JP2003102101A - Power control device for electric vehicle - Google Patents

Power control device for electric vehicle

Info

Publication number
JP2003102101A
JP2003102101A JP2001291037A JP2001291037A JP2003102101A JP 2003102101 A JP2003102101 A JP 2003102101A JP 2001291037 A JP2001291037 A JP 2001291037A JP 2001291037 A JP2001291037 A JP 2001291037A JP 2003102101 A JP2003102101 A JP 2003102101A
Authority
JP
Japan
Prior art keywords
battery
relay
capacitor
voltage value
load
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2001291037A
Other languages
Japanese (ja)
Inventor
Kenji Sato
賢治 佐藤
Hidetaka Nishigori
秀隆 錦織
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Suzuki Motor Corp
Original Assignee
Suzuki Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Suzuki Motor Corp filed Critical Suzuki Motor Corp
Priority to JP2001291037A priority Critical patent/JP2003102101A/en
Publication of JP2003102101A publication Critical patent/JP2003102101A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H47/00Circuit arrangements not adapted to a particular application of the relay and designed to obtain desired operating characteristics or to provide energising current
    • H01H47/002Monitoring or fail-safe circuits
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/62Hybrid vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Landscapes

  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Abstract

PROBLEM TO BE SOLVED: To accurately and quickly charge a condenser, to detect loose connection of relays, and to accurately and quickly detect connection defect in the relay. SOLUTION: A power control device 10 is equipped with a controller 12, a voltmeter 14 which detects the voltage value of a battery 56, a voltmeter 54 which detects voltage value of a condenser 62 connected in parallel with a load 58 and so on, a function which opens/closes a relay RY1 which directly connects an anode of the load 58 with the anode of the battery 56, a function which opens/closes a relay RY2 which directly connects the cathode of the battery 56 with and a cathode of the load 58, and a function which opens/closes a relay RY3 which is connected in parallel with the relay RY1 and connects the battery 56 with the load 58 via a resistor 60. Based on the voltage values of the battery 56 and of the condenser 62, determination of opening/closing or failure of the RY1, the RY2 and the RY3 is made.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、純電気自動車やハ
イブリッド電気自動車などの電気自動車に搭載され、バ
ッテリと負荷とを接続又は遮断する電気自動車用電源制
御装置(以下、単に「電源制御装置」という。)に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention is mounted on an electric vehicle such as a pure electric vehicle or a hybrid electric vehicle and connects or disconnects a battery and a load. That said).

【0002】[0002]

【従来の技術】図5は、従来の電源制御装置を示す回路
図である。以下、この図面に基づき説明する。
2. Description of the Related Art FIG. 5 is a circuit diagram showing a conventional power supply control device. Hereinafter, description will be given with reference to this drawing.

【0003】従来の電源制御装置50は、コントローラ
52及び電圧計54からなり、バッテリ56と負荷58
との正極側を直接接続するリレーRY1を開閉する機能
と、バッテリ56と負荷58との負極側を直接接続する
リレーRY2を開閉する機能と、リレーRY1に並列接
続されバッテリ56と負荷58とを抵抗器60を介して
接続するリレーRY3を開閉する機能とを備えている。
電圧計54は、負荷58に並列接続されたコンデンサ6
2の電圧値を検出する。負荷58は、図示しないが、駆
動用モータ、及び駆動用モータに電力を供給するインバ
ータ等からなる。コンデンサ62は、負荷変動やノイズ
に対して、バッテリ56の出力電圧を一定に保つ働きを
する。例えば、バッテリ56の出力電圧は240V、抵
抗器60の抵抗値は200Ωである。
A conventional power supply control device 50 comprises a controller 52 and a voltmeter 54, a battery 56 and a load 58.
And the function of opening and closing the relay RY1 that directly connects the positive side of the battery 56 and the load 58, and the function of opening and closing the relay RY2 that directly connects the negative side of the battery 56 and the load 58, and the function of connecting the battery 56 and the load 58 connected in parallel to the relay RY1. It has a function of opening and closing the relay RY3 connected through the resistor 60.
The voltmeter 54 includes a capacitor 6 connected in parallel with a load 58.
The voltage value of 2 is detected. Although not shown, the load 58 includes a drive motor, an inverter that supplies electric power to the drive motor, and the like. The capacitor 62 functions to keep the output voltage of the battery 56 constant against load fluctuations and noise. For example, the output voltage of the battery 56 is 240V, and the resistance value of the resistor 60 is 200Ω.

【0004】次に、電源制御装置50の動作を説明す
る。
Next, the operation of the power supply controller 50 will be described.

【0005】起動時に、リレーRY1,RY2をいきな
り閉にすると、コンデンサ62への突入電流によってリ
レーRY1,RY2の接点が溶着するおそれがある。そ
こで、「プリチャージ」と呼ばれる動作を実行する。す
なわち、最初にリレーRY1,RY2,RY3が開の状
態からリレーRY2,RY3を閉にしてコンデンサ62
を徐々に充電し、コンデンサ62が十分に充電された後
にリレーRY3を開にし、同時にリレーRY1を閉にす
る。ここで、コンデンサ62が十分に充電されたか否か
については、コンデンサ62の電圧値が一定値に達した
か否か、又は一定時間が経過したか否かに基づき判断す
る。
If the relays RY1 and RY2 are suddenly closed at the time of starting, the contacts of the relays RY1 and RY2 may be welded due to the rush current into the capacitor 62. Therefore, an operation called "precharge" is executed. That is, the relays RY1, RY2, RY3 are first opened, and then the relays RY2, RY3 are closed to make the capacitor 62
Is gradually charged, and after the capacitor 62 is sufficiently charged, the relay RY3 is opened and at the same time the relay RY1 is closed. Here, whether or not the capacitor 62 is sufficiently charged is determined based on whether or not the voltage value of the capacitor 62 has reached a certain value or whether a certain time has elapsed.

【0006】また、リレーRY1,RY2,RY3の溶
着を検出する、次のような機能を有するものが知られて
いる(例えば特開2000-134707号公報)。
Further, there is known one having the following function of detecting welding of the relays RY1, RY2 and RY3 (for example, Japanese Patent Laid-Open No. 2000-134707).

【0007】起動時に、まずリレーRY1,RY2,R
Y3が開の状態からリレーRY3を閉にし、コンデンサ
62の電圧が上昇した場合には、リレーRY2の溶着と
判断する。続いて、リレーRY2を閉にしてリレーRY
3を開にし負荷58に電力を消費させ、コンデンサ62
の電圧が低下しない場合には、リレーRY1又はリレー
RY3のいずれかが溶着していると判断する。
At the time of starting, first, the relays RY1, RY2, R
When the relay RY3 is closed from the open state of Y3 and the voltage of the capacitor 62 rises, it is determined that the relay RY2 is welded. Then, the relay RY2 is closed and the relay RY is closed.
3 is opened to cause the load 58 to consume power, and the capacitor 62
If the voltage does not decrease, it is determined that either the relay RY1 or the relay RY3 is welded.

【0008】[0008]

【発明が解決しようとする課題】しかしながら、従来の
電源制御装置50では、次のような問題があった。
However, the conventional power supply control device 50 has the following problems.

【0009】.コンデンサ62の電圧値のみに基づき
コンデンサ62が十分に充電されたと判断することは、
正確さに欠ける。例えば、コンデンサ62の電圧値が一
定値に達しても、それ以上にバッテリ56の電圧値が高
ければ、リレーRY1,RY2が溶着するおそれがあっ
た。
[0009]. To judge that the capacitor 62 is sufficiently charged based only on the voltage value of the capacitor 62 is
Lack of accuracy. For example, even if the voltage value of the capacitor 62 reaches a certain value, if the voltage value of the battery 56 is higher than that, the relays RY1 and RY2 may be welded.

【0010】.経過時間に基づきコンデンサ62が十
分に充電されたと判断することは、どうしても判断に要
する時間が長くなってしまう。なぜなら、充電時間が長
くなる場合にも溶着が起きないようにするために、一定
時間を十分に長く設定しておく必要があるからである。
[0010]. If it is determined that the capacitor 62 is sufficiently charged based on the elapsed time, the time required for the determination is inevitably long. This is because it is necessary to set the certain period of time sufficiently long so that welding does not occur even when the charging time becomes long.

【0011】.リレーRY1,RY2の接点での接触
不良を検出できなかった。なぜなら、コンデンサ62の
電圧値が低下しても、それがバッテリ56の電圧値の低
下によるものか、リレーRY1,RY2での電圧降下に
よるものか、を区別できないからである。この接触不良
は、接点が酸化やゴミなどによって高抵抗化し、遂には
溶着等に至るものである。なお、ここでいう「接触不
良」とは、リレーRY1,RY2の駆動回路の故障や機
械的故障により、リレー接点が正常に動作しなかった場
合も含まれるものとする。
[0011]. The contact failure at the contacts of the relays RY1 and RY2 could not be detected. This is because even if the voltage value of the capacitor 62 drops, it cannot be distinguished whether it is due to the voltage value drop of the battery 56 or the voltage drop at the relays RY1, RY2. This contact failure causes the contact to have a high resistance due to oxidation or dust, and finally to welding or the like. The term "contact failure" as used herein includes the case where the relay contact does not operate normally due to a failure of the drive circuit of the relays RY1 and RY2 or a mechanical failure.

【0012】.リレーRY1,RY2,RY3の溶着
の判断にコンデンサ62の電圧値の時間的変化を利用す
るので、正確に検出するためには、それだけ時間がかか
ってしまう。
[0012]. Since the change over time of the voltage value of the capacitor 62 is used for the determination of the welding of the relays RY1, RY2, RY3, it takes more time for accurate detection.

【0013】.車両の起動時にリレーRY1,RY
2,RY3の溶着を判断することにより、その判断にあ
る程度の時間を要するので、迅速な発進ができないとい
う問題があった。また、起動時に溶着が発見されると、
その部品の調達及び交換にかなりの時間を要するので、
事実上その車両を使用できなくなっていた。
.. Relays RY1 and RY when the vehicle starts
Since it takes a certain amount of time to judge the welding of 2 and RY3, there is a problem that rapid start cannot be performed. Also, if welding is found at startup,
Since it takes a considerable amount of time to procure and replace the parts,
The vehicle was virtually out of service.

【0014】[0014]

【発明の目的】そこで、本発明の目的は、第一に正確か
つ迅速にコンデンサ62を充電でき、第二にリレーRY
1,RY2の接触不良を検出でき、第三にリレーRY
1,RY2の溶着に関して正確かつ迅速に検出できると
ともに利便性も向上できる、電源制御装置を提供するこ
とにある。
SUMMARY OF THE INVENTION Therefore, the object of the present invention is to firstly charge the capacitor 62 accurately and quickly, and secondly to relay RY.
The contact failure of 1 and RY2 can be detected. Thirdly, relay RY
An object of the present invention is to provide a power supply control device capable of accurately and promptly detecting the welding of 1 and RY2 and improving convenience.

【0015】[0015]

【課題を解決するための手段】本発明に係る電源制御装
置は、バッテリと負荷との正極側又は負極側の一方を直
接接続する第一のリレーを開閉する機能と、バッテリと
負荷との正極側又は負極側の他方を直接接続する第二の
リレーを開閉する機能と、第一のリレーに並列接続され
バッテリと負荷とを抵抗器を介して接続する第三のリレ
ーを開閉する機能と、を備えたものである。そして、こ
の電源制御装置は、バッテリの電圧値を検出するバッテ
リ電圧検出手段と、負荷に並列接続されたコンデンサの
電圧値を検出するコンデンサ電圧検出手段と、バッテリ
電圧検出手段及びコンデンサ電圧検出手段からバッテリ
の電圧値及びコンデンサの電圧値を入力し、バッテリの
電圧値とコンデンサの電圧値とに基づき、第一乃至第三
のリレーを開閉する又は第一乃至第三のリレーの故障を
判断する制御手段と、を備えている(請求項1)。
A power supply control apparatus according to the present invention has a function of opening and closing a first relay that directly connects one of a positive electrode side and a negative electrode side of a battery and a load, and a positive electrode of a battery and a load. Side, or the function of opening and closing a second relay that directly connects the other of the negative electrode side, and the function of opening and closing a third relay that is connected in parallel to the first relay and connects the battery and the load via a resistor, It is equipped with. The power supply control device includes a battery voltage detecting means for detecting a voltage value of a battery, a capacitor voltage detecting means for detecting a voltage value of a capacitor connected in parallel with a load, a battery voltage detecting means and a capacitor voltage detecting means. Control for inputting the voltage value of the battery and the voltage value of the capacitor and opening / closing the first to third relays or judging the failure of the first to third relays based on the voltage value of the battery and the voltage value of the capacitor And means (claim 1).

【0016】例えば、制御手段は、バッテリ電圧検出手
段及びコンデンサ電圧検出手段からバッテリの電圧値及
びコンデンサの電圧値を入力するとともに、第一乃至第
三のリレーが開である状態から第二及び第三のリレーを
閉にし、一定時間経過時にバッテリの電圧値とコンデン
サの電圧値との差が一定値以下である場合に第一のリレ
ーを閉かつ第三のリレーを開にする(請求項2)。
For example, the control means inputs the voltage value of the battery and the voltage value of the capacitor from the battery voltage detecting means and the capacitor voltage detecting means, and the second and the second from the state in which the first to third relays are open. The third relay is closed, and the first relay is closed and the third relay is opened when the difference between the voltage value of the battery and the voltage value of the capacitor is equal to or less than a certain value after a certain period of time. ).

【0017】例えば、制御手段は、バッテリ電圧検出手
段及びコンデンサ電圧検出手段からバッテリの電圧値及
びコンデンサの電圧値を入力するとともに、第一及び第
二のリレーが閉かつ第三のリレーが開である場合に、バ
ッテリの電圧値とコンデンサの電圧値との差が一定値以
上あれば第一及び第二のリレーに接触不良があると判断
する(請求項3)。
For example, the control means inputs the voltage value of the battery and the voltage value of the capacitor from the battery voltage detection means and the capacitor voltage detection means, and the first and second relays are closed and the third relay is opened. In some cases, if the difference between the voltage value of the battery and the voltage value of the capacitor is a certain value or more, it is determined that the first and second relays have poor contact (claim 3).

【0018】例えば、制御手段は、バッテリ電圧検出手
段及びコンデンサ電圧検出手段からバッテリの電圧値及
びコンデンサの電圧値を入力するとともに、第一及び第
二のリレーが閉かつ第三のリレーが開である場合に、バ
ッテリの電圧値とコンデンサの電圧値との差が一定値未
満であっても、コンデンサの電圧値が一定値未満であれ
ば第一及び第二のリレーに異常があると判断する(請求
項4)。ここでいう「第一及び第二のリレーの異常」に
は、ヒューズ、バッテリケーブル等の高電圧系部品の異
常も含まれるものとする。
For example, the control means inputs the voltage value of the battery and the voltage value of the capacitor from the battery voltage detecting means and the capacitor voltage detecting means, and the first and second relays are closed and the third relay is opened. In some cases, even if the difference between the voltage value of the battery and the voltage value of the capacitor is less than a certain value, if the voltage value of the capacitor is less than the certain value, it is determined that there is an abnormality in the first and second relays. (Claim 4). The "abnormalities of the first and second relays" here include abnormalities of high-voltage components such as fuses and battery cables.

【0019】例えば、電源制御装置は、負荷に電力を消
費させる機能を更に備えている。このとき、制御手段
は、バッテリ電圧検出手段及びコンデンサ電圧検出手段
からバッテリの電圧値及びコンデンサの電圧値を入力す
るとともに、第一及び第二のリレーが閉かつ第三のリレ
ーが開である状態から第一及び第二のリレーの少なくと
も一方を開にするとともに負荷に電力を消費させても、
バッテリの電圧値とコンデンサの電圧値との差が一定値
以下であれば開にしたリレーが溶着していると判断する
(請求項5)。ここで、「第一及び第二のリレーの少な
くとも一方を開」であるから、第一のリレーのみを開、
第二のリレーのみを開、第一及び第二のリレーの両方を
開、の三通りがある。
For example, the power supply control device further has a function of causing the load to consume power. At this time, the control means inputs the voltage value of the battery and the voltage value of the capacitor from the battery voltage detection means and the capacitor voltage detection means, and the first and second relays are closed and the third relay is open. From opening the at least one of the first and second relays and causing the load to consume power,
If the difference between the voltage value of the battery and the voltage value of the capacitor is less than a certain value, it is determined that the opened relay is welded (Claim 5). Here, since "at least one of the first and second relays is opened", only the first relay is opened,
There are three ways: open the second relay only, open both the first and second relays.

【0020】このとき、溶着の判断を車両の停止時に実
行するようにしてもよい(請求項6)。更に、停止時と
は、車両が走行時又はバッテリ充電時から完全に停止状
態になる直前である、としてもよい(請求項7)。例え
ば、車両の高電圧系が起動した状態から停止した状態に
移るときである。実際には、イグニション・スイッチを
オンからオフにした後の数秒間、又は充電が完了した後
の数秒間である。
At this time, the determination of welding may be executed when the vehicle is stopped (claim 6). Further, the stop time may be a time immediately before the vehicle is completely stopped after the vehicle is running or the battery is charged (claim 7). For example, when the high voltage system of the vehicle shifts from the activated state to the stopped state. In practice, it is a few seconds after turning the ignition switch on and off, or a few seconds after the charging is complete.

【0021】[0021]

【発明の実施の形態】図1は、本発明に係る電源制御装
置の一実施形態を示す回路図である。以下、この図面に
基づき説明する。ただし、図5と同じ部分は同じ符号を
付すことにより説明を省略する。
1 is a circuit diagram showing an embodiment of a power supply control device according to the present invention. Hereinafter, description will be given with reference to this drawing. However, the same parts as those in FIG.

【0022】本実施形態の電源制御装置10は、制御手
段としてのコントローラ12、バッテリ56の電圧値を
検出するバッテリ電圧検出手段としての電圧計14、負
荷58に並列接続されたコンデンサ62の電圧値を検出
するコンデンサ電圧検出手段としての電圧計54等を備
えるとともに、バッテリ56と負荷58との正極側を直
接接続するリレーRY1を開閉する機能と、バッテリ5
6と負荷58との負極側を直接接続するリレーRY2を
開閉する機能と、リレーRY1に並列接続されバッテリ
56と負荷58とを抵抗器60を介して接続するリレー
RY3を開閉する機能と、負荷58に電力を消費させる
機能とを備えている。
The power supply control device 10 of this embodiment includes a controller 12 as control means, a voltmeter 14 as battery voltage detection means for detecting the voltage value of a battery 56, and a voltage value of a capacitor 62 connected in parallel with a load 58. Voltmeter 54 as a capacitor voltage detecting means for detecting the battery 5 and the function of opening and closing the relay RY1 that directly connects the positive electrode side of the battery 56 and the load 58, and the battery 5
6 has a function of opening and closing a relay RY2 that directly connects the negative side of the load 58, a function of opening and closing a relay RY3 that is connected in parallel to the relay RY1 and that connects the battery 56 and the load 58 via a resistor 60, 58 has a function of consuming electric power.

【0023】また、コントローラ12は、次の〜の
各機能を備えている。
Further, the controller 12 has the following functions (1) to (3).

【0024】.電圧計14及び電圧計54からバッテ
リ56の電圧値v1及びコンデンサ62の電圧値v2を
入力するとともに、リレーRY1,RY2,RY3が開
である状態からリレーRY2,RY3を閉にし、一定時
間経過時にバッテリ56の電圧値v1とコンデンサ62
の電圧値v2との差が一定値以下である場合に、リレー
RY1を閉かつリレーRY3を開にする。
[0024]. The voltage value v1 of the battery 56 and the voltage value v2 of the capacitor 62 are input from the voltmeter 14 and the voltmeter 54, and the relays RY1, RY2, RY3 are closed from the state in which the relays RY1, RY2, RY3 are open, and when a certain time has elapsed, The voltage value v1 of the battery 56 and the capacitor 62
When the difference between the voltage value v2 and the voltage value v2 is less than a certain value, the relay RY1 is closed and the relay RY3 is opened.

【0025】.電圧計14及び電圧計54からバッテ
リ56の電圧値v1及びコンデンサ62の電圧値v2を
入力するとともに、リレーRY1,RY2が閉かつリレ
ーRY3が開である場合に、バッテリ56の電圧値v1
とコンデンサ62の電圧値v2との差が一定値以上であ
ればリレーRY1,RY2に接触不良があると判断す
る。
[0025]. When the voltage value v1 of the battery 56 and the voltage value v2 of the capacitor 62 are input from the voltmeter 14 and the voltmeter 54, and when the relays RY1 and RY2 are closed and the relay RY3 is open, the voltage value v1 of the battery 56.
If the difference between the voltage value v2 of the capacitor 62 and the voltage value v2 of the capacitor 62 is a certain value or more, it is determined that the relays RY1 and RY2 have a contact failure.

【0026】.電圧計14及び電圧計54からバッテ
リ56の電圧値v1及びコンデンサ62の電圧値v2を
入力するとともに、リレーRY1,RY2が閉かつリレ
ーRY3が開である状態からリレーRY1,RY2の少
なくとも一方を開にするとともに負荷58に電力を消費
させても、バッテリ56の電圧値v1とコンデンサ62
の電圧値v2との差が一定値以下であれば開にしたリレ
ーRY1,RY2の少なくとも一方が溶着していると判
断する。
.. The voltage value v1 of the battery 56 and the voltage value v2 of the capacitor 62 are input from the voltmeter 14 and the voltmeter 54, and at least one of the relays RY1 and RY2 is opened from the state where the relays RY1 and RY2 are closed and the relay RY3 is open. And the load 58 consumes power, the voltage value v1 of the battery 56 and the capacitor 62
If the difference from the voltage value v2 is less than a certain value, it is determined that at least one of the opened relays RY1 and RY2 is welded.

【0027】コントローラ12は、例えばCPUを中心
にROM、RAM、入出力インタフェース等から構成さ
れたマイクロコンピュータであり、前述した多くの機能
がプログラムによって実現されている。電圧計14及び
電圧計54は、例えば分圧用抵抗器及びA/Dコンバー
タ等によって構成されたものである。
The controller 12 is a microcomputer including, for example, a CPU, a ROM, a RAM, an input / output interface, etc., and many functions described above are realized by programs. The voltmeter 14 and the voltmeter 54 are composed of, for example, a voltage dividing resistor and an A / D converter.

【0028】図2は、電源制御装置10の起動時の動作
を示すフローチャートである。以下、図1及び図2に基
づき説明する。なお、バッテリ56の電圧値v1及びコ
ンデンサ62の電圧値v2を、以下「バッテリ電圧v
1」及び「コンデンサ電圧v2」という。また、リレー
のオンとはリレーの閉のことであり、リレーのオフとは
リレーの開のことである。
FIG. 2 is a flow chart showing the operation at the time of starting the power supply control device 10. Hereinafter, description will be given with reference to FIGS. 1 and 2. The voltage value v1 of the battery 56 and the voltage value v2 of the capacitor 62 will be referred to as "battery voltage v
1 ”and“ capacitor voltage v2 ”. Further, turning on the relay means closing the relay, and turning off the relay means opening the relay.

【0029】まず、運転者がイグニション・スイッチを
オンにしたり(走行開始)、充電用プラグを車両に差し
込んだり(バッテリ充電開始)することにより、車両電
源起動要求が発生する(ステップ101)。すると、バ
ッテリ電圧v1が正常範囲内にあることすなわち一定電
圧Va以上であること(v1>Va)を確認し(ステッ
プ102)、リレーRY2,RY3をオンにする(ステ
ップ103)。一方、ステップ102でv1>Vaでな
ければ、バッテリ電圧v1が異常に低いので、バッテリ
電圧異常のフェール信号を出力し(ステップ104)、
リレーRY1,RY2,RY3をオフにして起動を停止
する(ステップ105)。
First, when the driver turns on the ignition switch (starts traveling) or inserts the charging plug into the vehicle (starts battery charging), a vehicle power supply start request is generated (step 101). Then, it is confirmed that the battery voltage v1 is within the normal range, that is, is equal to or higher than the constant voltage Va (v1> Va) (step 102), and the relays RY2 and RY3 are turned on (step 103). On the other hand, if v1> Va is not established in step 102, the battery voltage v1 is abnormally low, so a fail signal indicating abnormal battery voltage is output (step 104).
The relays RY1, RY2 and RY3 are turned off to stop the activation (step 105).

【0030】続いて、一定時間T1を経過してもコンデ
ンサ電圧v2が一定電圧Vb未満であるならば(ステッ
プ106)、何らかの理由によりコンデンサ62を正常
に充電できないので、プリチャージ異常のフェール信号
を出力し(ステップ107)、起動を停止する(ステッ
プ105)。一方、ステップ106でv2<Vbでない
場合に、一定時間T2を経過してもバッテリ電圧v1と
コンデンサ電圧v2との差が一定電圧Vc以上であれば
(ステップ108)、何らかの理由によりコンデンサ6
2を正常に充電できないので、プリチャージ異常のフェ
ール信号を出力し(ステップ109)、起動を停止する
(ステップ105)。なお、T1<T2であり、例えば
T1は1秒程度、T2は10秒程度である。
Subsequently, if the capacitor voltage v2 is less than the constant voltage Vb even after the elapse of the constant time T1 (step 106), the capacitor 62 cannot be normally charged for some reason, and a fail signal indicating abnormal precharge is output. It is output (step 107) and the activation is stopped (step 105). On the other hand, when v2 <Vb is not satisfied in step 106, if the difference between the battery voltage v1 and the capacitor voltage v2 is equal to or more than the constant voltage Vc even after the elapse of the constant time T2 (step 108), the capacitor 6 is returned for some reason.
Since No. 2 cannot be charged normally, a fail signal of precharge abnormality is output (step 109) and the activation is stopped (step 105). Note that T1 <T2, for example, T1 is about 1 second and T2 is about 10 seconds.

【0031】続いて、ステップ108において、バッテ
リ電圧v1とコンデンサ電圧v2との差が一定電圧Vc
未満であれば(ステップ110)、コンデンサ62を正
常に充電できたので、リレーRY1をオンかつリレーR
Y3をオフにして起動を終了する(ステップ111)。
リレーRY1をオンにしたとき、バッテリ電圧v1とコ
ンデンサ電圧v2との差は僅少であるので、リレーRY
1が溶着することはない。一定電圧Vcは、リレーRY
1,RY2が溶着することのない電圧差であり、リレー
RY1,RY2の接点性能やコンデンサ62の容量値等
によって決められる。
Then, in step 108, the difference between the battery voltage v1 and the capacitor voltage v2 is the constant voltage Vc.
If it is less than (step 110), the capacitor 62 has been normally charged, so the relay RY1 is turned on and the relay R is turned on.
The Y3 is turned off and the activation is completed (step 111).
When the relay RY1 is turned on, the difference between the battery voltage v1 and the capacitor voltage v2 is very small.
1 does not weld. The constant voltage Vc is the relay RY
1 and RY2 are voltage differences at which welding does not occur, and are determined by the contact performance of the relays RY1 and RY2, the capacitance value of the capacitor 62, and the like.

【0032】バッテリ電圧をv1、コンデンサ62の容
量値をC、抵抗器60の抵抗値をRとすると、t秒後の
コンデンサ電圧v2(t)は、次式で与えられる。 v2=v1[1−exp{−t/(C・R)}] T1秒後のコンデンサ電圧v2(T1)は、上式にt=
T1=1を代入することによって得られる。一定電圧V
bは、v2(1)から余裕分を差し引いた値に設定す
る。
When the battery voltage is v1, the capacitance value of the capacitor 62 is C, and the resistance value of the resistor 60 is R, the capacitor voltage v2 (t) after t seconds is given by the following equation. v2 = v1 [1-exp {-t / (CR)}] The capacitor voltage v2 (T1) after T1 seconds is t =
It is obtained by substituting T1 = 1. Constant voltage V
b is set to a value obtained by subtracting the margin from v2 (1).

【0033】図3は、電源制御装置10の走行時又はバ
ッテリ充電時の動作を示すフローチャートである。以
下、図1及び図3に基づき説明する。
FIG. 3 is a flowchart showing the operation of the power supply control device 10 during traveling or battery charging. Hereinafter, description will be given with reference to FIGS. 1 and 3.

【0034】まず、バッテリ電圧v1とコンデンサ電圧
v2とを比較し、それらの差が一定電圧Vd以上であれ
ば(ステップ121)、リレーRY1,RY2での異常
な電圧降下が認められるので、接触不良のフェール信号
を出力し(ステップ122)、リレーRY1,RY2を
オフにする(ステップ123)。一方、バッテリ電圧v
1とコンデンサ電圧v2との差が一定電圧Vd未満であ
っても、コンデンサ電圧v2が一定電圧Ve未満であれ
ば(ステップ124)、低電圧のフェール信号を出力し
(ステップ125)、リレーRY1,RY2をオフにす
る(ステップ123)。
First, the battery voltage v1 and the capacitor voltage v2 are compared, and if the difference between them is equal to or more than a constant voltage Vd (step 121), an abnormal voltage drop is recognized in the relays RY1 and RY2, so contact failure occurs. Of the fail signal (step 122) and the relays RY1 and RY2 are turned off (step 123). On the other hand, the battery voltage v
Even if the difference between 1 and the capacitor voltage v2 is less than the constant voltage Vd, if the capacitor voltage v2 is less than the constant voltage Ve (step 124), a low voltage fail signal is output (step 125), and the relay RY1, RY2 is turned off (step 123).

【0035】ステップ123でリレーRY1,RY2を
オフにする理由は、接触が突然良くなると大電流が流れ
るので、リレーRY1,RY2が溶着するおそれがある
からである。したがって、一定電圧Vdは、リレーRY
1,RY2が溶着する最小電流値に対応する電圧差に設
定する。一定電圧Veは、通常検出されないような低い
値に設定する。
The reason why the relays RY1 and RY2 are turned off in step 123 is that the relays RY1 and RY2 may be welded because a large current flows when the contact is suddenly improved. Therefore, the constant voltage Vd is equal to the relay RY.
1 and RY2 are set to the voltage difference corresponding to the minimum current value for welding. The constant voltage Ve is set to a low value that is not normally detected.

【0036】図4は、電源制御装置10の停止時の動作
を示すフローチャートである。以下、図1及び図4に基
づき説明する。
FIG. 4 is a flow chart showing the operation of the power supply control device 10 when it is stopped. Hereinafter, description will be given with reference to FIGS. 1 and 4.

【0037】(1)リレーRY1,RY2のどちらも溶
着していない場合 まず、運転者がイグニション・スイッチをオフにしたり
(走行終了)、充電用プラグを車両から抜き外したり
(バッテリ充電終了)することにより、車両電源停止要
求が発生する(ステップ131)。すると、リレーRY
1をオフにし(ステップ132)、負荷58で電力を消
費させる(ステップ133)。続いて、バッテリ電圧v
1とコンデンサ電圧v2とを比較し、それらの差が一定
電圧Vf以上であれば正常であるので(ステップ13
4)、負荷58での電力消費を最小限にし(ステップ1
35)、リレーRY3をオンかつリレーRY2をオフに
する(ステップ136)。続いて、コンデンサ電圧v2
を監視し、上昇しなければ正常であるので(ステップ1
37)、リレーRY3をオフにする(ステップ13
8)。
(1) When neither of the relays RY1 and RY2 is welded First, the driver turns off the ignition switch (ends traveling) or removes the charging plug from the vehicle (ends battery charging). As a result, a vehicle power supply stop request is generated (step 131). Then relay RY
1 is turned off (step 132), and power is consumed by the load 58 (step 133). Then, the battery voltage v
1 is compared with the capacitor voltage v2, and if the difference between them is equal to or greater than the constant voltage Vf, it is normal (step 13
4) minimize power consumption at load 58 (step 1
35), the relay RY3 is turned on and the relay RY2 is turned off (step 136). Then, the capacitor voltage v2
Is monitored, and if it does not rise, it is normal (Step 1
37), turn off relay RY3 (step 13)
8).

【0038】(2)リレーRY1のみが溶着している場
合 ステップ134においてバッテリ電圧v1とコンデンサ
電圧v2との差が一定電圧Vf未満であれば、リレーR
Y1が溶着しているので、リレーRY1溶着のフェール
信号を出力し(ステップ139)、リレーRY2をオフ
にする(ステップ140)。
(2) Only the relay RY1 is welded If the difference between the battery voltage v1 and the capacitor voltage v2 is less than the constant voltage Vf in step 134, the relay R
Since Y1 is welded, a fail signal for relay RY1 welding is output (step 139), and relay RY2 is turned off (step 140).

【0039】(3)リレーRY2のみが溶着している場
合 ステップ137においてコンデンサ電圧v2が上昇すれ
ば、リレーRY2が溶着しているので、リレーRY2溶
着のフェール信号を出力し(ステップ141)、リレー
RY3をオフにする(ステップ138)。
(3) When only the relay RY2 is welded If the capacitor voltage v2 rises in step 137, the relay RY2 is welded. Therefore, the relay RY2 welding failure signal is output (step 141), and the relay RY2 is welded. RY3 is turned off (step 138).

【0040】(4)リレーRY1,RY2がどちらも溶
着している場合 ステップ140においてリレーRY2をオフにした後、
バッテリ電圧v1とコンデンサ電圧v2とを比較し、そ
れらの差が一定電圧Vf未満であれば(ステップ14
2)、リレーRY2も溶着しているので、リレーRY2
溶着のフェール信号を出力する(ステップ143)。
(4) When both relays RY1 and RY2 are welded After turning off relay RY2 in step 140,
The battery voltage v1 and the capacitor voltage v2 are compared, and if the difference between them is less than the constant voltage Vf (step 14).
2), relay RY2 is also welded, so relay RY2
A welding failure signal is output (step 143).

【0041】なお、本発明は、言うまでもなく、上記実
施形態に限定されるものではない。例えば、本発明の名
称を「電気自動車用…」としたが、電気自動車に限ら
ず、大容量の電源及び負荷を備えたシステムに好適に用
いることができる。
Needless to say, the present invention is not limited to the above embodiment. For example, although the name of the present invention is “for an electric vehicle ...”, the present invention is not limited to an electric vehicle and can be suitably used for a system including a large-capacity power source and a load.

【0042】[0042]

【発明の効果】本発明に係る電源制御装置によれば、バ
ッテリとコンデンサとの電圧値に基づきリレーの開閉又
は故障判断をすることにより、正確かつ迅速にコンデン
サを充電でき、リレーの接触不良を検出でき、かつリレ
ーの溶着に関して正確かつ迅速に検出できる。
According to the power supply control device of the present invention, the capacitor can be charged accurately and promptly by determining whether the relay is opened or closed or the failure based on the voltage values of the battery and the capacitor, and the contact failure of the relay can be prevented. It is possible to detect, and it is possible to accurately and quickly detect the welding of the relay.

【0043】請求項2記載の電源制御装置によれば、一
定時間経過時にバッテリの電圧値とコンデンサの電圧値
との差が一定値以下である場合に第一のリレーを閉かつ
第三のリレーを開にすることにより、プリチャージの完
了時期を正確に判断できるので、リレーの溶着を防止で
きるとともに、必要最小限の時間でプリチャージを完了
できる。
According to the power supply control device of the second aspect, the first relay is closed and the third relay is closed when the difference between the voltage value of the battery and the voltage value of the capacitor is equal to or less than a certain value after a certain period of time. By opening, it is possible to accurately determine the completion time of the precharge, so that the welding of the relay can be prevented and the precharge can be completed in the minimum necessary time.

【0044】請求項3記載の電源制御装置によれば、第
一及び第二のリレーが閉かつ第三のリレーが開である場
合に、バッテリの電圧値とコンデンサの電圧値との差が
一定値以上あれば第一及び第二のリレーに接触不良があ
ると判断することにより、リレーの接触不良を正確に検
出できるので、リレーの溶着を未然に防止できる。
According to the power supply control device of the third aspect, the difference between the voltage value of the battery and the voltage value of the capacitor is constant when the first and second relays are closed and the third relay is open. If the value is equal to or more than the value, it is possible to accurately detect the contact failure of the relay by determining that the first and second relays have the contact failure, so that the welding of the relay can be prevented.

【0045】請求項4記載の電源制御装置によれば、第
一及び第二のリレーが閉かつ第三のリレーが開である場
合に、バッテリの電圧値とコンデンサの電圧値との差が
一定値未満であっても、コンデンサの電圧値が一定値未
満であれば第一及び第二のリレーに異常があると判断す
ることにより、車両走行中又はバッテリ充電中に、高電
圧系部品の異常を検出できる。
According to the fourth aspect of the power supply control device, the difference between the voltage value of the battery and the voltage value of the capacitor is constant when the first and second relays are closed and the third relay is open. Even if it is less than the value, if the voltage value of the capacitor is less than a certain value, it is judged that there is an abnormality in the first and second relays. Can be detected.

【0046】請求項5記載の電源制御装置によれば、第
一及び第二のリレーが閉かつ第三のリレーが開である状
態から第一及び第二のリレーの少なくとも一方を開にす
るとともに負荷に電力を消費させても、バッテリの電圧
値とコンデンサの電圧値との差が一定値以下であれば開
にしたリレーが溶着していると判断することにより、コ
ンデンサの電圧値の時間的変化ではなくバッテリの電圧
値とコンデンサの電圧値との差を利用するので、正確か
つ迅速にリレーの溶着を検出できる。
According to the fifth aspect of the power supply control device, at least one of the first and second relays is opened while the first and second relays are closed and the third relay is open. Even if the load consumes power, if the difference between the battery voltage value and the capacitor voltage value is less than a certain value, it is judged that the opened relay is welded, and Since the difference between the voltage value of the battery and the voltage value of the capacitor is used instead of the change, the welding of the relay can be detected accurately and quickly.

【0047】請求項6又は7記載の電源制御装置によれ
ば、溶着の判断を車両の停止時に実行することにより、
起動時に余計な時間を費やさないので、迅速に発進でき
る。しかも、停止時に溶着が発見されることにより、そ
の部品の調達及び交換を停止中に行えばよいので、その
車両を使用できなくなる時間が少ない。したがって、利
便性を向上できる。
According to the power supply control device of the sixth or seventh aspect, by determining the welding when the vehicle is stopped,
Since it does not spend extra time at startup, it can start quickly. Moreover, since the welding is found at the time of stopping, the procurement and replacement of the component can be performed during the stopping, so that the vehicle cannot be used for a short time. Therefore, convenience can be improved.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に係る電源制御装置の一実施形態を示す
回路図である。
FIG. 1 is a circuit diagram showing an embodiment of a power supply control device according to the present invention.

【図2】図1の電源制御装置における起動時の動作を示
すフローチャートである。
FIG. 2 is a flowchart showing an operation at startup in the power supply control device of FIG.

【図3】図1の電源制御装置における走行時又はバッテ
リ充電時の動作を示すフローチャートである。
3 is a flowchart showing an operation of the power supply control device of FIG. 1 during traveling or charging of a battery.

【図4】図1の電源制御装置における停止時の動作を示
すフローチャートである。
FIG. 4 is a flowchart showing the operation of the power supply control device of FIG. 1 when stopped.

【図5】従来の電源制御装置を示す回路図である。FIG. 5 is a circuit diagram showing a conventional power supply control device.

【符号の説明】[Explanation of symbols]

10 電源制御装置 12 コントローラ(制御手段) 14 電圧計(バッテリ電圧検出手段) 56 バッテリ 58 負荷 62 コンデンサ 54 電圧計(コンデンサ電圧検出手段) RY1 リレー(第一のリレー) RY2 リレー(第二のリレー) RY3 リレー(第三のリレー) 10 Power control device 12 Controller (control means) 14 Voltmeter (battery voltage detection means) 56 battery 58 load 62 capacitor 54 Voltmeter (capacitor voltage detection means) RY1 relay (first relay) RY2 relay (second relay) RY3 relay (third relay)

フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) H02J 7/00 302 H02J 7/00 302C Fターム(参考) 5G003 AA04 BA01 CA11 CC02 DA07 FA04 FA06 GC05 5H115 PA08 PG04 PI16 PO02 PU01 PU21 PV09 SE06 SE10 TI05 TI09 TR19 TU03 TU06 TU12 TU20 UI35 Front page continuation (51) Int.Cl. 7 Identification code FI theme code (reference) H02J 7/00 302 H02J 7/00 302C F term (reference) 5G003 AA04 BA01 CA11 CC02 DA07 FA04 FA06 GC05 5H115 PA08 PG04 PI16 PO02 PU01 PU21 PV09 SE06 SE10 TI05 TI09 TR19 TU03 TU06 TU12 TU20 UI35

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 バッテリと負荷との正極側又は負極側の
一方を直接接続する第一のリレーを開閉する機能と、前
記バッテリと前記負荷との正極側又は負極側の他方を直
接接続する第二のリレーを開閉する機能と、前記第一の
リレーに並列接続され前記バッテリと前記負荷とを抵抗
器を介して接続する第三のリレーを開閉する機能とを備
えた電気自動車用電源制御装置において、 前記バッテリの電圧値を検出するバッテリ電圧検出手段
と、 前記負荷に並列接続されたコンデンサの電圧値を検出す
るコンデンサ電圧検出手段と、 前記バッテリ電圧検出手段及び前記コンデンサ電圧検出
手段から前記バッテリの電圧値及び前記コンデンサの電
圧値を入力し、当該バッテリの電圧値と当該コンデンサ
の電圧値とに基づき、前記第一乃至第三のリレーを開閉
する又は前記第一乃至第三のリレーの故障を判断する制
御手段と、 を備えたことを特徴とする電気自動車用電源制御装置。
1. A function for opening and closing a first relay that directly connects one of a positive electrode side and a negative electrode side of a battery and a load, and a function of directly connecting the other of the positive electrode side and the negative electrode side of the battery and the load. A power supply control device for an electric vehicle having a function of opening and closing a second relay, and a function of opening and closing a third relay connected in parallel to the first relay and connecting the battery and the load via a resistor In, battery voltage detection means for detecting the voltage value of the battery, capacitor voltage detection means for detecting the voltage value of a capacitor connected in parallel to the load, the battery voltage detection means and the capacitor voltage detection means from the battery Input voltage value of the capacitor and the voltage value of the capacitor, and based on the voltage value of the battery and the voltage value of the capacitor, the first to third relay A power supply control device for an electric vehicle, comprising: a control unit that opens or closes or determines a failure of the first to third relays.
【請求項2】 バッテリと負荷との正極側又は負極側の
一方を直接接続する第一のリレーを開閉する機能と、前
記バッテリと前記負荷との正極側又は負極側の他方を直
接接続する第二のリレーを開閉する機能と、前記第一の
リレーに並列接続され前記バッテリと前記負荷とを抵抗
器を介して接続する第三のリレーを開閉する機能とを備
えた電気自動車用電源制御装置において、 前記バッテリの電圧値を検出するバッテリ電圧検出手段
と、 前記負荷に並列接続されたコンデンサの電圧値を検出す
るコンデンサ電圧検出手段と、 前記バッテリ電圧検出手段及び前記コンデンサ電圧検出
手段から前記バッテリの電圧値及び前記コンデンサの電
圧値を入力するとともに、前記第一乃至第三のリレーが
開である状態から当該第二及び第三のリレーを閉にし、
一定時間経過時に当該バッテリの電圧値と当該コンデン
サの電圧値との差が一定値以下である場合に当該第一の
リレーを閉かつ当該第三のリレーを開にする制御手段
と、 を備えたことを特徴とする電気自動車用電源制御装置。
2. A function of opening and closing a first relay that directly connects one of a positive electrode side and a negative electrode side of a battery and a load, and a function of directly connecting the other of the positive electrode side and the negative electrode side of the battery and the load. A power supply control device for an electric vehicle having a function of opening and closing a second relay, and a function of opening and closing a third relay connected in parallel to the first relay and connecting the battery and the load via a resistor In, battery voltage detection means for detecting the voltage value of the battery, capacitor voltage detection means for detecting the voltage value of a capacitor connected in parallel to the load, the battery voltage detection means and the capacitor voltage detection means from the battery And the voltage value of the capacitor are input, and the second and third relays are closed from the state in which the first to third relays are open. Then
A control means for closing the first relay and opening the third relay when the difference between the voltage value of the battery and the voltage value of the capacitor is equal to or less than a certain value after a lapse of a certain time. A power supply control device for an electric vehicle characterized by the above.
【請求項3】 バッテリと負荷との正極側又は負極側の
一方を直接接続する第一のリレーを開閉する機能と、前
記バッテリと前記負荷との正極側又は負極側の他方を直
接接続する第二のリレーを開閉する機能と、前記第一の
リレーに並列接続され前記バッテリと前記負荷とを抵抗
器を介して接続する第三のリレーを開閉する機能とを備
えた電気自動車用電源制御装置において、 前記バッテリの電圧値を検出するバッテリ電圧検出手段
と、 前記負荷に並列接続されたコンデンサの電圧値を検出す
るコンデンサ電圧検出手段と、 前記バッテリ電圧検出手段及び前記コンデンサ電圧検出
手段から前記バッテリの電圧値及び前記コンデンサの電
圧値を入力するとともに、前記第一及び第二のリレーが
閉かつ前記第三のリレーが開である場合に、当該バッテ
リの電圧値と当該コンデンサの電圧値との差が一定値以
上あれば当該第一及び第二のリレーに接触不良があると
判断する制御手段と、 を備えたことを特徴とする電気自動車用電源制御装置。
3. A function of opening and closing a first relay that directly connects one of a positive electrode side and a negative electrode side of a battery and a load, and a function of directly connecting the other positive electrode side or negative electrode side of the battery and the load. A power supply control device for an electric vehicle having a function of opening and closing a second relay, and a function of opening and closing a third relay connected in parallel to the first relay and connecting the battery and the load via a resistor In, battery voltage detection means for detecting the voltage value of the battery, capacitor voltage detection means for detecting the voltage value of a capacitor connected in parallel to the load, the battery voltage detection means and the capacitor voltage detection means from the battery Input voltage value of the capacitor and the voltage value of the capacitor, and when the first and second relays are closed and the third relay is open, An electric vehicle, comprising: a control unit that determines that the first and second relays have a contact failure if the difference between the battery voltage value and the capacitor voltage value is a certain value or more. Power control device.
【請求項4】 バッテリと負荷との正極側又は負極側の
一方を直接接続する第一のリレーを開閉する機能と、前
記バッテリと前記負荷との正極側又は負極側の他方を直
接接続する第二のリレーを開閉する機能と、前記第一の
リレーに並列接続され前記バッテリと前記負荷とを抵抗
器を介して接続する第三のリレーを開閉する機能とを備
えた電気自動車用電源制御装置において、 前記バッテリの電圧値を検出するバッテリ電圧検出手段
と、 前記負荷に並列接続されたコンデンサの電圧値を検出す
るコンデンサ電圧検出手段と、 前記バッテリ電圧検出手段及び前記コンデンサ電圧検出
手段から前記バッテリの電圧値及び前記コンデンサの電
圧値を入力するとともに、前記第一及び第二のリレーが
閉かつ前記第三のリレーが開である場合に、当該バッテ
リの電圧値と当該コンデンサの電圧値との差が一定値未
満であっても、当該コンデンサの電圧値が一定値未満で
あれば当該第一及び第二のリレーに異常があると判断す
る制御手段と、 を備えたことを特徴とする電気自動車用電源制御装置。
4. A function of opening and closing a first relay that directly connects one of a positive electrode side and a negative electrode side of a battery and a load, and a function of directly connecting the other positive electrode side or negative electrode side of the battery and the load. A power supply control device for an electric vehicle having a function of opening and closing a second relay, and a function of opening and closing a third relay connected in parallel to the first relay and connecting the battery and the load via a resistor In, battery voltage detection means for detecting the voltage value of the battery, capacitor voltage detection means for detecting the voltage value of a capacitor connected in parallel to the load, the battery voltage detection means and the capacitor voltage detection means from the battery Input voltage value of the capacitor and the voltage value of the capacitor, and when the first and second relays are closed and the third relay is open, Even if the difference between the battery voltage value and the voltage value of the capacitor is less than a certain value, if the voltage value of the capacitor is less than the certain value, it is determined that the first and second relays are abnormal. A means for controlling electric power supply for an electric vehicle, comprising:
【請求項5】 バッテリと負荷との正極側又は負極側の
一方を直接接続する第一のリレーを開閉する機能と、前
記バッテリと前記負荷との正極側又は負極側の他方を直
接接続する第二のリレーを開閉する機能と、前記第一の
リレーに並列接続され前記バッテリと前記負荷とを抵抗
器を介して接続する第三のリレーを開閉する機能と、前
記負荷に電力を消費させる機能とを備えた電気自動車用
電源制御装置において、 前記バッテリの電圧値を検出するバッテリ電圧検出手段
と、 前記負荷に並列接続されたコンデンサの電圧値を検出す
るコンデンサ電圧検出手段と、 前記バッテリ電圧検出手段及び前記コンデンサ電圧検出
手段から前記バッテリの電圧値及び前記コンデンサの電
圧値を入力するとともに、前記第一及び第二のリレーが
閉かつ前記第三のリレーが開である状態から当該第一及
び第二のリレーの少なくとも一方を開にするとともに前
記負荷に電力を消費させても、当該バッテリの電圧値と
当該コンデンサの電圧値との差が一定値以下であれば当
該開にしたリレーが溶着していると判断する制御手段
と、 を備えたことを特徴とする電気自動車用電源制御装置。
5. A function of opening and closing a first relay that directly connects one of a positive electrode side and a negative electrode side of a battery and a load, and a function of directly connecting the other of the positive electrode side and the negative electrode side of the battery and the load. A function of opening and closing a second relay, a function of opening and closing a third relay connected in parallel to the first relay and connecting the battery and the load via a resistor, and a function of causing the load to consume power. In a power supply control device for an electric vehicle comprising: a battery voltage detection unit that detects a voltage value of the battery; a capacitor voltage detection unit that detects a voltage value of a capacitor connected in parallel to the load; and the battery voltage detection unit. Means and the capacitor voltage detecting means, the voltage value of the battery and the voltage value of the capacitor are input, and the first and second relays are closed and the first and second relays are closed. Even if at least one of the first and second relays is opened from the state where the third relay is open and the load consumes power, the difference between the voltage value of the battery and the voltage value of the capacitor is A power supply control device for an electric vehicle, comprising: a control unit that determines that the opened relay is welded if the value is a predetermined value or less.
【請求項6】 前記溶着の判断を車両の停止時に実行す
るようにした、 請求項5記載の電気自動車用電源制御装置。
6. The electric vehicle power source control device according to claim 5, wherein the determination of welding is performed when the vehicle is stopped.
【請求項7】 前記停止時とは、前記車両が走行時又は
バッテリ充電時から完全に停止状態になる直前である、 請求項6記載の電気自動車用電源制御装置。
7. The electric vehicle power source control device according to claim 6, wherein the stop time is a time immediately before the vehicle is completely stopped after the vehicle is running or the battery is charged.
JP2001291037A 2001-09-25 2001-09-25 Power control device for electric vehicle Withdrawn JP2003102101A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001291037A JP2003102101A (en) 2001-09-25 2001-09-25 Power control device for electric vehicle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001291037A JP2003102101A (en) 2001-09-25 2001-09-25 Power control device for electric vehicle

Publications (1)

Publication Number Publication Date
JP2003102101A true JP2003102101A (en) 2003-04-04

Family

ID=19113244

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001291037A Withdrawn JP2003102101A (en) 2001-09-25 2001-09-25 Power control device for electric vehicle

Country Status (1)

Country Link
JP (1) JP2003102101A (en)

Cited By (45)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004088696A1 (en) * 2003-03-31 2004-10-14 Nec Lamilion Energy Ltd. Relay contact welding detection method and apparatus
JP2005116485A (en) * 2003-10-10 2005-04-28 Fuji Heavy Ind Ltd Relay welding detection device and relay welding detecting method
JP2005160271A (en) * 2003-11-28 2005-06-16 Honda Motor Co Ltd Hybrid power supply device, motor drive and vehicle
EP1601093A1 (en) * 2004-05-17 2005-11-30 Sanyo Electric Co., Ltd. Inverter with detection of welding of relay contacts
EP1610453A1 (en) * 2004-06-25 2005-12-28 Sanyo Electric Co., Ltd. Inverter device
JP2006081340A (en) * 2004-09-10 2006-03-23 Toyota Motor Corp Control device for power circuit
JP2006320079A (en) * 2005-05-11 2006-11-24 Toyota Motor Corp Power control
JP2007089240A (en) * 2005-09-20 2007-04-05 Toyota Motor Corp Fault detector of power supply circuit
JP2007159326A (en) * 2005-12-07 2007-06-21 Honda Motor Co Ltd Power supply controller
US7269535B2 (en) 2005-03-30 2007-09-11 Toyota Jidosha Kabushiki Kaisha Fault diagnosing apparatus for vehicle and fault diagnosing method for vehicle
JP2007250335A (en) * 2006-03-15 2007-09-27 Toyota Motor Corp Power supply control device
JP2008084628A (en) * 2006-09-27 2008-04-10 Toyota Motor Corp Fuel cell system and starting method of fuel cell
JP2008135319A (en) * 2006-11-29 2008-06-12 Matsushita Electric Ind Co Ltd Induction-heating cooker
JP2009259762A (en) * 2008-03-28 2009-11-05 Hitachi Ltd Power source having a plurality of relays
US7782014B2 (en) 2007-07-23 2010-08-24 Ac Propulsion, Inc. System and method for battery management
JP2010268620A (en) * 2009-05-15 2010-11-25 Toshiba Corp Power supply control circuit, electronic apparatus, power supply circuit control method
JP2011055631A (en) * 2009-09-01 2011-03-17 Nissan Motor Co Ltd Relay failure diagnostic device
JP2011091895A (en) * 2009-10-20 2011-05-06 Toyota Motor Corp Power supply control system
DE102010051042A1 (en) * 2010-11-11 2012-01-26 Magna Powertrain Ag & Co. Kg Energy supply device for electromechanical actuator that is utilized for rotating stabilizer parts in e.g. front roll stabilizer of motor car, has resistance element switched between two positive connections of main and auxiliary batteries
US20120086278A1 (en) * 2009-06-09 2012-04-12 Toyota Jidosha Kabushiki Kaisha Fuel cell system
US8164433B2 (en) 2009-04-17 2012-04-24 Ac Propulsion, Inc. Detecting faults in a wiring harness
JP2012100438A (en) * 2010-11-02 2012-05-24 Nec Energy Devices Ltd Secondary battery system
JP2012182857A (en) * 2011-02-10 2012-09-20 Shin Kobe Electric Mach Co Ltd Dc power supply
JP2012205466A (en) * 2011-03-28 2012-10-22 Kayaba Ind Co Ltd Power storage device and hybrid construction machine
JP2013500548A (en) * 2009-07-24 2013-01-07 ルノー・エス・アー・エス Method for diagnosing the operation of a device for disconnecting and connecting a battery and an in-vehicle power system of both vehicles
JP2013524748A (en) * 2010-03-29 2013-06-17 シェンチェン ビーワイディー オート アールアンドディー カンパニー リミテッド Battery module parallel device and control method thereof
JP2013198172A (en) * 2012-03-15 2013-09-30 Asmo Co Ltd Load driving device
WO2014077522A1 (en) * 2012-11-14 2014-05-22 에스케이이노베이션 주식회사 Device and method for relay fusion detection for battery system
CN104181472A (en) * 2013-05-20 2014-12-03 Ls产电株式会社 Method of detecting state of power cable in inverter system
JP2014236583A (en) * 2013-05-31 2014-12-15 有限会社 エートゥゼット Capacitor charging device
JP2015057032A (en) * 2013-09-13 2015-03-23 トヨタ自動車株式会社 Power storage system
WO2016125945A1 (en) * 2015-02-04 2016-08-11 한화테크윈 주식회사 Electric vehicle
JPWO2015093188A1 (en) * 2013-12-20 2017-03-16 日立オートモティブシステムズ株式会社 Diagnostic device for determining abnormality of power transmission path
KR20170097481A (en) * 2016-02-18 2017-08-28 주식회사 엘지화학 Charging or discharging system and method for diagnosing state of contactor
EP2009759A4 (en) * 2006-04-14 2017-10-04 Toyota Jidosha Kabushiki Kaisha Power supply device and power supply device control method
JP2018019461A (en) * 2016-07-25 2018-02-01 キヤノン株式会社 Power supply device, image formation device, and power supply control method
JP2018121408A (en) * 2017-01-24 2018-08-02 ファナック株式会社 Motor drive device
CN108859762A (en) * 2017-05-08 2018-11-23 华晨汽车集团控股有限公司 A kind of control system and detection method of power cells for new energy vehicles relay
US10338141B2 (en) 2014-12-24 2019-07-02 Gs Yuasa International Ltd. Power supply protective device, power supply device and switch failure diagnosing method
CN110406425A (en) * 2019-07-26 2019-11-05 河南美力达汽车有限公司 A kind of power battery electric discharge preliminary filling control method
WO2020137237A1 (en) * 2018-12-26 2020-07-02 株式会社村田製作所 Switching module
JP2020150682A (en) * 2019-03-13 2020-09-17 トヨタ自動車株式会社 Power cutoff device
JP2021035087A (en) * 2019-08-20 2021-03-01 トヨタ自動車株式会社 Power system
US11385298B2 (en) 2017-12-11 2022-07-12 Lg Energy Solution, Ltd. Apparatus and method for diagnosing positive electrode contactor of battery pack
WO2023287112A1 (en) * 2021-07-14 2023-01-19 주식회사 엘지에너지솔루션 Battery device, battery management system, and precharge method

Cited By (65)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4572168B2 (en) * 2003-03-31 2010-10-27 日本電気株式会社 Method and apparatus for detecting welding of relay contacts
JPWO2004088696A1 (en) * 2003-03-31 2006-07-06 Necラミリオンエナジー株式会社 Method and apparatus for detecting welding of relay contacts
WO2004088696A1 (en) * 2003-03-31 2004-10-14 Nec Lamilion Energy Ltd. Relay contact welding detection method and apparatus
US7368829B2 (en) 2003-03-31 2008-05-06 Nec Corporation Method and apparatus for detecting welding of a relay contact
JP2005116485A (en) * 2003-10-10 2005-04-28 Fuji Heavy Ind Ltd Relay welding detection device and relay welding detecting method
JP4570859B2 (en) * 2003-10-10 2010-10-27 富士重工業株式会社 Relay welding detection device and relay welding detection method
JP2005160271A (en) * 2003-11-28 2005-06-16 Honda Motor Co Ltd Hybrid power supply device, motor drive and vehicle
EP1601093A1 (en) * 2004-05-17 2005-11-30 Sanyo Electric Co., Ltd. Inverter with detection of welding of relay contacts
US7439704B2 (en) 2004-05-17 2008-10-21 Sanyo Electric Co., Ltd. Inverter device and inverter module
EP1610453A1 (en) * 2004-06-25 2005-12-28 Sanyo Electric Co., Ltd. Inverter device
JP2006081340A (en) * 2004-09-10 2006-03-23 Toyota Motor Corp Control device for power circuit
JP4543844B2 (en) * 2004-09-10 2010-09-15 トヨタ自動車株式会社 Power supply circuit control device
US7269535B2 (en) 2005-03-30 2007-09-11 Toyota Jidosha Kabushiki Kaisha Fault diagnosing apparatus for vehicle and fault diagnosing method for vehicle
JP2006320079A (en) * 2005-05-11 2006-11-24 Toyota Motor Corp Power control
JP4539431B2 (en) * 2005-05-11 2010-09-08 トヨタ自動車株式会社 Power control device
JP2007089240A (en) * 2005-09-20 2007-04-05 Toyota Motor Corp Fault detector of power supply circuit
JP4529851B2 (en) * 2005-09-20 2010-08-25 トヨタ自動車株式会社 Power supply circuit abnormality detection device
JP2007159326A (en) * 2005-12-07 2007-06-21 Honda Motor Co Ltd Power supply controller
JP2007250335A (en) * 2006-03-15 2007-09-27 Toyota Motor Corp Power supply control device
EP2009759A4 (en) * 2006-04-14 2017-10-04 Toyota Jidosha Kabushiki Kaisha Power supply device and power supply device control method
JP2008084628A (en) * 2006-09-27 2008-04-10 Toyota Motor Corp Fuel cell system and starting method of fuel cell
JP2008135319A (en) * 2006-11-29 2008-06-12 Matsushita Electric Ind Co Ltd Induction-heating cooker
US7782014B2 (en) 2007-07-23 2010-08-24 Ac Propulsion, Inc. System and method for battery management
JP2009259762A (en) * 2008-03-28 2009-11-05 Hitachi Ltd Power source having a plurality of relays
US8164433B2 (en) 2009-04-17 2012-04-24 Ac Propulsion, Inc. Detecting faults in a wiring harness
JP2010268620A (en) * 2009-05-15 2010-11-25 Toshiba Corp Power supply control circuit, electronic apparatus, power supply circuit control method
US20120086278A1 (en) * 2009-06-09 2012-04-12 Toyota Jidosha Kabushiki Kaisha Fuel cell system
US9502725B2 (en) * 2009-06-09 2016-11-22 Toyota Jidosha Kabushiki Kaisha Fuel cell system with connector welding prevention
JP2013500548A (en) * 2009-07-24 2013-01-07 ルノー・エス・アー・エス Method for diagnosing the operation of a device for disconnecting and connecting a battery and an in-vehicle power system of both vehicles
JP2011055631A (en) * 2009-09-01 2011-03-17 Nissan Motor Co Ltd Relay failure diagnostic device
JP2011091895A (en) * 2009-10-20 2011-05-06 Toyota Motor Corp Power supply control system
JP2013524748A (en) * 2010-03-29 2013-06-17 シェンチェン ビーワイディー オート アールアンドディー カンパニー リミテッド Battery module parallel device and control method thereof
JP2012100438A (en) * 2010-11-02 2012-05-24 Nec Energy Devices Ltd Secondary battery system
DE102010051042A1 (en) * 2010-11-11 2012-01-26 Magna Powertrain Ag & Co. Kg Energy supply device for electromechanical actuator that is utilized for rotating stabilizer parts in e.g. front roll stabilizer of motor car, has resistance element switched between two positive connections of main and auxiliary batteries
JP2012182857A (en) * 2011-02-10 2012-09-20 Shin Kobe Electric Mach Co Ltd Dc power supply
JP2012205466A (en) * 2011-03-28 2012-10-22 Kayaba Ind Co Ltd Power storage device and hybrid construction machine
JP2013198172A (en) * 2012-03-15 2013-09-30 Asmo Co Ltd Load driving device
WO2014077522A1 (en) * 2012-11-14 2014-05-22 에스케이이노베이션 주식회사 Device and method for relay fusion detection for battery system
JP2014227169A (en) * 2013-05-20 2014-12-08 エルエス産電株式会社Lsis Co., Ltd. Method of detecting state of power cable in inverter system
CN104181472A (en) * 2013-05-20 2014-12-03 Ls产电株式会社 Method of detecting state of power cable in inverter system
US9400303B2 (en) 2013-05-20 2016-07-26 Lsis Co., Ltd. Method of detecting state of power cable in inverter system
JP2014236583A (en) * 2013-05-31 2014-12-15 有限会社 エートゥゼット Capacitor charging device
JP2015057032A (en) * 2013-09-13 2015-03-23 トヨタ自動車株式会社 Power storage system
JPWO2015093188A1 (en) * 2013-12-20 2017-03-16 日立オートモティブシステムズ株式会社 Diagnostic device for determining abnormality of power transmission path
US10690724B2 (en) 2014-12-24 2020-06-23 Gs Yuasa International Ltd. Power supply protective device, power supply device and switch failure diagnosing method
US10338141B2 (en) 2014-12-24 2019-07-02 Gs Yuasa International Ltd. Power supply protective device, power supply device and switch failure diagnosing method
WO2016125945A1 (en) * 2015-02-04 2016-08-11 한화테크윈 주식회사 Electric vehicle
US10843568B2 (en) 2015-02-04 2020-11-24 Hanwha Defense Co., Ltd. Electric vehicle
KR20170097481A (en) * 2016-02-18 2017-08-28 주식회사 엘지화학 Charging or discharging system and method for diagnosing state of contactor
KR102065737B1 (en) 2016-02-18 2020-01-13 주식회사 엘지화학 Charging or discharging system and method for diagnosing state of contactor
JP2018019461A (en) * 2016-07-25 2018-02-01 キヤノン株式会社 Power supply device, image formation device, and power supply control method
JP2018121408A (en) * 2017-01-24 2018-08-02 ファナック株式会社 Motor drive device
CN108859762A (en) * 2017-05-08 2018-11-23 华晨汽车集团控股有限公司 A kind of control system and detection method of power cells for new energy vehicles relay
US11385298B2 (en) 2017-12-11 2022-07-12 Lg Energy Solution, Ltd. Apparatus and method for diagnosing positive electrode contactor of battery pack
WO2020137237A1 (en) * 2018-12-26 2020-07-02 株式会社村田製作所 Switching module
JPWO2020137237A1 (en) * 2018-12-26 2021-11-04 株式会社村田製作所 Switching module
JP7173164B2 (en) 2018-12-26 2022-11-16 株式会社村田製作所 switching module
US11881702B2 (en) 2018-12-26 2024-01-23 Murata Manufacturing Co., Ltd. Switching module
JP2020150682A (en) * 2019-03-13 2020-09-17 トヨタ自動車株式会社 Power cutoff device
JP7103280B2 (en) 2019-03-13 2022-07-20 トヨタ自動車株式会社 Power shutoff device
CN110406425A (en) * 2019-07-26 2019-11-05 河南美力达汽车有限公司 A kind of power battery electric discharge preliminary filling control method
CN110406425B (en) * 2019-07-26 2023-12-19 河南美力达汽车有限公司 Discharging and pre-charging control method for power battery
JP2021035087A (en) * 2019-08-20 2021-03-01 トヨタ自動車株式会社 Power system
JP7298386B2 (en) 2019-08-20 2023-06-27 トヨタ自動車株式会社 power system
WO2023287112A1 (en) * 2021-07-14 2023-01-19 주식회사 엘지에너지솔루션 Battery device, battery management system, and precharge method

Similar Documents

Publication Publication Date Title
JP2003102101A (en) Power control device for electric vehicle
US7843706B2 (en) Circuit controller, inrush current limiting circuit, inrush current limiting circuit with battery, inverter, and inverter with battery
JP4749190B2 (en) Welding detection method for discriminating welding of power supply device for vehicle and contactor of this power supply device
JP6417892B2 (en) Contactor failure determination method and contactor failure determination device
JP7120072B2 (en) Precharge controller
CN109866620B (en) Power supply control apparatus for electric vehicle
JP4604485B2 (en) Power system abnormality detection device
JP2009038925A (en) Power supply unit for vehicle, and control method thereof
US9896047B2 (en) Power supply apparatus and vehicle including the same
JP2007242247A (en) Arrangement for controlling vehicular power supply system
EP2330013B1 (en) Electric power steering device
JP2006238509A (en) Control device of electric vehicle, control method of the electric vehicle, program and computer-readable recording medium
WO2013150825A1 (en) Power supply and anomaly detection method of power supply
JP4934959B2 (en) Inverter control device
JP7221193B2 (en) Secondary battery system
JP7103199B2 (en) Precharge controller
JP2016161478A (en) Failure determination device of contactor
JP2017079496A (en) Contactor failure determining device and contactor failure determining method
JP5299052B2 (en) Power storage device
JP2009225493A (en) Method of charging battery, and charger used for it
KR20090039891A (en) Control method for pre-charging of hybrid electric vehicle
JP2017093008A (en) Contactor failure determination device and contactor failure determination method
JP2005328674A (en) Inverter device
KR20200025762A (en) Method for diagnosing failure of relays
JP6648217B2 (en) Switch unit and battery device

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20081202