JP2003106816A - Film thickness-measuring method and apparatus - Google Patents

Film thickness-measuring method and apparatus

Info

Publication number
JP2003106816A
JP2003106816A JP2001304920A JP2001304920A JP2003106816A JP 2003106816 A JP2003106816 A JP 2003106816A JP 2001304920 A JP2001304920 A JP 2001304920A JP 2001304920 A JP2001304920 A JP 2001304920A JP 2003106816 A JP2003106816 A JP 2003106816A
Authority
JP
Japan
Prior art keywords
light
film thickness
light receiving
amount
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001304920A
Other languages
Japanese (ja)
Inventor
Naoki Hata
秦  直己
Kenta Hayashi
林  謙太
Masahiko Soeda
添田  正彦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dai Nippon Printing Co Ltd
Original Assignee
Dai Nippon Printing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dai Nippon Printing Co Ltd filed Critical Dai Nippon Printing Co Ltd
Priority to JP2001304920A priority Critical patent/JP2003106816A/en
Publication of JP2003106816A publication Critical patent/JP2003106816A/en
Pending legal-status Critical Current

Links

Landscapes

  • Length Measuring Devices By Optical Means (AREA)

Abstract

PROBLEM TO BE SOLVED: To accurately measure the film thickness of a light diffusion transmission film even if distance from the light diffusion transmission film to a light reception section changes. SOLUTION: When the quantity of transmission light when light is applied from a light source section 10 to the light diffusion transmission film M is measured by the light reception section 12 that is arranged in the irradiation direction, and the measured quantity of transmission light is converted to a film thickness for measuring the film thickness of the light diffusion transmission film M, and when the quantity of transmission light is measured by the light reception section 12, light reception distance from the light diffusion transmission film M to the light reception section 12 is measured, and the converted film thickness is corrected based on the measured light reception distance.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明が属する技術分野】本発明は、膜厚測定方法及び
装置、特に透明基体上に塗布された光を拡散すると共に
透過する性質を有する光拡散透過膜の厚さを、非破壊・
非接触で測定する際に適用して好適な膜厚測定方法及び
装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a film thickness measuring method and apparatus, and more particularly, to a non-destructive method for measuring the thickness of a light diffusion / transmission film having a property of diffusing and transmitting light applied on a transparent substrate.
The present invention relates to a film thickness measuring method and apparatus suitable for non-contact measurement.

【0002】[0002]

【従来の技術】膜厚の測定方法には、膜や膜が塗布され
ている基体の材質、そのサイズ、膜厚の測定レンジ、測
定環境、測定時間等の違いにより、様々なものが存在す
る。
2. Description of the Related Art There are various methods for measuring the film thickness, depending on the material of the film or the substrate to which the film is applied, its size, the measuring range of the film thickness, the measuring environment, the measuring time and the like. .

【0003】近年のコーティング技術の発達と、製品に
対する要求品質の高まりに伴い、膜厚測定に要求される
精度もますます高くなっており、対象によっては1μm
以内、時には数nmと非常に高測定精度が要求されるよ
うになっている。又、工場内の製造ラインで、塗布直後
のウェット状態の膜を非破壊・非接触で測定し、その膜
厚を塗布工程にフィードバックすることは、コーティン
グ品質の安定とロスの低減につながることから、非破壊
・非接触且つインライン測定が可能な測定時間の短い測
定方法を採用することが大変重要になってきている。
With the recent development of coating technology and the increasing quality requirements for products, the accuracy required for film thickness measurement is also increasing, and depending on the object, 1 μm.
Very high measurement accuracy of within several nm is sometimes required. In addition, measuring the wet film immediately after coating in a non-destructive and non-contact manner on the production line in the factory and feeding back the film thickness to the coating process leads to stable coating quality and reduction of loss. It has become very important to adopt a measurement method that is non-destructive, non-contact, and capable of in-line measurement and has a short measurement time.

【0004】具体的な測定方法としては、光の干渉や透
過を利用するもの、X線やβ線を利用するもの、あるい
は変位計を利用するもの等があるが、特に測定対象が光
を透過する膜で且つ基体がガラス等の透明体の場合に
は、光を利用する方法が適していることが多い。
Specific measuring methods include a method using interference or transmission of light, a method using X-rays or β-rays, a method using a displacement meter, etc. In the case where the film is formed and the substrate is a transparent body such as glass, a method utilizing light is often suitable.

【0005】ところで、例えば透明基体上にコーティン
グされた透明材料からなる膜中に光を拡散させる粒子が
多数存在するために、膜表面に対して垂直に平行光を照
射したとしても拡散光として透過する性質を有する膜が
ある。このような光拡散透過膜が測定対象である場合
は、上述したような光の干渉を利用する測定方法は適用
不可能である。即ち、この方法は、膜表面の反射光と膜
裏面の反射光の干渉を利用するものであるが、このよう
な膜では膜裏面の反射光を事実上検出することが不可能
であるため計測不能である。
By the way, since there are many particles for diffusing light in a film made of a transparent material coated on a transparent substrate, even if parallel light is irradiated perpendicularly to the film surface, it is transmitted as diffused light. There is a film having the property of When such a light diffusion / transmission film is a measurement target, the above-mentioned measurement method utilizing light interference cannot be applied. That is, this method utilizes the interference of the reflected light on the film front surface and the reflected light on the film back surface, but it is impossible to detect the reflected light on the film back surface with such a film, and therefore the measurement is performed. It is impossible.

【0006】一方、光の透過を利用する測定方法は、図
9(A)に測定時のイメージを示すように、ガラス等の
透明基体S上にコーティングされている膜Mの厚さを、
上方に配した投光部10から照射した光を、照射方向に
当る下方に配した受光部12で検出することにより、照
射光量が一定であるとすると、同図(B)に示すように
膜厚が大きくなる(厚くなる)ほど透過光量が小さくな
る関係を利用し、実測される透過光量を膜厚に換算する
ことにより膜厚を測定するものである。この方法は、原
理的には、前記光拡散粒子が膜M中に存在するか否かに
関係なく、光を透過する膜であれば測定可能である。
On the other hand, in the measuring method utilizing the transmission of light, as shown in the image at the time of measurement in FIG. 9A, the thickness of the film M coated on the transparent substrate S such as glass is
Assuming that the amount of irradiation light is constant by detecting the light emitted from the light projecting unit 10 arranged above, by the light receiving unit 12 arranged below in the irradiation direction, as shown in FIG. The film thickness is measured by converting the actually measured amount of transmitted light into the film thickness by utilizing the relationship that the amount of transmitted light becomes smaller as the thickness becomes larger (thicker). In principle, this method can be used for measurement with a film that transmits light regardless of whether or not the light diffusion particles are present in the film M.

【0007】[0007]

【発明が解決しようとする課題】しかしながら、光透過
を利用する膜厚測定方法は、透明膜の厚さ測定ではほと
んど問題にならないが、前記図9(A)に相当する図1
0を用いて説明すると、同図(A)に示すように、膜M
から受光部12までの距離が短い場合には、受光部にお
ける単位面積当たりの入射光量(矢印の数で示す)は多
いが、同図(B)に示すように同距離が長い場合には入
射光量が少なくなるため、同じ膜厚であっても受光面全
体に対する入射光量が異なることから、両者では異なる
膜厚として換算されることになる。
However, the film thickness measuring method using light transmission causes almost no problem in measuring the thickness of the transparent film, but it corresponds to FIG. 1 corresponding to FIG. 9 (A).
0 is used to describe the film M as shown in FIG.
When the distance from the light receiving unit 12 to the light receiving unit 12 is short, the amount of incident light per unit area in the light receiving unit (indicated by the number of arrows) is large, but when the same distance is long as shown in FIG. Since the amount of light is small, the amount of incident light on the entire light-receiving surface is different even if the film thickness is the same, and therefore the two films are converted into different film thicknesses.

【0008】従って、塗布ライン等において透明基体に
塗布されている光拡散透過膜の膜厚を測定する際、塗布
後にその基体が撓んだり、該基体の搬送精度にばらつき
がある場合等のように、測定箇所に位置する膜から受光
部までの受光距離が測定毎にばらつく環境の下では、膜
厚の測定精度が低くなってしまうという問題がある。
Therefore, when measuring the film thickness of the light diffusion / transmission film applied to the transparent substrate in the coating line or the like, there is a case where the substrate is bent after coating or there is variation in conveyance accuracy of the substrate. In addition, there is a problem that the measurement accuracy of the film thickness is reduced in an environment in which the light receiving distance from the film located at the measurement location to the light receiving unit varies for each measurement.

【0009】本発明は、前記従来の問題点を解決するべ
くなされたもので、投光部から光拡散透過膜に光照射し
た際の透過光量を、照射方向に配された受光部で測定
し、該透過光量に基づいて膜厚を測定する際、光拡散透
過膜から受光部までの受光距離が変化する場合でも、膜
厚を高精度で測定することができる膜厚測定方法及び装
置を提供することを課題とする。
The present invention has been made to solve the above-mentioned conventional problems, and the amount of transmitted light when light is irradiated from the light projecting portion to the light diffusing transmissive film is measured by the light receiving portion arranged in the irradiation direction. Provided is a film thickness measuring method and device capable of measuring the film thickness with high accuracy even when the light receiving distance from the light diffusing and transmitting film to the light receiving unit changes when measuring the film thickness based on the transmitted light amount. The task is to do.

【0010】[0010]

【課題を解決するための手段】本発明は、投光手段から
光拡散透過膜に光を照射した際の透過光量を、照射方向
に配されている受光手段により測定し、測定された透過
光量を膜厚に変換して該光拡散透過膜の膜厚を測定する
膜厚測定方法であって、前記受光手段により透過光量を
測定する際に、前記光拡散透過膜から該受光手段までの
受光距離を測定し、測定された受光距離に基づいて、変
換される前記膜厚を補正することにより、前記課題を解
決したものである。
According to the present invention, the amount of transmitted light when light is emitted from the light projecting unit to the light diffusion transmission film is measured by the light receiving unit arranged in the irradiation direction, and the measured amount of transmitted light is measured. Is a film thickness measuring method for measuring the film thickness of the light diffusing and transmitting film by converting the film thickness into a film thickness of the light diffusing and transmitting film from the light diffusing and transmitting film to the light receiving device. The problem is solved by measuring the distance and correcting the converted film thickness based on the measured light receiving distance.

【0011】本発明は、又、投光手段から光拡散透過膜
に光を照射した際の透過光量を、照射方向に配されてい
る受光手段により測定し、測定された透過光量を膜厚に
変換して該光拡散透過膜の膜厚を測定する膜厚測定装置
であって、前記受光手段により透過光量を測定する際
に、前記光拡散透過膜から該受光手段までの受光距離を
測定する距離測定手段と、測定された受光距離に基づい
て、変換される前記膜厚を補正する補正手段と、を備え
たことにより、同様に前記課題を解決したものである。
According to the present invention, the amount of transmitted light when light is emitted from the light projecting means to the light diffusing and transmitting film is measured by the light receiving means arranged in the irradiation direction, and the measured amount of transmitted light is set to the film thickness. A film thickness measuring device for measuring the film thickness of the light diffusing and transmitting film by measuring the light receiving distance from the light diffusing and transmitting film to the light receiving device when measuring the amount of transmitted light by the light receiving device. The problem is similarly solved by providing the distance measuring means and the correcting means for correcting the converted film thickness based on the measured light receiving distance.

【0012】[0012]

【発明の実施の形態】以下、図面を参照して本発明の実
施の形態について詳細に説明する。
BEST MODE FOR CARRYING OUT THE INVENTION Embodiments of the present invention will be described below in detail with reference to the drawings.

【0013】図1は、本発明に係る一実施形態の膜厚測
定装置の全体を示す概略斜視図、図2は該装置を構成す
る各部の関係の概要を示すブロック図である。
FIG. 1 is a schematic perspective view showing the whole of a film thickness measuring apparatus according to an embodiment of the present invention, and FIG. 2 is a block diagram showing the outline of the relationship of each part constituting the apparatus.

【0014】本実施形態の膜厚測定装置は、検査対象物
(ワーク)Wを収容するバッファ20と、該バッファ2
0から対象物Wを取り出したり収納したりするためのロ
ボット22と、該ロボット22により取り出された検査
対象物Wを所定の位置に載置するステージ24と、対象
物Wの上方に配された投光部ヘッド(支持体)26と、
該ヘッド26を矢印で示すXYそれぞれの方向に移動さ
せる移動機構と、装置全体の動作を制御する制御部28
と、上記ヘッド26に取り付けられている投光部(投光
手段)から光を対象物Wに照射したときに測定される透
過光量を膜厚に変換する計算処理により膜厚測定等を行
うデータ処理部30とを備えている。
The film thickness measuring apparatus of this embodiment comprises a buffer 20 for containing an inspection object (work) W, and the buffer 2.
A robot 22 for taking out or storing the object W from 0, a stage 24 for placing the inspection object W taken out by the robot 22 at a predetermined position, and a stage 24 arranged above the object W. A projection head (support) 26,
A moving mechanism for moving the head 26 in each of XY directions indicated by arrows, and a control unit 28 for controlling the operation of the entire apparatus.
And data for performing film thickness measurement or the like by calculation processing for converting the amount of transmitted light measured when light is emitted from the light projecting unit (light projecting means) attached to the head 26 into the film thickness. And a processing unit 30.

【0015】又、前記投光部ヘッド26の下部には、図
中右下に測定部を抽出し、長丸で囲んで拡大して示すよ
うに、検査対象物Wの上方に配された投光部10と、対
象物Wが有する光拡散透過膜Mから受光部(受光手段)
12までの受光距離を測定するレーザ変位計(距離測定
手段)32が取り付けられている。又、投光部10によ
る照射方向に位置する対象物Wの下方には、前記受光部
12が受光部ヘッド(支持体)34に取り付けられ、前
記投光部ヘッド26と同期してXY方向に移能可能にな
っている。
A measuring unit is extracted from the lower right part of the drawing under the light projecting unit head 26. As shown in an enlarged view by enclosing the measuring unit in the lower right part of the drawing, the projecting unit is arranged above the inspection object W. From the light section 10 and the light diffusion / transmission film M of the object W to the light receiving section (light receiving means)
A laser displacement meter (distance measuring means) 32 for measuring the light receiving distance up to 12 is attached. Further, the light receiving unit 12 is attached to a light receiving unit head (support) 34 below the object W positioned in the irradiation direction of the light projecting unit 10, and is synchronized with the light projecting unit head 26 in the XY directions. It is possible to transfer.

【0016】本実施形態における膜厚測定の特徴を、要
部を拡大した図3に示す。検査対象物Wは、ガラスから
なる透明基体Sの上面に光拡散透過膜Mが塗布されてい
るものである。この光拡散透過膜Mは、樹脂等からなる
透明基材に光を拡散する微粒子を混合して形成した絶縁
膜で、光の拡散性と透過性とを併せ持っており、その膜
厚としては、例えば10〜50μmを挙げることができ
る。又、樹脂としては、例えばポリエチレンを、拡散粒
子としては、例えば酸化チタンを、それぞれ挙げること
ができる。
The characteristic of the film thickness measurement in this embodiment is shown in FIG. The inspection object W has a light diffusion / transmission film M applied to the upper surface of a transparent substrate S made of glass. The light diffusion / transmission film M is an insulating film formed by mixing fine particles for diffusing light into a transparent base material made of resin or the like, and has both light diffusivity and light permeability. For example, it can be 10 to 50 μm. The resin may be polyethylene, for example, and the diffusion particles may be titanium oxide, for example.

【0017】本実施形態では、前記検査対象物Wを光拡
散透過膜Mが上方に位置するように配置し、その上方か
ら光源である投光部10により光を照射し、その際の透
過光量を受光部(受光素子を有するセンサ)12により
測定すると共に、レーザ変位計32により上記光拡散透
過膜Mから受光部12までの受光距離を測定している。
但し、ここでは、投光部10と受光部12の間の距離が
一定であることから、前記レーザ変位計32により投光
部10と光拡散透過膜Mの間の距離を測定することによ
り、上記受光距離を間接的に測定している。
In this embodiment, the inspection object W is arranged so that the light diffusion / transmission film M is located above, and light is emitted from above by the light projecting section 10 which is a light source. Is measured by the light receiving section (sensor having a light receiving element) 12, and the light receiving distance from the light diffusing and transmitting film M to the light receiving section 12 is measured by the laser displacement meter 32.
However, here, since the distance between the light projecting unit 10 and the light receiving unit 12 is constant, by measuring the distance between the light projecting unit 10 and the light diffusion transmission film M by the laser displacement meter 32, The light receiving distance is indirectly measured.

【0018】又、本実施形態では、上記変位計32によ
り測定された受光距離に基づいて、上記受光部12によ
り測定された透過光量(受光量)を、後述する方法で補
正した後、膜厚に変換する演算を、前記データ処理部
(補正手段)30において実行し、結果として正確な膜
厚を測定することができるようになっている。
In the present embodiment, the amount of transmitted light (the amount of received light) measured by the light receiving unit 12 is corrected by the method described below based on the light receiving distance measured by the displacement meter 32, and then the film thickness is obtained. The data processing unit (correction means) 30 executes the calculation for converting to (3), and as a result, an accurate film thickness can be measured.

【0019】次に、本実施形態の作用を、図4に示すフ
ローチャートに従って説明する。
Next, the operation of this embodiment will be described with reference to the flowchart shown in FIG.

【0020】前記図1に示した本実施形態の測定装置に
おいて、以下のようにワーク(検査対象物)Wに形成さ
れている光拡散透過膜Mの膜厚測定を行う。即ち、手前
側のバッファ20からロボット(ローダ)22が検査対
象物Wを取り出すと、ステージ24がローダ側に動き、
ロボット22が検査対象物Wを該ステージ24の所定位
置に載置する(ステップ1)。この検査対象物Wはステ
ージ24に載ったまま、検査する位置に移動し(ステッ
プ2)、その後所定の測定点(位置)に投光部10と受
光部12を移動して両者の光軸上に該測定点を一致させ
る(ステップ3)。
In the measuring apparatus of this embodiment shown in FIG. 1, the film thickness of the light diffusion transmission film M formed on the work (inspection object) W is measured as follows. That is, when the robot (loader) 22 takes out the inspection object W from the buffer 20 on the front side, the stage 24 moves to the loader side,
The robot 22 places the inspection object W at a predetermined position on the stage 24 (step 1). The inspection object W is moved to the inspection position while being mounted on the stage 24 (step 2), and then the light projecting unit 10 and the light receiving unit 12 are moved to a predetermined measurement point (position) so as to be on both optical axes. The measurement point is matched with (step 3).

【0021】次いで、その位置でレーザ変位計32によ
り光拡散透過膜Mと受光部12との相対位置(受光距
離)を測定すると共に、投光部10により光を照射し、
受光部12により光拡散透過膜Mを透過した光量(透過
光量、受光量)を測定し、測定された前記距離に基づい
て透過光量を補正し、補正後の透過光量を膜厚に換算す
る。但し、ここでは、以下に説明するように、測定され
た受光距離については予め設定してある基準距離からの
変位を求め、該変位量を基に実測された透過光量である
受光量を補正している(ステップ4)。
Then, at that position, the relative position (light receiving distance) between the light diffusing and transmitting film M and the light receiving section 12 is measured by the laser displacement meter 32, and light is emitted by the light projecting section 10.
The amount of light (transmitted light amount, received light amount) transmitted through the light diffusion transmission film M is measured by the light receiving unit 12, the transmitted light amount is corrected based on the measured distance, and the corrected transmitted light amount is converted into a film thickness. However, as described below, for the measured light receiving distance, the displacement from the preset reference distance is obtained, and the light receiving amount that is the actually transmitted light amount is corrected based on the displacement amount. (Step 4).

【0022】図5(A)に、横軸に取った光拡散透過膜
Mと受光部12との間の受光距離について、予め設定し
てある基準距離からの変化量(変位量)に対する受光部
12による受光変化量を縦軸に示すように、両者の関係
を予め求めておき、変化量はマイナス方向にZであった
(基準距離よりZだけ短い)とすると、受光変化量はΔ
Xである。そこで、実測された透過光量がXであった場
合には、透過光量をX+ΔXに補正し、補正後の値を同
図(B)に示す基準距離における膜厚と透過光量との関
係を表わす検量線に適用して膜厚Tに換算し、これを同
位置における光拡散透過膜Mの膜厚とする。
In FIG. 5 (A), the light receiving portion between the light diffusion / transmission film M and the light receiving portion 12 on the horizontal axis corresponds to the change amount (displacement amount) from a preset reference distance. Assuming that the relationship between the two is obtained in advance as shown by the vertical axis of the amount of change in received light by 12 and the amount of change is Z in the negative direction (shorter than the reference distance by Z), the amount of change in received light is Δ.
It is X. Therefore, when the actually measured amount of transmitted light is X, the amount of transmitted light is corrected to X + ΔX, and the corrected value indicates the relationship between the film thickness and the amount of transmitted light at the reference distance shown in FIG. It is applied to a line and converted into a film thickness T, which is taken as the film thickness of the light diffusion transmission film M at the same position.

【0023】前記ステップ3、4による膜厚測定処理
を、予め設定してある所定の測定点の全てについて終了
したら(ステップ5)、検査対象物Wをバッファ20へ
排出する(ステップ6)。
When the film thickness measurement process in steps 3 and 4 is completed for all preset predetermined measurement points (step 5), the inspection object W is discharged to the buffer 20 (step 6).

【0024】以上詳述した本実施形態によれば、透明基
体上に塗布された光拡散粒子を多量に含む絶縁膜等から
なる光拡散透過膜Mについて、光の透過を利用して膜厚
を測定する際、実測された光拡散透過膜Mから受光部1
2までの受光距離に基づいて透過光量を補正するように
したので、基体の撓みやラインでの搬送精度のばらつき
(基体の厚さ方向の位置決め精度のばらつき)に起因し
て該膜Mから受光部12までの距離が変動する場合で
も、測定精度の低下を防止することが可能となる。
According to this embodiment described in detail above, the thickness of the light diffusion / transmission film M, which is an insulating film or the like containing a large amount of light diffusion particles coated on the transparent substrate, is utilized by utilizing the transmission of light. At the time of measurement, from the actually measured light diffusion and transmission film M to the light receiving unit 1
Since the amount of transmitted light is corrected on the basis of the light receiving distance up to 2, the light is received from the film M due to the deflection of the substrate and the variation in the transport accuracy in the line (the variation in the positioning accuracy of the substrate in the thickness direction). Even if the distance to the unit 12 varies, it is possible to prevent the measurement accuracy from deteriorating.

【0025】従って、本実施形態の膜厚測定装置は、基
材の撓みが大きく且つラインでの搬送精度がばらつき易
い大型ガラス基板からなる基体上に塗布された光拡散透
過膜の膜厚測定に特に有効である。
Therefore, the film thickness measuring apparatus of the present embodiment is suitable for measuring the film thickness of the light diffusion and transmission film coated on the substrate made of a large glass substrate in which the bending of the base material is large and the conveyance accuracy in the line is likely to vary. Especially effective.

【0026】以上、本発明について具体的に説明した
が、本発明は、前記実施形態に示したものに限定され
ず、その要旨を逸脱しない範囲で種々変更可能である。
The present invention has been specifically described above, but the present invention is not limited to the above-described embodiments, and various modifications can be made without departing from the scope of the invention.

【0027】例えば、透過光量の測定点と変位計32に
よる測定点の位置は同一であることが理想である。従っ
て、投光部10とレーザ変位計32の位置は実質上同一
であることが望ましいが、透明基体がフィルム等で軟ら
かいために大きく撓んだり、あるいは測定時に検査対象
物が大きく傾いたりすることがなければ、数cm程度の
間隔は殆んど問題とならないため、本実施形態のように
両者が一致していない場合でも特に問題はない。
For example, it is ideal that the measurement points of the transmitted light amount and the measurement points of the displacement meter 32 are at the same position. Therefore, it is desirable that the positions of the light projecting unit 10 and the laser displacement meter 32 are substantially the same, but the transparent substrate is soft because of a film or the like, so that it is largely bent, or the inspection target is greatly inclined at the time of measurement. If there is not, there is almost no problem with the spacing of about several cm, so there is no particular problem even when the two do not match as in the present embodiment.

【0028】又、投光部10と変位計32の間を離す場
合には、変位計32を2台にし、これらを投光部10を
中心に対称な位置に設置することにより、両変位計によ
る測定値の平均から光拡散透過膜Mまでの受光距離を求
めるようにしてもよい。この場合には、検査対象物が傾
いている場合でも正確な受光距離を測定することができ
る。
When the light projecting section 10 and the displacement meter 32 are separated from each other, two displacement meters 32 are provided, and these are installed at symmetrical positions with respect to the light projecting section 10 as a center. The light receiving distance to the light diffusing and transmitting film M may be obtained from the average of the measured values by. In this case, an accurate light receiving distance can be measured even if the inspection object is tilted.

【0029】又、変位計32は、図6に示すように受光
部ヘッド34に設置し、直接的に受光距離を測定するよ
うにしてもよい。又、図7に示すように投光部10と受
光部12との位置関係を図3の場合と逆にしても、更に
は図8に示すように、図6の場合と逆にしてもよい。
又、受光距離の測定手段は、前記レーザ変位計に限ら
ず、距離を測定できるものであれば任意であり、レーザ
フォーカス変位計等を利用することもできる。
Alternatively, the displacement meter 32 may be installed in the light-receiving unit head 34 as shown in FIG. 6 to directly measure the light-receiving distance. Further, as shown in FIG. 7, the positional relationship between the light projecting unit 10 and the light receiving unit 12 may be reversed from that in the case of FIG. 3, and further, as shown in FIG. .
Further, the means for measuring the light receiving distance is not limited to the laser displacement meter described above, and any device capable of measuring the distance can be used, and a laser focus displacement meter or the like can also be used.

【0030】[0030]

【発明の効果】以上説明したとおり、本発明によれば、
投光部から光拡散透過膜に光照射した際の透過光量を、
照射方向に配された受光部で測定し、該透過光量に基づ
いて膜厚を測定する際、光拡散透過膜から受光部までの
距離が変化する場合でも膜厚を高精度で測定することが
できる。
As described above, according to the present invention,
The amount of transmitted light when irradiating the light diffusing transmission film from the light projecting part,
When measuring the film thickness based on the amount of transmitted light by measuring with the light receiving unit arranged in the irradiation direction, it is possible to measure the film thickness with high accuracy even when the distance from the light diffusion transmitting film to the light receiving unit changes. it can.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に係る一実施形態の膜厚測定装置を示す
概略斜視図と要部拡大図
FIG. 1 is a schematic perspective view showing a film thickness measuring device according to an embodiment of the present invention and an enlarged view of a main part.

【図2】上記膜厚測定装置を構成する各部の関係を示す
ブロック図
FIG. 2 is a block diagram showing a relationship between respective parts constituting the film thickness measuring device.

【図3】上記膜厚測定装置による測定状態のイメージを
示す要部拡大正面図
FIG. 3 is an enlarged front view of a main part showing an image of a measurement state by the film thickness measuring device.

【図4】実施形態の作用を示すフローチャートFIG. 4 is a flowchart showing the operation of the embodiment.

【図5】光拡散透過膜−受光部間距離による透過光量の
補正方法を説明する線図
FIG. 5 is a diagram illustrating a method of correcting the amount of transmitted light according to the distance between the light diffusion transmission film and the light receiving unit.

【図6】本発明の変形例を示す要部拡大正面図FIG. 6 is an enlarged front view of an essential part showing a modified example of the present invention.

【図7】本発明の他の変形例を示す要部拡大正面図FIG. 7 is an enlarged front view of an essential part showing another modification of the present invention.

【図8】本発明の更に他の変形例を示す要部拡大正面図FIG. 8 is an enlarged front view of an essential part showing still another modification of the present invention.

【図9】光の透過を利用した膜厚測定の原理を示す説明
FIG. 9 is an explanatory diagram showing the principle of film thickness measurement using light transmission.

【図10】光の透過を利用して光拡散透過膜の膜厚を測
定する場合の問題点を示す説明図
FIG. 10 is an explanatory diagram showing a problem when measuring the film thickness of a light diffusion / transmission film by utilizing light transmission.

【符号の説明】[Explanation of symbols]

10…投光部 12…受光部 20…バッファ 22…ロボット 24…ステージ 26…投光部ヘッド 28…制御部 30…データ処理部 32…レーザ変位計 34…受光部ヘッド W…検査対象物 S…透明基体 M…光拡散透過膜 10 ... Projector 12 ... Light receiving part 20 ... buffer 22 ... Robot 24 ... Stage 26 ... Projector head 28 ... Control unit 30 ... Data processing unit 32 ... Laser displacement meter 34 ... Light receiving head W ... Inspection object S ... Transparent substrate M ... Light diffusion transmission film

───────────────────────────────────────────────────── フロントページの続き (72)発明者 添田 正彦 東京都新宿区市谷加賀町一丁目1番1号 大日本印刷株式会社内 Fターム(参考) 2F065 AA06 AA30 BB01 BB23 CC21 CC31 EE05 FF46 HH13 HH15 JJ01 JJ09 PP03 PP12    ─────────────────────────────────────────────────── ─── Continued front page    (72) Inventor Masahiko Soeda             1-1-1, Ichigaya-Kagacho, Shinjuku-ku, Tokyo             Dai Nippon Printing Co., Ltd. F term (reference) 2F065 AA06 AA30 BB01 BB23 CC21                       CC31 EE05 FF46 HH13 HH15                       JJ01 JJ09 PP03 PP12

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】投光手段から光拡散透過膜に光を照射した
際の透過光量を、照射方向に配されている受光手段によ
り測定し、測定された透過光量を膜厚に変換して該光拡
散透過膜の膜厚を測定する膜厚測定方法であって、 前記受光手段により透過光量を測定する際に、前記光拡
散透過膜から該受光手段までの受光距離を測定し、 測定された受光距離に基づいて、変換される前記膜厚を
補正することを特徴とする膜厚測定方法。
1. An amount of transmitted light when light is emitted from a light projecting unit to a light diffusion transmission film is measured by a light receiving unit arranged in an irradiation direction, and the measured amount of transmitted light is converted into a film thickness. A film thickness measuring method for measuring a film thickness of a light diffusing and transmitting film, wherein a light receiving distance from the light diffusing and transmitting film to the light receiving device is measured when measuring an amount of transmitted light by the light receiving device. A method of measuring a film thickness, which comprises correcting the converted film thickness based on a light receiving distance.
【請求項2】前記膜厚の補正を、測定された受光距離に
より測定された透過光量を補正し、補正後の透過光量を
膜厚に変換することにより行なうことを特徴とする請求
項1に記載の膜厚測定方法。
2. The correction of the film thickness is performed by correcting the amount of transmitted light measured based on the measured light receiving distance and converting the corrected amount of transmitted light into film thickness. The film thickness measuring method described.
【請求項3】前記測定された受光距離による透過光量の
補正を、予め求めてある受光距離の基準距離からの変化
量と、前記受光手段の受光変化量との関係に基づいて行
うことを特徴とする請求項2に記載の膜厚測定方法。
3. The correction of the amount of transmitted light based on the measured light receiving distance is performed based on the relationship between the change amount of the light receiving distance, which is obtained in advance, from the reference distance, and the light receiving change amount of the light receiving means. The film thickness measuring method according to claim 2.
【請求項4】投光手段から光拡散透過膜に光を照射した
際の透過光量を、照射方向に配されている受光手段によ
り測定し、測定された透過光量を膜厚に変換して該光拡
散透過膜の膜厚を測定する膜厚測定装置であって、 前記受光手段により透過光量を測定する際に、前記光拡
散透過膜から該受光手段までの受光距離を測定する距離
測定手段と、 測定された受光距離に基づいて、変換される前記膜厚を
補正する補正手段と、を備えたことを特徴とする膜厚測
定装置。
4. The amount of transmitted light when light is emitted from the light projecting means to the light diffusing and transmitting film is measured by the light receiving means arranged in the irradiation direction, and the measured amount of transmitted light is converted into a film thickness. A film thickness measuring device for measuring the film thickness of a light diffusing and transmitting film, wherein when measuring an amount of transmitted light by the light receiving device, a distance measuring device for measuring a light receiving distance from the light diffusing and transmitting film to the light receiving device. A film thickness measuring device, comprising: a correction unit that corrects the converted film thickness based on the measured light receiving distance.
【請求項5】前記膜厚の補正を、測定された受光距離に
より測定された透過光量を補正し、補正後の透過光量を
膜厚に変換することにより行なうことを特徴とする請求
項4に記載の膜厚測定装置。
5. The correction of the film thickness is performed by correcting the amount of transmitted light measured by the measured light receiving distance and converting the corrected amount of transmitted light into film thickness. The film thickness measuring device described.
【請求項6】前記測定された受光距離による透過光量の
補正を、予め求めてある受光距離の基準距離からの変化
量と、前記受光手段の受光変化量との関係に基づいて行
うことを特徴とする請求項5に記載の膜厚測定装置。
6. The correction of the amount of transmitted light based on the measured light receiving distance is performed based on the relationship between the change amount of the light receiving distance, which is obtained in advance, from a reference distance, and the light receiving change amount of the light receiving means. The film thickness measuring device according to claim 5.
【請求項7】前記距離測定手段が、前記投光手段を支持
する支持体又は前記受光手段を支持する支持体に一体的
に取付けられていることを特徴とする請求項4に記載の
膜厚測定装置。
7. The film thickness according to claim 4, wherein the distance measuring means is integrally attached to a support for supporting the light projecting means or a support for supporting the light receiving means. measuring device.
【請求項8】前記距離測定手段が、前記投光手段又は受
光手段を中心にして対称な位置に2つ設置されているこ
とを特徴とする請求項7に記載の膜厚測定装置。
8. The film thickness measuring device according to claim 7, wherein two distance measuring means are installed at symmetrical positions with respect to the light projecting means or the light receiving means.
JP2001304920A 2001-10-01 2001-10-01 Film thickness-measuring method and apparatus Pending JP2003106816A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001304920A JP2003106816A (en) 2001-10-01 2001-10-01 Film thickness-measuring method and apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001304920A JP2003106816A (en) 2001-10-01 2001-10-01 Film thickness-measuring method and apparatus

Publications (1)

Publication Number Publication Date
JP2003106816A true JP2003106816A (en) 2003-04-09

Family

ID=19124781

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001304920A Pending JP2003106816A (en) 2001-10-01 2001-10-01 Film thickness-measuring method and apparatus

Country Status (1)

Country Link
JP (1) JP2003106816A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101007455B1 (en) 2009-02-02 2011-01-12 (주) 보쉬전장 a Rain sensor with a Compensation Value of Rain sensing
JP2014122832A (en) * 2012-12-21 2014-07-03 Nihon Yamamura Glass Co Ltd Film thickness measurement device and film thickness inspection device for metal oxide coat
KR20150138007A (en) * 2014-05-30 2015-12-09 (주)쎄미시스코 Method, apparatus and the system for detecting thickness of an object
CH710648A1 (en) * 2015-01-23 2016-07-29 Erowa Ag Measuring machine for measuring workpieces.
WO2020004142A1 (en) * 2018-06-27 2020-01-02 東京エレクトロン株式会社 Membrane thickness measurement device and correction method

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101007455B1 (en) 2009-02-02 2011-01-12 (주) 보쉬전장 a Rain sensor with a Compensation Value of Rain sensing
JP2014122832A (en) * 2012-12-21 2014-07-03 Nihon Yamamura Glass Co Ltd Film thickness measurement device and film thickness inspection device for metal oxide coat
KR20150138007A (en) * 2014-05-30 2015-12-09 (주)쎄미시스코 Method, apparatus and the system for detecting thickness of an object
KR102402386B1 (en) 2014-05-30 2022-05-26 (주)에디슨이브이 Method, apparatus and the system for detecting thickness of an object
CH710648A1 (en) * 2015-01-23 2016-07-29 Erowa Ag Measuring machine for measuring workpieces.
US9863751B2 (en) 2015-01-23 2018-01-09 Erowa Ag Measuring machine for measuring workpieces
WO2020004142A1 (en) * 2018-06-27 2020-01-02 東京エレクトロン株式会社 Membrane thickness measurement device and correction method
JPWO2020004142A1 (en) * 2018-06-27 2021-06-24 東京エレクトロン株式会社 Film thickness measuring device and correction method
JP7118148B2 (en) 2018-06-27 2022-08-15 東京エレクトロン株式会社 Film thickness measuring device and correction method

Similar Documents

Publication Publication Date Title
US7009197B2 (en) Apparatus for measuring gap between mask and substrate using laser displacement sensor, and method thereof
US6991825B2 (en) Dispensation of controlled quantities of material onto a substrate
JP3634068B2 (en) Exposure method and apparatus
US7582888B2 (en) Reflection type optical sensor and method for detecting surface roughness
KR20100025496A (en) Systems and methods for determining the shape of glass sheets
US6111649A (en) Thickness measuring apparatus using light from slit
US7197176B2 (en) Mark position detecting apparatus and mark position detecting method
CN107275244A (en) A kind of chip detection method and device
JP2003106816A (en) Film thickness-measuring method and apparatus
JP2014092489A (en) Inspection device and inspection method
JP2004214415A (en) Pattern plotting method and device
JP3410989B2 (en) Precision laser irradiation apparatus and control method
JP2010140933A (en) Correcting method for line sensor, alignment device, and substrate transport device
US10133177B2 (en) Exposure apparatus, exposure method, and article manufacturing method
TW202006867A (en) Calibrated laser printing method
JP3754743B2 (en) Surface position setting method, wafer height setting method, surface position setting method, wafer surface position detection method, and exposure apparatus
JP2003114102A (en) Film thickness measuring method and device
JP2004151032A (en) Measuring method and device for membrane thickness
JP2008196855A (en) Method and device for positioning wafer
JP3306657B2 (en) Angle correction method
JP4190186B2 (en) X-ray analysis method and X-ray analysis apparatus
JP2009177166A (en) Inspection device
JP2022153297A (en) Basis weight measurement device and basis weight measurement method
KR20090107335A (en) Measurement error correcting method for the thick of glass panel
JP2006010544A (en) Apparatus and method for inspecting foreign matter

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040917

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060209

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060606

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060804

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070327

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070807