JP2003088845A - Treatment method of spent refractory - Google Patents

Treatment method of spent refractory

Info

Publication number
JP2003088845A
JP2003088845A JP2001283826A JP2001283826A JP2003088845A JP 2003088845 A JP2003088845 A JP 2003088845A JP 2001283826 A JP2001283826 A JP 2001283826A JP 2001283826 A JP2001283826 A JP 2001283826A JP 2003088845 A JP2003088845 A JP 2003088845A
Authority
JP
Japan
Prior art keywords
refractory
magnetic
layer
used refractory
spent refractory
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001283826A
Other languages
Japanese (ja)
Other versions
JP3704301B2 (en
Inventor
Koji Tsutsui
康志 筒井
Hiroshi Sakamoto
浩 坂本
Taijiro Matsui
泰次郎 松井
Hiroshi Imagawa
浩志 今川
Tetsuo Shima
哲男 嶋
Hiroyuki Kato
弘之 加藤
Tsuyoshi Matsuda
強志 松田
Toshifumi Suzuki
敏文 鈴木
Seiji Aso
誠二 麻生
Shiro Sukenari
史郎 祐成
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2001283826A priority Critical patent/JP3704301B2/en
Publication of JP2003088845A publication Critical patent/JP2003088845A/en
Application granted granted Critical
Publication of JP3704301B2 publication Critical patent/JP3704301B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/10Greenhouse gas [GHG] capture, material saving, heat recovery or other energy efficient measures, e.g. motor control, characterised by manufacturing processes, e.g. for rolling metal or metal working

Landscapes

  • Spectrometry And Color Measurement (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Processing Of Solid Wastes (AREA)
  • Combined Means For Separation Of Solids (AREA)
  • Disintegrating Or Milling (AREA)
  • Compositions Of Oxide Ceramics (AREA)
  • Ceramic Products (AREA)
  • Manufacture And Refinement Of Metals (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a treatment method of spent refractory by which the quantity of the spent refractory to become waste is minimized by removing incorporated metals, sorting crushed particles of the spent refractory containing an infiltrated part and separating and recovering a large quantity of particles of a good quality part of the spent refractory with high precision. SOLUTION: A primary magnetic selection is carried out on the spent refractory to remove the metals and after that, the spent refractory is crushed, screened and further is secondarily magnetically selected with a larger magnetic force than that of the primary magnet selection to separate into a magnetic body and a non-magnetic body and if necessary, it is distinguished by color whether the slug infiltrated layer is existed or not in the spent refractory of the selected nonmagnetic body to separate into one having the infiltrated layer and one having no infiltrated layer.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、製鉄工場等で使用
済の耐火物を回収して耐火物の原料として再利用する使
用済耐火物の処理方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for treating a used refractory for recovering the used refractory in an iron factory and reusing it as a raw material for the refractory.

【0002】[0002]

【従来の技術】従来、製鉄工場等では、転炉や電気炉等
の精錬炉及び取鍋、樋等の搬送や付帯設備に、耐火煉瓦
あるいは不定形耐火物等の耐火物を内張りしており、こ
れ等の耐火物は、溶鋼やスラグによる溶損によって、損
耗し、残存厚みが薄くなった時点で、新しい耐火物を張
り替える。
2. Description of the Related Art Conventionally, refractory materials such as refractory bricks and unshaped refractory materials are lined in refining furnaces such as converters and electric furnaces, ladle, gutters, etc., and incidental equipment in steel mills. The refractories are worn out due to melting loss due to molten steel or slag, and new refractory is replaced when the remaining thickness becomes thin.

【0003】この張替えによって発生する耐火物は、表
面に地金が付着したり、地金や酸化鉄、スラグ等が浸潤
し、変質した浸潤層が付着している。
The refractory generated by this re-attachment has a metal layer adhered to the surface, or a metal layer, iron oxide, slag, etc. infiltrate and a deteriorated infiltration layer adheres.

【0004】この浸潤層の部分は、耐溶損性、強度等の
品質が劣化しているため、回収した使用済耐火物の再利
用時の障害となり、その殆どが廃棄物として処理されて
いる。
Since the quality of the infiltration layer such as melting resistance and strength is deteriorated, it becomes an obstacle when reusing the collected used refractories, and most of them are treated as waste.

【0005】しかし、近年、これ等使用済耐火物の廃棄
場所が制約されたり、廃棄するための回収や運搬費等か
ら廃棄処理コストが高くなる等の問題が生じている。
However, in recent years, there have been problems that the disposal place of these used refractories is restricted, and the disposal processing cost becomes high due to the recovery and transportation costs for disposal.

【0006】この対策として、特開平8−188475
号公報に記載されているように、製鋼工場で使用したポ
ーラスプラグや取鍋の内張り耐火物等の比較的良好なも
のを分離回収し、この耐火物の内、地金やスラグ等と接
触した浸潤層を除去し、良質部のみを破砕して粒度を調
整したものに、新しい粒状と粉末の耐火物原料を配合し
て再利用することが行われている。
As a countermeasure against this, Japanese Patent Laid-Open No. 8-188475
As described in Japanese Patent Publication, relatively good things such as porous plugs used in steelmaking plants and refractory linings in ladles were separated and recovered, and the refractory contacted with bare metal and slag. It has been practiced to remove the infiltrated layer and crush only the good quality part to adjust the particle size, and then mix and reuse new granular and powder refractory raw materials.

【0007】[0007]

【発明が解決しようとする課題】しかしながら、特開平
8−188475号公報に記載された方法では、山積み
された使用済の耐火物の中から地金やスラグ等と接触し
た浸潤層の少ない物を選択して回収する必要があり、回
収作業や分別管理に手間を要し、分離回収の対象となる
耐火物がポーラスプラグや取鍋、タンディッシュ等の限
られた内張り耐火物のみである。
However, according to the method described in Japanese Patent Laid-Open No. 8-188475, a pile of used refractories is used to remove a substance having a small infiltration layer in contact with a metal or slag. It is necessary to select and collect them, which requires time and effort for collection work and separation management, and the refractory to be separated and collected is limited to the lined refractory such as porous plug, ladle, and tundish.

【0008】しかも、使用済耐火物と地金やスラグとが
接触した浸潤層を一個毎に境界を見極めながら除去する
必要があり、この作業の大半は人手作業に頼るため、浸
潤層の除去に大変な手間を要し、製鉄工場で大量に発生
する使用済耐火物を処理することが困難である。
Moreover, it is necessary to remove the infiltrated layer in which the used refractory and the ingot or slag are in contact with each other while observing the boundary. Most of this work requires manual work, so that the infiltrated layer must be removed. It takes a lot of time and labor, and it is difficult to dispose of a large amount of used refractories in the steel factory.

【0009】このように、従来行われている使用済耐火
物の再利用方法では、限定された耐火物が対象の上、処
理コストが高く、且つ大量処理が不可能であり、しかも
廃棄物となる使用済耐火物の発生量を最小にすることが
困難であるという問題がある。
As described above, in the conventional method for reusing used refractory materials, limited refractory materials are targeted, the treatment cost is high, and large-scale treatment is not possible. There is a problem that it is difficult to minimize the amount of used refractory generated.

【0010】本発明は、係る事情に鑑みてなされたもの
で、処理工程で地金、浸潤層部分を含む使用済耐火物の
破砕粒を除去し、良質部分の使用済耐火物部分の破砕粒
を高精度で、大量処理の分離回収を可能にし、廃棄物と
なる使用済耐火物の発生量を最小にすることができる使
用済耐火物の処理方法を提供することを目的とする。
The present invention has been made in view of the above-mentioned circumstances, and in the processing step, the crushed particles of the used refractory material including the ingot and the infiltrated layer portion are removed, and the crushed particles of the used refractory portion of the good quality portion are removed. It is an object of the present invention to provide a method for treating a used refractory, which enables the separation and recovery of a large amount of treatment with high accuracy and minimizes the amount of the used refractory that becomes a waste.

【0011】[0011]

【課題を解決するための手段】前記目的を達成するた
め、使用済耐火物の処理方法に関する本発明の要旨とす
るところは、(1) 使用済の耐火物に対して、一次の
磁力選別を行い、地金を除去した後、破砕して篩い分け
し、更に粒度毎に一次の磁力選別よりも大きな磁力で、
二次の磁力選別をして、磁性体と非磁性体に分類するこ
とを特徴とする使用済耐火物の処理方法、(2) 非磁
性体として分類された使用済耐火物を、耐火物原料とし
て再利用することを特徴とする(1)記載の使用済耐火
物の処理方法、(3) 選別された前記非磁性体の使用
済耐火物に対して、更にスラグ浸潤層の有無を色彩で識
別して、スラグ浸潤層の無いものと浸潤層が存在するも
のとに分類することを特徴とする(1)記載の使用済耐
火物の処理方法、(4) 非磁性体で、スラグ浸潤層が
無いものとして分類された使用済耐火物を、耐火物原料
として再利用することを特徴とする(3)記載の使用済
耐火物の処理方法、(5) 磁性体として、又はスラグ
浸潤層が存在するものとして分類された使用済耐火物
を、溶融し冷却固化させた後耐火物原料として、または
溶融させずに成形して景観材用の原料若しくは耐火物原
料として再利用することを特徴とする(1)又は(3)
記載の使用済耐火物の処理方法、にある。
In order to achieve the above object, the gist of the present invention relating to a method for treating a used refractory material is as follows: (1) A primary magnetic separation is performed on a used refractory material. After removing the base metal, crushing and sieving, with a larger magnetic force than the primary magnetic force selection for each particle size,
A method for treating a used refractory material, which is characterized by performing secondary magnetic separation to classify the material into a magnetic material and a non-magnetic material, (2) a used refractory material classified as a non-magnetic material into a refractory raw material. (1) The method for treating the used refractory material according to (1), (3) the presence or absence of a slag infiltrated layer in the selected refractory material of the non-magnetic material is colored. (1) A method for treating a used refractory material described in (1), characterized in that the slag infiltrating layer is classified into those having no slag infiltrating layer and those having an infiltrating layer; The method for treating used refractory as described in (3), characterized in that the used refractory classified as no-use is reused as a refractory raw material, (5) as a magnetic material, or with a slag infiltration layer. Used refractories classified as present were melted, cooled and solidified It is characterized in that it is reused as a raw material for landscape materials or a raw material for refractory materials after being molded without being melted, as a raw material for subsequent refractory materials (1) or (3).
The method for treating used refractories is described.

【0012】[0012]

【発明の実施の形態】以下、添付した図面を参照しつ
つ、本発明を具体化した実施の形態につき説明し、本発
明の理解に供する。
BEST MODE FOR CARRYING OUT THE INVENTION Embodiments embodying the present invention will be described below with reference to the accompanying drawings to provide an understanding of the present invention.

【0013】ここで、図1は、本発明の一実施の形態に
係わる再利用を目的とした使用済耐火物の処理方法のフ
ロー図である。
Here, FIG. 1 is a flow chart of a method for treating a used refractory for the purpose of recycling according to an embodiment of the present invention.

【0014】製鉄工場で使用される転炉や電気炉等の精
錬炉及び取鍋、樋等の付帯設備等に内張りした耐火物
は、溶損損耗し、残存厚みが薄くなり、寿命に至り、解
体され、張り替えが行われる。解体され、回収された使
用済耐火物には、その表面地金が付着したり、変質した
浸潤層の部分が存在し、再利用を阻害している。
Refractory lined in refining furnaces such as converters and electric furnaces used in steel mills and ladles, incidental equipment such as gutters, etc., suffers melting damage and wear, and the remaining thickness becomes thin, leading to the end of life. It is dismantled and replaced. The used refractory that has been dismantled and collected has a surface ingot adhered to it, and a part of the infiltrated layer that has been altered is present, which impedes reuse.

【0015】本発明者等は、地金の混入が見受けられ、
変質した浸潤層が存在する使用済耐火物の処理について
鋭意研究を重ねた結果、混入地金を完全に除去し、良質
である変質層が存在しないものと、不良である変質層が
存在する使用済耐火物部分の破砕粒を高精度で、大量処
理の分離回収が可能になり、廃棄物となる使用済耐火物
の発生量を最小に抑え、使用済耐火物の殆どを耐火物原
料として再利用できることを知見し、本発明の完成に至
った。
The inventors of the present invention have found that metal is mixed,
As a result of intensive research on the treatment of used refractories with a deteriorated infiltrated layer, as a result of completely removing the mixed metal, there is a good deteriorated layer and a defective deteriorated layer. The crushed particles of the used refractories can be separated and collected in a large amount with high accuracy, minimizing the amount of used refractories that become waste, and reusing most of the used refractories as refractory raw materials. The inventors have found that they can be used and have completed the present invention.

【0016】以下、本発明の一実施形態に係わる使用済
耐火物の処理方法について詳細に説明する。なお、図1
に示す番号は、理解を容易にするために以下で説明する
各処理工程及び各耐火物に対応させて付したものであ
る。
Hereinafter, a method for treating a used refractory material according to an embodiment of the present invention will be described in detail. Note that FIG.
In order to facilitate understanding, the numbers shown in are assigned to the respective treatment steps and refractories described below.

【0017】解体した使用済耐火物1は、用途、主成
分、炭層含有量等によって、アルミナ系、マグネシア
系、アルミナ・シリカ系、ジルコン系、マグネシア・炭
素系、アルミナ・炭珪・炭素系等に分別され、1回当た
り1〜300トンの量が回収される。分別回収した使用
済耐火物は、その含有された主成分が同じ系統のものを
集めて、混入している地金2の除去を目的に、一次磁力
選別3に進む。解体された耐火物には、表面に付着し
た、若しくは耐火物の亀裂に差し込んだ大きな地金が混
在しているが、これは、再利用の耐火物原料中に、この
地金が混入すると、製鉄工場等で耐火物が使用された際
に、使用時の温度負荷で、極端に融点が低い化合物を形
成してしまい、新しい原料のみを配合した耐火物に比
べ、大幅な寿命低下を来してしまうのを回避するためで
ある。一次磁力選別3として作用させる磁束密度として
は、1,000〜5,000ガウスが望ましい。1,000ガウス未満
だと、拘束されていな地金は除去できても、耐火物に強
固に付着したり、差し込んでいる地金までは除去できな
いからである。一方、5,000ガウスを超えてしまうと、
酸化鉄成分を多量に含むスラグが浸潤した層が存在する
使用済耐火物の一部も、地金と混在の状態で除去されて
しまうからである。一次磁力選別の装置としては、吊下
式磁選機やドラム型磁選機が適しているが、これに限る
ものではない。なお、一次磁力選別に当たり、使用済耐
火物を、ブレーカー,ジョークラッシャー等で、作業に
適した大きさに、予め粗破砕することもある。
The dismantled used refractories 1 are alumina type, magnesia type, alumina / silica type, zircon type, magnesia / carbon type, alumina / carbon silica / carbon type, etc. It is separated into 1 to 300 tons each time. The used refractory materials that have been separated and collected are collected in the same main component system, and proceed to the primary magnetic separation 3 for the purpose of removing the mixed metal 2. The dismantled refractory contains a large amount of metal that adheres to the surface or is inserted into the cracks of the refractory, but when this metal is mixed in the recycled refractory raw material, When a refractory is used in a steel factory, etc., it will form a compound with an extremely low melting point due to the temperature load during use, resulting in a significant decrease in life compared to a refractory containing only new raw materials. This is to prevent it from happening. The magnetic flux density to act as the primary magnetic force selection 3 is preferably 1,000 to 5,000 gauss. If it is less than 1,000 Gauss, even if the unrestricted metal can be removed, it will not adhere even to the refractory or even the metal inserted. On the other hand, if it exceeds 5,000 gauss,
This is because a part of the used refractory having a layer infiltrated with slag containing a large amount of iron oxide component is also removed in a state of being mixed with the metal. A suspension type magnetic separator or a drum type magnetic separator is suitable as the device for primary magnetic force selection, but is not limited thereto. In the primary magnetic selection, the used refractory material may be roughly crushed in advance with a breaker, a jaw crusher, or the like into a size suitable for the work.

【0018】一次磁力選別された使用済耐火物は、一般
に用いられているジョークラッシャー、ダブルロールク
ラッシャー、ガラコング等の大量処理向けの破砕装置を
用いて、60mm以下の大きさに破砕4した後、振動篩
い装置等を用い、再利用の用途に応じて、ある特定粒度
毎に篩い分け5する。例えば、60〜20mm、20〜
10mm、10〜5mm、5mm以下に分けることがで
きる。ここで、破砕後の粒径を60mm以下にするの
は、破砕され、塊、粒状になった使用済耐火物に対し
て、浸潤層を含むものの発生比率を極力抑えるためであ
る。また、破砕後に分級するのは、後の工程の作業効率
を高めるために、必要な事前処理として予め実施してい
る。
The used refractory material subjected to the primary magnetic force selection is crushed into a size of 60 mm or less 4 by using a crushing device for mass treatment such as a commonly used jaw crusher, double roll crusher, or glass cone, 4 Using a vibrating sieving device or the like, sieving 5 is performed for each specific particle size according to the purpose of reuse. For example, 60 to 20 mm, 20 to 20
It can be divided into 10 mm, 10 to 5 mm, and 5 mm or less. Here, the particle size after crushing is set to 60 mm or less in order to suppress the generation ratio of the one containing the infiltration layer to the crushed, lump and granular used refractory material as much as possible. Further, classification after crushing is carried out in advance as a necessary pretreatment in order to enhance the work efficiency of the subsequent steps.

【0019】塊,粒状になった使用済耐火物は、粒度毎
に、ベルト式磁力選別機,対極型磁力選別機等、一次磁
力選別装置よりも更に大きな磁力を保有する装置を用い
て、二次の磁力選別6を行い、非磁性体7と磁性体8に
分類する。これは、溶鉄,スラグが浸入した浸潤層に
は、耐火物を構成している耐火物原料と反応して、酸化
鉄を含む化合物を形成しており、酸化鉄成分を含むた
め、微弱な磁性を帯びていることを利用したものであ
る。浸入した酸化鉄成分の含有量が高い程、耐火物の耐
火温度の低下をもたらしてしまうため、使用済耐火物を
再利用する際には、極力、浸潤層を有する塊、粒状の使
用済耐火物の混入を抑制しなければならない。
The used refractory in the form of lumps and granules can be divided into two types by using a device having a magnetic force larger than that of the primary magnetic force sorting device such as a belt type magnetic force sorting device or a counter electrode type magnetic force sorting device for each grain size. Next, magnetic force selection 6 is performed to classify the magnetic material into a non-magnetic material 7 and a magnetic material 8. This is because the infiltrated layer in which molten iron and slag have infiltrated reacts with the refractory raw material forming the refractory to form a compound containing iron oxide, and contains an iron oxide component, so that it has a weak magnetic property. It takes advantage of that. The higher the content of the infiltrated iron oxide component, the lower the refractory temperature of the refractory material.Therefore, when reusing the used refractory material, as much as possible, lumps with an infiltration layer and granular used refractory materials It is necessary to control the mixture of substances.

【0020】本発明者は、鋭意研究を重ねた結果、使用
済耐火物の主成分、粒度によって若干異なるが、塊、粒
状の使用済耐火物1個当たりに含まれる酸化鉄成分の含
有量を0.4質量%以下にできれば、この使用済耐火物
を耐火物原料として再利用しても、耐用性の低下を招く
ことはなく、再利用時の寿命低下の要因にはならないこ
とを知見し、図2に示す調査結果より、使用済耐火物中
から除去が可能な含有酸化鉄の限界含有量は、磁束密度
が大きくなると共に、小さくすることができ、10,000ガ
ウス以上の磁束密度で二次磁力選別を行うことで、酸化
鉄の含有量を0.4質量%以下に達成できることを見出
した。
As a result of intensive studies, the present inventor has found that the content of the iron oxide component contained in one lump or granular used refractory is slightly different depending on the main component and the particle size of the used refractory. It has been found that if the content is 0.4 mass% or less, even if this used refractory is reused as a refractory raw material, the durability will not be deteriorated, and it will not be a factor of shortening the life during reuse. From the survey results shown in Fig. 2, the limit content of iron oxide contained that can be removed from the used refractory can be reduced as the magnetic flux density increases, and the secondary content can be obtained at a magnetic flux density of 10,000 gauss or more. It was found that the content of iron oxide can be reduced to 0.4% by mass or less by performing magnetic separation.

【0021】一般に、炭素を含有しない使用済耐火物
は、炭素を含有する使用済耐火物に比べ、スラグ等に対
する炭素の濡れ難さの効果を発現できない分だけ、相対
的に浸潤層の厚みは大きい。したがって、二次磁力選別
の精度バラツキを考慮すると、単位処理重量当たりの非
磁性体(浸潤層が無いもの)に紛れ込む磁性体(浸潤層
が有るもの)の絶対重量は、炭素を含有しない使用済耐
火物の方が高くなる。また、炭素を含有する使用済耐火
物の中には、浸潤層が無く、非磁性体でありながら、含
有する炭素が酸化し、耐火物組織が劣化しているものも
一部存在している。
In general, a used refractory containing no carbon has a relatively thick infiltration layer as compared with a used refractory containing carbon, because the effect of making it difficult for carbon to wet slag and the like cannot be exhibited. large. Therefore, in consideration of the variation in the accuracy of secondary magnetic force selection, the absolute weight of the magnetic substance (with the infiltration layer) mixed in the non-magnetic substance (without the infiltration layer) per unit treatment weight does not contain carbon. Refractory is higher. In addition, some of the used refractory materials containing carbon have no infiltration layer and are non-magnetic materials, but some carbon materials are oxidized and the refractory structure deteriorates. .

【0022】操業条件が厳しく、内張り耐火物の化学成
分に厳密性を要求されるものもあり、使用済耐火物の再
利用を更に安定化させる目的で、耐用性に影響を及ぼす
これらの不良な使用済耐火物を、更に除去することが必
要な場合もある。
Some operating conditions are strict, and strictness is required for the chemical composition of the refractory lining. For the purpose of further stabilizing the reuse of the used refractory, these defective materials that affect the durability are It may be necessary to further remove the used refractory.

【0023】本発明者等は、使用済耐火物の再利用を更
に安全にする目的で、浸潤層又は酸化層を含むものを追
加除去する手法を鋭意研究した結果、これらの色彩の違
いを利用することで、自動的に識別できることを見出し
た。これは、炭素を含有しない使用済耐火物では浸潤層
が無い部分は白いが、浸潤層の部分は黒く、また炭素を
含有する使用済耐火物では元々の色は黒いが、酸化した
部分は白くなることで、識別できることを利用した。
The inventors of the present invention have earnestly studied a method of additionally removing a material containing an infiltrated layer or an oxidized layer for the purpose of further safe reuse of used refractory materials, and as a result, these color differences are utilized. By doing so, they found that they can be identified automatically. This is because the used refractory that does not contain carbon is white in the part without the infiltration layer, but the part of the infiltration layer is black, and in the used refractory containing carbon, the original color is black, but the oxidized part is white. By utilizing the fact that it can be identified.

【0024】粒度毎に、二次磁力選別された使用済耐火
物は、色彩選別9に掛ける。色彩選別装置の構成の一例
を説明すると、予めリジェクトすべき対象の色彩情報を
コンピューターにインストールし、ベルトコンベアーに
連続的に流れる対象物の色彩情報をカメラで識別し、リ
ジェクトすべき対象物が通過した際にエアーガンで吹き
飛ばす方式のものである。この方式の色彩選別機を使用
することで、良質部分からなる使用済み耐火物と一緒に
ベルトコンベア上に搬送された不良質部分を含む使用済
耐火物のみが、落下点近傍で打ち落とされることで、不
良質部分をほぼ完全に除去でき、落下点近傍で打ち落と
されずにシュートに納まった使用済耐火物には、殆ど良
質部分の使用済耐火物のみが残る。
The used refractories subjected to the secondary magnetic force selection for each particle size are subjected to color selection 9. Explaining an example of the configuration of the color selection device, the color information of the object to be rejected is installed in the computer in advance, the color information of the object that continuously flows on the belt conveyor is identified by the camera, and the object to be rejected passes. It is a method of blowing off with an air gun when doing. By using this type of color sorter, only used refractories containing defective parts conveyed on the belt conveyor together with used refractories consisting of good quality parts will be knocked down near the drop point. Thus, the defective portion can be almost completely removed, and almost all the used refractory material of good quality remains in the used refractory material that has been housed in the chute without being knocked down near the drop point.

【0025】二次磁力選別され、必要に応じて更に色彩
選別されて、スラグ浸潤層が無いものとして分類された
良質部からなる使用済耐火物7,10は、キャスタブ
ル,圧入流し込み材の骨材、又は吹付け施工用耐火材,
耐火煉瓦の耐火物原料等に使用される。
Used refractories 7 and 10 composed of good quality parts which have been subjected to secondary magnetic force selection, and further color selection as necessary, and have been classified as having no slag infiltration layer are aggregates of castable and press-in pouring materials. , Or fireproof material for spraying construction,
Used as a refractory raw material for refractory bricks.

【0026】一方、二次磁力選別され、必要に応じて更
に色彩選別されて、スラグ浸潤層または酸化層が存在す
るものとして分類された不良質部分を含む使用済耐火物
8,11は、浸潤層に含まれる酸化鉄を還元させるため
に炭材と一緒に溶融14,15させることで、緻密で酸
化鉄の含有量が小さいものを造り、耐火物の原料16,
17として再利用する。または、溶融させずに、プレス
装置、インターロッキングブロック装置等で成形する景
観材の原料18,19として、若しくは樋砂、タンディ
ッシュシール材、タンディッシュ堰ブロック、TPC受
銑口カバー材等、製鉄工場において、耐火物を内張りし
た精錬炉及び取鍋、樋等の搬送や付帯設備の寿命要因に
至らない非重要部位に施工する低級品質の耐火物原料2
0,21として、そのまま再利用する。
On the other hand, the used refractories 8 and 11 containing the defective portion classified by the secondary magnetic force selection and further the color selection as necessary and classified as having the slag infiltration layer or the oxidation layer are infiltrated. By melting 14 and 15 together with the carbonaceous material to reduce the iron oxide contained in the layer, a dense and low iron oxide content is produced, and the refractory raw material 16 and
Reuse as 17. Alternatively, as a raw material 18 or 19 of a landscape material that is molded by a pressing device, an interlocking block device, etc. without being melted, or gutter sand, a tundish seal material, a tundish dam block, a TPC iron mouth cover material, etc. Refractory raw materials of low quality to be installed in non-important parts that do not reach the life factor of refining furnaces and ladles, gutters, etc. lined with refractory and life of auxiliary equipment in factories 2
Reuse as it is as 0 and 21.

【0027】この使用済耐火物の処理方法によって、使
用済耐火物の大量処理と処理費用の低減が可能になり、
しかも使用済耐火物の大半を有効に再利用でき、廃棄す
る耐火物を最小限にして埋め立て等の環境上の問題を回
避することができる。
This method of treating used refractories enables large-scale treatment of used refractory and reduction of treatment cost.
Moreover, most of the used refractory materials can be effectively reused, and the refractory materials to be discarded can be minimized to avoid environmental problems such as landfill.

【0028】[0028]

【実施例】次に、本発明に係わる使用済耐火物の処理方
法の実施例について説明する。
EXAMPLES Next, examples of a method for treating a used refractory material according to the present invention will be described.

【0029】溶鋼の搬送に使用した取鍋に内張りされて
いたAl2O3を85質量%含むアルミナ系キャスタブル2
0トンを、張り替えのために、ピックブレーカーで解体
して回収し、更に人頭大の大きさに粗破砕した。図3
に、処理工程フローと、各工程における選別回収した使
用済耐火物の収支バランス、及び蛍光X線で解析した酸
化鉄の含有割合を示す。先ず、使用済耐火物を、磁束密
度3500ガウスを有する吊り下げ式磁力選別装置を用い
て、一次の磁力選別を行った。その結果、混在していた
1.8トンの地金全量を磁性体として選別することがで
きた。一次磁力選別で分類され、使用済耐火物のみで構
成される非磁性体は、ジョークラッシャーで60mm以
下に破砕された後、振動篩い装置を用い、粒度が60〜
20mm,20〜5mm,5mm以下になるように篩い
分けした。そして、60〜20mm,20〜5mmは、
粒度毎に、磁束密度12000ガウスのベルト式磁力選別装
置に、5mm以下は、28000ガウスの対極型磁力選別装
置に掛け、磁性体と非磁性体に選別した。ここで、粒度
が5mm以下の使用済耐火物のみ、対極型磁力選別機に
掛けたのは、1mm以下の細粒も多量に含まれるため、ベ
ルト式磁力選別では静電気の発生で、ベルトに付着して
しまい、非磁性体でありながら、磁性体のシュートに放
り込まれ、正しい選別が難しいと判断し、落下方式の方
が適していると考えたからである。
Alumina castable 2 containing 85% by mass of Al 2 O 3 lined in a ladle used for transporting molten steel.
In order to replace it, 0 ton was disassembled with a pick breaker and collected, and further roughly crushed to a size of a human head. Figure 3
Shows the treatment process flow, the balance balance of the used refractories sorted and collected in each process, and the content ratio of iron oxide analyzed by fluorescent X-ray. First, the used refractory material was subjected to primary magnetic force selection using a suspension type magnetic force selection device having a magnetic flux density of 3500 gauss. As a result, the total amount of 1.8 tons of the metal that was mixed could be selected as a magnetic material. The non-magnetic material classified by the primary magnetic separation and composed only of the used refractory is crushed to 60 mm or less by the jaw crusher, and then the vibrating and sieving device is used, and the particle size is 60 ~.
It screened so that it might become 20 mm, 20-5 mm, and 5 mm or less. And 60 ~ 20mm, 20 ~ 5mm,
For each grain size, a magnetic flux density of 12000 gauss was applied to a belt type magnetic force sorting device and 5 mm or less was applied to a counter electrode type magnetic force sorting device of 28,000 gauss to sort into magnetic substance and non-magnetic substance. Here, only the used refractory with a particle size of 5 mm or less was applied to the counter electrode type magnetic separator because a large amount of fine particles with a particle size of 1 mm or less were also included. The reason is that although it is a non-magnetic material, it is thrown into the chute of a magnetic material, and it is determined that correct sorting is difficult, and the drop method is considered to be more suitable.

【0030】更に、5mm以下の粒度を除き、色彩選別
機に掛け、粒度毎に浸潤層を含むものと含まないものに
分類した。色彩選別機はCCDカメラを1台搭載し、ベル
トコンベアの幅が300mmで、エアーガンが300mm幅に対
して横一列に30個並び、1秒間に1,000発噴射できる
装置を用いて、ベルトコンベアの搬送速度が80m/分
の条件で、本来白色のものが浸潤層を形成し、黒ずむこ
とで識別できることにより分類した。図3に、色彩選別
後、浸潤層無しに分類された使用済耐火物中に混入して
いる浸潤層を手選別して求め、それを除いた使用済み耐
火物の比率を合格率として示しているが、色彩選別を行
うことで、いずれの粒度に対しても、99.9%の合格
率まで高めることができ、含有酸化鉄の影響を懸念する
必要は全く無い。ここで、5mm以下の粒度に適用しな
かったのは、二次磁力選別で、既に再利用にそのまま廻
す使用済耐火物に含まれる酸化鉄成分量の目標値である
0.4質量%を下回っていたので、色彩選別を掛けて
も、粒度が細かく、処理能力が極端に、他の粒度に比べ
落ちてしまい、また使用済耐火物の粒度に対して、カメ
ラの分解像のレベルとエアーガン噴射による選択除去の
確率が低く、高い精度での選別が不可能と判断したから
である。
Further, except for the particle size of 5 mm or less, the particles were subjected to a color sorter and classified into particles containing a wetting layer and particles not containing a wetting layer. The color sorter is equipped with one CCD camera, the width of the belt conveyor is 300mm, and 30 air guns are lined up in a row of 300mm width. At a speed of 80 m / min, originally white ones formed an infiltrated layer and were classified by being darkened to be identified. In Fig. 3, after color selection, the infiltration layer mixed in the used refractories classified without the infiltration layer was obtained by manual selection, and the ratio of the used refractory excluding it was shown as the pass rate. However, by performing color selection, it is possible to raise the pass rate to 99.9% for any particle size, and there is no need to worry about the influence of the iron oxide content. Here, what was not applied to the particle size of 5 mm or less is the secondary magnetic force selection, which is less than the target value of 0.4 mass% of the iron oxide component contained in the used refractory which is already recycled for reuse. Therefore, even if you apply color selection, the particle size is fine, the processing capacity is extremely low, compared to other particle sizes, and the level of the decomposed image of the camera and the air gun injection against the particle size of the used refractory This is because it was judged that the probability of selective removal due to was low, and high-accuracy sorting was impossible.

【0031】二次磁力選別し、色彩選別を掛けて、浸潤
層が無いと判断された粒度60〜20mmの使用済耐火
物は、取鍋敷部に設置する圧入流し込みブロックのブラ
ウンアルミナ粗骨材の代替として、内掛け60質量%を
添加し、再利用したところ、充填状態も良好で、通常品
と比較して、寿命低下をもたらすことはなかった。
The used refractory material having a grain size of 60 to 20 mm, which is judged to have no infiltration layer by secondary magnetic force selection and color selection, is a brown-alumina coarse aggregate of a press-in pouring block installed in a ladle floor. As an alternative to the above, when 60% by mass of the inner coat was added and reused, the filling state was good, and the life was not shortened as compared with the normal product.

【0032】浸潤層が無いと判断された粒度20〜5m
mの使用済耐火物は、取鍋一般壁向けキャスタブルのブ
ラウンアルミナ粗骨材の代替として、内掛け25質量%
を添加し、再利用したところ、施工性、充填状態も良好
で、通常品と同等の寿命を確保した。
Grain size 20-5 m judged to have no infiltration layer
The used refractory of m is 25 mass% of inner lining, as an alternative to the brown alumina coarse aggregate castable for ladle general walls.
When added and reused, the workability and filling state were good, and the same life as regular products was secured.

【0033】二次磁力選別を掛け、非磁性体と判断され
た粒度5mm以下の使用済耐火物は、乾式吹き付け用補
修材として、内掛け40質量%を添加し、再利用したと
ころ、付着歩留まりの低下をもたらすことも無く、通常
品と同等の耐用性を確保できた。
A used refractory having a particle size of 5 mm or less, which was judged to be a non-magnetic material by secondary magnetic screening, was added with 40% by mass of the inner coating as a repair material for dry spraying and reused. It was possible to secure durability equivalent to that of normal products without causing deterioration of

【0034】一方、二次磁力選別を掛け、磁性体と判断
された粒度5mm以下の使用済耐火物は、バケットに積
み上げていき、2トン堆積したところで、1時間毎に、
4回に分けて、炭材となるコークス粉と一緒に、アーク
式溶融炉に投入して、2500〜3000℃でアーク加熱を行
い、投入した使用済耐火物全量の約70質量%が溶融し
たところで、加熱を止め、自然冷却を行った後、固化し
た溶融部のインゴットを取りだし、破砕してから3000ガ
ウスの磁力選別を行って、還元された金属鉄を除去し
た。その結果、溶融前に、6.2質量%あった酸化鉄の
含有量が、インゴットでは0.2質量%まで低下し、良
質な耐火物原料を得ることができた。
On the other hand, the used refractories having a grain size of 5 mm or less, which are judged to be magnetic substances by being subjected to secondary magnetic force selection, are piled up in buckets, and when 2 tons are accumulated, every one hour,
Divided into 4 times, charged with coke powder as carbonaceous material into an arc type melting furnace and subjected to arc heating at 2500 to 3000 ° C., and about 70 mass% of the total amount of the used refractory materials charged was melted. By the way, after heating was stopped and natural cooling was carried out, the solidified melted ingot was taken out and crushed, and then magnetic separation of 3000 gauss was carried out to remove the reduced metallic iron. As a result, the content of iron oxide, which was 6.2 mass% before melting, decreased to 0.2 mass% in the ingot, and a good refractory raw material could be obtained.

【0035】二次磁力選別で磁性体と判断されたもの、
及び色彩選別を掛けて浸潤層が在ると判断された粒度6
0〜20mmの使用済耐火物は、景観材ブロックの骨材
として再利用し、微粉のポルトランドセメントと高炉ス
ラグ粉と一緒に練って、インターロッキングブロク装置
で成形して、廉価な景観材として市場に供給している。
Those which are determined to be magnetic substances by the secondary magnetic force selection,
And the grain size 6 which was judged to have an infiltrated layer by applying color selection
Used refractory of 0 to 20 mm is reused as an aggregate of landscape material blocks, kneaded with fine Portland cement and blast furnace slag powder, and molded with an interlocking block device, and marketed as an inexpensive landscape material. Is being supplied to.

【0036】二次磁力選別で磁性体と判断されたもの、
及び色彩選別を掛けて浸潤層が在ると判断された粒度2
0〜5mmの使用済耐火物は、樋カバー用キャスタブル
の骨材として、内掛け20質量%を添加し、再利用した
ところ、操業に支障を来すことなく、通常品比べ、特に
耐用性の低下も見られなかった。
Those which are determined to be magnetic substances by the secondary magnetic force selection,
And the grain size 2 judged to have an infiltrated layer by applying color selection
Used refractory of 0 to 5 mm was added as a castable aggregate for gutter covers with 20% by weight of inner lining and reused. It did not interfere with the operation and was more durable than ordinary products. No decline was seen.

【0037】以上、本発明の実施の形態を説明したが、
本発明は、上記した形態に限定されるものでなく、要旨
を逸脱しない条件の変更等は全て本発明の適用範囲であ
る。
The embodiment of the present invention has been described above.
The present invention is not limited to the above-described embodiment, and changes in conditions and the like without departing from the spirit are all within the scope of application of the present invention.

【0038】[0038]

【発明の効果】本発明により、製鉄工場で発生・回収し
た使用済耐火物全量に対して、混入した地金を完全除去
した後、各粒度毎に、非磁性体と磁性体、浸潤層を含む
ものと含まないものに、高い処理能力で自動選別できる
ようになった。選別した使用済耐火物の形態、特徴に応
じて、再利用することで、従来3%であった再利用率
が、99.9%まで上昇することができた。特に、耐火
物原料として再利用しな場合も、使用済耐火物を添加し
ていない従来耐火物に比べ、寿命低下をもたらすことは
無く、同等の耐用性を確保できた。それに伴い、製鉄工
場で使用する耐火物コストは約20%削減でき、また埋
め立てに向ける廃棄量も、年間を通じて、ゼロにするこ
とができた。
EFFECTS OF THE INVENTION According to the present invention, after the mixed metal is completely removed from the total amount of the used refractories generated and recovered in the steelmaking plant, the non-magnetic material, the magnetic material and the infiltrating layer are separated for each grain size. It has become possible to automatically sort out those that include and those that do not, with high processing capacity. By recycling according to the form and characteristics of the selected used refractory, the reuse ratio, which was 3% in the past, could be increased to 99.9%. In particular, even when it was not reused as a refractory raw material, compared with the conventional refractory to which the used refractory was not added, the life was not shortened and the equivalent durability could be secured. Along with this, the cost of refractories used in the steel plant could be reduced by about 20%, and the amount of waste for landfill could be reduced to zero throughout the year.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例における使用済耐火物の処理
方法のフローチャートである。
FIG. 1 is a flowchart of a method for treating a used refractory material according to an embodiment of the present invention.

【図2】二次選別後の非磁性体中に含まれる酸化鉄含有
量−磁束密度の関係図である。
FIG. 2 is a relationship diagram of iron oxide content-magnetic flux density contained in a non-magnetic material after secondary selection.

【図3】使用済耐火物の処理工程毎の収支バランスと酸
化鉄含有量を示す。
FIG. 3 shows the balance of balance and iron oxide content for each treatment process of used refractories.

フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) B07B 1/28 C04B 35/66 S 4G030 B09B 3/00 G01J 3/51 4G033 C04B 35/00 G01N 21/27 B 4K001 35/66 C22B 1/00 601 G01J 3/51 B09B 5/00 ZABF G01N 21/27 C04B 35/00 V // C22B 1/00 601 B09B 3/00 Z 303A (72)発明者 松井 泰次郎 福岡県北九州市戸畑区飛幡町1−1 新日 本製鐵株式会社八幡製鐵所内 (72)発明者 今川 浩志 福岡県北九州市戸畑区飛幡町1−1 新日 本製鐵株式会社八幡製鐵所内 (72)発明者 嶋 哲男 千葉県富津市新富20−1 新日本製鐵株式 会社技術開発本部内 (72)発明者 加藤 弘之 千葉県富津市新富20−1 新日本製鐵株式 会社技術開発本部内 (72)発明者 松田 強志 愛知県東海市東海町5−3 新日本製鐵株 式会社名古屋製鐵所内 (72)発明者 鈴木 敏文 愛知県東海市東海町5−3 新日本製鐵株 式会社名古屋製鐵所内 (72)発明者 麻生 誠二 大分県大分市大字西ノ洲1番地 新日本製 鐵株式会社大分製鐵所内 (72)発明者 祐成 史郎 大分県大分市大字西ノ洲1番地 新日本製 鐵株式会社大分製鐵所内 Fターム(参考) 2G020 AA08 BA20 DA05 DA13 DA66 2G059 AA05 BB09 EE02 EE13 HH02 JJ02 KK04 4D004 AA16 BA05 BA06 CA04 CA08 CA09 CA29 CA32 CB13 DA03 4D021 CA07 EA10 EB01 4D067 EE14 EE17 EE25 GA20 GB05 4G030 AA36 BA25 4G033 AA02 AA11 AB02 BA01 4K001 AA10 BA22 CA04 Front page continuation (51) Int.Cl. 7 Identification code FI theme code (reference) B07B 1/28 C04B 35/66 S 4G030 B09B 3/00 G01J 3/51 4G033 C04B 35/00 G01N 21/27 B 4K001 35 / 66 C22B 1/00 601 G01J 3/51 B09B 5/00 ZABF G01N 21/27 C04B 35/00 V // C22B 1/00 601 B09B 3/00 Z 303A (72) Inventor Matsui Taijiro Tobata, Kitakyushu, Fukuoka Prefecture 1-1 Hiwata-cho, Hinohata-ku, Tokyo (72) Inventor Hiroshi Imagawa 1-1 Hibata-cho, Tobata-ku, Kitakyushu, Kitakyushu, Fukuoka 1-1 In-house, Yawata Works (72) Person Tetsuo Shima 20-1 Shintomi, Futtsu City, Chiba Prefecture Nippon Steel Co., Ltd.Technology Development Division (72) Inventor Hiroyuki Kato 20-1 Shintomi, Futtsu City, Chiba Prefecture Nippon Steel Co., Ltd.Technology Development Headquarters (72) Invention Takeshi Matsuda 5-3 Tokai-cho, Tokai-shi, Aichi Nippon Steel Share company Nagoya Steel Works (72) Inventor Toshifumi Suzuki Tokai-cho, Tokai-shi, Aichi 5-3 Shin Nippon Steel Share company Nagoya Works (72) Inventor Seiji Aso Oita-shi Oita-shi 1 Nishinosu New Nippon Steel Co., Ltd. Oita Steel Works (72) Inventor Shiro Yusei 1st Nishinosu, Oita City, Oita Prefecture Shin-Nippon Steel Co., Ltd. Oita Steel Works F Term (reference) 2G020 AA08 BA20 DA05 DA13 DA66 2G059 AA05 BB09 EE02 EE13 HH02 JJ02 KK04 4D004 AA16 BA05 BA06 CA04 CA08 CA09 CA29 CA32 CB13 DA03 4D021 CA07 EA10 EB01 4D067 EE14 EE17 EE25 GA20 GB05 4G030 AA36 BA25 4G033 AA02 AA11 AB02 BA01 4K001 AA10 BA22 CA04

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 使用済の耐火物に対して、一次の磁力選
別を行い、地金を除去した後、破砕して篩い分けし、更
に粒度毎に一次の磁力選別よりも大きな磁力で、二次の
磁力選別をして、磁性体と非磁性体に分類することを特
徴とする使用済耐火物の処理方法。
1. The used refractory is subjected to primary magnetic sorting to remove the metal, and then crushed and sieved. A method for treating used refractories, which is characterized by performing the following magnetic separation to classify it into a magnetic substance and a non-magnetic substance.
【請求項2】 非磁性体として分類された使用済耐火物
を、耐火物原料として再利用することを特徴とする請求
項1記載の使用済耐火物の処理方法。
2. The method for treating a used refractory according to claim 1, wherein the used refractory classified as a non-magnetic material is reused as a refractory raw material.
【請求項3】 選別された前記非磁性体の使用済耐火物
に対して、更にスラグ浸潤層の有無を色彩で識別して、
スラグ浸潤層の無いものと浸潤層が存在するものとに分
類することを特徴とする請求項1記載の使用済耐火物の
処理方法。
3. The used refractory of the non-magnetic material selected is further distinguished by color for the presence or absence of a slag infiltration layer,
The method for treating a used refractory material according to claim 1, characterized in that it is classified into one having no slag infiltration layer and one having an infiltration layer.
【請求項4】 非磁性体で、スラグ浸潤層が無いものと
して分類された使用済耐火物を、耐火物原料として再利
用することを特徴とする請求項3記載の使用済耐火物の
処理方法。
4. The method for treating a used refractory according to claim 3, wherein the used refractory which is a non-magnetic material and is classified as having no slag infiltration layer is reused as a raw material for the refractory. .
【請求項5】 磁性体として、又はスラグ浸潤層が存在
するものとして分類された使用済耐火物を、溶融し冷却
固化させた後耐火物原料として、または溶融させずに成
形して景観材用の原料若しくは耐火物原料として再利用
することを特徴とする請求項1又は3記載の使用済耐火
物の処理方法。
5. A landscape material for use as a refractory material after melting and cooling and solidifying a used refractory material classified as a magnetic material or a material having a slag infiltrating layer, or for forming a landscape material. 4. The method for treating a used refractory according to claim 1 or 3, which is reused as a raw material or a refractory raw material.
JP2001283826A 2001-09-18 2001-09-18 Disposal of used refractories Expired - Lifetime JP3704301B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001283826A JP3704301B2 (en) 2001-09-18 2001-09-18 Disposal of used refractories

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001283826A JP3704301B2 (en) 2001-09-18 2001-09-18 Disposal of used refractories

Publications (2)

Publication Number Publication Date
JP2003088845A true JP2003088845A (en) 2003-03-25
JP3704301B2 JP3704301B2 (en) 2005-10-12

Family

ID=19107267

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001283826A Expired - Lifetime JP3704301B2 (en) 2001-09-18 2001-09-18 Disposal of used refractories

Country Status (1)

Country Link
JP (1) JP3704301B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015171706A (en) * 2014-02-19 2015-10-01 Jfeスチール株式会社 Reuse method of used refractory and refractory raw material obtained by the method and refractory
JP2016168523A (en) * 2015-03-11 2016-09-23 Jfeスチール株式会社 Separation method and separation device of used blast furnace trough refractory
JP2018002529A (en) * 2016-06-30 2018-01-11 Jfeスチール株式会社 Manufacturing method of refractory by recycling used refractory
CN109328116A (en) * 2016-06-20 2019-02-12 德瑞芙股份公司 For recycling the device and method of the refractory material exhausted
CN113385291A (en) * 2021-05-27 2021-09-14 中国地质科学院郑州矿产综合利用研究所 Method for recovering qualified refractory material raw material from high-iron bauxite clinker waste

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101559423B (en) * 2008-04-17 2012-02-29 山东华联矿业股份有限公司 Technology for secondarily recovering iron middlings
KR101359970B1 (en) * 2011-12-20 2014-02-12 주식회사 포스코 Recycling method of ferro nickel slag
JP6287905B2 (en) * 2015-03-13 2018-03-07 Jfeスチール株式会社 Used refractory sorting method and used refractory sorting device
CN112156891A (en) * 2020-07-24 2021-01-01 广东蓝龙环境科技有限公司 Method for improving recovery rate of magnetic metal in household garbage incinerator slag

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0741874A (en) * 1993-07-26 1995-02-10 Setsuichi Kasai Method for recovering metal slag of waste
JPH08188475A (en) * 1995-01-09 1996-07-23 Daido Steel Co Ltd High-alumina refractory
JPH10225934A (en) * 1997-02-17 1998-08-25 Nkk Corp Utilization of waste as resources
JP2000189940A (en) * 1999-01-04 2000-07-11 Rst Luxembourg Sa Waste treatment and device therefor
JP2001212476A (en) * 2000-01-31 2001-08-07 Nippon Magnetic Dressing Co Ltd Method for recovering valuable material from used graphite-containing refractory brick

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0741874A (en) * 1993-07-26 1995-02-10 Setsuichi Kasai Method for recovering metal slag of waste
JPH08188475A (en) * 1995-01-09 1996-07-23 Daido Steel Co Ltd High-alumina refractory
JPH10225934A (en) * 1997-02-17 1998-08-25 Nkk Corp Utilization of waste as resources
JP2000189940A (en) * 1999-01-04 2000-07-11 Rst Luxembourg Sa Waste treatment and device therefor
JP2001212476A (en) * 2000-01-31 2001-08-07 Nippon Magnetic Dressing Co Ltd Method for recovering valuable material from used graphite-containing refractory brick

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015171706A (en) * 2014-02-19 2015-10-01 Jfeスチール株式会社 Reuse method of used refractory and refractory raw material obtained by the method and refractory
JP2017170443A (en) * 2014-02-19 2017-09-28 Jfeスチール株式会社 Reuse method of used refractory
JP2016168523A (en) * 2015-03-11 2016-09-23 Jfeスチール株式会社 Separation method and separation device of used blast furnace trough refractory
CN109328116A (en) * 2016-06-20 2019-02-12 德瑞芙股份公司 For recycling the device and method of the refractory material exhausted
JP2018002529A (en) * 2016-06-30 2018-01-11 Jfeスチール株式会社 Manufacturing method of refractory by recycling used refractory
CN113385291A (en) * 2021-05-27 2021-09-14 中国地质科学院郑州矿产综合利用研究所 Method for recovering qualified refractory material raw material from high-iron bauxite clinker waste
CN113385291B (en) * 2021-05-27 2023-03-14 中国地质科学院郑州矿产综合利用研究所 Method for recovering qualified refractory material raw material from high-iron bauxite clinker waste

Also Published As

Publication number Publication date
JP3704301B2 (en) 2005-10-12

Similar Documents

Publication Publication Date Title
US8211206B2 (en) Processing metallurgical slag
Fang et al. Study of spent refractory waste recycling from metal manufacturers in Missouri
JP4077774B2 (en) Reusing used refractories
Hanagiri et al. Recent improvement of recycling technology for refractories
JP2003088845A (en) Treatment method of spent refractory
CN108187880B (en) A kind of slag advanced treatment process
JP2009006273A (en) Wet type magnetic separation method for separating mixture of microparticles
Steenkamp et al. Silicomanganese production at Transalloys in the twenty-tens
US3049305A (en) Process for recovering substantially clean magnetic metal pieces and magnetic oxides from steel plant debris
JP2001192741A (en) Method for utilizing steel making slag
JP5347317B2 (en) How to reuse used tundish refractories
Ma et al. Enhancement of in-plant recycling of integrated steel mill offgas solid wastes by reallocating crucial zinc-bearing materials
JP5017846B2 (en) Reuse of chromium-containing steel refining slag
JP3645843B2 (en) How to reuse refractories
JP5332806B2 (en) Electric furnace dust recycling method
JP3645818B2 (en) How to recycle refractories
JP4499940B2 (en) Disposal of used refractories
JP2005188798A (en) Recycling method for used refractory and method of forming lining protective layer of molten metal container
JP3617488B2 (en) How to use recovered slag
Madias A review on recycling of refractories for the iron and steel industry
RU2448172C2 (en) Processing method for dump blast-furnace and open-hearth slag
JP4187453B2 (en) Ladle method for high temperature molten slag
KR100431499B1 (en) Method for recovering and recycling ladle slag
Mou et al. Sinter plant operations: raw materials
JP6718323B2 (en) Refractory manufacturing method that reuses used refractories

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050701

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050712

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050722

R151 Written notification of patent or utility model registration

Ref document number: 3704301

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080729

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090729

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090729

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100729

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110729

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120729

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130729

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130729

Year of fee payment: 8

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130729

Year of fee payment: 8

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130729

Year of fee payment: 8

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130729

Year of fee payment: 8

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term