方向において互いに
ずらして配置するのが好ましい。とくに一方の磁性体分
布層12の、磁性体2間の隙間を埋めるように、もう一
方の磁性体分布層12の磁性体2を配置するのが好まし
い。例えば図1(b)の例では、図中破線で示す下側の磁
性体分布層12中の、1個の磁性体が、前述した正三角
形の中心に位置するように、上下の磁性体分布層12中
の磁性体2を互いにずらして配置している。
The magnetic bodies 2 in the upper and lower magnetic body distribution layers 12 sandwiching one insulating layer 11 are preferably arranged so as to be offset from each other in the plane direction. In particular, it is preferable to arrange the magnetic body 2 of the other magnetic body distribution layer 12 so as to fill the gap between the magnetic bodies 2 of the one magnetic body distribution layer 12. For example, in the example of FIG. 1 (b), one magnetic material in the lower magnetic material distribution layer 12 shown by a broken line in the drawing is arranged so that one magnetic material is located at the center of the above-mentioned equilateral triangle. The magnetic bodies 2 in the layer 12 are arranged offset from each other.

【0030】このように配置すると、磁性体2間の、電
磁波が通過しうる“穴”の働きをする隙間を極力小さく
して、電磁波の吸収効率をさらに高めることができる。
また、上下の磁性体分布層12間での、磁性体2の分布
の偏りを無くして、電磁波吸収特性を均一化することも
できる。絶縁層11、および磁性体分布層12のうち絶
縁体12aを構成する絶縁材料としては、成膜性を有す
る種々の絶縁性の材料が使用でき、とくに樹脂が好まし
い。
With such an arrangement, the gap between the magnetic bodies 2 which functions as a "hole" through which electromagnetic waves can pass can be made as small as possible, and the electromagnetic wave absorption efficiency can be further improved.
Further, it is also possible to eliminate the uneven distribution of the magnetic material 2 between the upper and lower magnetic material distribution layers 12 and make the electromagnetic wave absorption characteristics uniform. As the insulating material forming the insulator 12a of the insulating layer 11 and the magnetic material distribution layer 12, various insulating materials having film-forming properties can be used, and resin is particularly preferable.

【0031】本発明の電磁波吸収材料においては、以上
で説明したように磁性体2の形状、および寸法、磁性体
2を形成する金属軟磁性材料などを選択することによっ
て共鳴周波数、すなわち吸収周波数を解析的に設計する
ことができる。また磁性体2の配置、絶縁層11の厚
み、絶縁層11および磁性体分布層12の積層数などを
選択することによって、最適な電磁波吸収特性を得るこ
とができる。
In the electromagnetic wave absorbing material of the present invention, as described above, the resonance frequency, that is, the absorption frequency can be determined by selecting the shape and size of the magnetic body 2 and the metal soft magnetic material forming the magnetic body 2. It can be designed analytically. Further, by selecting the arrangement of the magnetic body 2, the thickness of the insulating layer 11, the number of laminated layers of the insulating layer 11 and the magnetic body distribution layer 12, and the like, optimum electromagnetic wave absorption characteristics can be obtained.

【0032】(電磁波吸収材料の製造方法)本発明の電
磁波吸収材料は、先に述べたように微細なプリント配線
板を製造する際の、従来公知の種々の技術を応用して製
造することができる。中でもとくに本発明の製造方法
が、効率的に、しかも安価かつ容易に、電磁波吸収材料
を製造できるため好適に採用される。以下に、図1(a)
(b)の例の電磁波吸収材料を製造する場合を例にとっ
て、本発明の製造方法を説明する。
(Manufacturing Method of Electromagnetic Wave Absorbing Material) The electromagnetic wave absorbing material of the present invention can be manufactured by applying various conventionally known techniques when manufacturing a fine printed wiring board as described above. it can. Above all, the manufacturing method of the present invention is particularly preferably used because the electromagnetic wave absorbing material can be manufactured efficiently, inexpensively and easily. Below, Figure 1 (a)
The production method of the present invention will be described by taking the case of producing the electromagnetic wave absorbing material of the example (b) as an example.

【0033】まず、図2(a)に示すようにその上に積層
体1を積層、形成するための基板Sを用意し、その表面
に、1層目の絶縁層11の元になる樹脂層R1を形成す
る。基板Sとしては、その表面が平滑な種々の基板が、
いずれも使用可能であるが、とくに形成した積層体1を
容易にはく離できる基板Sが好ましい。かかる基板Sと
しては、例えば樹脂の耐熱温度(熱分解温度、軟化温
度、ガラス転移温度、溶融温度など)以下で溶融する低
融点合金製の基板が好適に採用される。低融点合金から
なる基板Sは、積層体1を形成後、全体を低融点合金の
融点以上の温度に設定した温水中に浸漬すると溶融する
ため、積層体1を容易にはく離することができる。
First, as shown in FIG. 2A, a substrate S for laminating and forming the laminated body 1 thereon is prepared, and a resin layer which is a base of the first insulating layer 11 is provided on the surface of the substrate S. R1 is formed. As the substrate S, various substrates having a smooth surface are
Any of them can be used, but a substrate S which can easily peel off the formed laminated body 1 is particularly preferable. As the substrate S, for example, a substrate made of a low melting point alloy that melts at a temperature lower than the heat resistant temperature of the resin (thermal decomposition temperature, softening temperature, glass transition temperature, melting temperature, etc.) is preferably used. After the laminated body 1 is formed, the substrate S made of the low melting point alloy is melted by immersing the whole body in hot water set to a temperature equal to or higher than the melting point of the low melting point alloy, so that the laminated body 1 can be easily peeled off.

【0034】また樹脂層R1は、以下に述べる磁性体分
布層12のうち絶縁体12aを形成するレジスト膜と同
じ樹脂組成物、すなわちレジストによって形成するの
が、両層間の結着性を高め、かつ両層の膨張収縮率を揃
えて、より一体化した積層体1を形成する上で好まし
い。樹脂層(レジスト膜)R1を、例えば後述する実施
例のようにネガ型紫外線硬化レジストによって形成する
場合は、レジストを塗布してレジスト膜R1を形成後、
図に示すようにその全体に紫外線UVを照射して硬化さ
せると、強固な絶縁層11が形成される〔図2(b)〕。
Further, the resin layer R1 is formed of the same resin composition as the resist film forming the insulator 12a of the magnetic substance distribution layer 12 described below, that is, the resist is used to enhance the binding property between the two layers. In addition, it is preferable to form the more integrated laminate 1 by making the expansion and contraction rates of both layers uniform. When the resin layer (resist film) R1 is formed of, for example, a negative type ultraviolet curable resist as in the example described later, after applying the resist to form the resist film R1,
As shown in the figure, when the whole is irradiated with ultraviolet rays UV and cured, a strong insulating layer 11 is formed [FIG. 2 (b)].

【0035】次にこの絶縁層11の上に、上記絶縁体1
2aの元になるレジストを塗布してレジスト膜R2を形
成し〔図2(c)〕、さらにその上に、磁性体の平面形状
と配置に対応したマスクパターンMを重ねて紫外線UV
を照射する〔図2(d)〕。前記のように、レジストとし
てネガ型紫外線硬化レジストを使用する場合、マスクパ
ターンMとしては、図に見るように磁性体に対応する部
分が紫外線を通さない不透光部M1、その他の部分が紫
外線を通す透光部M2とされたものを用いる。
Next, the insulator 1 is formed on the insulating layer 11.
2a is applied to form a resist film R2 [FIG. 2 (c)], and a mask pattern M corresponding to the planar shape and arrangement of the magnetic material is further laid on the resist film R2 and ultraviolet UV
(Fig. 2 (d)). As described above, when the negative type UV curable resist is used as the resist, as the mask pattern M, as shown in the figure, the portion corresponding to the magnetic material does not pass the UV light and the other portion does not pass the UV light. A light-transmitting portion M2 that allows light to pass therethrough is used.

【0036】そして紫外線を照射すると、レジスト膜R
2のうち、上記透光部M2に対応した部分のみ選択的に
紫外線硬化される。このあと、レジストの専用の現像剤
を用いてレジスト膜R2を現像すると、当該レジスト膜
R2のうち、不透光部M1に対応する未硬化の部分が選
択的に除去される。そしてレジスト膜R2に、磁性体2
の平面形状に対応した、下地層である絶縁層11に達す
る多数の通孔H1が形成される〔図2(e)〕。
Then, when ultraviolet rays are irradiated, the resist film R
Of the two, only the portion corresponding to the light transmitting portion M2 is selectively ultraviolet-cured. After that, when the resist film R2 is developed using a resist-dedicated developer, the uncured portion of the resist film R2 corresponding to the non-light-transmitting portion M1 is selectively removed. Then, the magnetic film 2 is formed on the resist film R2.
A large number of through holes H1 reaching the insulating layer 11 which is the underlayer corresponding to the plane shape of the above are formed [FIG. 2 (e)].

【0037】なお、レジストとしてポジ型紫外線硬化レ
ジストを使用する場合は、逆に磁性体に対応する部分が
紫外線を通す透光部、その他の部分が紫外線を通さない
不透光部とされたマスクパターンを用いる。そして紫外
線を照射すると、レジスト膜R2のうち、透光部に対応
した部分のみ選択的に、専用の現像剤によって除去可能
な状態となるため、この現像剤で現像すると、やはり図
2(e)に示した状態となる。
When a positive type UV curable resist is used as the resist, on the contrary, a mask corresponding to the magnetic substance is a transparent portion which transmits ultraviolet rays, and the other portion is a transparent portion which does not transmit ultraviolet rays. Use a pattern. Then, when the resist film R2 is irradiated with ultraviolet rays, only the portion corresponding to the light-transmitting portion can be selectively removed with a dedicated developer. Therefore, when the resist film R2 is developed with this developer, as shown in FIG. It becomes the state shown in.

【0038】次に、上記レジスト膜R2の表面の全面
に、磁性体2の元になる磁性材料を堆積させることで、
通孔H1内を、上記磁性材料の膜F1で充てんする〔図
3(a)〕。磁性材料を堆積させる方法としては、例えば
真空蒸着法、スパッタリング法、イオンプレーティング
法、CVD法等の気相成長法や、あるいは湿式めっき法
などの、従来公知の膜形成法が採用できる。
Next, by depositing a magnetic material which is a base of the magnetic body 2 on the entire surface of the resist film R2,
The inside of the through hole H1 is filled with the film F1 of the magnetic material [FIG. 3 (a)]. As a method for depositing the magnetic material, a conventionally known film forming method such as a vapor deposition method such as a vacuum vapor deposition method, a sputtering method, an ion plating method or a CVD method, or a wet plating method can be employed.

【0039】そして表面を研磨して、レジスト膜R2上
の膜F2を除去すると、所定の厚みを有し、かつ膜F1
からなる多数の磁性体2がマスクパターンMによって規
定されたとおりの寸法、形状および分布でもって、同一
平面である下地層としての絶縁層11の表面に配置され
るとともに、その間の隙間が、硬化したレジスト膜R2
からなる連続した層状の絶縁体12aで充てんされた構
造の磁性体分布層12が形成される〔図3(b)〕次に、
上記磁性体分布層12上に、再び絶縁層11を形成す
る。例えばネガ型紫外線硬化レジストを使用する場合
は、まず磁性体分布層12上にレジストを塗布してレジ
スト層R3を形成した後、その全体に紫外線UVを照射
して硬化させると、強固な絶縁層11が形成される〔図
3(c)〜(d)〕。
Then, by polishing the surface to remove the film F2 on the resist film R2, the film F1 having a predetermined thickness is obtained.
A large number of magnetic bodies 2 each having the same size, shape and distribution as defined by the mask pattern M are arranged on the surface of the insulating layer 11 as the underlying layer on the same plane, and the gap between them is hardened. Resist film R2
A magnetic material distribution layer 12 having a structure filled with a continuous layered insulator 12a is formed [FIG. 3 (b)]
The insulating layer 11 is formed again on the magnetic material distribution layer 12. For example, in the case of using a negative type ultraviolet curable resist, first, a resist is applied on the magnetic material distribution layer 12 to form a resist layer R3, and then the whole is irradiated with ultraviolet UV to be cured, whereby a strong insulating layer is obtained. 11 is formed [FIG. 3 (c)-(d)].

【0040】このあと、図2(c)〜図3(d)の操作を繰り
返して、絶縁層11と磁性体分布層12とを所定の層数
だけ積層し、さらに基板Sを前記のように溶融するなど
して除去すると、電磁波吸収材料としての積層体1が得
られる。
Thereafter, the operations of FIGS. 2 (c) to 3 (d) are repeated to laminate the insulating layer 11 and the magnetic material distribution layer 12 by a predetermined number of layers, and the substrate S is further processed as described above. When removed by melting or the like, the laminate 1 as an electromagnetic wave absorbing material is obtained.

【0041】[0041]

【実施例】以下に本発明を、実施例、比較例に基づいて
説明する。 実施例1 (工程1)低融点合金(融点70℃)からなり、その表
面を中心線平均粗さRa=0.02μm以下に仕上げた
基板S上に、イエロールーム内で、液状のネガ型紫外線
硬化レジストを、スピンコーターを用いて、厚み0.5
μmとなるように塗布した後、レジスト膜R1の全体に
紫外線UVを照射して硬化させた〔図2(a)〕。これに
より図2(b)に示すように厚み0.5μmの絶縁層11
を形成した。
EXAMPLES The present invention will be described below based on Examples and Comparative Examples. Example 1 (Step 1) Negative ultraviolet liquid UV in a yellow room on a substrate S made of a low melting point alloy (melting point 70 ° C.) whose surface is finished to have a center line average roughness Ra = 0.02 μm or less. The cured resist is applied with a spin coater to a thickness of 0.5.
After coating so as to have a thickness of μm, the entire resist film R1 was irradiated with ultraviolet rays UV to be cured [FIG. 2 (a)]. As a result, as shown in FIG. 2B, the insulating layer 11 having a thickness of 0.5 μm is formed.
Was formed.

【0042】(工程2)上記絶縁層11上に、イエロー
ルーム内で、同じネガ型紫外線硬化レジストを、スピン
コーターを用いて、厚み1.0μmとなるように塗布し
た〔図2(c)〕。次にこのレジスト膜R2上に、磁性体
2の平面形状と配置に対応したマスクパターンMを重ね
て紫外線UVを照射した〔図2(d)〕。
(Step 2) The same negative type UV curable resist was applied on the insulating layer 11 in a yellow room by using a spin coater so as to have a thickness of 1.0 μm [FIG. 2 (c)]. . Then, a mask pattern M corresponding to the planar shape and arrangement of the magnetic body 2 was superposed on the resist film R2 and irradiated with ultraviolet rays UV [FIG. 2 (d)].

【0043】マスクパターンMとしては、紫外線透過性
のフィルムからなり、当該フィルム上に、磁性体2の平
面形状に対応した不透光部M1が多数、配列され、その
周りのフィルムの部分が透光部M2とされたものを用い
た。これにより、レジスト膜R2のうち、透光部M2を
通して紫外線を照射した部分のみ選択的に硬化させた。
次に、レジストの専用の現像剤を用いてレジスト膜R2
を現像して、不透光部M1に対応する未硬化の部分を選
択的に除去することで、図2(e)に示すようにレジスト
膜R2に、磁性体2の平面形状に対応した、下地層であ
る絶縁層11に達する多数の通孔H1を形成した。
The mask pattern M is made of an ultraviolet-transparent film, and a large number of non-transparent portions M1 corresponding to the planar shape of the magnetic body 2 are arranged on the film, and the film portion around it is transparent. The light part M2 was used. As a result, of the resist film R2, only the portion irradiated with the ultraviolet rays through the light transmitting portion M2 was selectively cured.
Next, the resist film R2 is formed by using a resist developer.
Is developed to selectively remove the uncured portion corresponding to the non-light-transmitting portion M1, so that the resist film R2 corresponds to the planar shape of the magnetic body 2 as shown in FIG. 2 (e). A large number of through holes H1 reaching the insulating layer 11, which is the base layer, were formed.

【0044】次に、このレジスト膜R2の表面の全面
に、スパッタリング法によって、Feを厚み約1.0μ
mとなるように堆積させることで、通孔H1内をFeの
スパッタリング膜F1で充てん〔図3(a)〕したのち表
面を研磨して、レジスト膜R2上のスパッタリング膜F
2を除去することで、厚み1.0μmの磁性体分布層1
2を形成した〔図3(b)〕。形成された磁性体分布膜1
2は、スパッタリング膜F1からなる円盤状の磁性体2
を多数、同一平面である下地層としての絶縁層11の表
面に、当該絶縁層11の面方向に配向させて、互いに接
触しないように配置するするとともに、各磁性体2間
を、硬化したレジスト膜R2からなる連続した層状の絶
縁体12aで充てんした構造となった。
Next, the entire surface of the resist film R2 is coated with Fe by sputtering to a thickness of about 1.0 μm.
The sputtering film F on the resist film R2 is polished by filling the through hole H1 with the sputtering film F1 of Fe [FIG.
By removing 2 the magnetic substance distribution layer 1 with a thickness of 1.0 μm
2 was formed [Fig. 3 (b)]. Magnetic substance distribution film 1 formed
2 is a disk-shaped magnetic body 2 made of a sputtering film F1
Are arranged on the surface of the insulating layer 11 as the underlying layer on the same plane so as to be oriented in the plane direction of the insulating layer 11 so as not to contact each other, and the hardened resist is provided between the magnetic bodies 2. The structure was filled with a continuous layered insulator 12a made of the film R2.

【0045】なお磁性体分布層12における磁性体2の
寸法、形状および分布は、前記のようにレジスト膜R2
の厚みと、マスクパターンM上のパターンとによって規
定されたとおりとなった。すなわち絶縁体12aと磁性
体2の厚みはともに1.0μmであった。この厚みは、
Feにおける周波数2GHzの電磁波に対するスキンデ
プスから決定した。また磁性体2の平面形状は直径20
μmの円形であり、磁性体2は直径20μm、厚み1μ
mの円盤状となった。
The size, shape and distribution of the magnetic material 2 in the magnetic material distribution layer 12 are the same as described above for the resist film R2.
And the pattern on the mask pattern M. That is, the thickness of both the insulator 12a and the magnetic body 2 was 1.0 μm. This thickness is
It was determined from the skin depth for an electromagnetic wave with a frequency of 2 GHz in Fe. Further, the planar shape of the magnetic body 2 has a diameter of 20.
It has a circular shape with a diameter of 20 μm and a thickness of 1 μm.
It became a disk shape of m.

【0046】各磁性体2は、図1(b)に示したように、
隣り合う3つの磁性体2の中心が、それぞれ図中二点鎖
線で示す正三角形の頂点に位置するように配置され、隣
接する磁性体2同士の最短の間隔(図1(b)中のD1)
は1μmとなった。 (工程3)上記磁性体分布層12上に、イエロールーム
内で、再び同じ液状のネガ型紫外線硬化レジストを、ス
ピンコーターを用いて、厚み0.5μmとなるように塗
布した後、その全体に紫外線UVを照射してレジスト膜
R3の全体を硬化させた〔図3(c)〕。これにより図3
(d)に示すように厚み0.5μmの絶縁層11を形成し
た。
Each magnetic body 2 is, as shown in FIG.
The centers of three adjacent magnetic bodies 2 are arranged so as to be respectively located at the vertices of an equilateral triangle indicated by the chain double-dashed line in the figure, and the shortest distance between adjacent magnetic bodies 2 (D1 in FIG. 1 (b)) )
Became 1 μm. (Step 3) The same liquid type negative UV curable resist was applied again on the magnetic material distribution layer 12 in a yellow room by using a spin coater so as to have a thickness of 0.5 μm, and then the whole was coated. Ultraviolet rays UV were irradiated to cure the entire resist film R3 [FIG. 3 (c)]. As a result,
As shown in (d), an insulating layer 11 having a thickness of 0.5 μm was formed.

【0047】上記の工程2および工程3を、このあとそ
れぞれ20回ずつ交互に繰り返し行った。なお磁性体分
布層12を形成する際には、その都度、マスクパターン
Mをずらして紫外線を照射した。そしてこれにより、図
1(b)に破線で示す下側の磁性体分布層12中の、1個
の磁性体が、前述した正三角形の中心に位置するよう
に、上下の磁性体分布層12中の磁性体2を、互いにず
らして配置した。
The above steps 2 and 3 were then alternately repeated 20 times each. When forming the magnetic substance distribution layer 12, the mask pattern M was shifted and ultraviolet rays were irradiated each time. As a result, one magnetic material in the lower magnetic material distribution layer 12 shown by the broken line in FIG. 1 (b) is positioned above and below the magnetic material distribution layer 12 such that one magnetic material is located at the center of the equilateral triangle. The magnetic bodies 2 therein were arranged so as to be offset from each other.

【0048】そして積層体の全体を70℃の温水に浸漬
して基板Sを溶解、除去することにより、図1(a)に示
すように絶縁層11と磁性体分布層12とが交互に積層
されるとともに、その上下の最表層が絶縁層11とされ
た、41層構造の積層体からなる、総厚み40.5μm
の電磁波吸収材料を製造した。磁性体の占積率は55体
積%であった。上記実施例1で得た電磁波吸収材料を、
0〜3GHzまでのノイズを発生するIC上に貼付し
て、その前後のノイズ低減効果について測定した。結果
を図4(a)に示す。また比較例1として、市販の、厚み
50μmの電磁波吸収シートを同じIC上に貼付して、
その前後のノイズ低減効果について測定した。結果を図
4(b)に示す。これらの図は、貼付後のノイズの強度か
ら貼付前のノイズの強度を差し引いた値を示している。
The entire laminated body is immersed in hot water at 70 ° C. to dissolve and remove the substrate S, so that the insulating layers 11 and the magnetic material distribution layers 12 are alternately laminated as shown in FIG. And the outermost layers above and below the insulating layer 11 are made up of a 41-layer laminated body with a total thickness of 40.5 μm.
Was manufactured. The space factor of the magnetic material was 55% by volume. The electromagnetic wave absorbing material obtained in Example 1 above,
It was pasted on an IC that generates noise of 0 to 3 GHz, and the noise reduction effect before and after that was measured. The results are shown in Fig. 4 (a). In addition, as Comparative Example 1, a commercially available electromagnetic wave absorption sheet having a thickness of 50 μm was attached on the same IC,
The noise reduction effect before and after that was measured. The results are shown in Fig. 4 (b). These figures show values obtained by subtracting the noise intensity before attachment from the noise intensity after attachment.

【0049】図から明らかなように実施例1は、0〜3
GHzの周波数全域にわたって、3〜6dBのノイズ低
減効果を有することが確認された。これに対し比較例1
は、1GHzの周波数帯域ではノイズ低減効果が見られ
たが、約1〜2GHzの帯域ではほとんどのイズを低減
できないことがわかった。
As is apparent from the figure, the first embodiment has 0 to 3
It was confirmed to have a noise reduction effect of 3 to 6 dB over the entire frequency range of GHz. On the other hand, Comparative Example 1
Was found to have a noise reducing effect in the frequency band of 1 GHz, but it was found that most noise could not be reduced in the band of about 1 to 2 GHz.

【図面の簡単な説明】[Brief description of drawings]

【図1】図(a)は、本発明の電磁波吸収材料の、実施の
形態の一例を示す断面図、図(b)は、図(a)の電磁波吸収
材料のうち、磁性体分布層の表面を示す平面図である。
FIG. 1 (a) is a cross-sectional view showing an example of an embodiment of an electromagnetic wave absorbing material of the present invention, and FIG. 1 (b) is a sectional view of a magnetic material distribution layer of the electromagnetic wave absorbing material of FIG. It is a top view showing the surface.

【図2】図(a)〜(e)は、本発明の電磁波吸収材料の製造
方法の、各工程を示す断面図である。
2 (a) to 2 (e) are cross-sectional views showing respective steps of the method for producing an electromagnetic wave absorbing material of the present invention.

【図3】図(a)〜(d)は、上記製造方法の、続きの工程を
示す断面図である。
FIG. 3A to FIG. 3D are cross-sectional views showing subsequent steps of the manufacturing method.

【図4】図(a)は、この発明の実施例1の電磁波吸収材
料における、ノイズの周波数ごとの低減効果を示すグラ
フ、図(b)は、比較例としての市販の電磁波吸収シート
における、ノイズの周波数ごとの低減効果を示すグラフ
である。
FIG. 4 (a) is a graph showing a noise reducing effect for each frequency in the electromagnetic wave absorbing material of Example 1 of the present invention, and FIG. 4 (b) is a commercially available electromagnetic wave absorbing sheet as a comparative example, It is a graph which shows the noise reduction effect for every frequency.

【符号の説明】[Explanation of symbols]

1 積層体 11 絶縁層 12 磁性体分布層 12a 絶縁体 2 磁性体 1 stack 11 insulating layer 12 Magnetic material distribution layer 12a insulator 2 magnetic material

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】(1) 絶縁材料からなり、厚みが一定であ
る絶縁層と、 (2) 所定の平面形状と一定の厚みとを有する扁平状の
微細な磁性体を多数、同一平面上に、同一方向に配向さ
せて互いに接触しないように配置するとともに、各磁性
体間を、絶縁材料からなり、磁性体と同じ厚みを有する
連続した層状の絶縁体で充てんした構造を有する磁性体
分布層と、を複数層ずつ交互に積層した積層体からなる
ことを特徴とする電磁波吸収材料。
1. An (1) insulating layer made of an insulating material and having a constant thickness, and (2) a large number of flat, fine magnetic bodies having a predetermined planar shape and a constant thickness, on the same plane. A magnetic substance distribution layer having a structure in which the magnetic substances are oriented in the same direction so as not to contact each other, and each magnetic substance is filled with a continuous layered insulator made of an insulating material and having the same thickness as the magnetic substance. And an electromagnetic wave absorbing material comprising a laminated body in which a plurality of layers are alternately laminated.
【請求項2】積層体の最表層が絶縁層である請求項1記
載の電磁波吸収材料。
2. The electromagnetic wave absorbing material according to claim 1, wherein the outermost layer of the laminate is an insulating layer.
【請求項3】磁性体が円盤状である請求項1記載の電磁
波吸収材料。
3. The electromagnetic wave absorbing material according to claim 1, wherein the magnetic material is disk-shaped.
【請求項4】1層ごとの磁性体分布層の厚みがスキンデ
プス以下である請求項1記載の電磁波吸収材料。
4. The electromagnetic wave absorbing material according to claim 1, wherein the thickness of each magnetic substance distribution layer is not more than skin depth.
【請求項5】1層の絶縁層を挟む上下の磁性体分布層中
の磁性体を、その面方向において互いにずらして配置し
た請求項1記載の電磁波吸収材料。
5. The electromagnetic wave absorbing material according to claim 1, wherein the magnetic bodies in the upper and lower magnetic body distribution layers sandwiching one insulating layer are arranged so as to be offset from each other in the plane direction.
【請求項6】請求項1記載の電磁波吸収材料を製造する
方法であって、 下地層上に、絶縁材料を含む絶縁層を形成する工程と、 下地層上に、絶縁体の元になる絶縁材料を含むレジスト
膜を形成し、当該レジスト膜に、フォトリソグラフ法に
よって、磁性体の平面形状に対応した、下地に達する多
数の通孔を形成したのち、この通孔に磁性材料を充てん
して磁性体を形成し、さらに磁性体およびレジスト膜を
一定の厚みに研磨して磁性体分布層を形成する工程と、
を交互に実施して積層体を形成することを特徴とする電
磁波吸収材料の製造方法。
6. The method for producing an electromagnetic wave absorbing material according to claim 1, wherein the step of forming an insulating layer containing an insulating material on the underlayer, and the insulating material which is the basis of the insulator on the underlayer. A resist film containing a material is formed, and a large number of through holes reaching the underlayer corresponding to the planar shape of the magnetic body are formed in the resist film by a photolithography method, and then the through holes are filled with a magnetic material. A step of forming a magnetic material, and further polishing the magnetic material and the resist film to a certain thickness to form a magnetic material distribution layer,
The method for producing an electromagnetic wave absorbing material, wherein the steps are alternately performed to form a laminate.
JP2001316982A 2001-10-15 2001-10-15 Electromagnetic wave absorption material and its manufacturing method Pending JP2003124680A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001316982A JP2003124680A (en) 2001-10-15 2001-10-15 Electromagnetic wave absorption material and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001316982A JP2003124680A (en) 2001-10-15 2001-10-15 Electromagnetic wave absorption material and its manufacturing method

Publications (1)

Publication Number Publication Date
JP2003124680A true JP2003124680A (en) 2003-04-25

Family

ID=19134917

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001316982A Pending JP2003124680A (en) 2001-10-15 2001-10-15 Electromagnetic wave absorption material and its manufacturing method

Country Status (1)

Country Link
JP (1) JP2003124680A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008107991A1 (en) * 2007-03-08 2008-09-12 Fujitsu Limited Electromagnetic absorber
JP2011016266A (en) * 2009-07-08 2011-01-27 Nec Tokin Corp Laminated magnetic sheet
JP2015128142A (en) * 2013-11-28 2015-07-09 Tdk株式会社 Coil unit

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008107991A1 (en) * 2007-03-08 2008-09-12 Fujitsu Limited Electromagnetic absorber
JP2011016266A (en) * 2009-07-08 2011-01-27 Nec Tokin Corp Laminated magnetic sheet
JP2015128142A (en) * 2013-11-28 2015-07-09 Tdk株式会社 Coil unit

Similar Documents

Publication Publication Date Title
TWI706423B (en) Power inductor
WO2019174062A1 (en) Electromagnetic interference shielding film, circuit board, and preparation method for electromagnetic interference shielding film
KR100627114B1 (en) Composite magnetic element, electromagnetic wave absorbing sheet, production method for sheet-form article, production method for electromagnetic wave absorbing sheet
CN109690708B (en) Power inductor
CN107079611A (en) Electromagnetic shielding film
TW202235266A (en) Electromagnetic wave attenuating film
US20200253096A1 (en) Patterned electromagnetic interference (emi) mitigation materials including carbon nanotubes
EP4350442A2 (en) Patterned materials and films and systems and methods for making the same
Wang et al. Multi‐scale design of ultra‐broadband microwave metamaterial absorber based on hollow carbon/MXene/Mo2C microtube
CN104972708A (en) Wave-absorbing and heat-dissipating double-function composite apparatus and manufacturing method thereof
KR20200015374A (en) Electromagnetic-wave-absorbing composite sheet
CN106332534B (en) Wave absorber structure
TW201206332A (en) Flexible printed circuit board and method for manufacturing the same
CN209786195U (en) Liquid crystal antenna
US20110123930A1 (en) Ceramic substrate preparation process
CN111546719B (en) Magnetic broadband electromagnetic wave-absorbing metamaterial
JP3231596U (en) EMI absorber devices containing electromagnetic interference (EMI) mitigation materials and carbon nanotubes
JP2003124680A (en) Electromagnetic wave absorption material and its manufacturing method
CN105992508A (en) Novel nanostructure electromagnetic wave absorption complex and manufacturing method thereof
US10092928B2 (en) Process for the manufacture of a component comprising a stack of a functional layer on a composite film
US20230032553A1 (en) Electromagnetic interference (emi) mitigation materials and emi absorbing compositions including carbon nanotubes
US10905013B2 (en) Printed wiring board and method for manufacturing the same
CN104972710A (en) Electromagnetic wave absorption apparatus and preparation method thereof
JP3795432B2 (en) Method for manufacturing electromagnetic wave absorbing sheet
TW202235289A (en) Transfer roller and manufacturing method thereof

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060425

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060615

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061114

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070306