JP2003088394A - Method for producing organic hydrolyzate and method for producing the same - Google Patents

Method for producing organic hydrolyzate and method for producing the same

Info

Publication number
JP2003088394A
JP2003088394A JP2001284792A JP2001284792A JP2003088394A JP 2003088394 A JP2003088394 A JP 2003088394A JP 2001284792 A JP2001284792 A JP 2001284792A JP 2001284792 A JP2001284792 A JP 2001284792A JP 2003088394 A JP2003088394 A JP 2003088394A
Authority
JP
Japan
Prior art keywords
molecular weight
high molecular
weight organic
tank
chitosan
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001284792A
Other languages
Japanese (ja)
Inventor
Tomokichi Shintani
智吉 新谷
Shunsuke Miyaoka
俊輔 宮岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ehime Prefecture
Original Assignee
Ehime Prefecture
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ehime Prefecture filed Critical Ehime Prefecture
Priority to JP2001284792A priority Critical patent/JP2003088394A/en
Publication of JP2003088394A publication Critical patent/JP2003088394A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a method for selectively and efficiently producing a polymeric organic substance partial hydrolyzate in an industrial scale. SOLUTION: This method for producing the polymeric organic substance partial hydrolyzate is characterized by simultaneously carrying out the hydrolysis of the polymeric organic substance in the presence of a hydrolytic enzyme and the purification of the obtained polymeric organic substance partial hydrolyzate by an electrophoresis using an ultrafiltration membrane and a dialysis membrane.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、高分子有機物の部
分加水分解及び精製を同時に行う方法、即ち、低分子量
の有機物の製造及び精製を同時に行う方法に関する。
TECHNICAL FIELD The present invention relates to a method for simultaneously performing partial hydrolysis and purification of a high molecular weight organic substance, that is, a method for simultaneously producing and purifying a low molecular weight organic substance.

【0002】[0002]

【従来の技術】例えば、有機物の一種であるキトサンの
部分分解物であるキトサンオリゴ糖は、食品添加物、化
粧品、医薬品等の用途への開発が望まれている。
2. Description of the Related Art For example, chitosan oligosaccharide, which is a partial decomposition product of chitosan which is one of organic substances, is desired to be developed for use in food additives, cosmetics, pharmaceuticals and the like.

【0003】特に、5糖以上の高級キトサンオリゴ糖
は、近年において抗菌性、抗腫瘍性、免疫賦活性の種々
の生理活性を有することがわかってきており、分子量1
万程度のキトサンは接着剤や塗料への応用が期待されて
おり、その付加価値や需要が高まっている。
In particular, higher chitosan oligosaccharides having 5 or more sugars have recently been found to have various physiological activities such as antibacterial activity, antitumor activity and immunostimulatory activity.
About 10,000 chitosan is expected to be applied to adhesives and paints, and its added value and demand are increasing.

【0004】しかし、このような5糖以上の高級キトサ
ンオリゴ糖や高級キチンオリゴ糖を効率的に生産する方
法は未だ確立されておらず、特に7糖以上の高級キトサ
ンオリゴ糖,高級キチンオリゴ糖は、調製が困難で現在
市販されていないのが現状である。
However, a method for efficiently producing such higher chitosan oligosaccharides having 5 or more sugars and higher chitin oligosaccharides has not been established yet, and in particular, higher chitosan oligosaccharides having 7 or more sugars and higher chitin oligosaccharides have been established. Is difficult to prepare, and is currently not commercially available.

【0005】[0005]

【発明が解決しようとする課題】本発明の目的は、低重
合度の有機物を選択的に、効率よく、かつ工業的規模で
製造する方法及び装置を提供することである。
SUMMARY OF THE INVENTION It is an object of the present invention to provide a method and an apparatus for producing an organic substance having a low degree of polymerization selectively, efficiently and on an industrial scale.

【0006】[0006]

【課題を解決するための手段】本発明は、以下の項1〜1
1に関する。
The present invention includes the following items 1 to 1.
Regarding 1

【0007】項1.加水分解酵素を用いた高分子有機物
の部分分解と、得られた高分子有機物の部分分解物の限
外濾過膜を用いた電気透析による精製とを同時に行うこ
とを特徴とする高分子有機物部分分解物の製造方法。
Item 1. Partial decomposition of high molecular weight organic compounds characterized by simultaneous partial decomposition of high molecular weight organic compounds using hydrolases and purification of the obtained partial decomposition products of high molecular weight organic compounds by electrodialysis using an ultrafiltration membrane Method of manufacturing things.

【0008】項2.高分子有機物と該有機物を部分分解
し得る加水分解酵素を有する反応槽において高分子有機
物を部分分解し、同時に電気透析を行うことにより、当
該部分分解物を反応槽から限外濾過膜を通って分離槽に
導くことを特徴とする項1に記載の方法。
Item 2. By partially decomposing the polymer organic matter in a reaction tank having a polymer organic matter and a hydrolase capable of partially decomposing the organic matter, and simultaneously performing electrodialysis, the partial decomposition product is passed from the reaction vessel through an ultrafiltration membrane. Item 2. The method according to Item 1, wherein the method is introduced into a separation tank.

【0009】項3.反応槽及び分離槽が透析膜で仕切ら
れた内部空間に存在し、且つ、反応槽と分離槽とが限外
濾過膜で仕切られていることを特徴とする項2に記載の
方法。
Item 3. Item 3. The method according to Item 2, wherein the reaction tank and the separation tank are present in an internal space partitioned by a dialysis membrane, and the reaction tank and the separation tank are partitioned by an ultrafiltration membrane.

【0010】項4.高分子有機物の反応槽への供給、得
られた高分子有機物の部分分解物の分離槽への分離を同
時又は逐次的に行うことを特徴とする有機物部分分解物
の製造方法。
Item 4. A method for producing a partially decomposed organic substance, comprising supplying the high molecular weight organic compound to a reaction tank and separating the obtained partially decomposed organic polymer into a separation tank simultaneously or sequentially.

【0011】項5.高分子有機物がキチン、キトサン、
ペクチン、ペプチドグリカン、グリコサミノグリカン及
びプロテオグリカンを含む多糖類、タンパク質及び核酸
を含む電荷を有する高分子であることを特徴とする項1
〜4のいずれかに記載の方法。
Item 5. High molecular weight organic substances are chitin, chitosan,
Item 1 characterized by being a charged macromolecule including polysaccharides including pectin, peptidoglycan, glycosaminoglycan and proteoglycan, proteins and nucleic acids
The method according to any one of to 4.

【0012】項6.高分子有機物がキチン、キトサン、
ペクチン、ペプチドグリカン、グリコサミノグリカン及
びプロテオグリカンを含む多糖類であることを特徴とす
る項5に記載の方法。
Item 6. High molecular weight organic substances are chitin, chitosan,
Item 6. The method according to Item 5, which is a polysaccharide containing pectin, peptidoglycan, glycosaminoglycan and proteoglycan.

【0013】項7.高分子有機物がキトサンであること
を特徴とする項6に記載の方法。
Item 7. Item 7. The method according to Item 6, wherein the high molecular weight organic substance is chitosan.

【0014】項8.加水分解酵素がキチナーゼ、キトサ
ナーゼ、セルラーゼ、リゾチーム、ペクチナーゼ、ペク
チンエステラーゼ、グルコシダーゼ、グルコサミニダー
ゼ、プロテオグリカナーゼ、プロテアーゼ、ヌクレアー
ゼからなる群から選ばれる少なくとも1種である項1〜4
のいずれかに記載の方法。
Item 8. Item 1 to 4 wherein the hydrolase is at least one selected from the group consisting of chitinase, chitosanase, cellulase, lysozyme, pectinase, pectinesterase, glucosidase, glucosaminidase, proteoglycanase, protease and nuclease.
The method described in any one of.

【0015】項9.加水分解酵素がキトサン分解活性を
有する酵素である項1〜4のいずれかに記載の方法。
Item 9. Item 5. The method according to any one of Items 1 to 4, wherein the hydrolase is an enzyme having a chitosan degrading activity.

【0016】項10.高分子有機物の加水分解酵素を備
えた反応槽、高分子有機物の部分分解物を分離する分離
槽、及び電極槽を備えた電気透析装置。
Item 10. An electrodialysis apparatus comprising a reaction tank equipped with a hydrolyzing enzyme of a high molecular weight organic compound, a separation tank for separating a partially decomposed product of the high molecular weight organic material, and an electrode tank.

【0017】項11.反応槽と分離槽が限外濾過膜で仕
切られ、反応槽と電極槽及び分離槽と電極槽が各々透析
膜で仕切られている項10に記載の装置。
Item 11. Item 11. The apparatus according to Item 10, wherein the reaction tank and the separation tank are separated by an ultrafiltration membrane, and the reaction tank and the electrode tank and the separation tank and the electrode tank are separated by a dialysis membrane.

【0018】[0018]

【発明の実施の形態】本願明細書における高分子有機物
とは、キチン、キトサン、ペクチン、ペプチドグリカ
ン、グリコサミノグリカン、プロテオグリカン等の多糖
類、タンパク質、核酸などの電荷を持った高分子を含
む。キチンは、脱アセチル化度が0%のもを除く。高分子
有機物の分子量は、1000〜500万、好ましくは1万〜100
万であり、その部分分解物の分子量は100〜5万、好まし
くは1000〜2万である。
BEST MODE FOR CARRYING OUT THE INVENTION The high molecular weight organic substance in the present specification includes a charged polymer such as a polysaccharide such as chitin, chitosan, pectin, peptidoglycan, glycosaminoglycan, proteoglycan, protein and nucleic acid. Chitin excludes those with 0% deacetylation. The molecular weight of the high molecular weight organic substance is 10 to 5,000,000, preferably 10,000 to 100.
The molecular weight of the partially decomposed product is 100 to 50,000, preferably 1,000 to 20,000.

【0019】キトサンの部分分解物は、前述したように
抗菌性、抗腫瘍性、免疫賦活活性等を有することが知ら
れており、ペクチンの部分分解物は抗菌作用、整腸作用
等、タンパク質の部分分解物はペプチドとして血圧降下
作用、カルシウム吸収促進作用、高甘味性等を有するこ
となどが知られている。
As described above, the partially decomposed product of chitosan is known to have antibacterial properties, antitumor properties, immunostimulatory activity, etc., and the partially decomposed product of pectin has antibacterial action, intestinal action, etc. It is known that the partially decomposed product has a blood pressure lowering action, a calcium absorption promoting action, a high sweetness and the like as a peptide.

【0020】高分子有機物の部分分解に用いる加水分解
酵素としては、特に限定はされず、高分子有機物の種類
に応じて適宜選択される。例えば、キチン、キトサンの
部分分解にはキチナーゼ、キトサナーゼ、リゾチーム、
セルラーゼ等が、ペクチンにはペクチナーゼ、ペクチン
エステラーゼ等、ペプチドグリカンにはグルコシダーゼ
等、グリコサミノグリカンにはグルコサミニダーゼ等、
プロテオグリカンにはプロテオグリカナーゼ、プロテア
ーゼ等、タンパク質にはプロテアーゼ等、核酸にはヌク
レアーゼ等を用いることができる。
The hydrolase used for the partial decomposition of the high molecular weight organic substance is not particularly limited and is appropriately selected depending on the type of the high molecular weight organic substance. For example, for the partial decomposition of chitin and chitosan, chitinase, chitosanase, lysozyme,
Cellulase, pectin, pectinesterase, etc., peptidoglycan, glucosidase, etc., glycosaminoglycan, glucosaminidase, etc.
Proteoglycans, proteases and the like can be used for proteoglycans, proteases and the like for proteins, and nucleases and the like for nucleic acids.

【0021】本発明における酵素の使用方法は、特に限
定されるものではないが、単に高分子有機物の溶液又は
懸濁液に加えて反応させることもでき、膜や粒子状固体
に固定化して使用することができる。
The method of using the enzyme in the present invention is not particularly limited, but it may be simply added to a solution or suspension of a high molecular weight organic substance for reaction, and immobilized on a membrane or a particulate solid for use. can do.

【0022】本発明で使用する装置1は、図1で例示され
るように、反応槽2、分離槽3及び電極槽4を備えた電気
透析装置1であり、該反応槽2と該分離槽3が限外濾過膜5
で仕切られ、反応槽2と電極槽4及び分離槽3と電極槽4が
各々透析膜6で仕切られている。
The apparatus 1 used in the present invention is an electrodialysis apparatus 1 equipped with a reaction tank 2, a separation tank 3 and an electrode tank 4 as illustrated in FIG. 1, the reaction tank 2 and the separation tank 3 is ultrafiltration membrane 5
The reaction tank 2 and the electrode tank 4, and the separation tank 3 and the electrode tank 4 are each partitioned by a dialysis membrane 6.

【0023】反応槽2では、高分子有機物と加水分解酵
素が反応する。反応槽2は、適宜反応条件等によって、
スターラー7、液送装置等の撹拌装置を用いて撹拌する
こともでき、ヒーター、インキュベータ等の恒温装置を
用いて所定の温度に一定に保つこともできる。
In the reaction tank 2, a high molecular weight organic substance reacts with a hydrolase. The reaction tank 2 is, depending on the reaction conditions, etc.,
The stirring can be performed using a stirrer 7, a stirrer such as a liquid feeding device, and the temperature can be kept constant at a predetermined temperature by using a constant temperature device such as a heater or an incubator.

【0024】分離槽3では、限外濾過膜5を通過した高分
子有機物の部分分解物が、高分子有機物、加水分解酵素
等と分離される。
In the separation tank 3, the partially decomposed product of the high molecular weight organic substance that has passed through the ultrafiltration membrane 5 is separated from the high molecular weight organic substance, hydrolase and the like.

【0025】上記限外濾過膜5は、キトサナーゼ等の酵
素及び高分子有機物を透過せず、生成した所望のキトサ
ンオリゴ糖等の部分分解物が透過可能であるならば、い
ずれの膜でも使用することができる。限外濾過膜には平
膜型、多段平膜型、中空糸型等のタイプがあるが、いず
れの型式も使用することができる。
The ultrafiltration membrane 5 can be used with any membrane as long as it does not permeate enzymes such as chitosanase and high molecular weight organic substances and can pass through partially decomposed products such as desired chitosan oligosaccharides produced. be able to. The ultrafiltration membrane includes flat membrane type, multistage flat membrane type, hollow fiber type and the like, and any type can be used.

【0026】また、孔の大きさ等の異なる複数の限外濾
過膜を設けるか、又はそのような複数の限外濾過膜を介
する分離槽を用いることによって、部分分解物の様々な
分子量の分画を得ることもできる。
Further, by providing a plurality of ultrafiltration membranes having different pore sizes or using a separation tank through such a plurality of ultrafiltration membranes, the partial decomposition products having various molecular weights can be separated. You can also get a picture.

【0027】電極槽4は電極9を備えており、反応槽2及
び分離槽3と各々透析膜6で仕切られている。電極9は公
知のものが使用でき、特に限定はされないが、例えば白
金電極等を用いることができる。電極槽4が存在するこ
とにより、塩類が透析膜6を通過して電極槽4に移動し、
分離槽3に存在する部分分解物を精製(濃縮)すること
ができる。
The electrode tank 4 is equipped with an electrode 9 and is separated from the reaction tank 2 and the separation tank 3 by a dialysis membrane 6. A known electrode can be used as the electrode 9, and the electrode 9 is not particularly limited, but for example, a platinum electrode or the like can be used. Due to the presence of the electrode tank 4, salts move to the electrode tank 4 through the dialysis membrane 6,
The partially decomposed product present in the separation tank 3 can be purified (concentrated).

【0028】透析膜6は、高分子有機物の部分分解物が
通過せず、電流が流れるものであれば何でも良く、イオ
ン交換膜、逆浸透膜等の公知のものが使用できる。例え
ば、イオン交換膜であれば、ポリプロピレン、ポリビニ
ルアルコール等の多種ポリマー、逆浸透膜であれば、ポ
リアミド等を使用することができる。
The dialysis membrane 6 may be of any type as long as it does not allow the partial decomposition product of the high molecular weight organic material to pass therethrough and allows an electric current to flow, and a known material such as an ion exchange membrane or a reverse osmosis membrane can be used. For example, various polymers such as polypropylene and polyvinyl alcohol can be used for the ion exchange membrane, and polyamide and the like can be used for the reverse osmosis membrane.

【0029】また、ポンプ11を用いて電極槽4の電解液
を循環させることにより、電極槽の温度、塩濃度等を一
定に保たせることもできる。
By circulating the electrolytic solution in the electrode tank 4 using the pump 11, it is possible to keep the temperature, salt concentration, etc. of the electrode tank constant.

【0030】反応槽2には高分子有機物溶液及び酵素を
入れておき、所定の反応温度で加水分解反応を行う。反
応温度及び反応pHは酵素反応が起こる温度及びpHであれ
ば特に限定されないが、用いる酵素の最適温度及び最適
pHが好ましい。
A high-molecular organic material solution and an enzyme are placed in the reaction tank 2, and a hydrolysis reaction is carried out at a predetermined reaction temperature. The reaction temperature and reaction pH are not particularly limited as long as they are the temperature and pH at which the enzyme reaction occurs, but the optimum temperature and optimum of the enzyme used
pH is preferred.

【0031】具体的には、反応温度は10〜60℃が例示さ
れ、20〜50℃が好ましい。また、pHは3〜8が例示され、
4.5〜7が好ましい。電気透析の条件は特に限定されず、
電流、電圧等の条件は当業者が適宜選択することができ
る。
Specifically, the reaction temperature is, for example, 10 to 60 ° C, preferably 20 to 50 ° C. Further, the pH is exemplified as 3 to 8,
4.5 to 7 is preferable. The conditions for electrodialysis are not particularly limited,
Those skilled in the art can appropriately select conditions such as current and voltage.

【0032】酵素反応は水中で行うことができ、pHを安
定させるために、リン酸緩衝液、酢酸緩衝液、トリス−
塩酸緩衝液、ホウ酸緩衝液等の各種緩衝液を用いること
が好ましい。緩衝液の濃度は0.01〜2Mが好ましく、0.0
5〜1Mが更に好ましい。
The enzyme reaction can be carried out in water, and in order to stabilize the pH, phosphate buffer, acetate buffer, Tris-
It is preferable to use various buffer solutions such as a hydrochloric acid buffer solution and a borate buffer solution. The concentration of the buffer solution is preferably 0.01 to 2M, 0.0
5 to 1M is more preferable.

【0033】反応槽に、0.1〜10%、好ましくは0.2〜1
%の濃度になるように緩衝液で溶解したキトサン溶液を
所定量と、0.1〜5U/ml、好ましくは0.5〜3U/mlとなるよ
うにキトサナーゼ等の酵素とを入れる。
In the reaction vessel, 0.1-10%, preferably 0.2-1
A predetermined amount of a chitosan solution dissolved in a buffer solution so as to have a concentration of 0.1% and an enzyme such as chitosanase at 0.1 to 5 U / ml, preferably 0.5 to 3 U / ml are added.

【0034】また、反応が促進されるように、スターラ
ー等の撹拌装置を使用することもできる。撹拌するとき
の速度は、100〜2000rpm、好ましくは250〜1000rpmが例
示できる。
A stirring device such as a stirrer may be used so that the reaction is promoted. The stirring speed may be 100 to 2000 rpm, preferably 250 to 1000 rpm.

【0035】図2に例示されるように、例えば正電荷を
有するキトサンの場合は、反応槽でキトサンと酵素(キ
トサナーゼ)を反応させ、部分分解物(キトサンオリゴ
糖)は限外濾過膜を透過することにより、負極側にある
分離槽に移動する。この時、酵素及び部分分解されてい
ない高分子有機物は、限外濾過膜を通過しないため反応
槽に残る。
As shown in FIG. 2, for example, in the case of chitosan having a positive charge, chitosan and an enzyme (chitosanase) are reacted in a reaction tank, and a partially decomposed product (chitosan oligosaccharide) permeates through an ultrafiltration membrane. By doing so, it moves to the separation tank on the negative electrode side. At this time, the enzyme and the high molecular weight organic substance that has not been partially decomposed do not pass through the ultrafiltration membrane and remain in the reaction tank.

【0036】得られた高分子有機物の部分分解物を分離
槽から取り出す方法も、取り出された部分分解物を精製
する方法も、特に限定されず、公知の方法を用いること
ができる。
The method of taking out the partially decomposed product of the obtained high molecular weight organic matter from the separation tank and the method of purifying the taken out partially decomposed product are not particularly limited, and known methods can be used.

【0037】また、反応槽に高分子有機物の水溶液を連
続的に添加することにより、又は、有機物を例えば粉末
状等の固体状で添加することにより、部分分解物の製造
及び精製を連続して又は逐次的に行うことができる。反
応はバッチ式で行っても連続式で行ってもよい。
Further, by continuously adding an aqueous solution of a high molecular weight organic substance to a reaction tank or by adding an organic substance in a solid state such as a powder state, production and purification of a partially decomposed product are continuously conducted. Alternatively, it can be performed sequentially. The reaction may be carried out batchwise or continuously.

【0038】[0038]

【実施例】以下、本発明を更に詳しく説明するため、実
施例を挙げる。
EXAMPLES Examples will be given below to explain the present invention in more detail.

【0039】実施例1 酵素反応条件は、0.1M 酢酸緩衝液(pH5.3)、基質濃度
0.5%、反応槽、分離槽及び電極槽それぞれに50mlの緩衝
液を充填し、反応温度35℃、反応槽内の撹拌速度500rpm
反応、電気透析による分離を行った。酵素はBacillus p
umils BN262由来のキトサナーゼ(和光純薬工業(株))
を用い、酵素の比活性は40U/mg、最終濃度33μg/mlで反
応を行った。
Example 1 Enzyme reaction conditions were 0.1 M acetate buffer (pH 5.3), substrate concentration
0.5%, each of the reaction tank, separation tank and electrode tank is filled with 50 ml of buffer solution, the reaction temperature is 35 ° C., the stirring speed in the reaction tank is 500 rpm
Reaction and separation by electrodialysis were performed. The enzyme is Bacillus p
umils BN262-derived chitosanase (Wako Pure Chemical Industries, Ltd.)
Was used for the reaction with a specific activity of the enzyme of 40 U / mg and a final concentration of 33 μg / ml.

【0040】限外濾過膜 P0200 (アドバンテック社 製
分画分子量20,000)、逆浸透複合膜 NTR-7400(日東電工
(株)社製 残留塩素許容限度100ppm以下)を使用し、15V
定電圧での電気透析を酵素反応をさせながら行った。反
応時間48時間後分離槽溶液50mlから2mlを採取し、平均
分子量を測定した。キトサンの平均分子量はShodex GPC
SYSTEM-21に多角度光散乱検出器を接続した装置により
測定及び解析を行った。供試したキトサンは甲殻類由来
のキトサン7B(脱アセチル化度70%)(フナコシ(株))
を用いた。分子量測定用の試料は0.45μmのメンブラン
フィルターで濾過したものを用いて測定した。
Ultrafiltration membrane P0200 (Advantech Co., cut off molecular weight 20,000), reverse osmosis composite membrane NTR-7400 (Nitto Denko)
15V using the residual chlorine allowable limit of 100ppm or less)
Electrodialysis at a constant voltage was performed while causing an enzymatic reaction. After 48 hours of reaction time, 2 ml was taken from 50 ml of the solution in the separation tank, and the average molecular weight was measured. The average molecular weight of chitosan is Shodex GPC
Measurement and analysis were carried out by an apparatus in which a multi-angle light scattering detector was connected to SYSTEM-21. The tested chitosan was crustacean-derived chitosan 7B (deacetylation degree 70%) (Funakoshi Co., Ltd.)
Was used. The sample for molecular weight measurement was measured using a 0.45 μm membrane filter.

【0041】 キトサンの分子量測定条件 HPLC装置;ポンプ Shodex WP-03 示差屈折率検出器 Shodex RI-71S 多角度光散乱検出器 Wyatt Dawn DSP 水系GPCカラム Shodex Ohpak SB-800MHQ+SB-800R×2 測定条件; カラム温度 40℃ 溶離液 1%酢酸+0.05M酢酸ナトリウム 流速 0.4ml/min 解析ソフト; ASTRA for Windows(登録商標) Version 4.
20。 0.5%キトサン7B溶液で酵素分解、電気透析を行った後、
HPLCによる示差屈折率検出及び平均分子量を測定した結
果を図3、4に示す。キトサン7Bは分解前の平均分子量は
約20万であったが、酵素による分解により低分子し、分
子量約2万から数百にかけ広い範囲で低分子化されたキ
トサンが精製された(収率50.0%)。
Chitosan molecular weight measurement conditions HPLC apparatus; pump Shodex WP-03 Differential refractive index detector Shodex RI-71S multi-angle light scattering detector Wyatt Dawn DSP Water-based GPC column Shodex Ohpak SB-800MHQ + SB-800R × 2 Measurement conditions Column temperature 40 ℃ Eluent 1% acetic acid + 0.05M sodium acetate Flow rate 0.4ml / min Analysis software; ASTRA for Windows (registered trademark) Version 4.
20. After performing enzymatic decomposition and electrodialysis with 0.5% chitosan 7B solution,
The results of the differential refractive index detection by HPLC and the measurement of the average molecular weight are shown in FIGS. Chitosan 7B had an average molecular weight of about 200,000 before decomposition, but it was degraded to a low molecular weight by enzymatic decomposition, and a low molecular weight chitosan was purified in a wide range from about 20,000 to several hundreds (yield 50.0 %).

【0042】50mlの分離液にエタノール200mlを加え撹
拌後、3,000Gで遠心分離を行い、沈殿物を乾燥した後秤
量したところ、0.43gの沈殿が得られた。その分子量を
測定した結果、エタノールによる沈殿物は分子量2,000
から2万の分布を示し、平均分子量は9,000であった(図
5,6)。収率は20.8%であった。
200 ml of ethanol was added to 50 ml of the separated liquid, and the mixture was stirred and then centrifuged at 3,000 G. The precipitate was dried and weighed to obtain 0.43 g of precipitate. As a result of measuring the molecular weight, the precipitate due to ethanol has a molecular weight of 2,000.
The average molecular weight was 9,000 (Figs. 5 and 6). The yield was 20.8%.

【0043】実施例2 0.5%キトサン10B(脱アセチル化度100%)(フナコシ
(株))溶液を用いて実施例1と同じ条件で酵素分解、電
気透析を行った後、HPLCによる示差屈折率検出及び平均
分子量を測定した結果を図7,8に示す。キトサン10B
は分解前の平均分子量は約15万であったが、分離槽に生
成された分解物は分子量300から3,000の分布を示し、平
均分子量1,000前後のキトサンオリゴ糖が得られた。収
率は34.9%であった。
Example 2 0.5% chitosan 10B (deacetylation degree 100%) (Funakoshi
7 and 8 show the results of detection of the differential refractive index by HPLC and measurement of the average molecular weight after enzymatic decomposition and electrodialysis were carried out under the same conditions as in Example 1 using a solution of Co., Ltd. Chitosan 10B
Although the average molecular weight before decomposition was about 150,000, the decomposed products produced in the separation tank showed a distribution of molecular weights of 300 to 3,000, and chitosan oligosaccharides with an average molecular weight of around 1,000 were obtained. The yield was 34.9%.

【0044】実施例3 Absidia butleri HUT1001株(広島大学保存株)を用い
てキトサンの抽出を行いキトサンオリゴ糖の作製を行っ
た。前培養はYPD寒天培地(1%酵母エキス, 2%ポリペプ
トン, 2%グルコース, 2%寒天)を用い、24℃で培養、胞
子が十分着生したところで、0.01% tween 80溶液 5mlを
加えよく撹拌した。その後ミラクロス(CALBIOCHEM社製)
でろ過し、胞子懸濁液を作製した。
Example 3 Chitosan was extracted using Absidia butleri HUT1001 strain (preserved strain of Hiroshima University) to prepare a chitosan oligosaccharide. Pre-culture was performed using YPD agar medium (1% yeast extract, 2% polypeptone, 2% glucose, 2% agar) at 24 ° C. When spores were fully established, add 5 ml of 0.01% tween 80 solution and mix well. did. Then Miracross (made by CALBIOCHEM)
And filtered to prepare a spore suspension.

【0045】本培養は、500ml容振とうフラスコ2本にそ
れぞれ基礎培地(2%グルコース, 0.1%酵母エキス, 1%ポ
リペプトン, 0.1%リン酸二カリウム, 0.05%硫酸マグネ
シウム7水和物, 0.5%硫酸アンモニウム, 0.01%塩化カル
シウム・2水和物, pH4.5)200mlを分注、滅菌後、Absidi
a butleri HUT1001株の胞子を1×104個/mlになるように
接種し、28℃、振幅3cm、振とう速度140rpmで72時間培
養した。培養後の菌体をガラスフィルター(2G2)でろ過
し、蒸留水で洗浄したものを凍結乾燥した。
The main culture was carried out in two 500 ml shake flasks, each containing a basal medium (2% glucose, 0.1% yeast extract, 1% polypeptone, 0.1% dipotassium phosphate, 0.05% magnesium sulfate heptahydrate, 0.5%). Dispense 200 ml of ammonium sulfate, 0.01% calcium chloride dihydrate, pH 4.5), sterilize, and then use Absidi
Spores of a butleri HUT1001 strain were inoculated at 1 × 10 4 cells / ml and cultured at 28 ° C., amplitude 3 cm, shaking speed 140 rpm for 72 hours. The cultured cells were filtered with a glass filter (2G2), washed with distilled water, and freeze-dried.

【0046】菌体からのキトサンの抽出は、凍結乾燥
後、菌体に2%水酸化ナトリウム溶液100ml加え、115℃、
60分オートクレーブ処理した後、溶液が熱いうちにガラ
スフィルター(2G3)でろ過し、熱水で洗浄、さらにろ過
液が中性になるまで蒸留水で洗浄した。ガラスフィルタ
ーのアルカリ不溶物に2%酢酸溶液を50ml加え、マグネチ
ックスターラーで一昼夜、室温で撹拌した後、遠心分離
(1000G、15分)した。このガラスフィルターにさらに1
00mlの2%酢酸溶液を加え、室温で60分抽出を行い、遠心
分離をした。2回分の上澄み液を合わせ、0.1N水酸化ナ
トリウム溶液を滴下してpH8.5に調整し、生じた沈殿を
遠心分離(1000G、15分)しさらに水で洗浄した後、遠
心分離し凍結乾燥した後、秤量した結果、360mgのキト
サンが得られた。
Chitosan was extracted from the cells by freeze-drying and then adding 100 ml of 2% sodium hydroxide solution to the cells at 115 ° C.
After 60 minutes of autoclaving, the solution was hot and filtered through a glass filter (2G3), washed with hot water, and further washed with distilled water until the filtrate became neutral. 50 ml of a 2% acetic acid solution was added to the alkali insoluble matter of the glass filter, and the mixture was stirred with a magnetic stirrer at room temperature for 24 hours, and then centrifuged (1000 G, 15 minutes). 1 more on this glass filter
00 ml of 2% acetic acid solution was added, extraction was performed at room temperature for 60 minutes, and centrifugation was performed. The two supernatants were combined, 0.1N sodium hydroxide solution was added dropwise to adjust the pH to 8.5, and the resulting precipitate was centrifuged (1000G, 15 minutes), washed with water, centrifuged and freeze-dried. After that, the result of weighing was 360 mg of chitosan.

【0047】得られたキトサンから0.5%キトサン溶液を
作製し、これを用いて実施例1と同じ条件で酵素分解、
電気透析を行った後、HPLCによる示差屈折率検出及び平
均分子量を測定した結果を図9,10に示す。Absidia
butleriから抽出されたキトサンは分解前の平均分子量
は約13万であったが、分離槽に生成された分解物は分子
量500から7,000の分布を示し、平均分子量1,000前後の
キトサンオリゴ糖が得られた。収率は43.1%であった。
A 0.5% chitosan solution was prepared from the obtained chitosan, and this was used to enzymatically decompose it under the same conditions as in Example 1,
The results of differential refractive index detection by HPLC and measurement of the average molecular weight after electrodialysis are shown in FIGS. Absidia
Chitosan extracted from butleri had an average molecular weight of about 130,000 before degradation, but the degradation products produced in the separation tank showed a distribution of molecular weights of 500 to 7,000, and chitosan oligosaccharides with an average molecular weight of around 1,000 were obtained. It was The yield was 43.1%.

【0048】[0048]

【発明の効果】本発明の方法によれば、酵素反応及び電
気透析を同時に行うことにより、高分子物質の加水分解
及び得られた部分分解物の精製を同時に行うことができ
る。
According to the method of the present invention, the enzymatic reaction and the electrodialysis are carried out at the same time, whereby the hydrolysis of the polymer substance and the purification of the partially decomposed product obtained can be carried out at the same time.

【0049】また、酵素を用いることにより反応を制御
しやすく、目的とするところで反応を停止でき、更に、
緩衝液中等で反応を行っても、分離槽の脱塩を行うこと
ができるので、部分分解物の精製も同時に行うことがで
きる。
Further, by using an enzyme, the reaction can be easily controlled, and the reaction can be stopped at a desired point.
Even if the reaction is carried out in a buffer or the like, the separation tank can be desalted, so that the partially decomposed product can be purified at the same time.

【0050】即ち、本発明の方法によれば、効率よく、
選択的にしかも低コストで高分子有機物の部分分解物が
得られるため、ゲルクロマトグラフィー等の高価な方法
をとる必要がなく、しかも目的物を工業的規模で製造す
ることができる。
That is, according to the method of the present invention,
Since a partially decomposed product of a high molecular weight organic compound can be obtained selectively and at low cost, it is not necessary to use an expensive method such as gel chromatography, and the desired product can be produced on an industrial scale.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の有機物分解物製造装置の概略構成を示
す図である。
FIG. 1 is a diagram showing a schematic configuration of an apparatus for producing an organic matter decomposition product of the present invention.

【図2】本発明における高分子有機物の加水分解及び分
離・精製を示す模式図である。
FIG. 2 is a schematic diagram showing hydrolysis and separation / purification of a polymer organic substance according to the present invention.

【図3】実施例1において、HPLCで分離したクロマトグ
ラムを示す図である。縦軸は示差屈折率を横軸は展開液
量(ml)を示す。
FIG. 3 is a diagram showing chromatograms separated by HPLC in Example 1. The vertical axis represents the differential refractive index, and the horizontal axis represents the developing solution volume (ml).

【図4】実施例1において、分子量分布を解析した結果
を示す図である。縦軸は分子量分布を横軸は展開液量
(ml)を示す。
FIG. 4 is a diagram showing a result of analyzing a molecular weight distribution in Example 1. The vertical axis represents the molecular weight distribution and the horizontal axis represents the developing solution volume (ml).

【図5】実施例1において、エタノールで沈殿させたも
のをHPLCで分離したクロマトグラムを示す図である。縦
軸は示差屈折率を横軸は展開液量(ml)を示す。
FIG. 5 is a diagram showing a chromatogram obtained by separating an ethanol-precipitated product by HPLC in Example 1. The vertical axis represents the differential refractive index, and the horizontal axis represents the developing solution volume (ml).

【図6】実施例1において、エタノールで沈殿させたも
のの分子量分布を解析した結果を示す図である。縦軸は
分子量分布を横軸は展開液量(ml)を示す。
FIG. 6 is a diagram showing the results of analyzing the molecular weight distribution of the ethanol-precipitated product in Example 1. The vertical axis represents the molecular weight distribution and the horizontal axis represents the developing solution volume (ml).

【図7】実施例2において、HPLCで分離したクロマトグ
ラムを示す図である。縦軸は示差屈折率を横軸は展開液
量(ml)を示す。
7 is a diagram showing chromatograms separated by HPLC in Example 2. FIG. The vertical axis represents the differential refractive index, and the horizontal axis represents the developing solution volume (ml).

【図8】実施例2において、分子量分布を解析した結果
を示す図である。縦軸は分子量分布を横軸は展開液量
(ml)を示す。
FIG. 8 is a diagram showing a result of analyzing a molecular weight distribution in Example 2. The vertical axis represents the molecular weight distribution and the horizontal axis represents the developing solution volume (ml).

【図9】実施例3において、HPLCで分離したクロマトグ
ラムを示す図である。縦軸は示差屈折率を横軸は展開液
量(ml)を示す。
9 is a diagram showing chromatograms separated by HPLC in Example 3. FIG. The vertical axis represents the differential refractive index, and the horizontal axis represents the developing solution volume (ml).

【図10】実施例3において、分子量分布を解析した結
果を示す図である。縦軸は分子量分布を横軸は展開液量
(ml)を示す。
FIG. 10 is a diagram showing the results of analyzing the molecular weight distribution in Example 3. The vertical axis represents the molecular weight distribution and the horizontal axis represents the developing solution volume (ml).

【符号の説明】[Explanation of symbols]

1 電気透析装置 2 反応槽 3 分離槽 4 電極槽 5 限外濾過膜 6 透析膜 7 スターラー 8 スターターバー 9 電極 10 電源 11 ポンプ 1 Electrodialysis device 2 reaction tank 3 separation tanks 4 electrode tank 5 ultrafiltration membrane 6 dialysis membrane 7 stirrer 8 starter bar 9 electrodes 10 power 11 pumps

フロントページの続き Fターム(参考) 4B064 AF04 AF11 AF23 AG01 CA21 CB01 CC21 CD16 CD19 CD20 CE06 DA01 DA10 4D006 GA06 GA17 HA01 HA41 KA31 KA52 KA57 KB30 KD30 MA01 MA03 MA12 MC23 MC33 MC54 PB13 PB52 PB53 PB70 PC11 PC41 PC80 4D061 DA10 DB18 DC11 DC12 EA09 EB01 EB04 EB13 EB18 EB19 EB30 FA09 Continued front page    F-term (reference) 4B064 AF04 AF11 AF23 AG01 CA21                       CB01 CC21 CD16 CD19 CD20                       CE06 DA01 DA10                 4D006 GA06 GA17 HA01 HA41 KA31                       KA52 KA57 KB30 KD30 MA01                       MA03 MA12 MC23 MC33 MC54                       PB13 PB52 PB53 PB70 PC11                       PC41 PC80                 4D061 DA10 DB18 DC11 DC12 EA09                       EB01 EB04 EB13 EB18 EB19                       EB30 FA09

Claims (11)

【特許請求の範囲】[Claims] 【請求項1】 加水分解酵素を用いた高分子有機物の部
分分解と、得られた高分子有機物の部分分解物の限外濾
過膜を用いた電気透析による精製とを同時に行うことを
特徴とする高分子有機物部分分解物の製造方法。
1. The method is characterized in that the partial decomposition of a high molecular weight organic compound using a hydrolase and the purification of the obtained partial decomposition product of a high molecular weight organic compound by electrodialysis using an ultrafiltration membrane are performed simultaneously. Method for producing partially decomposed high molecular weight organic matter.
【請求項2】 高分子有機物と該有機物を部分分解し得
る加水分解酵素を有する反応槽において高分子有機物を
部分分解し、同時に電気透析を行うことにより、当該部
分分解物を反応槽から限外濾過膜を通って分離槽に導く
ことを特徴とする請求項1に記載の方法。
2. A partial decomposition product of a high molecular weight organic compound and a hydrolase capable of partially decomposing the organic compound is electrolyzed at the same time by partially decomposing the high molecular weight organic compound from the reaction tank. The method according to claim 1, wherein the method is conducted through a filtration membrane to a separation tank.
【請求項3】 反応槽及び分離槽が透析膜で仕切られた
内部空間に存在し、且つ、反応槽と分離槽とが限外濾過
膜で仕切られていることを特徴とする請求項2に記載の
方法。
3. The reaction tank and the separation tank are present in an internal space partitioned by a dialysis membrane, and the reaction tank and the separation tank are partitioned by an ultrafiltration membrane. The method described.
【請求項4】 高分子有機物の反応槽への供給、得られ
た高分子有機物の部分分解物の分離槽への分離を同時又
は逐次的に行うことを特徴とする有機物部分分解物の製
造方法。
4. A method for producing a partially decomposed organic matter, comprising supplying the high molecular weight organic matter to a reaction tank and separating the obtained partially decomposed organic matter into a separation tank simultaneously or sequentially. .
【請求項5】 高分子有機物がキチン、キトサン、ペク
チン、ペプチドグリカン、グリコサミノグリカン及びプ
ロテオグリカンを含む多糖類、タンパク質及び核酸を含
む電荷を有する高分子であることを特徴とする請求項1
〜4のいずれかに記載の方法。
5. The high molecular weight organic substance is a charged high molecular substance including a polysaccharide containing chitin, chitosan, pectin, peptidoglycan, glycosaminoglycan and proteoglycan, a protein and a nucleic acid.
The method according to any one of to 4.
【請求項6】 高分子有機物がキチン、キトサン、ペク
チン、ペプチドグリカン、グリコサミノグリカン及びプ
ロテオグリカンを含む多糖類であることを特徴とする請
求項5に記載の方法。
6. The method according to claim 5, wherein the high molecular weight organic substance is a polysaccharide containing chitin, chitosan, pectin, peptidoglycan, glycosaminoglycan and proteoglycan.
【請求項7】 高分子有機物がキトサンであることを特
徴とする請求項6に記載の方法。
7. The method according to claim 6, wherein the high molecular weight organic substance is chitosan.
【請求項8】 加水分解酵素がキチナーゼ、キトサナー
ゼ、セルラーゼ、リゾチーム、ペクチナーゼ、ペクチン
エステラーゼ、グルコシダーゼ、グルコサミニダーゼ、
プロテオグリカナーゼ、プロテアーゼ、ヌクレアーゼか
らなる群から選ばれる少なくとも1種である請求項1〜4
のいずれかに記載の方法。
8. The hydrolase is chitinase, chitosanase, cellulase, lysozyme, pectinase, pectinesterase, glucosidase, glucosaminidase,
5. At least one selected from the group consisting of proteoglycanase, protease and nuclease.
The method described in any one of.
【請求項9】 加水分解酵素がキトサン分解活性を有す
る酵素である請求項1〜4のいずれかに記載の方法。
9. The method according to claim 1, wherein the hydrolase is an enzyme having a chitosan degrading activity.
【請求項10】 高分子有機物の加水分解酵素を備えた
反応槽、高分子有機物の部分分解物を分離する分離槽、
及び電極槽を備えた電気透析装置。
10. A reaction tank equipped with a hydrolyzing enzyme of a high molecular weight organic compound, a separation tank for separating a partially decomposed high molecular weight organic compound,
And an electrodialysis device equipped with an electrode tank.
【請求項11】 反応槽と分離槽が限外濾過膜で仕切ら
れ、反応槽と電極槽及び分離槽と電極槽が各々透析膜で
仕切られている請求項10に記載の装置。
11. The apparatus according to claim 10, wherein the reaction tank and the separation tank are separated by an ultrafiltration membrane, and the reaction tank and the electrode tank and the separation tank and the electrode tank are separated by a dialysis membrane.
JP2001284792A 2001-09-19 2001-09-19 Method for producing organic hydrolyzate and method for producing the same Pending JP2003088394A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001284792A JP2003088394A (en) 2001-09-19 2001-09-19 Method for producing organic hydrolyzate and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001284792A JP2003088394A (en) 2001-09-19 2001-09-19 Method for producing organic hydrolyzate and method for producing the same

Publications (1)

Publication Number Publication Date
JP2003088394A true JP2003088394A (en) 2003-03-25

Family

ID=19108053

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001284792A Pending JP2003088394A (en) 2001-09-19 2001-09-19 Method for producing organic hydrolyzate and method for producing the same

Country Status (1)

Country Link
JP (1) JP2003088394A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007089541A (en) * 2005-09-30 2007-04-12 Ehime Prefecture Method for regulating enzymatic reaction and device of regulation
WO2009039653A1 (en) * 2007-09-27 2009-04-02 Universite Laval Method for transforming polysaccharides into oligosaccharides with bipolar membrane electrodialysis
KR101220091B1 (en) * 2010-11-22 2013-02-05 한불화장품주식회사 Low molecular weight pectin hydrolysate preparation method and the cosmetic composition containing the same
CN105106075A (en) * 2015-09-22 2015-12-02 广州潮徽化工科技有限公司 Composition with nutritional and moisturizing efficacies as well as preparation method and application of composition
CN109985532A (en) * 2019-01-14 2019-07-09 自然资源部第三海洋研究所 A kind of preparation method of the ultra-thin composite membrane of chitosan oligosaccharide
CN114480537A (en) * 2021-12-21 2022-05-13 中国海洋大学 Method for preparing chitosan oligosaccharide with high polymerization degree

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58147639A (en) * 1982-02-26 1983-09-02 Hideyuki Nishizawa Separation by continuous electric migration and its device
JPH0195101A (en) * 1987-10-05 1989-04-13 Dai Ichi Kogyo Seiyaku Co Ltd Manufacture of high-purity acid-type cellulose derivative
JPH02245653A (en) * 1988-11-15 1990-10-01 Aligena Ag Method and apparatus for continuous separation of charged high molecular compound
JPH04108396A (en) * 1990-08-28 1992-04-09 Higeta Shoyu Kk Production of high polymerization degree chito-oligosaccharide
JPH0568580A (en) * 1991-09-13 1993-03-23 Pias Arise Kk Higher chitosan oligosaccharide and its production
JPH09135698A (en) * 1995-09-14 1997-05-27 Sanei Touka Kk Production of organic acid
JPH10279520A (en) * 1997-01-30 1998-10-20 Basf Ag Purification of alpha-, beta-or gamma-substituted carboxylic acid
JP2000060591A (en) * 1998-08-26 2000-02-29 Meiji Seika Kaisha Ltd Production of chitosan oligosaccharide
JP2000253895A (en) * 1999-03-11 2000-09-19 Ehime Prefecture Partially acetylated chitosan, chitooligosaccharide mixture and production of chitooligosaccharide
WO2001032298A1 (en) * 1999-11-03 2001-05-10 Basf Aktiengesellschaft Method for purification of amino acid containing solutions by electrodialysis
JP2003531286A (en) * 2000-04-14 2003-10-21 グラディポア・リミテッド Micromolecule separation

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58147639A (en) * 1982-02-26 1983-09-02 Hideyuki Nishizawa Separation by continuous electric migration and its device
JPH0195101A (en) * 1987-10-05 1989-04-13 Dai Ichi Kogyo Seiyaku Co Ltd Manufacture of high-purity acid-type cellulose derivative
JPH02245653A (en) * 1988-11-15 1990-10-01 Aligena Ag Method and apparatus for continuous separation of charged high molecular compound
JPH04108396A (en) * 1990-08-28 1992-04-09 Higeta Shoyu Kk Production of high polymerization degree chito-oligosaccharide
JPH0568580A (en) * 1991-09-13 1993-03-23 Pias Arise Kk Higher chitosan oligosaccharide and its production
JPH09135698A (en) * 1995-09-14 1997-05-27 Sanei Touka Kk Production of organic acid
JPH10279520A (en) * 1997-01-30 1998-10-20 Basf Ag Purification of alpha-, beta-or gamma-substituted carboxylic acid
JP2000060591A (en) * 1998-08-26 2000-02-29 Meiji Seika Kaisha Ltd Production of chitosan oligosaccharide
JP2000253895A (en) * 1999-03-11 2000-09-19 Ehime Prefecture Partially acetylated chitosan, chitooligosaccharide mixture and production of chitooligosaccharide
WO2001032298A1 (en) * 1999-11-03 2001-05-10 Basf Aktiengesellschaft Method for purification of amino acid containing solutions by electrodialysis
JP2003531286A (en) * 2000-04-14 2003-10-21 グラディポア・リミテッド Micromolecule separation

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007089541A (en) * 2005-09-30 2007-04-12 Ehime Prefecture Method for regulating enzymatic reaction and device of regulation
WO2009039653A1 (en) * 2007-09-27 2009-04-02 Universite Laval Method for transforming polysaccharides into oligosaccharides with bipolar membrane electrodialysis
KR101220091B1 (en) * 2010-11-22 2013-02-05 한불화장품주식회사 Low molecular weight pectin hydrolysate preparation method and the cosmetic composition containing the same
CN105106075A (en) * 2015-09-22 2015-12-02 广州潮徽化工科技有限公司 Composition with nutritional and moisturizing efficacies as well as preparation method and application of composition
CN109985532A (en) * 2019-01-14 2019-07-09 自然资源部第三海洋研究所 A kind of preparation method of the ultra-thin composite membrane of chitosan oligosaccharide
CN109985532B (en) * 2019-01-14 2021-11-09 自然资源部第三海洋研究所 Preparation method of chitosan oligosaccharide ultrathin composite film
CN114480537A (en) * 2021-12-21 2022-05-13 中国海洋大学 Method for preparing chitosan oligosaccharide with high polymerization degree
CN114480537B (en) * 2021-12-21 2023-06-20 中国海洋大学 Method for preparing chitosan oligosaccharide with high polymerization degree

Similar Documents

Publication Publication Date Title
Sánchez et al. The effect of preparation processes on the physicochemical characteristics and antibacterial activity of chitooligosaccharides
Lin et al. Preparation of chitosan oligomers by immobilized papain
CN102373256B (en) Production method for preparing high-purity oligosaccharides by hemicellulose enzymolysis
CA2816258C (en) Method for decontaminating starch hydrolysates for the preparation of glucose polymers for peritoneal dialysis
CN101619308B (en) Preparation method for extracting lysozyme from egg white
JPH09324001A (en) Purification method for sodium hyaluronate
WO2008062998A1 (en) Method for purifying hyaluronic acid
CN109097421A (en) A kind of method that double-enzyme hydrolysis prepares hyaluronic acid odd number oligosaccharides
CN102630231B (en) Method for manufacturing low molecular weight hyaluronic acid
JP2003088394A (en) Method for producing organic hydrolyzate and method for producing the same
Gözke et al. Electrofiltration of biopolymers
KR101638662B1 (en) Purification method for hyaluronic acid andor salts thereof
CN106399428B (en) A method of it efficiently separates and prepares unimodal molecular weight hyaluronic acid oligosaccharide
CN113373134B (en) Extraction method of N-acetylglucosamine deacetylase
CN115161361A (en) Method for preparing unbranched linear galactan by enzyme molecular machine technology and application
CN104593351B (en) A kind of method for preparing cephalosporin C acrylase immobilised enzymes
JPH1057091A (en) New productonn of mannose
US4921793A (en) Bacterial process for the production of dispersants
KR20030035913A (en) Sulfated fucan oligosaccharide
CN102803298B (en) Hyaluronic method of purification
JPH06277085A (en) Production of low-molecular weight branched beta-1,3-glucan and branched laminarioligosaccharide
JP3826168B2 (en) Polysaccharides derived from microorganisms
JP2007089541A (en) Method for regulating enzymatic reaction and device of regulation
JP5553295B2 (en) Method for producing higher N-acetylchitooligosaccharide
KR100317579B1 (en) Manufacturing process of highly pure agarose for utilizing to gel electrophoresis

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20080324

Free format text: JAPANESE INTERMEDIATE CODE: A621

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110118

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120110

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120229

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20121106