JP2003090520A - Gasifying furnace and gasifying method for combustible substance - Google Patents

Gasifying furnace and gasifying method for combustible substance

Info

Publication number
JP2003090520A
JP2003090520A JP2002200646A JP2002200646A JP2003090520A JP 2003090520 A JP2003090520 A JP 2003090520A JP 2002200646 A JP2002200646 A JP 2002200646A JP 2002200646 A JP2002200646 A JP 2002200646A JP 2003090520 A JP2003090520 A JP 2003090520A
Authority
JP
Japan
Prior art keywords
furnace
gas
fluidized bed
gasification
fluidized
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2002200646A
Other languages
Japanese (ja)
Inventor
Mitsuo Hirayama
詳郎 平山
Takahiro Oshita
孝裕 大下
Chikayuki Tagome
智加之 田米
Shiyuuichi Nagatou
秀一 永東
Tetsuhisa Hirose
哲久 広勢
Yoshihisa Miyoshi
敬久 三好
Seiichiro Toyoda
誠一郎 豊田
Shugo Hosoda
修吾 細田
Shosaku Fujinami
晶作 藤並
Kazuo Takano
和夫 高野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ebara Corp
Original Assignee
Ebara Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ebara Corp filed Critical Ebara Corp
Priority to JP2002200646A priority Critical patent/JP2003090520A/en
Publication of JP2003090520A publication Critical patent/JP2003090520A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Fluidized-Bed Combustion And Resonant Combustion (AREA)
  • Incineration Of Waste (AREA)
  • Gasification And Melting Of Waste (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method and a device to gasify a combustible substance, such as waste and coal, generate product gas containing a large quantity of combustible contents capable of melting ash contents by self heat, and effect melting combustion. SOLUTION: In a method to gasify a combustible substance in a fluidized bed furnace, a circulation flow of a fluidizing medium is formed in the fluidized bed 2, a combustible substance is fed to the fluidized bed 2 and gasified in the circulation flow in the fluidized bed furnace 2 to produce gas and char. The char is formed into particulates in the circulation flow, and gas and char formed into particulates are discharged from the fluidized bed 2.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、流動層炉において可燃
物をガス化するガス化炉及びガス化方法、並びに生成さ
れた可燃ガス及び微粒子を熔融燃焼炉において高温燃焼
させ灰分を熔融する方法及び装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a gasification furnace and a gasification method for gasifying combustibles in a fluidized bed furnace, and a method for combusting produced combustible gas and fine particles at a high temperature in a melting combustion furnace to melt ash. And equipment.

【0002】[0002]

【従来の技術】近年、多量に発生する都市ごみ、廃プラ
スチック等の廃棄物を焼却し減量化すること、及びその
焼却熱を有効利用することが望まれている。廃棄物の焼
却灰は、通常、有害な重金属を含むので、焼却灰を埋め
立てにより処理するためには、重金属成分を固化処理す
る等の対策が必要である。これらの課題に対応するた
め、特公昭62−35004号公報の固形物の燃焼方法
及びその装置が提案された。この公報の燃焼方法におい
ては、固形物原料が流動層熱分解炉において熱分解さ
れ、熱分解生成物、即ち、可燃ガス及び粒子、がサイク
ロン燃焼炉に導入される。サイクロン燃焼炉の中で加圧
空気により可燃分が高負荷燃焼され、旋回流により灰分
が壁面に衝突し溶けて壁面を流下し、熔融スラグとなっ
て排出口から水室へ落下し固化される。
2. Description of the Related Art In recent years, it has been desired to incinerate a large amount of waste such as municipal waste and waste plastic to reduce the amount thereof, and to effectively utilize the incineration heat. Since the incinerated ash of waste usually contains harmful heavy metals, in order to treat the incinerated ash by landfill, it is necessary to take measures such as solidifying the heavy metal components. In order to cope with these problems, a method for burning solid matter and a device therefor have been proposed in Japanese Patent Publication No. 62-35004. In the combustion method of this publication, the solid material is pyrolyzed in the fluidized bed pyrolysis furnace, and the pyrolysis products, that is, combustible gas and particles, are introduced into the cyclone combustion furnace. In the cyclone combustion furnace, the combustibles are burned under high load by the pressurized air, and the swirling flow causes the ash to collide with the wall surface, melt and flow down the wall surface, become molten slag, and fall into the water chamber from the outlet and solidify. .

【0003】特公昭62−35004号公報の方法にお
いては、流動層全体が活発な流動化状態であるため、生
成ガスに同伴して炉外へ飛散する未反応可燃分が多いた
め、高いガス化効率が得られない等の短所があった。ま
た、従来、流動層炉が使用できるガス化原料としては、
石炭等の場合は、粒径0.5〜3mmの粉炭、廃棄物の
場合は、数十mmの細破砕物とされてきた。これより大
きいと流動化を阻害するし、これより小さいと完全にガ
ス化されないまま未反応可燃分として生成ガスに同伴し
て炉外へ飛散してしまう。従って、これまでの流動層炉
では、ガス化原料を炉に投入する前の前処理として、予
め粉砕機等を用いて破砕・整粒することが不可欠であ
り、所定の粒径範囲に入らないガス化原料は、利用でき
ず、歩留まりをある程度犠牲にせざるをえなかった。
In the method of Japanese Patent Publication No. 62-35004, since the entire fluidized bed is in an active fluidized state, there is a large amount of unreacted combustibles that are entrained in the produced gas and scattered outside the furnace, resulting in high gasification. There were some disadvantages such as inefficiency. Further, conventionally, as a gasification raw material that can be used in a fluidized bed furnace,
In the case of coal or the like, it has been regarded as pulverized coal having a particle size of 0.5 to 3 mm, and in the case of waste, it has been crushed to several tens of mm. If it is larger than this, fluidization is hindered, and if it is smaller than this, it is not completely gasified but is entrained in the produced gas as unreacted combustibles and scattered outside the furnace. Therefore, in the conventional fluidized bed furnace, it is indispensable to crush and size the particles beforehand by using a pulverizer or the like as a pretreatment before introducing the gasification raw material into the furnace, and the particle size does not fall within the predetermined particle size range. The gasification raw material was not available, and the yield had to be sacrificed to some extent.

【0004】上記の問題を解決するため、特開平2−1
47692号公報の流動層ガス化方法及び流動層ガス化
炉が提案された。この公報の流動層ガス化方法において
は、炉の水平断面が矩形にされ、炉底中央部から炉内へ
上向きに噴出される流動化ガスの質量速度が、炉底の2
つの側縁部から供給される流動化ガスの質量速度より小
さくされ、炉底側縁部の上方で流動化ガスの上向き流が
炉中央部へ転向され、炉中央部に流動媒体が沈降する移
動層が形成され、炉の両側縁部に流動媒体が活発に流動
化する流動層が形成され、移動層に可燃物が供給され
る。流動化ガスは、空気と蒸気の混合物、又は酸素と蒸
気の混合物であり、流動媒体は、珪砂である。
In order to solve the above problems, Japanese Patent Laid-Open No. 2-1
A fluidized bed gasification method and a fluidized bed gasification furnace of Japanese Patent No. 47692 have been proposed. In the fluidized bed gasification method of this publication, the horizontal cross section of the furnace is rectangular, and the mass velocity of the fluidizing gas ejected upward from the central portion of the furnace bottom is 2
The mass velocity of the fluidizing gas supplied from one side edge is made smaller, and the upward flow of the fluidizing gas is diverted to the central part of the furnace above the side edge of the bottom of the furnace, and the fluidized medium is settled in the central part of the furnace. A bed is formed, a fluidized bed in which the fluidized medium is actively fluidized is formed on both side edges of the furnace, and combustibles are supplied to the moving bed. The fluidizing gas is a mixture of air and steam or a mixture of oxygen and steam, and the fluidizing medium is silica sand.

【0005】しかしながら、この特開平2−14769
2号公報の方法は、次の短所を有する。即ち、(1)移
動層及び流動層の全体において、ガス化吸熱反応と燃焼
反応が同時に生じ、ガス化し易い揮発分がガス化すると
同時に燃焼され、ガス化困難な固定炭素(チャー)やタ
ール分等は、未反応物として生成ガスに同伴して炉外へ
飛散し、高いガス化効率が得られない。(2)生成ガス
を燃焼させ蒸気及びガスタービン複合発電プラントに使
用する場合、流動層炉を加圧型とすることが必要である
が、炉の水平断面が矩形のため、加圧型とすることが困
難である。好ましいガス化炉の内圧は、生成ガスの用途
によって決定される。一般の燃焼用ガスとして使用する
場合は、数千mmAq程度で良いが、ガスタービンの燃
料として使用する場合は、数kgf/cm2以上が必要
であり、更に、高効率ガス化複合発電用の燃料として使
用する場合には十数数kgf/cm2以上が適当であ
る。
However, this Japanese Patent Application Laid-Open No. 2-14769
The method of Japanese Patent No. 2 has the following disadvantages. That is, (1) In the entire moving bed and fluidized bed, a gasification endothermic reaction and a combustion reaction occur at the same time, and volatile components that are easily gasified are gasified and burned at the same time, and fixed carbon (char) and tar components that are difficult to gasify. Etc. are entrained in the produced gas as unreacted substances and scattered outside the furnace, and high gasification efficiency cannot be obtained. (2) When the produced gas is burned and used in a steam and gas turbine combined cycle power plant, the fluidized bed furnace needs to be a pressure type, but since the horizontal cross section of the furnace is rectangular, it may be a pressure type. Have difficulty. The preferred internal pressure of the gasifier is determined by the use of the produced gas. When used as a general combustion gas, it may be about several thousand mmAq, but when used as a gas turbine fuel, several kgf / cm 2 or more is required. When it is used as a fuel, it is suitable that it is a dozen or more kgf / cm 2 or more.

【0006】都市ごみ等の廃棄物処理については、依然
として可燃性ごみの燃焼による減量化が、重要な役割を
担っており、それに付随して、近年、ダイオキシン対
策、媒塵の無害化、エネルギー回収効率の向上等、環境
保全型のごみ処理技術の必要性が増大している。我が国
の都市ごみの焼却量は、約100,000トン/日であ
り、都市ごみ全量のエネルギーは、我が国の消費電力量
の約4%に相当する。現在、都市ごみのエネルギーの利
用率は、約10%に止まっているが、利用率を高めるこ
とができれば、それだけ化石燃料の消費量が少なくな
り、地球温暖化防止にも寄与できる。
Regarding the waste treatment of municipal wastes, the reduction of the amount of combustible wastes by combustion still plays an important role, and in addition to this, in recent years, countermeasures against dioxin, detoxification of dust and energy recovery There is an increasing need for environmentally friendly waste treatment technologies such as improved efficiency. The amount of municipal waste incinerated in Japan is about 100,000 tons / day, and the energy of the entire amount of municipal waste corresponds to about 4% of the power consumption of Japan. At present, the energy utilization rate of municipal solid waste is only about 10%, but if the utilization rate can be increased, the consumption of fossil fuels will be reduced and it will contribute to the prevention of global warming.

【0007】しかしながら、現在の焼却システムは、次
の問題を含んでいる。即ち、HClによる腐食の問題
があり、発電効率を高くできない。HCl、NOx、
SOx、水銀、ダイオキシン等に対する公害防止設備が
複雑化してコスト及びスペースが増大している。法規
制の強化、最終処分場の用地難等により、焼却灰の熔融
設備の設置が増大しているが、そのため別設備の建設が
必要であり、また電力等を多量に消費している。ダイ
オキシンを除去するには、高価な設備が必要である。
有価金属の回収が困難である。
However, current incineration systems include the following problems. That is, there is a problem of corrosion due to HCl, and power generation efficiency cannot be increased. HCl, NOx,
Pollution control equipment for SOx, mercury, dioxins, etc. has become complicated and cost and space have increased. The installation of melting equipment for incineration ash is increasing due to the tightening of legal regulations and the difficulty of landfill at the final disposal site. Therefore, it is necessary to construct another equipment and consume a large amount of electricity. Expensive equipment is required to remove dioxins.
It is difficult to recover valuable metals.

【0008】[0008]

【発明が解決しようとする課題】本発明の目的は、従来
技術の前記の問題点を解消することにあり、都市ごみ、
廃プラスチック等の廃棄物や石炭等の可燃物から多量の
可燃分を含む可燃ガスを高効率で生成することにある。
本発明の他の目的は、エネルギを回収に好適な、高圧の
可燃ガスを発生することが容易な可燃物のガス化炉を提
供することである。本発明の別の目的は、多量の可燃分
を含む可燃ガスを生成し、生成された可燃ガスの自己熱
量により燃焼灰を熔融することができるガス化及び熔融
燃焼方法並びに装置を提供することにある。本発明にお
いては、熔融炉へ供給される生成ガスは、自己熱量によ
り1300℃以上の高温を発生するような充分な熱量を
持ち、チャー、タールを含む均質なガスであるようにさ
れ、またガス化装置から不燃物の排出が支障なく行われ
るようにされる。本発明の更に別の目的は、廃棄物中の
有価金属を還元雰囲気の流動層炉内から酸化しない状態
で取出し回収できるガス化方法及び装置を提供すること
にある。本発明の更に別の目的は、図面を参照する実施
例の説明において明らかにされる。
SUMMARY OF THE INVENTION An object of the present invention is to eliminate the above-mentioned problems of the prior art.
It is to generate combustible gas containing a large amount of combustible material from waste materials such as waste plastics and combustible materials such as coal with high efficiency.
Another object of the present invention is to provide a gasifier for combustible materials, which is suitable for energy recovery and which can easily generate high-pressure combustible gas. Another object of the present invention is to provide a gasification and fusion combustion method and apparatus capable of producing a combustible gas containing a large amount of combustible components and melting the combustion ash by the self-heat amount of the produced combustible gas. is there. In the present invention, the produced gas supplied to the melting furnace has a sufficient amount of heat to generate a high temperature of 1300 ° C. or more due to the amount of self-heat and is a homogeneous gas containing char and tar. Incombustibles are discharged from the gasification device without any hindrance. Still another object of the present invention is to provide a gasification method and apparatus capable of extracting and recovering valuable metals in waste from a fluidized-bed furnace in a reducing atmosphere without oxidation. Still another object of the present invention will be clarified in the description of the embodiments with reference to the drawings.

【0009】[0009]

【課題を解決するための手段】上述の目的を達成するた
め、本発明の可燃物の処理方法は、可燃物を流動層炉に
てガス化する方法において、該流動層炉内に流動媒体の
循環流を形成し、該可燃物を該流動層炉に供給し、該流
動層炉内の循環流中でガス化してガスとチャーを生成
し、該チャーを該循環流中で微粒子とし、該流動層炉よ
り該ガスと該微粒子となったチャーを排出することを特
徴とする。
In order to achieve the above-mentioned object, a method for treating a combustible material according to the present invention is a method for gasifying a combustible material in a fluidized bed furnace. Forming a circulation flow, supplying the combustible material to the fluidized bed furnace, gasifying in the circulation flow in the fluidized bed furnace to generate gas and char, and making the char into fine particles in the circulation flow, It is characterized in that the gas and the char which has become the fine particles are discharged from the fluidized bed furnace.

【0010】本発明の可燃物のガス化方法の1態様は、
可燃物を流動層炉でガス化する方法であって、該流動層
炉内に流動媒体の沈降拡散する層が形成された循環流を
形成し、該可燃物を該流動層炉に供給し、該可燃物を該
流動媒体とともに該沈降拡散する層中を下降させ、該沈
降拡散する層をガス化ゾーンとし、該ガス化ゾーンでガ
ス化してガスとチャーを生成し、該チャーを酸化ゾーン
に供給し、該チャーを燃焼して該流動媒体を加熱し、該
加熱された流動媒体を該ガス化ゾーンに戻してガス化の
熱源とし、該ガス化ゾーンより該ガスを排出することを
特徴とする。
One embodiment of the method for gasifying combustible materials according to the present invention is as follows:
A method of gasifying a combustible material in a fluidized bed furnace, forming a circulating flow in which a bed for sedimentation and diffusion of a fluidized medium is formed in the fluidized bed furnace, and supplying the combustible material to the fluidized bed furnace, The combustible material is lowered together with the fluidized medium in the sedimentation-diffusion layer, the sedimentation-diffusion layer is used as a gasification zone, and gas and char are generated by gasification in the gasification zone, and the char is converted into an oxidation zone. Supplying, heating the fluidized medium by burning the char, returning the heated fluidized medium to the gasification zone as a heat source for gasification, and discharging the gas from the gasification zone. To do.

【0011】本発明の可燃物のガス化方法の他の態様
は、可燃物を流動層炉でガス化する方法であって、該流
動層炉内に流動媒体の沈降拡散する層が形成された循環
流を形成し、該可燃物を該流動層炉に供給し、該可燃物
を該流動媒体とともに該沈降拡散する層中を下降させ層
中でガス化してガスとチャーを生成し、該チャーを燃焼
して該流動媒体を加熱するとともに該チャーを該循環流
中で微粒子とし、該加熱された流動媒体を該沈降拡散す
る層に移し、該流動層炉より該ガスと該微粒子となった
チャーを排出することを特徴とする。
Another embodiment of the method for gasifying a combustible material according to the present invention is a method for gasifying a combustible material in a fluidized bed furnace, wherein a layer in which the fluidized medium is settled and diffused is formed in the fluidized bed furnace. A circulating flow is formed, the combustible material is supplied to the fluidized bed furnace, and the combustible material is lowered together with the fluidized medium in the bed for sedimentation and diffusion to be gasified in the bed to generate gas and char, and the char And heating the fluidized medium to make the char into fine particles in the circulating flow, and transferring the heated fluidized medium to the bed for settling and diffusion to obtain the gas and the fine particles from the fluidized bed furnace. Characterized by discharging char.

【0012】本発明の可燃物のガス化炉の1態様は、可
燃物をガス化するガス化炉において、該ガス化炉は流動
層炉であって、該流動層炉内に流動媒体の循環流を形成
し、該可燃物を該流動層炉に供給し、該流動層炉内の循
環流中でガス化してガスとチャーを生成し、該チャーを
該循環流中で微粒子とし、該流動層炉より該ガスと該微
粒子となったチャーを排出することを特徴とする。
One embodiment of the gasifier for combustible substances of the present invention is a gasifier for gasifying combustible substances, wherein the gasifier is a fluidized bed furnace, and a fluidized medium is circulated in the fluidized bed furnace. Forming a stream, supplying the combustible material to the fluidized bed furnace, gasifying in the circulating stream in the fluidized bed furnace to generate gas and char, and making the char into fine particles in the circulating stream, It is characterized in that the gas and the char which has become the fine particles are discharged from the layer furnace.

【0013】本発明の可燃物のガス化炉の他の態様は、
可燃物をガス化するガス化炉において、該ガス化炉は流
動層炉であって、該流動層炉内に流動媒体の沈降拡散す
る層が形成された循環流を形成し、該可燃物を該流動層
炉に供給し、該可燃物を該流動媒体とともに該沈降拡散
する層中を下降させ、該沈降拡散する層をガス化ゾーン
とし、該ガス化ゾーンでガス化してガスとチャーを生成
し、該チャーを酸化ゾーンに供給し、該チャーを燃焼し
て該流動媒体を加熱し、該加熱された流動媒体を該ガス
化ゾーンに戻してガス化の熱源とし、該ガス化ゾーンよ
り該ガスを排出することを特徴とする。
Another aspect of the combustible gasifier of the present invention is:
In a gasification furnace for gasifying combustibles, the gasification furnace is a fluidized bed furnace and forms a circulating flow in which a bed for sedimentation and diffusion of a fluidized medium is formed in the fluidized bed furnace, It is supplied to the fluidized bed furnace, and the combustibles are lowered together with the fluidized medium in the bed for sedimentation and diffusion, and the bed for sedimentation and diffusion is used as a gasification zone, and gasified in the gasification zone to generate gas and char. Then, the char is supplied to an oxidation zone, the char is burned to heat the fluidized medium, and the heated fluidized medium is returned to the gasification zone as a heat source for gasification. It is characterized by discharging gas.

【0014】本発明の可燃物のガス化炉の他の態様は、
可燃物をガス化するガス化炉において、該ガス化炉は流
動層炉であって、該流動層炉内に流動媒体の沈降拡散す
る層が形成された循環流を形成し、該可燃物を該流動層
炉に供給し、該可燃物を該流動媒体とともに該沈降拡散
する層中を下降させ層中でガス化してガスとチャーを生
成し、該チャーを燃焼して該流動媒体を加熱するととも
に該チャーを該循環流中で微粒子とし、該加熱された流
動媒体を該沈降拡散する層に移し、該流動層炉より該ガ
スと該微粒子となったチャーを排出することを特徴とす
る。
Another aspect of the combustible gasifier of the present invention is:
In a gasification furnace for gasifying combustibles, the gasification furnace is a fluidized bed furnace and forms a circulating flow in which a bed for sedimentation and diffusion of a fluidized medium is formed in the fluidized bed furnace, It is supplied to the fluidized bed furnace, and the combustible material is lowered together with the fluidized medium in the bed that sediments and diffuses to gasify in the bed to generate gas and char, and the char is burned to heat the fluidized medium. Along with this, the char is made into fine particles in the circulation flow, the heated fluidized medium is transferred to the bed for settling and diffusion, and the gas and the char as fine particles are discharged from the fluidized bed furnace.

【0015】本発明においては、可燃物が流動層炉で可
燃ガスにガス化される。本発明の方法において、流動層
炉の水平断面がほぼ円形にされ、流動層炉へ供給される
流動化ガスが、炉底中央部付近から炉内へ供給される中
央流動化ガス及び炉底周辺部から炉内へ供給される周辺
流動化ガスから成り、中央流動化ガスの質量速度が、周
辺流動化ガスの質量速度より小にされ、炉内周辺部上方
における流動化ガスの上向き流が炉の中央部へ向うよう
に傾斜壁により転向され、それによって、炉の中央部に
流動媒体(一般的には、硅砂を使用)が沈降拡散する移
動層が形成されると共に炉内周辺部に流動媒体が活発に
流動化している流動層が形成され、炉内へ供給される可
燃物が、移動層の下部から流動層へ及び流動層頂部から
移動層へ、流動媒体と共に循環する間に可燃ガスにガス
化され、中央流動化ガスの酸素含有量が、周辺流動化ガ
スの酸素含有量以下であり、流動層の温度が450〜6
50℃に維持される。
In the present invention, combustibles are gasified into combustible gas in a fluidized bed furnace. In the method of the present invention, the horizontal cross section of the fluidized bed furnace is made substantially circular, and the fluidizing gas supplied to the fluidized bed furnace is the central fluidizing gas supplied to the inside of the furnace from the vicinity of the central portion of the furnace bottom and the periphery of the furnace bottom. It consists of the peripheral fluidized gas supplied into the furnace from the central part, the mass velocity of the central fluidized gas is made smaller than the mass velocity of the peripheral fluidized gas, and the upward flow of the fluidized gas above the inner peripheral portion of the furnace is It is diverted by the inclined wall toward the center of the furnace, which forms a moving bed in the center of the furnace where the fluidized medium (generally silica sand is used) is settled and diffused, and flows to the periphery of the furnace. A fluidized bed in which the medium is actively fluidized is formed, and combustibles supplied to the furnace are combustible gas while circulating with the fluidized medium from the bottom of the moving bed to the fluidized bed and from the top of the fluidized bed to the moving bed. The oxygen content of the central fluidized gas is Or less oxygen content of sides fluidizing gas, temperature of the fluidized bed 450-6
Maintained at 50 ° C.

【0016】本発明において、中央流動化ガスは、水蒸
気、水蒸気と空気の混合気体、及び空気の3種の気体の
内の1つである。また、周辺流動化ガスは、酸素、酸素
と空気の混合気体、及び空気の3種の気体の内の1つで
ある。それ故、中央流動化ガスと周辺流動化ガスの組合
せは、第1表に示すように、9通りある。どの組合せを
選定するかは、ガス化効率を重視するか、経済性を重視
するかにより、決められる。
In the present invention, the central fluidizing gas is one of three kinds of gases, steam, a mixed gas of steam and air, and air. The peripheral fluidizing gas is one of three kinds of gas, oxygen, a mixed gas of oxygen and air, and air. Therefore, there are nine combinations of the central fluidizing gas and the peripheral fluidizing gas, as shown in Table 1. Which combination is selected depends on whether gasification efficiency is important or economic efficiency is important.

【0017】[0017]

【表1】 ガス化効率の最も高い組合せは、No.1の組合せであ
るが酸素消費量が多いのでコスト高である。酸素消費
量、次に水蒸気消費量を少なくする順に、ガス化効率が
低下するが、コストも低くなる。本発明において使用さ
れる酸素は、高純度のものでも良く、また酸素富化膜を
使用して得られる低純度のものでも良い。No.9の空
気と空気の組合せは、従来の焼却炉の燃焼空気として公
知であるが、流動層炉の水平断面を円形とした本発明に
おいては、炉内周辺部上方に設けられる傾斜壁の下方投
影面積が、流動層炉の水平断面を矩形とする場合の傾斜
壁の下方投影面積より大きいので、周辺流動化ガスの流
量を増大し、従って、酸素供給量を増大できるので、ガ
ス化効率を向上させることができる。
[Table 1] The combination with the highest gasification efficiency is No. Although the combination is 1, the cost is high because the oxygen consumption is large. In the order of decreasing oxygen consumption and then steam consumption, the gasification efficiency decreases, but the cost also decreases. The oxygen used in the present invention may be of high purity or low purity obtained by using an oxygen-enriched film. No. The air and air combination of No. 9 is known as the combustion air of the conventional incinerator, but in the present invention in which the horizontal cross section of the fluidized bed furnace is circular, the downward projection of the inclined wall provided above the inner periphery of the furnace is shown. Since the area is larger than the downward projected area of the inclined wall when the horizontal cross section of the fluidized bed furnace is rectangular, it is possible to increase the flow rate of the peripheral fluidizing gas and thus increase the oxygen supply amount, thus improving the gasification efficiency. Can be made.

【0018】好ましくは、本発明の方法は、流動化ガス
が炉底中央部と炉底周辺部の間の炉底中間部から炉内へ
供給される中間流動化ガスを更に含む。中間流動化ガス
の質量速度は、中央流動化ガスの質量速度と周辺流動化
ガスの質量速度の間にある。中間流動化ガスは、水蒸気
と空気の混合気体、及び空気の2種の気体の内の1つで
ある。それ故、中央流動化ガス、中間流動化ガス、及び
周辺流動化ガスの組合せは、18通りとなるが、酸素含
有量は、炉の中心部から周辺部へ順に増加することが好
都合であり、好適な組合せは、第2表の15通りであ
る。
[0018] Preferably, the method of the present invention further comprises an intermediate fluidizing gas supplied into the furnace from an intermediate portion of the bottom of the furnace between the central portion of the bottom and the peripheral portion of the bottom. The mass velocity of the intermediate fluidizing gas lies between the mass velocity of the central fluidizing gas and the mass velocity of the peripheral fluidizing gas. The intermediate fluidizing gas is one of two kinds of gases, a mixed gas of steam and air, and air. Therefore, although there are 18 combinations of the central fluidizing gas, the intermediate fluidizing gas, and the peripheral fluidizing gas, it is convenient that the oxygen content sequentially increases from the central portion to the peripheral portion of the furnace, The preferred combinations are 15 in Table 2.

【0019】[0019]

【表2】 第2表の組合せにおいて、どれを選定するかは、ガス化
効率を重視するか、経済性を重視するかにより、決めら
れる。第2表の組合せの内、ガス化効率の最も高い組合
せは、No.1の組合せであるが、酸素消費量が多いの
でコスト高である。酸素消費量、次に水蒸気消費量を少
なくする順に、ガス化効率が低下するが、コストも低く
なる。第1表及び第2表において使用される酸素は、高
純度のものでも良く、また酸素富化膜を使用して得られ
る低純度のものでも良い。
[Table 2] Which of the combinations shown in Table 2 is selected is determined depending on whether gasification efficiency is important or economic efficiency is important. Among the combinations shown in Table 2, the combination with the highest gasification efficiency is No. Although it is a combination of 1, the cost is high because the oxygen consumption is large. In the order of decreasing oxygen consumption and then steam consumption, the gasification efficiency decreases, but the cost also decreases. The oxygen used in Tables 1 and 2 may be of high purity or low purity obtained by using an oxygen-enriched film.

【0020】流動層炉が大型となる場合、中間流動化ガ
スは、炉底中央部と炉底周辺部の間に設けた複数の同心
状の中間部から供給される複数の流動化ガスであること
が好ましい。この場合、流動化ガスの酸素濃度は、炉中
央部において最も低く、周辺部に近づくに従ってより高
くするのが好適である。
When the fluidized bed furnace becomes large in size, the intermediate fluidizing gases are a plurality of fluidizing gases supplied from a plurality of concentric intermediate portions provided between the central portion and the peripheral portion of the furnace bottom. It is preferable. In this case, it is preferable that the oxygen concentration of the fluidizing gas is the lowest in the central part of the furnace and is higher as it approaches the peripheral part.

【0021】本発明の方法において、好ましくは、流動
層炉へ供給される流動化ガスは、可燃物の燃焼に必要な
理論燃焼空気量の30%以下の空気量を含む。流動層炉
の炉底周辺部付近から不燃物が取出され、分級され、得
られた砂が流動層炉内へ戻される。流動層炉で生成され
た可燃ガス及び微粒子が熔融燃焼炉で1300℃以上で
高温燃焼され、灰分が熔融される。熔融燃焼炉からの排
ガスによりガスタービンが駆動される。流動層炉内の圧
力は、用途に応じて大気圧以下又は大気圧以上に維持さ
れる。可燃物は、廃棄物、石炭、その他である。
In the method of the present invention, preferably, the fluidizing gas supplied to the fluidized bed furnace contains an air amount of 30% or less of the theoretical combustion air amount required for burning the combustible material. Incombustibles are taken out from the vicinity of the bottom of the fluidized bed furnace, classified, and the obtained sand is returned into the fluidized bed furnace. The combustible gas and fine particles generated in the fluidized bed furnace are burned at a high temperature of 1300 ° C. or higher in the melting combustion furnace to melt ash. The gas turbine is driven by the exhaust gas from the melt combustion furnace. The pressure in the fluidized bed furnace is maintained below atmospheric pressure or above atmospheric pressure depending on the application. Combustibles are waste, coal, etc.

【0022】本発明は、また流動層炉において可燃物が
ガス化される装置を提供する。本発明の装置において、
流動層炉は、水平断面がほぼ円形の側壁、炉内底部に配
置される流動化ガス分散機構、流動化ガス分散機構の外
周に配置される不燃物取出口、流動化ガス分散機構の中
央部付近から炉内へ流動化ガスを垂直方向上方へ流動す
るように供給する中央供給手段、流動化ガス分散機構の
周辺部から炉内へ流動化ガスを垂直方向上方へ流動する
ように供給する周辺供給手段、周辺供給手段から垂直方
向上方へ流動する流動化ガスを炉中央部へ転向させる傾
斜壁、及び傾斜壁の上方に配置されるフリーボードを含
み、中央供給手段は、質量速度が比較的小さく、酸素濃
度が比較的低い流動化ガスを供給し、周辺供給手段は、
質量速度が比較的大きく、酸素濃度が比較的高い流動化
ガスを供給する。
The present invention also provides an apparatus in which combustibles are gasified in a fluidized bed furnace. In the device of the present invention,
The fluidized bed furnace has a side wall with a substantially horizontal horizontal section, a fluidizing gas dispersion mechanism arranged at the bottom of the furnace, an incombustibles outlet located on the outer periphery of the fluidizing gas dispersion mechanism, and a central portion of the fluidizing gas dispersion mechanism Central supply means for supplying the fluidizing gas from the vicinity to the inside of the furnace so as to flow vertically upward, and the periphery of supplying the fluidizing gas to the inside of the furnace so as to flow vertically upward from the peripheral part of the fluidizing gas dispersion mechanism The central supply means includes a supply means, a sloped wall for diverting the fluidizing gas flowing vertically upward from the peripheral supply means to the central part of the furnace, and a freeboard arranged above the sloped wall. It supplies a fluidizing gas that is small and has a relatively low oxygen concentration.
A fluidizing gas having a relatively high mass velocity and a relatively high oxygen concentration is supplied.

【0023】本発明の装置においては、流動化ガス分散
機構の中央部と周辺部の間のリング状中間部から炉内へ
流動化ガスを垂直方向上方へ供給する中間供給手段が設
けられる。中間供給手段は、中央供給手段と周辺供給手
段から供給される流動化ガスの質量速度の中間の質量速
度、及び中央供給手段と周辺供給手段から供給される流
動化ガスの酸素濃度の中間の酸素濃度の流動化ガスを供
給する。周辺供給手段は、リング状の供給ボックスによ
り形成されることができる。可燃物入口が流動層炉の上
方に配置され、可燃物入口は、可燃物を中央供給手段の
上方へ落下させ、流動化ガス分散機構は、中央部よりも
周辺部が低く形成されることができる。
In the apparatus of the present invention, there is provided an intermediate supply means for supplying the fluidizing gas vertically upward from the ring-shaped intermediate portion between the central portion and the peripheral portion of the fluidizing gas dispersion mechanism. The intermediate supply means is a mass velocity intermediate between the mass velocities of the fluidizing gas supplied from the central supply means and the peripheral supply means, and an oxygen concentration intermediate between the oxygen concentrations of the fluidizing gas supplied from the central supply means and the peripheral supply means. A concentration of fluidizing gas is supplied. The peripheral supply means can be formed by a ring-shaped supply box. The combustible material inlet may be disposed above the fluidized bed furnace, the combustible material inlet may drop the combustible material above the central supply means, and the fluidized gas dispersion mechanism may be formed so that the peripheral portion is lower than the central portion. it can.

【0024】不燃物取出口は、分散機構の外周に配置さ
れるリング部分とリング状部分から下方へ向かって縮小
する円錐状部分を有することができる。不燃物取出口
は、直列に配列される定量排出器、第1シール用スイン
グ弁、スイングカット弁、及び第2シール用スイング弁
を有することができる。
The incombustibles outlet may have a ring portion arranged on the outer periphery of the dispersing mechanism and a conical portion that decreases downward from the ring-shaped portion. The incombustibles outlet may include a fixed amount ejector, a first seal swing valve, a swing cut valve, and a second seal swing valve that are arranged in series.

【0025】本発明の装置は、流動層炉において発生さ
れた可燃ガス及び微粒子を高温燃焼させ灰分を熔融させ
る熔融燃焼炉を含むことができる。熔融燃焼炉は、ほぼ
垂直方向の軸線を有する円筒形一次燃焼室、円筒形一次
燃焼室へ前記流動層炉で発生された可燃ガス及び微粒子
を軸線のまわりに旋回するように供給する可燃ガス入
口、円筒形一次燃焼室に連通される二次燃焼室、二次燃
焼室の下方部分に設けられ熔融灰分を排出可能な排出口
を有する。熔融燃焼炉の二次燃焼室の排ガスが、廃熱ボ
イラ及び空気予熱器導入され、廃熱が回収される。熔融
燃焼炉の二次燃焼室の排ガスによりガスタービンを駆動
させることができる。排ガスは、集塵器に導入され塵埃
が除去された後に大気中へ放出されることができる。熔
融燃焼炉の二次燃焼室の排ガスは、廃熱ボイラ及び空気
予熱器導入され、廃熱が回収され得る。熔融燃焼炉の二
次燃焼室の排ガスによりガスタービンを駆動させること
ができる。排ガスは、集塵器に導入され塵埃が除去され
た後に大気中へ放出される。
The apparatus of the present invention can include a melting combustion furnace for burning the combustible gas and fine particles generated in the fluidized bed furnace at a high temperature to melt the ash. The melting combustion furnace has a cylindrical primary combustion chamber having a substantially vertical axis, and a combustible gas inlet for supplying the combustible gas and fine particles generated in the fluidized bed furnace to the cylindrical primary combustion chamber so as to swirl around the axis. , A secondary combustion chamber communicating with the cylindrical primary combustion chamber, and an outlet provided in a lower portion of the secondary combustion chamber for discharging molten ash. Exhaust gas from the secondary combustion chamber of the melt combustion furnace is introduced into a waste heat boiler and an air preheater, and waste heat is recovered. The gas turbine can be driven by the exhaust gas from the secondary combustion chamber of the melt combustion furnace. The exhaust gas can be discharged into the atmosphere after being introduced into the dust collector to remove the dust. Exhaust gas from the secondary combustion chamber of the melt combustion furnace is introduced into a waste heat boiler and an air preheater, and waste heat can be recovered. The gas turbine can be driven by the exhaust gas from the secondary combustion chamber of the melt combustion furnace. The exhaust gas is introduced into the dust collector and is then discharged into the atmosphere after the dust is removed.

【0026】[0026]

【作用】本発明のガス化装置は、流動層炉の循環流によ
り熱が拡散されるので、高負荷とすることができ、炉を
小型にすることができる。本発明においては、流動層炉
が少量の空気で燃焼を維持できるので、流動層炉を低空
気比低温度(450〜650℃)とし、発熱を最小限に
抑えて、ゆるやかに燃焼させることにより、可燃分を多
量に含む均質な生成ガスを得ることができ、ガス、ター
ル、チャーの可燃分の大部分を次段の熔融燃焼炉におい
て利用できる。本発明においては、流動層炉の循環流に
より大きな不燃物も容易に排出できる。また、不燃物中
の鉄、アルミが、未酸化の有価物として利用できる。本
発明の方法又は装置においては、流動層炉の水平断面が
ほぼ円形にされるから、炉を耐圧構造とし、流動層炉を
大気圧以上の加圧状態とし、炉内へ供給される可燃物か
ら生成される可燃ガスの圧力を高圧とすることが容易で
ある。高圧の可燃ガスは、高効率で運転できるガスター
ビンやボイラ・ガスタービン複合プラント用の燃料とし
て使用可能であり、それ故、そのようなプラントにおい
て可燃ガスを使用することにより、可燃物からのエネル
ギ回収の効率を向上できる。本発明の方法又は装置にお
いて、ごみ処理を主体とする場合は、臭気や有害燃焼ガ
スが流動層炉から漏れるのを防止するため、炉内圧を大
気圧以下とすることが好ましいが、この場合にも流動層
炉の水平断面が円形であることにより、炉壁は、容易に
外圧に耐えることができる。
In the gasifier of the present invention, the heat is diffused by the circulating flow of the fluidized bed furnace, so that the load can be increased and the furnace can be downsized. In the present invention, since the fluidized bed furnace can maintain combustion with a small amount of air, the fluidized bed furnace is made to have a low air ratio and low temperature (450 to 650 ° C.), the heat generation is minimized, and the combustion is gently performed. A homogeneous product gas containing a large amount of combustible components can be obtained, and most of the combustible components of gas, tar, and char can be used in the next-stage melting and combustion furnace. In the present invention, large incombustibles can be easily discharged by the circulating flow of the fluidized bed furnace. In addition, iron and aluminum contained in non-combustible materials can be used as unoxidized valuable materials. In the method or apparatus of the present invention, since the horizontal cross section of the fluidized bed furnace is made substantially circular, the furnace has a pressure resistant structure, the fluidized bed furnace is in a pressurized state of atmospheric pressure or higher, and the combustible material supplied into the furnace. It is easy to increase the pressure of the combustible gas generated from the high pressure. High-pressure combustible gas can be used as fuel for gas turbines and boiler / gas turbine combined plants that can operate with high efficiency. Therefore, by using combustible gas in such a plant, energy from combustible materials can be used. Collection efficiency can be improved. In the method or apparatus of the present invention, in the case of mainly treating dust, in order to prevent odor and harmful combustion gas from leaking from the fluidized bed furnace, it is preferable that the pressure in the furnace is atmospheric pressure or less, but in this case Also, since the horizontal section of the fluidized bed furnace is circular, the furnace wall can easily withstand external pressure.

【0027】本発明においては、流動層炉へ供給される
中央流動化ガスの質量速度が、周辺流動化ガスの質量速
度より小にされ、炉内周辺部上方における流動化ガスの
上向き流が炉の中央部へ向うように転向され、それによ
って、流動媒体の沈降拡散する移動層が炉の中央部に形
成されると共に、炉内周辺部に流動媒体が活発に流動化
している流動層が形成される。炉内へ供給された可燃物
は、移動層の下部から流動層へ及び流動層頂部から移動
層へ、流動媒体と共に循環する間に可燃ガスにガス化さ
れる。可燃物は、最初に、炉中央の下降する移動層の中
で、主として揮発分が流動媒体(一般的には、硅砂を使
用)の熱によりガス化される。そして、移動層を形成す
る中央流動化ガスの酸素含有量が、小さため、移動層内
で生じた可燃ガスは、ほとんど燃焼されずに中央流動化
ガスと共にフリーボードへ上昇され、発熱量の高い良質
の生成ガスとなる。
In the present invention, the mass velocity of the central fluidizing gas supplied to the fluidized bed furnace is made smaller than the mass velocity of the peripheral fluidizing gas, and the upward flow of the fluidizing gas above the peripheral portion inside the furnace is the furnace. Of the fluidized medium is formed in the central part of the furnace, and a fluidized bed in which the fluidized medium is actively fluidized is formed in the peripheral part of the furnace. To be done. The combustibles fed into the furnace are gasified into combustible gases while circulating with the fluid medium, from the bottom of the moving bed to the fluidized bed and from the top of the fluidized bed to the moving bed. The combustibles are first gasified in the moving bed in the center of the furnace, where the volatiles are mainly due to the heat of the fluid medium (typically silica sand). And, since the oxygen content of the central fluidizing gas forming the moving bed is small, the combustible gas generated in the moving bed is hardly burned and is raised to the freeboard together with the central fluidizing gas, and the calorific value is high. It becomes a good quality product gas.

【0028】移動層において揮発分が失われ加熱された
可燃物、即ち、固定炭素(チャー)やタール分等は、次
に流動層内へ循環され、流動層内の比較的酸素含有量の
多い周辺流動化ガスと接触し燃焼され、燃焼ガス及び灰
分に変わると共に炉内を450〜650℃に維持する燃
焼熱を発生する。この燃焼熱により流動媒体が加熱さ
れ、加熱された流動媒体が炉周辺部上方で炉中央部へ転
向され移動層内を下降することにより移動層内の温度を
揮発分のガス化に必要な温度に維持する。可燃物が投入
される炉中央部ほど低酸素状態であるので、高い可燃分
を有する生成ガスを発生することができる。また、可燃
物中の金属が不燃物取出口から未酸化の有価物として回
収することができる。
The combustibles that have lost volatile components and are heated in the moving bed, that is, fixed carbon (char) and tar components, are then circulated into the fluidized bed and have a relatively high oxygen content in the fluidized bed. It is contacted with the surrounding fluidizing gas and burned to generate combustion heat which changes into combustion gas and ash and maintains the temperature in the furnace at 450 to 650 ° C. The fluidized medium is heated by this combustion heat, and the heated fluidized medium is turned to the central part of the furnace above the peripheral part of the furnace and descends in the moving bed to change the temperature in the moving bed to the temperature required for gasification of volatile matter. To maintain. Since the central part of the furnace into which the combustibles are charged is in a low oxygen state, it is possible to generate a product gas having a high combustible content. Further, the metal in the combustible material can be recovered from the non-combustible material outlet as unoxidized valuable material.

【0029】本発明においては、流動層炉において生成
されたガス及び灰分その他の微粒子を熔融燃焼炉におい
て燃焼させる場合、生成ガスが高可燃分を含むので、加
熱用燃料を必要とすることなく、熔融炉内を1300℃
以上の高温にすることができ、熔融炉内で灰分を充分熔
融させることができる。熔融した灰は、熔融炉から取り
出し水冷等の周知の方法により容易に固化させ得る。そ
れ故、灰分の体積は、著しく減少され、また灰分中の有
害金属は、固化されるので、灰分は、埋め立て処理可能
な形態となる。本発明のその他の作用は、特許請求の範
囲及び図面を参照する実施例の説明から明らかにされ
る。
In the present invention, when the gas and ash and other fine particles produced in the fluidized bed furnace are combusted in the melting combustion furnace, the produced gas contains a high combustible content, so that heating fuel is not required. 1300 ℃ in the melting furnace
The above high temperature can be achieved, and the ash content can be sufficiently melted in the melting furnace. The melted ash can be easily taken out from the melting furnace and solidified by a known method such as water cooling. Therefore, the volume of ash is significantly reduced, and the harmful metals in the ash are solidified so that the ash is in a landfillable form. Other operations of the present invention will be apparent from the claims and the description of the embodiments with reference to the drawings.

【0030】[0030]

【実施例】以下、本発明の実施例を図面を参照して説明
するが、本発明は、これらに限定されるものではなく、
特許請求の範囲によって定義されるものである。また、
図1から図14において、同一の符号が付された部材
は、同一部材又は対応する部材であり、各図面の説明に
おいて、重複した説明は、省略される。
Embodiments of the present invention will now be described with reference to the drawings, but the present invention is not limited to these.
It is defined by the scope of the claims. Also,
1 to 14, members denoted by the same reference numerals are the same members or corresponding members, and redundant description will be omitted in the description of each drawing.

【0031】図1は、本発明のガス化方法を実施する第
1実施例のガス化装置の主要部の図解的な縦断面図、図
2は、図1のガス化装置の図解的な水平断面図である。
図1に示されるガス化装置において、流動層炉2内へ炉
底に配置される流動化ガス分散機構106を介し供給さ
れる流動化ガスは、炉底中央部4付近から炉内へ上向き
流として供給される中央流動化ガス7及び炉底周辺部3
から炉内へ上向き流として供給される周辺流動化ガス8
から成る。
FIG. 1 is a schematic vertical sectional view of a main part of the gasifier of the first embodiment for carrying out the gasification method of the present invention, and FIG. 2 is a schematic horizontal view of the gasifier of FIG. FIG.
In the gasifier shown in FIG. 1, the fluidizing gas supplied into the fluidized bed furnace 2 via the fluidizing gas dispersion mechanism 106 arranged at the bottom of the furnace flows upward from the vicinity of the central portion 4 of the bottom of the furnace into the furnace. Fluidized gas 7 and the furnace bottom peripheral part 3 supplied as
Fluidized gas 8 supplied from the above into the furnace as an upward flow
Consists of.

【0032】第1表に示すように、中央流動化ガス7
は、水蒸気、水蒸気と空気の混合気体、及び空気の3種
の気体の内の1つであり、周辺流動化ガス8は、酸素、
酸素と空気の混合気体、及び空気の3種の気体の内の1
つである。中央流動化ガスの酸素含有量は、周辺流動化
ガスの酸素含有量以下とされる。流動化ガス全体の空気
量が、可燃物11の燃焼に必要な理論燃焼空気量の30
%以下とされ、炉内は、還元雰囲気とされる。
As shown in Table 1, the central fluidizing gas 7
Is one of three kinds of gases, steam, a mixed gas of steam and air, and air, and the peripheral fluidizing gas 8 is oxygen,
Mixed gas of oxygen and air, and 1 of 3 gases
Is one. The oxygen content of the central fluidizing gas is not more than the oxygen content of the peripheral fluidizing gas. The amount of air in the entire fluidized gas is 30 times the theoretical amount of combustion air required to burn the combustible material 11.
%, And the inside of the furnace is in a reducing atmosphere.

【0033】中央流動化ガス7の質量速度は、周辺流動
化ガス8の質量速度より小にされ、炉内周辺部上方にお
ける流動化ガスの上向き流がデフレクタ6により炉の中
央部へ向うように転向される。それによって、炉の中央
部に流動媒体(一般的には硅砂を使用)が沈降拡散する
移動層9が形成されると共に炉内周辺部に流動媒体が活
発に流動化している流動層10が形成される。流動媒体
は、矢印118で示すように、炉周辺部の流動層10を
上昇し、次にデフレクタ6により転向され、移動層9の
上方へ流入し、移動層9中を下降し、次に矢印112で
示すように、ガス分散機構106に沿って移動し、流動
層10の下方へ流入することにより、流動層10と移動
層9の中を矢印118及び112で示すように循環す
る。
The mass velocity of the central fluidizing gas 7 is made smaller than the mass velocity of the peripheral fluidizing gas 8 so that the upward flow of the fluidizing gas above the peripheral portion inside the furnace is directed to the central portion of the furnace by the deflector 6. Converted. As a result, a moving bed 9 in which the fluidized medium (generally silica sand is used) is settled and diffused is formed in the central part of the furnace, and a fluidized bed 10 in which the fluidized medium is actively fluidized is formed in the inner peripheral part of the furnace. To be done. The fluidized medium rises in the fluidized bed 10 around the furnace as shown by an arrow 118, is then deflected by the deflector 6, flows in above the moving bed 9, descends in the moving bed 9, and then the arrow. As indicated by 112, the gas moves along the gas dispersion mechanism 106 and flows into the lower part of the fluidized bed 10 to circulate in the fluidized bed 10 and the moving bed 9 as indicated by arrows 118 and 112.

【0034】可燃物供給口104から移動層9の上部へ
供給された可燃物11は、流動媒体と共に移動層9中を
下降する間に、流動媒体の持つ熱により加熱され、主と
して揮発分がガス化される。移動層9には、酸素が無い
か少ないため、ガス化された揮発分から成る生成ガスは
燃焼されないで、移動層9中を矢印116のように抜け
る。それ故、移動層9は、ガス化ゾーンGを形成する。
フリーボード102へ移動した生成ガスは、矢印120
で示すように上昇し、ガス出口108から生成ガス29
として排出される。
The combustible material 11 supplied from the combustible material supply port 104 to the upper part of the moving bed 9 is heated by the heat of the fluidizing medium while descending in the moving bed 9 together with the fluidizing medium, and mainly volatile components are gasified. Be converted. Since the moving bed 9 has little or no oxygen, the produced gas composed of gasified volatile matter is not burned and passes through the moving bed 9 as indicated by an arrow 116. The moving bed 9 therefore forms a gasification zone G.
The generated gas moved to the freeboard 102 is indicated by the arrow 120.
As shown in FIG.
Is discharged as.

【0035】移動層9でガス化されない、主としてチャ
ー(固定炭素分)やタール114は、移動層9の下部か
ら、流動媒体と共に矢印112で示すように炉内周辺部
の流動層10の下部へ移動し、比較的酸素含有量の多い
周辺流動化ガス8により燃焼され、部分酸化される。流
動層10は、可燃物の酸化ゾーンSを形成する。流動層
10内において、流動媒体は、流動層内の燃焼熱により
加熱され高温となる。高温になった流動媒体は、矢印1
18で示すように、傾斜壁6により反転され、移動層9
へ移り、再びガス化の熱源となる。流動層10の温度
は、450〜650℃に維持され、抑制された燃焼反応
が継続するようにされる。
The char (fixed carbon content) and tar 114, which are not gasified in the moving bed 9, mainly flow from the lower part of the moving bed 9 to the lower part of the fluidized bed 10 in the periphery of the furnace together with the fluidized medium as indicated by arrow 112. It moves, is burned by the peripheral fluidized gas 8 having a relatively high oxygen content, and is partially oxidized. The fluidized bed 10 forms an oxidation zone S of combustibles. In the fluidized bed 10, the fluidized medium is heated to a high temperature by the heat of combustion in the fluidized bed. The flow medium that has reached a high temperature is indicated by the arrow 1
As shown at 18, it is inverted by the slanted wall 6 and the moving layer 9
Then, it becomes a heat source for gasification again. The temperature of the fluidized bed 10 is maintained at 450 to 650 ° C. so that the suppressed combustion reaction continues.

【0036】図1及び図2に示すガス化炉1によれば、
流動層炉2にガス化ゾーンGと酸化ゾーンSが形成さ
れ、流動媒体が両ゾーンにおいて熱伝達媒体となること
により、ガス化ゾーンGにおいて、発熱量の高い良質の
可燃ガスが生成され、酸化ゾーンSにおいては、ガス化
困難なチャーやタール114を効率良く燃焼させること
ができる。それ故、可燃物のガス化効率を向上させるこ
とができ、良質の可燃ガスを生成することができる。
According to the gasification furnace 1 shown in FIGS. 1 and 2,
Since the gasification zone G and the oxidation zone S are formed in the fluidized bed furnace 2 and the fluidized medium serves as a heat transfer medium in both zones, a high-quality combustible gas having a high calorific value is generated and oxidized. In the zone S, char and tar 114 that are difficult to gasify can be efficiently burned. Therefore, it is possible to improve the gasification efficiency of the combustible material and generate a good quality combustible gas.

【0037】図2に示される流動層炉2の水平断面にお
いて、ガス化ゾーンGを形成する移動層9は、炉中心部
において円形であり、酸化ゾーンSを形成する流動層1
0は、移動層9のまわりにリング状に形成される。流動
層10の外周にリング状の不燃物排出口5が配置され
る。ガス化炉1を円筒形とすることにより、高い炉内圧
を容易に支持することができる。ガス化炉自体により炉
内圧を受ける構造に代えて、ガス化炉の外部に別途圧力
容器(図示しない)を設けることができる。
In the horizontal section of the fluidized bed furnace 2 shown in FIG. 2, the moving bed 9 forming the gasification zone G is circular in the center of the furnace and the fluidized bed 1 forming the oxidation zone S is formed.
0 is formed in a ring shape around the moving layer 9. A ring-shaped incombustible discharge port 5 is arranged on the outer periphery of the fluidized bed 10. By making the gasification furnace 1 cylindrical, a high furnace pressure can be easily supported. Instead of the structure in which the pressure inside the furnace is received by the gasification furnace itself, a separate pressure vessel (not shown) can be provided outside the gasification furnace.

【0038】図3は、本発明のガス化方法を実施する第
2実施例のガス化装置の主要部の図解的な縦断面図、図
4は、図3のガス化装置の図解的な水平断面図である。
図3に示される第2実施例のガス化装置において、流動
化ガスは、中央流動化ガス7及び周辺流動化ガス8に加
え、炉底中央部と炉底周辺部の間の炉底中間部から炉内
へ供給される中間流動化ガス7’を含む。中間流動化ガ
ス7’の質量速度は、中央流動化ガス7の質量速度と周
辺流動化ガス8の質量速度の間に選定される。中間流動
化ガスは、水蒸気、水蒸気及び空気の混合気体、又は空
気の3種の気体の内のいずれか1つである。
FIG. 3 is a schematic vertical sectional view of a main part of the gasifier of the second embodiment for carrying out the gasification method of the present invention, and FIG. 4 is a schematic horizontal view of the gasifier of FIG. FIG.
In the gasifier of the second embodiment shown in FIG. 3, the fluidizing gas is added to the central fluidizing gas 7 and the peripheral fluidizing gas 8 as well as the furnace bottom middle portion between the furnace bottom central portion and the furnace bottom peripheral portion. It contains an intermediate fluidizing gas 7'supplied from the inside into the furnace. The mass velocity of the intermediate fluidizing gas 7'is selected between the mass velocity of the central fluidizing gas 7 and the mass velocity of the peripheral fluidizing gas 8. The intermediate fluidizing gas is any one of three kinds of gas, steam, a mixed gas of steam and air, or air.

【0039】図3のガス化装置において、図1のガス化
装置の場合と同様に、中央流動化ガス7は、水蒸気、水
蒸気と空気の混合気体、及び空気の3種の気体の内の1
つであり、周辺流動化ガス8は、酸素、酸素と空気の混
合気体、及び空気の3種の気体の内の1つである。中間
流動化ガスの酸素含有量は、中央流動化ガスの酸素含有
量と周辺流動化ガスの酸素含有量の間に選定される。そ
れ故、流動化ガスの好適な組合せは、第2表の15通り
である。各組合せにおいて、流動層炉の中央部から周辺
部へ拡がっていくにつれて、酸素供給量が増加すること
が重要である。流動化ガス全体の空気量が、可燃物11
の燃焼に必要な理論燃焼空気量の30%以下とされ、炉
内は、還元雰囲気とされる。
In the gasifier of FIG. 3, as in the case of the gasifier of FIG. 1, the central fluidizing gas 7 is one of the three gases of steam, a mixed gas of steam and air, and air.
The peripheral fluidizing gas 8 is one of three kinds of gases, oxygen, a mixed gas of oxygen and air, and air. The oxygen content of the intermediate fluidizing gas is selected between the oxygen content of the central fluidizing gas and the oxygen content of the peripheral fluidizing gas. Therefore, there are 15 combinations of fluidizing gas in Table 2. In each combination, it is important that the oxygen supply amount increases as the fluidized bed furnace expands from the central portion to the peripheral portion. The amount of air in the entire fluidized gas is
Is set to 30% or less of the theoretical combustion air amount required for combustion, and the furnace has a reducing atmosphere.

【0040】図1のガス化装置の場合と同様に、図3の
ガス化装置において、炉の中央部に流動媒体が沈降する
移動層9が形成され、炉の周辺部に流動媒体が上昇する
流動層10が形成される。流動媒体が、矢印112及び
118で示すように移動層及び流動層を通り循環する。
移動層9と流動層10の間においては、流動媒体が、主
として横方向に拡散する中間層9’が形成される。移動
層9及び中間層9’がガス化ゾーンGを形成し、流動層
10が酸化ゾーンSを形成する。
As in the case of the gasifier of FIG. 1, in the gasifier of FIG. 3, a moving bed 9 in which the fluidized medium settles is formed in the central part of the furnace, and the fluidized medium rises in the peripheral part of the furnace. The fluidized bed 10 is formed. A fluidized medium circulates through the moving bed and fluidized bed as indicated by arrows 112 and 118.
Between the moving bed 9 and the fluidized bed 10 is formed an intermediate layer 9 ′ in which the fluidized medium mainly diffuses laterally. The moving bed 9 and the intermediate bed 9 ′ form a gasification zone G, and the fluidized bed 10 forms an oxidation zone S.

【0041】移動層9の上部へ投入された可燃物11
は、流動媒体と共に移動層9中を下降する間に加熱さ
れ、その揮発分がガス化する。移動層9中でガス化され
なかったチャー及びタール並びに一部の揮発分は、流動
媒体と一緒に中間層9’及び流動層10へ移動し、部分
的にガス化し部分的に燃焼される。中間層9’でガス化
されない主としてチャー及びタールは、流動媒体と共
に、炉周辺部の流動層10内へ移動し、比較的酸素含有
量の多い周辺流動化ガス8中で燃焼される。流動媒体
は、流動層10中で加熱され、移動層9へ循環し、移動
層9中の可燃物を加熱する。中間層の酸素濃度について
は、可燃物の種類(揮発分が多いか、チャー、タール分
が多いか)等により、酸素濃度を低くしてガス化を主体
にするか、酸素濃度を高くして酸化燃焼を主体にするか
が選定される。
The combustible material 11 put in the upper part of the moving bed 9
Is heated while descending in the moving bed 9 together with the fluidized medium, and its volatile components are gasified. The char and tar which have not been gasified in the moving bed 9 and a part of the volatile components move to the intermediate bed 9 ′ and the fluidized bed 10 together with the fluidized medium, and are partially gasified and partially combusted. Mainly char and tar which are not gasified in the intermediate layer 9 ′ move into the fluidized bed 10 around the furnace together with the fluidized medium and are burned in the peripheral fluidized gas 8 having a relatively high oxygen content. The fluidized medium is heated in the fluidized bed 10 and circulates to the moving bed 9 to heat the combustibles in the moving bed 9. Regarding the oxygen concentration in the intermediate layer, depending on the type of combustibles (whether there is a large amount of volatile matter, char, or tar), etc., lower the oxygen concentration to focus on gasification or increase the oxygen concentration. It is selected whether oxidative combustion is the main component.

【0042】図4に示す流動層炉の水平断面おいて、ガ
ス化ゾーンを形成する移動層9は、炉中心部において円
形であり、その外周に沿って中間流動化ガス7’により
形成される中間ゾーン9’があり、酸化ゾーンを形成す
る流動層10は、中間ゾーン9’のまわりにリング状に
形成される。流動層10の外周にリング状の不燃物排出
口5が配置される。ガス化炉1を円筒形とすることによ
り、高い炉内圧を容易に支持することができる。炉内圧
は、ガス化炉自体で受けるか、またはガス化炉の外部に
別途圧力容器を設けてそれにより受けることができる。
In the horizontal section of the fluidized bed furnace shown in FIG. 4, the moving bed 9 forming the gasification zone is circular at the center of the furnace and is formed by the intermediate fluidized gas 7'along its outer periphery. There is an intermediate zone 9 ', the fluidized bed 10 forming the oxidation zone is formed in a ring around the intermediate zone 9'. A ring-shaped incombustible discharge port 5 is arranged on the outer periphery of the fluidized bed 10. By making the gasification furnace 1 cylindrical, a high furnace pressure can be easily supported. The internal pressure of the furnace can be received by the gasification furnace itself, or can be received by providing a pressure vessel separately outside the gasification furnace.

【0043】図5は、本発明の第3実施例のガス化装置
の図解的な垂直断面図である。図5のガス化装置1にお
いて、ごみ等の可燃物からなるガス化原料11は、ダブ
ルダンパー12、圧縮フィーダ13、及び給塵フィーダ
14により、ガス化装置1の流動層炉2へ供給される。
圧縮フィーダ13は、ガス化原料をプラグ状に圧縮し、
これにより炉内圧がシールされる。プラグ状に圧縮され
たごみは、図示しないほぐし器によりばらばらにされ、
給塵フィーダ14により炉内へ送られる。
FIG. 5 is a schematic vertical sectional view of a gasifier according to a third embodiment of the present invention. In the gasifier 1 of FIG. 5, a gasification raw material 11 made of a combustible material such as dust is supplied to the fluidized bed furnace 2 of the gasifier 1 by a double damper 12, a compression feeder 13, and a dust feeder 14. .
The compression feeder 13 compresses the gasification raw material into a plug shape,
This seals the furnace pressure. The plug-compressed waste is disassembled by a disintegrator (not shown),
The dust is fed into the furnace by the feeder 14.

【0044】図5のガス化装置において、中央流動化ガ
ス7及び周辺流動化ガス8は、図1の実施例と同様に供
給され、それ故、図1の実施例と同様に、流動層炉2に
還元雰囲気のガス化ゾーンと酸化ゾーンが形成される。
流動媒体が両ゾーンにおいて熱伝達媒体となり、ガス化
ゾーンにおいて、発熱量の高い良質の可燃ガスが生成さ
れ、また酸化ゾーンにおいて、ガス化困難なチャーやタ
ール114が効率良く燃焼され、高いガス化効率と良質
の可燃ガスが得られる。図5の実施例において、ダブル
ダンパ12とガス化炉1のフリーボード102に連通す
るルーツブロア15が設けられ、ごみの圧縮が不十分な
場合に炉内から圧縮フィーダを通りダブルダンパ12へ
リークするガスを炉内へ戻す。好ましくは、ルーツブロ
ア15は、ダブルダンパ12の上段部分が大気圧になる
ように、適当な量の空気及びガスをダブルダンパ12か
ら吸引し炉内へ戻す。
In the gasifier of FIG. 5, the central fluidizing gas 7 and the peripheral fluidizing gas 8 are fed in the same way as in the embodiment of FIG. 1 and therefore, as in the embodiment of FIG. At 2, a gasification zone and an oxidation zone of a reducing atmosphere are formed.
The fluidized medium serves as a heat transfer medium in both zones, high-quality combustible gas with high calorific value is generated in the gasification zone, and char and tar 114, which are difficult to gasify, are efficiently combusted in the oxidation zone, resulting in high gasification. Efficient and good quality combustible gas is obtained. In the embodiment of FIG. 5, a roots blower 15 that communicates with the double damper 12 and the freeboard 102 of the gasification furnace 1 is provided, and when the dust is insufficiently compressed, it leaks from the furnace through the compression feeder to the double damper 12. Return the gas into the furnace. Preferably, the roots blower 15 sucks an appropriate amount of air and gas from the double damper 12 and returns it to the furnace so that the upper part of the double damper 12 is at atmospheric pressure.

【0045】図5のガス化装置において、流動層炉2か
ら不燃物を排出するため、不燃物排出口5、円錐形シュ
ート16、定量排出器17、シール用第1スイング弁1
8、スイングカット弁19、シール用第2スイング弁2
0、トロンメル付き排出器23が、順に配置され、次の
ように作動される。
In the gasifier of FIG. 5, in order to discharge incombustibles from the fluidized bed furnace 2, the incombustibles discharge port 5, the conical chute 16, the constant quantity discharger 17, the first swing valve 1 for sealing are used.
8, swing cut valve 19, second swing valve for sealing 2
0, the ejector 23 with a trommel are arranged in order, and are operated as follows.

【0046】(1)シール用第1スイング弁18が開に
され、第2スイング弁20が閉にされて炉内圧が第2ス
イング弁20でシールされる状態において、定量排出器
17が運転され、流動媒体の砂を含む不燃物が、円錐形
シュート16内からスイングカット弁19へ排出され
る。(2)スイングカット弁19が所定量の不燃物を受
けると、定量排出器17がOFFされ、第1スイング弁
18が閉にされて炉内圧が第1スイング弁18でシール
される。そして排出弁22が開にされスイングカット弁
19内が大気圧に戻される。次に第2スイング弁20が
完全に開にされ、そしてスイングカット弁19が開にさ
れることにより、不燃物がトロンメル付き連続排出器2
3へ排出される。(3)第2スイング弁20が完全に閉
にされた後に、均圧弁21が開にされ、第1スイング弁
18の内部と円錐形シュート16の内部が均圧にされて
から、第1スイング弁18が開にされ、最初の工程
(1)へ戻る。これらの工程(1)〜(3)は、自動的
に繰り返し運転される。
(1) In the state where the first swing valve for sealing 18 is opened, the second swing valve 20 is closed, and the furnace pressure is sealed by the second swing valve 20, the constant amount discharger 17 is operated. The incombustible material containing the fluid medium sand is discharged from the inside of the conical chute 16 to the swing cut valve 19. (2) When the swing cut valve 19 receives a predetermined amount of incombustible material, the fixed amount discharger 17 is turned off, the first swing valve 18 is closed, and the furnace pressure is sealed by the first swing valve 18. Then, the discharge valve 22 is opened and the inside of the swing cut valve 19 is returned to atmospheric pressure. Next, the second swing valve 20 is completely opened, and the swing cut valve 19 is opened, so that the incombustibles are continuously ejected with the trommel 2
It is discharged to 3. (3) After the second swing valve 20 is completely closed, the pressure equalizing valve 21 is opened to equalize the pressure inside the first swing valve 18 and the pressure inside the conical chute 16, and then the first swing. The valve 18 is opened and the process returns to the first step (1). These steps (1) to (3) are automatically and repeatedly operated.

【0047】トロンメル付き連続排出器23は、連続運
転され、大きな不燃物27をトロンメルにより系外へ排
出し、砂と小さな不燃物を砂循環エレベータ24により
輸送し、分級器25により微細な不燃物28を除去した
後、砂は、ロックホッパ26を介しガス化炉1へ戻され
る。このような不燃物排出機構は、2台のスイング弁が
不燃物を受けずに圧力シール機能だけ有するので、第1
及び第2スイング弁18、20のシール部における不燃
物の噛込みを避けることができる。炉内圧が若干負圧で
よい場合は、シール機能は不要である。
The continuous discharger with trommel 23 is continuously operated, large incombustibles 27 are discharged out of the system by trommel, sand and small incombustibles are transported by the sand circulation elevator 24, and fine incombustibles are classified by the classifier 25. After removing 28, the sand is returned to the gasifier 1 via the lock hopper 26. Such an incombustibles discharge mechanism has a structure in which the two swing valves have only a pressure sealing function without receiving incombustibles.
In addition, it is possible to prevent the incombustibles from being caught in the seal portions of the second swing valves 18 and 20. The sealing function is not necessary when the internal pressure of the furnace may be slightly negative.

【0048】図6は、本発明の第4実施例のガス化装置
の図解的な垂直断面図である。図6のガス化装置におい
て、ガス化原料11の供給とそれに関係する炉内圧のシ
ールは、図5の不燃物の排出のための機構と同様に、ス
イングカット弁19、19’及びシール用第1及び第2
スイング弁18の組合せを使用して行われる。圧縮フィ
ーダ13は、除かれている。図6の実施例において、炉
内から第1スイング弁18内へ漏れたガスは、排出弁2
2及びブロア(図示しない)を介し、炉内へ戻される。
また、第1スイング弁18を完全に閉じた後に均圧弁2
1が開とされ、スイングカット弁19内の圧力が炉内圧
と同じにされる。
FIG. 6 is a schematic vertical sectional view of a gasifier according to a fourth embodiment of the present invention. In the gasifier of FIG. 6, the supply of the gasification raw material 11 and the sealing of the furnace pressure related thereto are similar to those of the mechanism for discharging the incombustibles in FIG. 1st and 2nd
This is done using a combination of swing valves 18. The compression feeder 13 has been omitted. In the embodiment shown in FIG. 6, the gas leaked from the furnace into the first swing valve 18 is discharged from the exhaust valve 2
2 and a blower (not shown) to be returned into the furnace.
In addition, after the first swing valve 18 is completely closed, the pressure equalizing valve 2
1 is opened, and the pressure in the swing cut valve 19 is made the same as the furnace pressure.

【0049】図7は、本発明のガス化装置により製造さ
れる生成ガスの精製工程の1例を示すフロー図である。
図7の精製工程において、ガス化装置1へガス化原料1
1及び流動化ガス7、8がガス化炉1へ供給される。ガ
ス化装置1において生成された可燃生成ガスは、廃熱ボ
イラ31で熱が回収され冷却されて、サイクロン分離器
32へ送られ、固形分37、38が分離される。その
後、生成ガスは、水洗浄塔33において水により洗浄さ
れ冷却され、アルカリ洗浄塔34において硫化水素を除
去され、その後、ガスホルダー35に貯留される。サイ
クロン分離器32で分離された固形分の内の未反応チャ
ー37は、ガス化装置1へ戻され、残りの固形分38
は、系外へ排出される。図5の実施例と同様に、ガス化
装置1から排出された不燃物の内、大きな不燃物27
は、系外へ排出され、砂は、ガス化装置1へ戻される。
洗浄塔33、34から出る廃水は、廃水処理器36へ導
入され、無害化処理される。
FIG. 7 is a flow chart showing an example of the purification process of the produced gas produced by the gasifier of the present invention.
In the refining process of FIG.
1 and fluidizing gas 7, 8 are supplied to the gasification furnace 1. The combustible product gas produced in the gasifier 1 is subjected to heat recovery and cooling in the waste heat boiler 31 and is sent to the cyclone separator 32, where the solid components 37 and 38 are separated. After that, the produced gas is washed with water in the water washing tower 33 and cooled, hydrogen sulfide is removed in the alkali washing tower 34, and then stored in the gas holder 35. The unreacted char 37 in the solid content separated by the cyclone separator 32 is returned to the gasifier 1, and the remaining solid content 38
Is discharged out of the system. Similar to the embodiment of FIG. 5, a large incombustible material 27 out of the incombustible materials discharged from the gasifier 1
Is discharged out of the system, and the sand is returned to the gasifier 1.
The wastewater discharged from the washing towers 33 and 34 is introduced into the wastewater treatment device 36 and is detoxified.

【0050】図8は、ガス化装置1において発生した可
燃生成ガス及び微粒子が、熔融燃焼炉41に導入されて
高温燃焼され、灰が熔融される工程の1例を示すフロー
図である。図8の工程において、ガス化装置1で製造さ
れた可燃分の多い生成ガスが、熔融燃焼炉41へ導入さ
れる。熔融燃焼炉41には、酸素、酸素と空気の混合気
体、又は空気が吹き込まれ、生成ガス及び微粒子が13
00℃以上で燃焼され、灰が熔融され、またダイオキシ
ン、PCB等の有害物質が分解される。熔融燃焼炉41
で熔融された灰44は、急冷されスラグとされ減量化さ
れる。熔融燃焼炉41で発生した燃焼排気ガスは、スク
ラバー42で急冷され、ダイオキシンの再合成が防止さ
れる。スクラバー41で急冷された排気ガスは、フィル
ター43において更に塵埃38が除去され、排気塔55
から大気へ排出される。
FIG. 8 is a flow chart showing an example of a process in which the combustible product gas and the fine particles generated in the gasifier 1 are introduced into the melting and burning furnace 41 and burned at a high temperature to melt the ash. In the process of FIG. 8, the combustible-rich product gas produced by the gasifier 1 is introduced into the melting combustion furnace 41. Oxygen, a mixed gas of oxygen and air, or air is blown into the melting and burning furnace 41, and the generated gas and fine particles are separated by 13%.
Burning at temperatures above 00 ° C melts ash and decomposes harmful substances such as dioxins and PCBs. Melting and burning furnace 41
The ash 44 melted in (4) is rapidly cooled to be slag and reduced in weight. Combustion exhaust gas generated in the melting and combustion furnace 41 is rapidly cooled by the scrubber 42 to prevent re-synthesis of dioxin. The exhaust gas that has been rapidly cooled by the scrubber 41 is further filtered by the filter 43 to remove dust 38, and the exhaust tower 55
Emitted into the atmosphere.

【0051】図9は、本発明の第5実施例のガス化及び
熔融燃焼装置の垂直断面斜視図である。図9において、
ガス化装置1は、図1の実施例とほぼ同一であるが、ガ
ス出口108は、熔融燃焼炉41の可燃ガス入口142
に連通されている。熔融燃焼炉41は、ほぼ垂直方向の
軸線を有する円筒形一次燃焼室140、及び水平方向に
傾斜する二次燃焼室150を含む。流動層炉2で発生さ
れた可燃ガス120及び微粒子は、可燃ガス入口142
を介し一次燃焼室140へその軸線のまわりに旋回する
ように供給される。
FIG. 9 is a vertical sectional perspective view of a gasification and melting combustion apparatus according to a fifth embodiment of the present invention. In FIG.
The gasifier 1 is almost the same as the embodiment of FIG. 1, but the gas outlet 108 is a combustible gas inlet 142 of the melt combustion furnace 41.
Is in communication with. The melt combustion furnace 41 includes a cylindrical primary combustion chamber 140 having a substantially vertical axis and a secondary combustion chamber 150 inclined in the horizontal direction. The combustible gas 120 and fine particles generated in the fluidized bed furnace 2 are combustible gas inlet 142.
To the primary combustion chamber 140 so as to swirl around its axis.

【0052】一次燃焼室140は、上端に始動バーナを
備えると共に、燃焼用空気を軸線のまわりに旋回するよ
うに供給する複数の空気ノズル134を備える。二次燃
焼室150は、一次燃焼室140とその下端で連通され
ると共に、二次燃焼室の下方部分に配置され熔融灰分を
排出可能な排出口152、排出口152の上方に配置さ
れる排気口154、一次燃焼室と連通する部分の付近に
配置される助燃バーナ136、及び燃焼用空気を供給す
る空気ノズル134を備える。排気口154は、輻射板
162を備え、輻射により排気口154から失われる熱
量を減少させている。
The primary combustion chamber 140 has a starting burner at its upper end and a plurality of air nozzles 134 for supplying combustion air so as to swirl around an axis. The secondary combustion chamber 150 communicates with the primary combustion chamber 140 at its lower end, and is disposed in a lower portion of the secondary combustion chamber to discharge a molten ash content, and an exhaust port 152 disposed above the exhaust port 152. A port 154, an auxiliary combustion burner 136 disposed near a portion communicating with the primary combustion chamber, and an air nozzle 134 for supplying combustion air are provided. The exhaust port 154 is provided with a radiation plate 162 to reduce the amount of heat lost from the exhaust port 154 due to radiation.

【0053】図10は、廃熱ボイラ及びタービンと組み
合わせて使用される本発明の実施例の流動層ガス化及び
熔融燃焼装置の配置図である。図10において、ガス化
装置1は、排出器23から排出された大きな不燃物27
及び分級器25から排出された微細な不燃物28を一緒
に搬送するコンベヤ172を具備する。流動層炉2の下
部から不燃物を取り出す円錐形シュート16のまわりに
空気ジャケット185が配置され、高温の抜き出し砂に
より空気ジャケット185内の空気が加熱される。補助
燃料Fが、熔融燃焼炉41の一次及び二次燃焼室14
0、150へ供給される。熔融燃焼炉41の排出口15
2から排出される熔融状態の灰44は、水室178に受
け入れられ急冷されて、スラグ176として排出され
る。
FIG. 10 is a layout view of a fluidized bed gasification and melting combustion apparatus of an embodiment of the present invention used in combination with a waste heat boiler and a turbine. In FIG. 10, the gasifier 1 has a large incombustible substance 27 discharged from the discharger 23.
And a conveyor 172 for carrying together the fine incombustibles 28 discharged from the classifier 25. An air jacket 185 is arranged around the conical chute 16 for taking out incombustibles from the lower part of the fluidized bed furnace 2, and the air in the air jacket 185 is heated by the high temperature extraction sand. The auxiliary fuel F is used for the primary and secondary combustion chambers 14 of the melt combustion furnace 41.
0,150. Discharge port 15 of melt combustion furnace 41
The molten ash 44 discharged from No. 2 is received in the water chamber 178, rapidly cooled, and discharged as the slag 176.

【0054】図10において、熔融燃焼炉41から排出
される燃焼ガスは、廃熱ボイラ31、エコノマイザ18
3、空気予熱器186、集塵器43、誘引通風機54を
経て大気へ排出される。空気予熱器186から出た燃焼
ガスは、集塵器43に入る前に、消石灰等の中和剤Nを
添加される。水Wがエコノマイザ183へ供給され、予
熱された後、ボイラ31で加熱されて蒸気にされ、蒸気
タービンSTを駆動する。空気Aが空気予熱器186へ
供給され、加熱された後、空気ジャケット185で更に
加熱され、空気管184を介し、熔融燃焼炉41、及び
必要に応じてフリーボード102へ供給される。
In FIG. 10, the combustion gas discharged from the melting combustion furnace 41 is the waste heat boiler 31 and the economizer 18.
3, the air preheater 186, the dust collector 43, and the induced draft fan 54 to be discharged to the atmosphere. The combustion gas emitted from the air preheater 186 is added with a neutralizing agent N such as slaked lime before entering the dust collector 43. The water W is supplied to the economizer 183 and is preheated, then heated by the boiler 31 to be steam, and drives the steam turbine ST. After the air A is supplied to the air preheater 186 and heated, the air A is further heated by the air jacket 185 and supplied to the fusion combustion furnace 41 and, if necessary, the freeboard 102 via the air pipe 184.

【0055】廃熱ボイラ31、エコノマイザ183、及
び空気予熱器186の底部に溜まる微粒子180、19
0は、砂循環エレベータ24で分級器25へ搬送され微
細な不燃物28が除去され、流動層炉2へ戻される。フ
ィルター43において分離される飛灰38は、高温で揮
散したNa、Kなどのアルカリ金属塩を含むので、処理
器194において薬品により処理される。
Fine particles 180, 19 accumulated on the bottoms of the waste heat boiler 31, the economizer 183, and the air preheater 186.
0 is conveyed to the classifier 25 by the sand circulation elevator 24, fine incombustibles 28 are removed, and returned to the fluidized bed furnace 2. The fly ash 38 separated in the filter 43 contains an alkali metal salt such as Na or K which is volatilized at a high temperature, and thus is treated with a chemical in the processor 194.

【0056】図10の装置においては、流動層炉2の燃
焼が低空気比による低温部分燃焼とされ、流動層温度が
450℃〜650℃に維持されることにより、高熱量の
可燃ガスを発生させることができる。また、低空気比に
より還元雰囲気で燃焼が行われるので、不燃物中に鉄、
アルミが未酸化の有価物として得られる。流動層炉2で
発生された高熱量の可燃ガス及びチャーは、熔融燃焼炉
41において、1300℃以上の高温燃焼することがで
き、灰を熔融させ、ダイオキシンを分解させることがで
きる。
In the apparatus shown in FIG. 10, the combustion in the fluidized bed furnace 2 is a low temperature partial combustion with a low air ratio, and the fluidized bed temperature is maintained at 450 ° C. to 650 ° C. to generate a high calorific value of combustible gas. Can be made. Also, since combustion is performed in a reducing atmosphere due to the low air ratio, iron,
Aluminum is obtained as an unoxidized valuable material. The high-heat amount combustible gas and char generated in the fluidized bed furnace 2 can be burned at a high temperature of 1300 ° C. or higher in the melting and burning furnace 41 to melt ash and decompose dioxin.

【0057】図11は、ガス冷却室280と組み合わせ
て使用される本発明の実施例の流動層ガス化及び熔融燃
焼装置の配置図である。図11において、ガス化装置
1、熔融燃焼炉41、水室178、集塵器43、誘引通
風機54等は、図10と同様である。図11において
は、廃熱ボイラに代えて、ガス冷却器280、独立空気
予熱器188が設けられ、熔融燃焼炉41から高温燃焼
排ガスを耐火断熱被覆された高温ダクト278を介して
ガス冷却器280に導入する。ガス冷却器280におい
て、燃焼ガスは、微細水噴霧により、瞬時に減温され、
ダイオキシンの再合成が防止される。高温ダクト278
の排ガス流速は、5m/秒以下の低速とされる。ガス冷
却器280の上部に温水発生器283が配置される。空
気予熱器188で加熱された空気がガス化炉1のフリー
ボード102及び熔融燃焼炉41へ供給される。
FIG. 11 is a layout view of the fluidized bed gasification and melting combustion apparatus of the embodiment of the present invention used in combination with the gas cooling chamber 280. 11, the gasification device 1, the melting and combustion furnace 41, the water chamber 178, the dust collector 43, the induced draft fan 54, etc. are the same as those in FIG. In FIG. 11, a gas cooler 280 and an independent air preheater 188 are provided in place of the waste heat boiler, and a gas cooler 280 is provided from the melt combustion furnace 41 through a high-temperature duct 278 that is covered with a heat-resistant heat-insulating coating. To introduce. In the gas cooler 280, the combustion gas is instantly cooled by the fine water spray,
Resynthesis of dioxins is prevented. High temperature duct 278
The exhaust gas flow velocity is set to a low speed of 5 m / sec or less. The hot water generator 283 is disposed above the gas cooler 280. The air heated by the air preheater 188 is supplied to the freeboard 102 and the melting combustion furnace 41 of the gasification furnace 1.

【0058】図12は、廃熱ボイラ31及び反応塔31
0と組み合わせて使用される本発明の実施例の流動層ガ
ス化及び熔融燃焼装置の配置図である。図12におい
て、ガス化装置1、熔融燃焼炉41、水室178、廃熱
ボイラ31、蒸気タービンST、エコノマイザ183、
空気予熱器186、集塵器43、誘因通風機54等は、
図10と同様である。図12においては、廃熱ボイラ3
1とエコノマイザ183の間に、反応塔310、スーパ
ーヒータ加熱燃焼器320が配置される。反応塔310
において、消石灰スラリー等の中和剤Nが燃焼排ガスに
添加され、HClが除去される。反応塔310から排出
される固体微粒子312は、廃熱ボイラ31から排出さ
れる固体微粒子180と一緒に砂循環エレベータ24に
より分級器25へ送られる。加熱燃焼器320におい
て、未燃焼ガス及び補助燃料Fを燃焼させ、蒸気温度を
500℃程度に上げる。図12の装置においては、蒸気
が高温高圧であることと、空気比が小さく排ガスの持ち
出し顕熱が小さいことにより、発電効率を約30%とす
ることができる。
FIG. 12 shows a waste heat boiler 31 and a reaction tower 31.
FIG. 3 is a layout view of a fluidized bed gasification and melting combustion apparatus of an embodiment of the present invention used in combination with 0. In FIG. 12, a gasifier 1, a melting and combustion furnace 41, a water chamber 178, a waste heat boiler 31, a steam turbine ST, an economizer 183,
The air preheater 186, the dust collector 43, the induced draft fan 54, etc.
It is similar to FIG. In FIG. 12, the waste heat boiler 3
1 and the economizer 183, a reaction tower 310 and a super heater heating combustor 320 are arranged. Reaction tower 310
At, the neutralizing agent N such as slaked lime slurry is added to the combustion exhaust gas to remove HCl. The solid fine particles 312 discharged from the reaction tower 310 are sent to the classifier 25 by the sand circulation elevator 24 together with the solid fine particles 180 discharged from the waste heat boiler 31. In the heating combustor 320, the unburned gas and the auxiliary fuel F are burned to raise the steam temperature to about 500 ° C. In the apparatus of FIG. 12, the steam has a high temperature and high pressure, and the air ratio is small and the sensible heat taken out of the exhaust gas is small, so that the power generation efficiency can be about 30%.

【0059】図13は、本発明の実施例のガス化コジェ
ネレーション型の流動層ガス化及び熔融燃焼装置の配置
図である。図13において、ガス化装置1、熔融燃焼炉
41、水室178、廃熱ボイラ31、集塵器43、誘引
通風機54等は、図10の装置と同様である。図13に
おいては、廃熱ボイラ31と集塵器43の間に反応塔3
10が配置され、反応塔310において、消石灰スラリ
ー等の中和剤Nが燃焼排ガスに添加され、HClが除去
される。反応塔310の排ガスが、集塵器43を経てガ
スタービン420で使用される。ガスタービン420に
おいては、空気Aが圧縮機Cにより圧縮され燃焼器CC
に供給され、燃焼器CCにおいて燃料Fが燃焼され、こ
の燃焼ガス及び圧縮機410で圧縮されて燃焼器CCへ
供給され排ガスが、タービンTの作動流体となる。ガス
タービン420の排気ガスは、スーパーヒータ430、
節炭器440、及び空気予熱器450を順に通過され、
誘因通風機54により大気へ放出される。廃熱ボイラ3
1において発生された蒸気が、スーパーヒータ430に
おいて、ガスタービン420の排気ガスにより加熱さ
れ、蒸気タービンSTへ供給される。
FIG. 13 is a layout view of a gasification cogeneration type fluidized bed gasification and melting combustion apparatus according to an embodiment of the present invention. 13, the gasification device 1, the melting and combustion furnace 41, the water chamber 178, the waste heat boiler 31, the dust collector 43, the induced draft fan 54, etc. are the same as those of the device of FIG. In FIG. 13, the reaction tower 3 is provided between the waste heat boiler 31 and the dust collector 43.
10, a neutralizer N such as slaked lime slurry is added to the combustion exhaust gas in the reaction tower 310, and HCl is removed. The exhaust gas of the reaction tower 310 is used in the gas turbine 420 via the dust collector 43. In the gas turbine 420, the air A is compressed by the compressor C and the combustor CC
Is supplied to the combustor CC, the fuel F is combusted in the combustor CC, and the exhaust gas compressed by the combustion gas and the compressor 410 and supplied to the combustor CC becomes the working fluid of the turbine T. The exhaust gas of the gas turbine 420 is supplied to the super heater 430,
It passes through the economizer 440 and the air preheater 450 in order,
It is released to the atmosphere by the induced draft fan 54. Waste heat boiler 3
The steam generated in No. 1 is heated by the exhaust gas of the gas turbine 420 in the super heater 430 and supplied to the steam turbine ST.

【0060】図14は、本発明の実施例の加圧ガス化複
合発電型の流動層ガス化及び熔融燃焼方法の工程を示す
フロー図である。加圧型のガス化炉1で生成された高温
高圧の生成ガス29は、廃熱ボイラ31’へ導入され、
蒸気を発生させると共にそれ自体は冷却される。廃熱ボ
イラを出た生成ガスは、2分され、一方が熔融燃焼炉4
1へ他方が中和剤Nを添加されHClが中和されて集塵
器43’へ導入される。集塵器43’において、温度低
下により固化した生成ガス中の低融点物質が、生成ガス
から分離されて熔融燃焼炉41へ送られ、熔融される。
低融点物質が除去された生成ガスが、ガスタービンGT
において燃料ガスとして利用される。ガスタービンGT
の排気ガスは、スーパーヒータSH、エコノマイザEC
oで熱交換され、その後、排ガス処理器510で処理さ
れ、大気中へ放出される。熔融燃焼炉41の排気ガス
は、熱交換器EX、集塵器43を経て、排ガス処理器5
10へ導入される。熔融炉から排出された熔融灰44
は、急冷しスラグにされる。集塵器43から排出された
固形分38は、処理器194において薬品処理される。
FIG. 14 is a flow chart showing the steps of the pressurized gasification combined cycle power generation type fluidized bed gasification and melt combustion method of the embodiment of the present invention. The high-temperature and high-pressure generated gas 29 generated in the pressurized gasifier 1 is introduced into the waste heat boiler 31 ′,
It produces steam and cools itself. The produced gas exiting the waste heat boiler is divided into two parts, one of which is the melting and combustion furnace 4
The neutralizing agent N is added to the other one and HCl is neutralized and introduced into the dust collector 43 '. In the dust collector 43 ′, the low melting point substance in the produced gas that has solidified due to the temperature decrease is separated from the produced gas and sent to the melting and combustion furnace 41 to be melted.
The product gas from which the low melting point substances have been removed is the gas turbine GT.
Used as fuel gas in. Gas turbine GT
Exhaust gas is from Super Heater SH, Economizer EC
The heat is exchanged at 0, and then it is treated by the exhaust gas treatment device 510 and discharged into the atmosphere. The exhaust gas of the melting and combustion furnace 41 passes through the heat exchanger EX and the dust collector 43, and then the exhaust gas treatment device 5
Introduced in 10. Molten ash 44 discharged from the melting furnace
Is quenched and slag. The solid content 38 discharged from the dust collector 43 is subjected to chemical treatment in the treatment device 194.

【0061】図14の工程によれば、廃棄物から生成さ
れたガスが、HCl及び固形分が除去された後、燃料と
して使用されるから、ガスタービンを腐食させることが
なく、また、HClが除去されているので、ガスタービ
ン排気ガスにより高温の蒸気を発生させることができ
る。
According to the process of FIG. 14, the gas generated from the waste is used as a fuel after the HCl and the solid content are removed, so that the gas turbine is not corroded and HCl is not generated. Since it is removed, high temperature steam can be generated by the gas turbine exhaust gas.

【0062】[0062]

【発明の効果】(1)本発明のガス化装置は、流動層炉
の循環流により熱が拡散されるので、高負荷とすること
ができ、炉を小型にすることができる。
EFFECTS OF THE INVENTION (1) In the gasifier of the present invention, since heat is diffused by the circulating flow of the fluidized bed furnace, the load can be increased and the furnace can be downsized.

【0063】(2)本発明においては、流動層炉が少量
の空気で燃焼を維持できるので、流動層炉を低空気比低
温度(450〜650℃)とし、発熱を最小限に抑え
て、ゆるやかに燃焼させることにより、可燃分を多量に
含む均質な生成ガスを得ることができ、ガス、タール、
チャーの可燃分の大部分を次段の熔融燃焼炉において利
用できる。
(2) In the present invention, since the fluidized bed furnace can maintain combustion with a small amount of air, the fluidized bed furnace is set to a low air ratio low temperature (450 to 650 ° C.) to minimize heat generation, By burning gently, it is possible to obtain a homogeneous product gas containing a large amount of combustible components, gas, tar,
Most of the combustibles in the char can be used in the subsequent melting and combustion furnace.

【0064】(3)本発明においては、流動層炉の循環
流により大きな不燃物も容易に排出できる。また、不燃
物中の鉄、アルミが、未酸化の有価物として利用でき
る。
(3) In the present invention, large incombustibles can be easily discharged by the circulating flow of the fluidized bed furnace. In addition, iron and aluminum contained in non-combustible materials can be used as unoxidized valuable materials.

【0065】(4)本発明によれば、ごみ処理を無害化
し、高いエネルギ利用率を有する方法又は設備が提供さ
れる。
(4) According to the present invention, there is provided a method or equipment which renders waste treatment harmless and has a high energy utilization rate.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の第1実施例のガス化装置の主要部の図
解的な垂直断面図。
FIG. 1 is a schematic vertical sectional view of a main part of a gasifier according to a first embodiment of the present invention.

【図2】図1のガス化装置の流動層炉の図解的な水平断
面図。
2 is a schematic horizontal sectional view of a fluidized bed furnace of the gasifier of FIG. 1. FIG.

【図3】本発明の第2実施例のガス化装置の主要部の図
解的な垂直断面図。
FIG. 3 is a schematic vertical sectional view of a main part of a gasifier according to a second embodiment of the present invention.

【図4】図2のガス化装置の流動層炉の図解的な水平断
面図。
4 is a schematic horizontal sectional view of a fluidized bed furnace of the gasifier of FIG.

【図5】本発明の第3実施例のガス化装置の図解的な垂
直断面図。
FIG. 5 is a schematic vertical sectional view of a gasification apparatus according to a third embodiment of the present invention.

【図6】本発明の第4実施例のガス化装置の図解的な垂
直断面図。
FIG. 6 is a schematic vertical sectional view of a gasification apparatus according to a fourth embodiment of the present invention.

【図7】生成ガスの精製工程の1例を示すフロー図。FIG. 7 is a flow chart showing an example of a purification process of generated gas.

【図8】灰が熔融される工程の1例を示すフロー図。FIG. 8 is a flowchart showing an example of a process of melting ash.

【図9】本発明の第5実施例のガス化及び熔融燃焼装置
の図解的な垂直断面斜視図。
FIG. 9 is a schematic vertical sectional perspective view of a gasification and melting combustion device according to a fifth embodiment of the present invention.

【図10】廃熱ボイラ及びタービンと組み合わせて使用
される本発明の実施例の流動層ガス化及び熔融燃焼装置
の配置図。
FIG. 10 is a layout view of a fluidized bed gasification and melting combustion apparatus of an embodiment of the present invention used in combination with a waste heat boiler and a turbine.

【図11】ガス冷却室と組み合わせて使用される本発明
の実施例の流動層ガス化及び熔融燃焼装置の配置図。
FIG. 11 is a layout view of a fluidized bed gasification and melting combustion apparatus of an embodiment of the present invention used in combination with a gas cooling chamber.

【図12】廃熱ボイラ及び反応塔と組み合わせて使用さ
れる本発明の実施例の流動層ガス化及び熔融燃焼装置の
配置図。
FIG. 12 is a layout view of a fluidized bed gasification and melting combustion apparatus of an embodiment of the present invention used in combination with a waste heat boiler and a reaction tower.

【図13】本発明のガス化コジェネレーション型の実施
例の流動層ガス化及び熔融燃焼装置の配置図。
FIG. 13 is a layout view of a fluidized bed gasification and melting combustion apparatus of a gasification cogeneration type embodiment of the present invention.

【図14】本発明の加圧ガス化複合発電型の実施例の流
動層ガス化及び熔融燃焼方法の工程を示すフロー図。
FIG. 14 is a flow chart showing the steps of a fluidized bed gasification and melt combustion method of an embodiment of a pressurized gasification combined cycle power generation type of the present invention.

【符号の説明】[Explanation of symbols]

1;ガス化装置、2;流動層炉、3;炉底周辺部、4;
炉底中央部、5;不燃物排出口、6;傾斜壁、7;中央
流動化ガス、7’;中間流動化ガス、8;周辺流動化ガ
ス、9;移動層、9’;中間層、10;流動層、11;
ガス化原料(可燃物)、12;ダブルダンパー、13;
圧縮フィーダ、14;給塵フィーダ、15;ルーツブロ
ア、16;円錐形シュート、17;定量排出器、18、
20;スイング弁、19、19’;スイングカット弁、
22;排出弁、23;トロンメル付き連続排出器、2
4;砂循環エレベータ、25;分級器、27、28;不
燃物、29;生成ガス、31、31’;廃熱ボイラ、3
2;サイクロン分離機、36;廃水処理器、37;未反
応チャー、38;固形分、41;熔融燃焼炉、43、4
3’;集塵器、44;熔融灰、54;誘引通風機、5
5;排気塔、102;フリーボード、104;可燃物供
給口、106;ガス分散機構、108;ガス出口、11
4;チャー・タール、134;助燃バーナ、140;一
次燃焼室、142;可燃ガス入口、150;二次燃焼
室、162;輻射板、176;スラグ、178;水室、
183;エコノマイザ、185;空気ジャケット、18
6、188;空気予熱器、194、510;処理器、2
80;ガス冷却器、310;反応塔、320;スーパー
ヒータ加熱燃焼器、420;ガスタービン、A;空気、
C;圧縮機、CC;燃焼器、ECo;エコノマイザ、
F;補助燃料、G;ガス化ゾーン、N;中和剤、S;酸
化ゾーン、SH;スーパーヒータ、ST;蒸気タービ
ン、T;タービン、W;水。
1; gasifier, 2; fluidized bed furnace, 3; peripheral part of furnace bottom, 4;
Central part of furnace bottom, 5; Incombustibles outlet, 6; Inclined wall, 7; Central fluidizing gas, 7 '; Intermediate fluidizing gas, 8; Peripheral fluidizing gas, 9; Moving bed, 9'; Intermediate bed, 10; fluidized bed, 11;
Gasification raw material (combustible material), 12; Double damper, 13;
Compaction feeder, 14; Dust feeder, 15; Roots blower, 16; Conical chute, 17; Discharger, 18,
20; swing valve, 19, 19 '; swing cut valve,
22; discharge valve, 23; continuous discharger with trommel, 2
4; Sand circulation elevator, 25; Classifier, 27, 28; Incombustibles, 29; Product gas, 31, 31 '; Waste heat boiler, 3
2; cyclone separator, 36; wastewater treatment device, 37; unreacted char, 38; solid content, 41; melt combustion furnace, 43, 4
3 ': dust collector, 44; molten ash, 54; induced draft fan, 5
5; exhaust tower, 102; freeboard, 104; combustible material supply port, 106; gas dispersion mechanism, 108; gas outlet, 11
4; char tar, 134; auxiliary combustion burner, 140; primary combustion chamber, 142; combustible gas inlet, 150, secondary combustion chamber, 162; radiant plate, 176, slag, 178; water chamber,
183; Economizer, 185; Air jacket, 18
6, 188; air preheater, 194, 510; processor, 2
80; Gas cooler, 310; Reaction tower, 320; Super heater heating combustor, 420; Gas turbine, A; Air,
C: Compressor, CC: Combustor, ECo: Economizer,
F: auxiliary fuel, G: gasification zone, N: neutralizer, S: oxidation zone, SH: superheater, ST: steam turbine, T: turbine, W: water.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 田米 智加之 東京都大田区羽田旭町11番1号 株式会社 荏原製作所内 (72)発明者 永東 秀一 神奈川県藤沢市本藤沢4丁目2番1号 株 式会社荏原総合研究所内 (72)発明者 広勢 哲久 東京都大田区羽田旭町11番1号 株式会社 荏原製作所内 (72)発明者 三好 敬久 神奈川県藤沢市本藤沢4丁目2番1号 株 式会社荏原総合研究所内 (72)発明者 豊田 誠一郎 神奈川県藤沢市本藤沢4丁目2番1号 株 式会社荏原総合研究所内 (72)発明者 細田 修吾 東京都大田区羽田旭町11番1号 株式会社 荏原製作所内 (72)発明者 藤並 晶作 神奈川県藤沢市本藤沢4丁目2番1号 株 式会社荏原総合研究所内 (72)発明者 高野 和夫 東京都大田区羽田旭町11番1号 株式会社 荏原製作所内 Fターム(参考) 3K061 AA11 AB02 AB03 AC01 AC13 BA05 DB17 DB20 3K064 AA04 AA10 AB03 AD08 AE01 AF01 BA05 BA07 BA15 BA17 3K078 AA05 BA03 CA02 CA11 CA21 CA22 CA24    ─────────────────────────────────────────────────── ─── Continued front page    (72) Inventor Chikayuki Tanabe             11-1 Haneda Asahi-cho, Ota-ku, Tokyo Co., Ltd.             Inside the EBARA CORPORATION (72) Inventor Shuichi Nagato             4-2-1 Honfujisawa, Fujisawa City, Kanagawa Prefecture             Inside the EBARA Research Institute (72) Inventor Tetsuhisa Hirose             11-1 Haneda Asahi-cho, Ota-ku, Tokyo Co., Ltd.             Inside the EBARA CORPORATION (72) Inventor Takahisa Miyoshi             4-2-1 Honfujisawa, Fujisawa City, Kanagawa Prefecture             Inside the EBARA Research Institute (72) Inventor Seiichiro Toyoda             4-2-1 Honfujisawa, Fujisawa City, Kanagawa Prefecture             Inside the EBARA Research Institute (72) Inventor Shugo Hosoda             11-1 Haneda Asahi-cho, Ota-ku, Tokyo Co., Ltd.             Inside the EBARA CORPORATION (72) Inventor Akira Fujinami             4-2-1 Honfujisawa, Fujisawa City, Kanagawa Prefecture             Inside the EBARA Research Institute (72) Inventor Kazuo Takano             11-1 Haneda Asahi-cho, Ota-ku, Tokyo Co., Ltd.             Inside the EBARA CORPORATION F term (reference) 3K061 AA11 AB02 AB03 AC01 AC13                       BA05 DB17 DB20                 3K064 AA04 AA10 AB03 AD08 AE01                       AF01 BA05 BA07 BA15 BA17                 3K078 AA05 BA03 CA02 CA11 CA21                       CA22 CA24

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 可燃物を流動層炉にてガス化する方法に
おいて、 該流動層炉内に流動媒体の循環流を形成し、該可燃物を
該流動層炉に供給し、該流動層炉内の循環流中でガス化
してガスとチャーを生成し、該チャーを該循環流中で微
粒子とし、該流動層炉より該ガスと該微粒子となったチ
ャーを排出することを特徴とする可燃物の処理方法。
1. A method of gasifying a combustible material in a fluidized bed furnace, wherein a circulating flow of a fluidized medium is formed in the fluidized bed furnace, and the combustible material is supplied to the fluidized bed furnace to obtain the fluidized bed furnace. A combustible material, characterized in that gas and char are generated by gasification in a circulating flow in the inside, the char is made into fine particles in the circulating flow, and the gas and the char which became the fine particles are discharged from the fluidized bed furnace. How to dispose of things.
【請求項2】 可燃物を流動層炉でガス化する方法であ
って、該流動層炉内に流動媒体の沈降拡散する層が形成
された循環流を形成し、該可燃物を該流動層炉に供給
し、該可燃物を該流動媒体とともに該沈降拡散する層中
を下降させ、該沈降拡散する層をガス化ゾーンとし、該
ガス化ゾーンでガス化してガスとチャーを生成し、該チ
ャーを酸化ゾーンに供給し、該チャーを燃焼して該流動
媒体を加熱し、該加熱された流動媒体を該ガス化ゾーン
に戻してガス化の熱源とし、該ガス化ゾーンより該ガス
を排出することを特徴とする可燃物のガス化方法。
2. A method for gasifying a combustible material in a fluidized bed furnace, wherein a circulating flow in which a bed for sedimentation and diffusion of a fluidized medium is formed is formed in the fluidized bed furnace to form the combustible material in the fluidized bed. The gas is supplied to a furnace and the combustible material is lowered together with the fluidized medium in the sedimentation-diffusing layer, and the sedimentation-diffusing layer is used as a gasification zone, and gasification and gas are generated in the gasification zone to generate gas and char. Char is supplied to an oxidation zone, the char is combusted to heat the fluidized medium, the heated fluidized medium is returned to the gasification zone as a heat source for gasification, and the gas is discharged from the gasification zone. A method for gasifying a combustible material, comprising:
【請求項3】 可燃物を流動層炉でガス化する方法であ
って、該流動層炉内に流動媒体の沈降拡散する層が形成
された循環流を形成し、該可燃物を該流動層炉に供給
し、該可燃物を該流動媒体とともに該沈降拡散する層中
を下降させ層中でガス化してガスとチャーを生成し、該
チャーを燃焼して該流動媒体を加熱するとともに該チャ
ーを該循環流中で微粒子とし、該加熱された流動媒体を
該沈降拡散する層に移し、該流動層炉より該ガスと該微
粒子となったチャーを排出することを特徴とする可燃物
のガス化方法。
3. A method for gasifying a combustible material in a fluidized bed furnace, wherein a circulating flow is formed in the fluidized bed furnace in which a bed for sedimentation and diffusion of a fluidized medium is formed, and the combustible material is provided in the fluidized bed. It is supplied to a furnace, and the combustibles are lowered together with the fluidized medium in a layer that sediments and diffuses to gasify in the layer to generate gas and char, and the char is burned to heat the fluidized medium and the char. As a fine particle in the circulation flow, the heated fluidized medium is transferred to the bed for settling and diffusion, and the gas and the char which becomes the fine particle are discharged from the fluidized bed furnace. Method.
【請求項4】 可燃物をガス化するガス化炉において、 該ガス化炉は流動層炉であって、該流動層炉内に流動媒
体の循環流を形成し、該可燃物を該流動層炉に供給し、
該流動層炉内の循環流中でガス化してガスとチャーを生
成し、該チャーを該循環流中で微粒子とし、該流動層炉
より該ガスと該微粒子となったチャーを排出することを
特徴とする可燃物のガス化炉。
4. A gasification furnace for gasifying combustibles, wherein the gasification furnace is a fluidized bed furnace, and a circulating flow of a fluidized medium is formed in the fluidized bed furnace to convert the combustibles into the fluidized bed. Supply to the furnace,
To generate gas and char by gasification in the circulating flow in the fluidized bed furnace, to make the char into fine particles in the circulating flow, and to discharge the gas and the char which became the fine particles from the fluidized bed furnace. Characterizing combustible gasifier.
【請求項5】 可燃物をガス化するガス化炉において、 該ガス化炉は流動層炉であって、該流動層炉内に流動媒
体の沈降拡散する層が形成された循環流を形成し、該可
燃物を該流動層炉に供給し、該可燃物を該流動媒体とと
もに該沈降拡散する層中を下降させ、該沈降拡散する層
をガス化ゾーンとし、該ガス化ゾーンでガス化してガス
とチャーを生成し、該チャーを酸化ゾーンに供給し、該
チャーを燃焼して該流動媒体を加熱し、該加熱された流
動媒体を該ガス化ゾーンに戻してガス化の熱源とし、該
ガス化ゾーンより該ガスを排出することを特徴とする可
燃物のガス化炉。
5. A gasification furnace for gasifying combustibles, wherein the gasification furnace is a fluidized bed furnace and forms a circulating flow in which a bed for sedimentation and diffusion of a fluidized medium is formed in the fluidized bed furnace. Supplying the combustible material to the fluidized bed furnace, descending the combustible material together with the fluidized medium through the bed for sedimentation and diffusion, and forming the sedimentation and diffusion layer as a gasification zone, and gasifying in the gasification zone. Generating gas and char, supplying the char to an oxidation zone, burning the char to heat the fluidized medium, returning the heated fluidized medium to the gasification zone as a heat source for gasification, A gasification furnace for combustibles, wherein the gas is discharged from a gasification zone.
【請求項6】 可燃物をガス化するガス化炉において、 該ガス化炉は流動層炉であって、該流動層炉内に流動媒
体の沈降拡散する層が形成された循環流を形成し、該可
燃物を該流動層炉に供給し、該可燃物を該流動媒体とと
もに該沈降拡散する層中を下降させ層中でガス化してガ
スとチャーを生成し、該チャーを燃焼して該流動媒体を
加熱するとともに該チャーを該循環流中で微粒子とし、
該加熱された流動媒体を該沈降拡散する層に移し、該流
動層炉より該ガスと該微粒子となったチャーを排出する
ことを特徴とする可燃物のガス化炉。
6. A gasification furnace for gasifying combustibles, wherein the gasification furnace is a fluidized bed furnace, and forms a circulating flow in which a bed for sedimentation and diffusion of a fluidized medium is formed in the fluidized bed furnace. Supplying the combustible material to the fluidized bed furnace, lowering the combustible material together with the fluidized medium through the bed that sediments and diffuses, gasifies in the bed to generate gas and char, and burns the char Heating the fluidizing medium and making the char into fine particles in the circulating flow,
A gasification furnace for combustibles, characterized in that the heated fluidized medium is transferred to the settling-diffusion layer, and the gas and the char, which has become fine particles, are discharged from the fluidized bed furnace.
JP2002200646A 1994-03-10 2002-07-09 Gasifying furnace and gasifying method for combustible substance Withdrawn JP2003090520A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002200646A JP2003090520A (en) 1994-03-10 2002-07-09 Gasifying furnace and gasifying method for combustible substance

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
JP6543994 1994-03-10
JP6-101541 1994-04-15
JP10154194 1994-04-15
JP6-65439 1994-04-15
JP2002200646A JP2003090520A (en) 1994-03-10 2002-07-09 Gasifying furnace and gasifying method for combustible substance

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2001146101A Division JP2002115830A (en) 1994-03-10 2001-05-16 Method for waste treatment and gasification and melting apparatus

Publications (1)

Publication Number Publication Date
JP2003090520A true JP2003090520A (en) 2003-03-28

Family

ID=27298793

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002200646A Withdrawn JP2003090520A (en) 1994-03-10 2002-07-09 Gasifying furnace and gasifying method for combustible substance

Country Status (1)

Country Link
JP (1) JP2003090520A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014013849A1 (en) * 2012-07-20 2014-01-23 荏原環境プラント株式会社 Waste processing method and waste incinerator

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014013849A1 (en) * 2012-07-20 2014-01-23 荏原環境プラント株式会社 Waste processing method and waste incinerator
JP2014037956A (en) * 2012-07-20 2014-02-27 Ebara Environmental Plant Co Ltd Waste processing method and waste incinerator
EP2876370A4 (en) * 2012-07-20 2016-03-02 Ebara Env Plant Co Ltd Waste processing method and waste incinerator

Similar Documents

Publication Publication Date Title
JP3153091B2 (en) Waste treatment method and gasification and melting and combustion equipment
EP0908672B1 (en) Methods for fusion treating a solid waste for gasification
CA2443854A1 (en) Waste treatment apparatus and method
WO1999023431A1 (en) Fluidized bed gasification combustion furnace
US6709636B1 (en) Method and apparatus for gasifying fluidized bed
JPH11173520A (en) Method and device for fluidized bed type thermal decomposition
JP3270457B1 (en) Waste treatment method and gasification and melting equipment
JP2007147270A (en) Processing method, and gasifying and melting device for waste
JP3270447B2 (en) Waste treatment method and gasification and melting equipment
JP3270454B1 (en) Waste treatment method and gasification and melting equipment
JP3270455B2 (en) Waste treatment method and gasification and melting equipment
JP3270456B2 (en) Waste treatment method and gasification and melting equipment
JP3544953B2 (en) Waste treatment method and gasification and melting equipment
JP3270453B1 (en) Waste treatment method and gasification and melting equipment
JP3270452B2 (en) Waste treatment method and gasification and melting equipment
JP2004251618A (en) Processing method and gasifying and fusing apparatus for combustible material
JP2003090520A (en) Gasifying furnace and gasifying method for combustible substance
KR100482887B1 (en) Fluidized Bed Gasification and Melting Combustion Method and Apparatus
JP2002115830A (en) Method for waste treatment and gasification and melting apparatus
JPH11173523A (en) Method and device for treating waste through combustion
JP2004264018A (en) Processing method, and gasifying and melting device for waste
JP2004264017A (en) Municipal waste gasification furnace and method
JP2004264017A5 (en)
JP2002147724A (en) Waste disposal method and gasifying and melting device
JP2002130630A (en) Processing method for waste, and gasifying and melting apparatus for waste

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040803

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20041001