JP2003086162A - Separator for nonaqueous secondary battery and nonaqueous secondary battery - Google Patents

Separator for nonaqueous secondary battery and nonaqueous secondary battery

Info

Publication number
JP2003086162A
JP2003086162A JP2001276316A JP2001276316A JP2003086162A JP 2003086162 A JP2003086162 A JP 2003086162A JP 2001276316 A JP2001276316 A JP 2001276316A JP 2001276316 A JP2001276316 A JP 2001276316A JP 2003086162 A JP2003086162 A JP 2003086162A
Authority
JP
Japan
Prior art keywords
separator
secondary battery
aqueous secondary
porous layer
pvdf
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001276316A
Other languages
Japanese (ja)
Other versions
JP4127989B2 (en
Inventor
Satoshi Nishikawa
聡 西川
Hiroyuki Honmoto
博行 本元
Hiroki Sano
弘樹 佐野
Takahiro Omichi
高弘 大道
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Teijin Ltd
Original Assignee
Teijin Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Teijin Ltd filed Critical Teijin Ltd
Priority to JP2001276316A priority Critical patent/JP4127989B2/en
Publication of JP2003086162A publication Critical patent/JP2003086162A/en
Application granted granted Critical
Publication of JP4127989B2 publication Critical patent/JP4127989B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Cell Separators (AREA)
  • Secondary Cells (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a separator for a nonaqueous lithium ion secondary battery having a good ion conductivity and good adhesion to electrodes. SOLUTION: The separator for the nonaqueous secondary battery is characterized in that porous layers made of an organic polymer swollen with and retaining an electrolyte are positioned on the entire front and back surfaces of a polyolefin microporous film and integrated with the polyolefin microporous film, the porous layers having a specific void ratio with holes of specific diameters scattered over the surfaces of the porous layers, and the porous layers each having a specified thickness. The nonaqueous secondary battery using the separator is also disclosed.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明はリチウムのドープ・
脱ドープにより起電力を得る非水系二次電池に関する。
特に、非水系二次電池に用いるセパレータに関するもの
である。
BACKGROUND OF THE INVENTION 1. Field of the Invention
The present invention relates to a non-aqueous secondary battery that obtains electromotive force by undoping.
In particular, it relates to a separator used for a non-aqueous secondary battery.

【0002】[0002]

【従来の技術】リチウム含有遷移金属酸化物を正極に用
い、リチウムのドープ・脱ドープ可能な炭素系材料を負
極に用い、電解液に非水系電解液を用いる非水系二次電
池(リチウムイオン二次電池)は他の二次電池に比べ高
エネルギー密度を有するという特徴を持つ。このリチウ
ムイオン二次電池は軽量化・薄膜化といった携帯電子機
器の要求に合っており、携帯電話・ノートパソコン等の
携帯電子機器の電源として用いられている。しかし、携
帯電子機器の軽量化及び薄膜化の要求はますます厳しく
なってきている。そこで、これに用いるリチウムイオン
二次電池もこの流れの中で更なる高エネルギー化を求め
て激しい技術開発がなされているのが現状である。
2. Description of the Related Art A non-aqueous secondary battery using a lithium-containing transition metal oxide as a positive electrode, a carbon-based material capable of doping and dedoping lithium as a negative electrode, and a non-aqueous electrolytic solution as an electrolytic solution (lithium ion battery The secondary battery is characterized by having a higher energy density than other secondary batteries. This lithium-ion secondary battery meets the requirements of portable electronic devices such as weight reduction and thinning, and is used as a power source for portable electronic devices such as mobile phones and notebook computers. However, demands for weight reduction and thinning of portable electronic devices are becoming more and more severe. Therefore, in the current situation, the lithium-ion secondary battery used for this purpose is also undergoing intense technological development in search of further higher energy.

【0003】主に携帯電話に用いる扁平型のリチウムイ
オン二次電池においては薄膜化・軽量化の要求の中で、
外装を従来の金属缶からアルミラミネートフィルムに変
更するという技術革新が近年なされている。このアルミ
ラミネートフィルム外装(フィルム外装)は金属缶外装
と異なりフレキシブルな外装であるため外圧が弱く、電
極とセパレータ界面のコンタクトを取るのが容易ではな
い。また、液漏れも危惧され、安全性の観点からも問題
があった。このため従来の正極/セパレータ/負極とい
う電池構成ではフィルム外装電池の実現はできなかっ
た。
In flat type lithium-ion secondary batteries mainly used for mobile phones, there is a demand for thinning and weight reduction.
In recent years, technological innovation has been made to replace the conventional metal can with an aluminum laminate film. Since this aluminum laminate film exterior (film exterior) is a flexible exterior unlike a metal can exterior, the external pressure is weak and it is not easy to make contact between the electrode and the separator interface. In addition, there was a risk of liquid leakage, and there was a problem from the viewpoint of safety. Therefore, a film-clad battery cannot be realized with the conventional battery structure of positive electrode / separator / negative electrode.

【0004】それにも拘わらずこの技術革新を可能にし
たのは、電極との接着性及び電解液保持性が優れるセパ
レータという技術である。このセパレータを用いること
で電極とセパレータの良好な界面コンタクトを可能に
し、また液漏れを防止することが可能になった。このセ
パレータには電解液に膨潤しこれを保持する有機高分子
を用いる。このような有機高分子を単独でセパレータと
して用いることも考えられたが、物性上の問題から連続
生産に向かず、概ね支持体により補強する形態で実用化
している。
[0004] Nevertheless, what made this technical innovation possible is the technology of the separator which is excellent in the adhesiveness to the electrode and the electrolyte retaining property. By using this separator, good interfacial contact between the electrode and the separator was made possible, and liquid leakage could be prevented. An organic polymer that swells and holds the electrolyte is used for this separator. It has been considered to use such an organic polymer alone as a separator, but it is not suitable for continuous production due to problems in physical properties, and is practically used in a form of being generally reinforced by a support.

【0005】すなわち、支持体の両面に、電解液に膨潤
しこれを保持する有機高分子からなる接着層を塗工した
セパレータが提案されている。支持体には不織布や従来
のリチウムイオン二次電池でセパレータとして用いられ
ているポリオレフィン微多孔膜が提案されているが、現
在は主にポリオレフィン微多孔膜がシャットダウン特性
による安全性の観点から実用化されている。また、接着
層にはポリフッ化ビニリデン(PVdF)を主体とした
有機高分子が耐久性の観点から主に用いられている。
That is, there has been proposed a separator in which an adhesive layer made of an organic polymer which swells and holds an electrolytic solution is coated on both surfaces of a support. Nonwoven fabrics and polyolefin microporous membranes used as separators in conventional lithium-ion secondary batteries have been proposed for the support, but currently polyolefin microporous membranes are mainly used from the viewpoint of safety due to their shutdown characteristics. Has been done. Further, an organic polymer mainly composed of polyvinylidene fluoride (PVdF) is mainly used for the adhesive layer from the viewpoint of durability.

【0006】また、上記のような電極とセパレータの間
に接着層を配置する電池構成はフィルム外装を可能にす
るという観点だけでなく、従来の金属缶外装においても
電池の高エネルギー密度化という観点から注目されてい
る。高エネルギー密度化するということは、所定の大き
さの缶に多くの電池エレメントを厳しく詰め込むことに
なる。この場合、良好な電極セパレータ界面を形成させ
るのが困難で、サイクル特性等が課題となっているが、
上記のようなフレキシブルな接着層を配置することでこ
の課題を解決できる可能性がある。
In addition, the battery structure in which the adhesive layer is arranged between the electrode and the separator as described above is not only for the purpose of enabling film packaging, but also for enhancing the energy density of the battery in the conventional metal can packaging. Has been attracting attention. Increasing the energy density means tightly packing many battery elements in a can of a predetermined size. In this case, it is difficult to form a good electrode separator interface, and cycle characteristics and the like have become problems,
This problem may be solved by disposing the flexible adhesive layer as described above.

【0007】上記のような背景で、表裏に接着層を有す
るポリオレフィン微多孔膜セパレータが注目されてい
る。この中でも、現状の非水系二次電池製造プロセスを
利用するという観点から、電解液を含まない接着層(ド
ライ接着層)を有するセパレータが重要な技術要素とな
ってきている。このようなセパレータは、特開平9−2
93518号公報、特開平10−189054号公報、
特開平11−26025号公報及び特開2001−11
8558号公報等で提案されている。
With the above background, attention has been paid to a polyolefin microporous membrane separator having adhesive layers on the front and back sides. Among these, a separator having an adhesive layer (dry adhesive layer) containing no electrolytic solution has become an important technical element from the viewpoint of utilizing the current non-aqueous secondary battery manufacturing process. Such a separator is disclosed in JP-A-9-2.
No. 93518, Japanese Patent Laid-Open No. 10-189054,
JP-A-11-26025 and JP-A-2001-11
No. 8558 is proposed.

【0008】[0008]

【発明が解決しようとする課題】上記の特開平10−1
89054号公報はPVdFをN−メチルピロリドン
(NMP)に溶解したドープをポリオレフィン微多孔膜
上に塗工し乾燥することで接着層を有するセパレータを
得る。このような系は接着層が緻密化し良好なイオン伝
導度は得られず電池特性は低下するといった問題があ
る。また、特開2001−118558号公報は、この
ような問題を解決するため、ポリオレフィン微多孔膜上
へ部分的に(表面被覆率50%以下)接着層を塗工した
セパレータの提案である。この系は部分塗工であるため
電極・セパレータ界面にセパレータに保持されないフリ
ーな電解液が多く存在するため、サイクル特性の低下等
の問題が生じる。また、液漏れの信頼性という観点から
フィルム外装には適さない。
DISCLOSURE OF THE INVENTION Problems to be Solved by the Invention
In Japanese Patent No. 89054, a separator having an adhesive layer is obtained by coating a dope prepared by dissolving PVdF in N-methylpyrrolidone (NMP) on a polyolefin microporous membrane and drying the dope. Such a system has a problem that the adhesive layer becomes dense and good ionic conductivity cannot be obtained, resulting in deterioration of battery characteristics. Further, Japanese Patent Laid-Open No. 2001-118558 proposes a separator in which an adhesive layer is partially (on a surface coverage of 50% or less) applied onto a polyolefin microporous film in order to solve such a problem. Since this system is a partial coating, a large amount of free electrolytic solution that is not retained by the separator exists at the electrode / separator interface, which causes problems such as deterioration in cycle characteristics. In addition, it is not suitable as a film exterior from the viewpoint of reliability of liquid leakage.

【0009】特開平9−293518号公報は湿式製膜
法によりPVdFからなる接着層を作製し、これをポリ
オレフィン微多孔膜と貼り合わせることで接着層を有す
るセパレータを得る提案で、セパレータ表面に実質的な
貫通孔を有さないことを特徴としている。接着層である
PVdF膜は物性が低いため、ポリオレフィン微多孔膜
と貼り合わせるという方法は生産性の観点から問題があ
る。また、記載によると貼り合わせるというのは単に重
ねるだけで本質的に一体化されているわけではなく、ポ
リオレフィン微多孔膜と接着層の剥離の問題も考えられ
る。さらに、表面に実質的な貫通孔が有さないという点
が特徴となっているが、貫通孔がないために電極・セパ
レータ界面のイオン伝導も問題となり、レート特性等の
低下が予想される。
Japanese Unexamined Patent Publication (Kokai) No. 9-293518 proposes that an adhesive layer made of PVdF is produced by a wet film-forming method, and this is attached to a polyolefin microporous film to obtain a separator having an adhesive layer. It is characterized by not having a typical through hole. Since the PVdF film, which is the adhesive layer, has low physical properties, the method of laminating it with the polyolefin microporous film is problematic from the viewpoint of productivity. Further, according to the description, the bonding is not essentially integrated by simply stacking, and the problem of peeling between the microporous polyolefin membrane and the adhesive layer may be considered. Further, it is characterized in that there is substantially no through hole on the surface, but since there is no through hole, ionic conduction at the interface between the electrode and the separator also becomes a problem, and it is expected that the rate characteristics and the like will deteriorate.

【0010】特開平11−26025号公報はポリオレ
フィン微多孔膜上へPVdFをNMPに溶解したドープ
を塗工し、これを水中で凝固させるという一般的な湿式
製膜プロセスによりセパレータを得る。この系は凝固浴
が水であるため凝固が早く表面に緻密なPVdF層が形
成され実質的な貫通孔を有さないため上記同様の問題が
ある。
In Japanese Patent Laid-Open No. 11-26025, a separator is obtained by a general wet film forming process of coating a dope prepared by dissolving PVdF in NMP on a polyolefin microporous film and solidifying the dope in water. In this system, since the coagulation bath is water, the coagulation is fast and a dense PVdF layer is formed on the surface, and there is substantially no through hole, and there are the same problems as described above.

【0011】このように、表裏に接着層を有するポリオ
レフィン微多孔膜セパレータにおいて、イオン伝導性、
液保持性、接着性及び生産性といった要求特性を十分満
足する構成は見出されていないのが現状である。このよ
うな現状を鑑み本発明は、ポリオレフィン微多孔膜の表
裏に接着層が一体化されたセパレータにおいて、イオン
伝導性良好でありかつ電極との接着性も良好なセパレー
タの開発を目的とする。
Thus, in the polyolefin microporous membrane separator having the adhesive layers on the front and back sides, the ion conductivity,
At present, no structure has been found that sufficiently satisfies the required properties such as liquid retention, adhesiveness and productivity. In view of such a current situation, an object of the present invention is to develop a separator in which an adhesive layer is integrated on the front and back of a microporous polyolefin membrane, which has good ion conductivity and good adhesion to electrodes.

【0012】[0012]

【課題を解決するための手段】上記のような課題を解決
するために本発明は、リチウムのドープ・脱ドープによ
り起電力を得る非水系二次電池に用いるセパレータにお
いて、該セパレータが、ポリオレフィン微多孔膜の表裏
全面に、電解液に膨潤しこれを保持する有機高分子から
なる多孔質層が配置されて該ポリオレフィン微多孔膜と
一体化され、 該多孔質層の空隙率が50〜90%である 該多孔質層表面に孔径0.05〜10μmの孔が点在
している 表裏の該多孔質層の総厚みが20μm以下であり、該
多孔質層の厚みが片面それぞれでは1μm以上である ことを特徴とする非水系二次電池用セパレータを提供す
る。
Means for Solving the Problems In order to solve the above problems, the present invention provides a separator used in a non-aqueous secondary battery that obtains an electromotive force by doping / dedoping lithium. A porous layer made of an organic polymer that swells and retains an electrolytic solution is arranged on the entire front and back surfaces of the porous film and integrated with the polyolefin microporous film, and the porosity of the porous layer is 50 to 90%. The total thickness of the front and back porous layers having pores of 0.05 to 10 μm scattered on the surface of the porous layer is 20 μm or less, and the thickness of the porous layer is 1 μm or more on each side. A separator for a non-aqueous secondary battery is provided.

【0013】ここで該多孔質層が電極との接着層として
機能する。さらに上記の発明に加えて本発明は以下の内
容も含む。 (ア)表面開孔率が1〜80%であることを特徴とする
上記発明記載の非水系二次電池用セパレータ。 (イ)該有機高分子がポリフッ化ビニリデン(PVd
F)、PVdF共重合体、またはこれらを主体とするP
VdF系ポリマーであることを特徴とする上記発明およ
び(ア)いずれかに記載の非水系二次電池用セパレー
タ。 (ウ)リチウムを可逆的にドープ・脱ドープ可能な正極
及び負極とセパレータを備え、非水系電解液を用いた非
水系二次電池において、該セパレータとして上記発明及
び(ア)〜(イ)いずれかに記載のセパレータを用いる
ことを特徴とする非水系二次電池。
Here, the porous layer functions as an adhesive layer with the electrode. In addition to the above invention, the present invention also includes the following contents. (A) The separator for a non-aqueous secondary battery according to the above invention, which has a surface porosity of 1 to 80%. (A) The organic polymer is polyvinylidene fluoride (PVd
F), PVdF copolymer, or P mainly containing them
The separator for a non-aqueous secondary battery according to any one of the above inventions and (a), which is a VdF polymer. (C) In a non-aqueous secondary battery that includes a positive electrode and a negative electrode capable of reversibly doping / de-doping lithium and a separator, and uses a non-aqueous electrolyte solution, any one of the above inventions and (A) to (A) as the separator. A non-aqueous secondary battery comprising the separator described in (1) above.

【0014】[0014]

【発明の実施の形態】以下、本発明の内容について説明
する。 [非水系二次電池用セパレータ]本発明の非水系二次電
池用セパレータは、ポリオレフィン微多孔膜の表裏全面
に、電解液に膨潤しこれを保持する有機高分子からなる
多孔質層が配置されて該ポリオレフィン微多孔膜と一体
化され、 該多孔質層の空隙率が50〜90%である 該多孔質層表面に孔径0.05〜10μmの孔が点在
している 表裏の該多孔質層の総厚みが20μm以下であり、該
多孔質層の厚みが片面それぞれでは1μm以上である ことを特徴とする。
DETAILED DESCRIPTION OF THE INVENTION The contents of the present invention will be described below. [Non-Aqueous Secondary Battery Separator] In the non-aqueous secondary battery separator of the present invention, a porous layer made of an organic polymer that swells in and holds an electrolyte solution is arranged on the entire front and back surfaces of a polyolefin microporous membrane. That is integrated with the polyolefin microporous membrane, and the porosity of the porous layer is 50 to 90%, and the surface of the porous layer is interspersed with pores having a pore diameter of 0.05 to 10 μm. The total thickness of the layers is 20 μm or less, and the thickness of the porous layer is 1 μm or more on each side.

【0015】該ポリオレフィン微多孔膜としては、非水
系二次電池用セパレータ用の多孔質支持体として提案さ
れている膜厚5〜30μmの公知のものを好適に用いる
ことができる。電解液に膨潤しこれを保持する有機高分
子は、ポリフッ化ビニリデン(PVdF)、ポリエチレ
ンオキサイド(PEO)、ポリアクリロニトリル(PA
N)、ポリメチルメタクリレート(PMMA)及びその
共重合体を挙げることができる。本発明にはこれらを単
独で用いても2種類以上混合して用いても構わない。
As the polyolefin microporous film, a known one having a film thickness of 5 to 30 μm, which is proposed as a porous support for a separator for a non-aqueous secondary battery, can be preferably used. Organic polymers that swell and retain the electrolyte are polyvinylidene fluoride (PVdF), polyethylene oxide (PEO), polyacrylonitrile (PA).
N), polymethylmethacrylate (PMMA) and copolymers thereof. In the present invention, these may be used alone or as a mixture of two or more kinds.

【0016】この中でも耐久性や製膜性を考慮するとP
VdF、PVdF共重合体、またはこれらを主体とする
PVdF系ポリマーが好適に用いられる。さらに好まし
くはPVdF、PVdF共重合体をあげることができ
る。これらの中でも、特にフッ化ビニリデン(Vd
F)、ヘキサフロロプロピレン(HFP)、クロロトリ
フロロエチレン(CTFE)の3元共重合体が電解液に
対する膨潤性・保持性、耐熱性及び電極との接着性が優
れ好適であり、この3元共重合体の好適な共重合組成と
しては、 VdF/HFP(a)/CTFE(b) (a)=2〜8重量% (b)=1〜6重量% が挙げられる。また、該有機高分子の分子量は重量平均
分子量(Mw)で100,000〜800,000が好
適で、特に200,000〜600,000が好適であ
る。これらのPVdF系ポリマーは公知の方法で合成で
きる。一般的にはラジカル重合法により合成することが
でき、具体的には溶液重合・懸濁重合・乳化重合・バル
ク重合等の方法で作製される。
Of these, considering durability and film formability, P
VdF, PVdF copolymers, or PVdF-based polymers mainly containing these are preferably used. More preferably, PVdF and PVdF copolymer can be mentioned. Among these, especially vinylidene fluoride (Vd
The terpolymer of F), hexafluoropropylene (HFP), and chlorotrifluoroethylene (CTFE) is preferable because of its excellent swelling / retaining property in an electrolytic solution, heat resistance, and adhesion to electrodes. Suitable copolymerization composition of the copolymer includes VdF / HFP (a) / CTFE (b) (a) = 2 to 8% by weight (b) = 1 to 6% by weight. The weight average molecular weight (Mw) of the organic polymer is preferably 100,000 to 800,000, and particularly preferably 200,000 to 600,000. These PVdF-based polymers can be synthesized by a known method. Generally, it can be synthesized by a radical polymerization method, and specifically, it is prepared by a method such as solution polymerization, suspension polymerization, emulsion polymerization, bulk polymerization and the like.

【0017】本発明の非水系二次電池用セパレータは、
該ポリオレフィン微多孔膜の表裏に該多孔質層が配置さ
れ一体化された構造となっているが、該多孔質層の空隙
率は50〜90%が好適であり、特に60〜80%が好
適である。該多孔質層はポリオレフィン微多孔膜に電極
との接着性及び電解液保持性を付与する目的で塗工され
ているが、空隙率が低いとイオン伝導度的に不利になり
電池の特性を低下させる要因になる。このため空隙率は
50%以上が好適で、さらに60%以上が好適である。
また空隙率が高いことは伝導度的には有利になるが、接
着性や電解液保持性という観点では不利となる。このた
め空隙率は90%以下が好適であり、さらに80%以下
が好適である。
The non-aqueous secondary battery separator of the present invention comprises:
The porous layer is arranged on the front and back of the polyolefin microporous membrane to form an integrated structure. The porosity of the porous layer is preferably 50 to 90%, and particularly preferably 60 to 80%. Is. The porous layer is coated on the polyolefin microporous membrane for the purpose of imparting adhesiveness to electrodes and electrolyte retention, but if the porosity is low, it is disadvantageous in terms of ionic conductivity and deteriorates battery characteristics. Will be a factor. Therefore, the porosity is preferably 50% or more, more preferably 60% or more.
Also, a high porosity is advantageous in terms of conductivity, but is disadvantageous in terms of adhesiveness and electrolyte retention. Therefore, the porosity is preferably 90% or less, more preferably 80% or less.

【0018】ここで、空隙率(ε)は該多孔質層の体積
(V)、その体積中に存在する該有機高分子の重量
(W)及び該有機高分子の密度(D)から計算すること
ができる。すなわち、ε={1−(W/DV)}×10
0である。ここで、多孔質層の体積は該セパレータ体積
から該ポリオレフィン微多孔膜の体積を引くことで求め
られる。また、該有機高分子の重量は該セパレータ重量
から該ポリオレフィン微多孔膜の重量を引くことで求め
られる。
The porosity (ε) is calculated from the volume (V) of the porous layer, the weight (W) of the organic polymer present in the volume and the density (D) of the organic polymer. be able to. That is, ε = {1- (W / DV)} × 10
It is 0. Here, the volume of the porous layer is determined by subtracting the volume of the polyolefin microporous membrane from the separator volume. Further, the weight of the organic polymer is obtained by subtracting the weight of the polyolefin microporous membrane from the weight of the separator.

【0019】本発明のセパレータの表裏面のほぼ全面は
該多孔質層で覆われているが、この多孔質層の表面(外
側)に0.05〜10μmの孔が点在していることも本
発明非水系二次電池用セパレータの特徴である。特開平
9−293518号公報に記載されているように表面に
実質的に貫通孔を有さないものが電解液保持性の観点で
は有利である。しかし、電極セパレータ界面がすべてポ
リマーで覆われているので、この部分が大きな抵抗とな
り高レート放電等において不利となる。また、あまり大
きな孔が存在すると電解液保持性が十分でなくなる。こ
のような観点から、表面に0.05〜10μmの孔が点
在していることが好適で、特に0.1〜3μmの孔が点
在していることが好ましい。
Almost the entire front and back surfaces of the separator of the present invention are covered with the porous layer, but 0.05 to 10 μm pores may be scattered on the surface (outer side) of the porous layer. This is a feature of the non-aqueous secondary battery separator of the present invention. As described in JP-A-9-293518, those having substantially no through holes on the surface are advantageous from the viewpoint of electrolyte retention. However, since the entire interface of the electrode separator is covered with the polymer, this portion has a large resistance, which is disadvantageous in high rate discharge and the like. Also, if too large pores are present, the electrolyte retention becomes insufficient. From this point of view, it is preferable that the surface is interspersed with pores of 0.05 to 10 μm, and particularly preferably interspersed with pores of 0.1 to 3 μm.

【0020】また、本発明のセパレータの表面開孔率は
概ね1〜80%の範囲が好適である。このような孔の存
在は粗面化効果により電極との接着性においても有利に
働く。この表面に点在する孔は走査型電子顕微鏡(SE
M)により観察可能であり、孔径及び表面開孔率はSE
M観察の結果を画像処理する方法等で求めることが可能
である。
The surface porosity of the separator of the present invention is preferably in the range of approximately 1 to 80%. The presence of such holes also has an advantageous effect on the adhesiveness to the electrode due to the roughening effect. The holes scattered on this surface are scanning electron microscopes (SE
M), and the pore size and surface porosity are SE
The result of M observation can be obtained by a method of image processing or the like.

【0021】本発明の非水系二次電池用セパレータは、
表裏の該多孔質層の総厚みが20μm以下であり、該多
孔質層の厚みが片面それぞれは1μm以上であることも
特徴である。該多孔質層はポリオレフィン微多孔膜に比
べ特に低温でイオン伝導度的に不利となり、厚みは極力
薄い方がよい。しかし、接着性の確保のためには厚い方
が好ましい。このような観点から表裏両面の和で20μ
m以下が好適であり、特に15μm以下が好適である。
また片面それぞれの該多孔質層の厚みは1μm以上が好
ましい。該多孔質層の表裏両面の和が20μm以上とな
ると該多孔質層部分の抵抗が顕著に電池特性に反映さ
れ、低温特性及び高レート放電特性において不利とな
る。また、該多孔質層の片面それぞれの厚みが1μm以
下となると電極との接着性が不十分となり好ましくな
い。
The non-aqueous secondary battery separator of the present invention comprises:
It is also a feature that the total thickness of the front and back porous layers is 20 μm or less, and the thickness of the porous layer on each side is 1 μm or more. The porous layer is disadvantageous in ion conductivity particularly at low temperatures as compared with the polyolefin microporous membrane, and it is better that the thickness is as thin as possible. However, in order to secure the adhesiveness, a thicker one is preferable. From this point of view, the sum of the front and back sides is 20μ
m or less is preferable, and 15 μm or less is particularly preferable.
Further, the thickness of the porous layer on each side is preferably 1 μm or more. When the sum of the front and back surfaces of the porous layer is 20 μm or more, the resistance of the porous layer portion is remarkably reflected in the battery characteristics, which is disadvantageous in low temperature characteristics and high rate discharge characteristics. Further, if the thickness of each surface of the porous layer is 1 μm or less, the adhesion to the electrode becomes insufficient, which is not preferable.

【0022】本発明の非水系二次電池用セパレータのよ
うな多孔質層/ポリオレフィン微多孔膜/多孔質層とい
った3層構造の場合、多孔質層を形成する材料やモロホ
ロジーが表裏で異なると収縮応力の関係からカールの要
因となりハンドリング上好ましくない。カールは中央の
ポリオレフィン微多孔膜の物性にもよるが、非水系二次
電池用セパレータといった薄膜化が要求される用途にお
いては、カールは容易に起こりがちである。このような
理由から、該多孔質層を形成する材料は表裏で本質的に
同等であることが好ましい。また、表裏のモロホロジー
もほぼ同等である方が好適である。SEMにより表裏の
該多孔質層のモロホロジーは概ね観察することができ
る。また、該多孔質層を形成する材料が本質的に同等で
あったとき、該セパレータがカールしなければ該多孔質
層のモロホロジーは表裏で同等であると言える。
In the case of a three-layer structure of porous layer / polyolefin microporous film / porous layer such as the separator for a non-aqueous secondary battery of the present invention, shrinkage occurs if the material forming the porous layer and the morphology are different from each other. It causes curling due to stress and is not preferable in handling. Although the curl depends on the physical properties of the polyolefin microporous membrane in the center, the curl tends to occur easily in applications such as a separator for a non-aqueous secondary battery that requires a thin film. For this reason, it is preferable that the materials forming the porous layer are essentially the same on the front and back. Further, it is preferable that the morphology of the front and the back is almost the same. The morphology of the porous layers on the front and back can be generally observed by SEM. Further, when the materials forming the porous layer are essentially the same, the morphology of the porous layer can be said to be the same on the front and back sides unless the separator curls.

【0023】該多孔質層を形成する材料が表裏で本質的
に同じ場合は、表裏の該多孔質層のモロホロジーは該多
孔質層表裏それぞれの膜厚及び目付から推定可能であ
る。カールを防止するためには、{(表裏の該多孔質層
の膜厚差)/(表裏の該多孔質層の膜厚和)}×100
<20%であり、{(表裏の該多孔質層の目付差)/
(表裏の該多孔質層の目付和)}×100<20%であ
ることが好ましい。本発明の非水系二次電池用セパレー
タの膜厚としてはエネルギー密度と安全性の観点から1
0〜50μmの範囲が好適である。
When the materials forming the porous layer are essentially the same on the front and back, the morphology of the porous layers on the front and back can be estimated from the film thickness and the basis weight of each of the front and back of the porous layer. In order to prevent curling, {(difference in film thickness between the front and back porous layers) / (sum of film thickness between the front and back porous layers)} × 100
<20%, {(area difference between the front and back porous layers) /
(The unit weight of the porous layers on the front and back sides)} × 100 <20% is preferable. The thickness of the separator for a non-aqueous secondary battery of the present invention is 1 from the viewpoint of energy density and safety.
The range of 0 to 50 μm is preferable.

【0024】本発明の非水系二次電池用セパレータは、
該有機高分子と、それを溶解しかつ水に相溶する有機溶
媒と、相分離剤(ゲル化剤もしくは開孔剤)とを混合溶解
したドープをポリオレフィン微多孔に塗布し、ついでそ
の膜を水系の凝固浴に浸漬し該有機高分子を凝固後、水
洗・乾燥を行ない多孔膜とする湿式製膜法によって得る
ことができる。この製膜法はドープ組成及び凝固浴組成
で空隙率や孔径を容易に制御できるため、本発明セパレ
ータのモロホロジー制御において特に好適である。本発
明のセパレータを得るための好適な条件について具体的
に以下に述べる。
The non-aqueous secondary battery separator of the present invention comprises:
The organic polymer, an organic solvent that dissolves it and is compatible with water, and a phase-separating agent (gelling agent or pore-forming agent) are mixed and dissolved, and the dope is applied to the polyolefin micropores. It can be obtained by a wet film forming method in which the organic polymer is immersed in an aqueous coagulation bath to coagulate the organic polymer, and then washed and dried to form a porous film. This film-forming method is particularly suitable for controlling the morphology of the separator of the present invention because the porosity and the pore size can be easily controlled by the dope composition and the coagulation bath composition. The suitable conditions for obtaining the separator of the present invention will be specifically described below.

【0025】該ドープの有機溶剤は該有機高分子を溶解
可能なでありかつ水と相溶化するものであれば好適に用
いることができる。該有機高分子がポリフッ化ビニリデ
ン(PVdF)、PVdF共重合体、及びPVdFを主
体とするPVdF系ポリマーの場合、極性の高いものが
好ましく、N−メチルピロリドン(NMP)、N,N−
ジメチルアセトアミド(DMAc)、N,N−ジメチル
ホルムアミド(DMF)、ジメチルスルホキシド(DM
SO)、アセトニトリル等が好適に選ばれ、これらを混
合して用いてもよい。該ドープ中の該有機高分子濃度は
5〜25重量%が好適に選ばれる。
The organic solvent of the dope can be preferably used as long as it can dissolve the organic polymer and is compatible with water. When the organic polymer is a polyvinylidene fluoride (PVdF), a PVdF copolymer, or a PVdF-based polymer containing PVdF as a main component, those having a high polarity are preferable, and N-methylpyrrolidone (NMP), N, N-
Dimethylacetamide (DMAc), N, N-dimethylformamide (DMF), dimethylsulfoxide (DM)
SO), acetonitrile and the like are preferably selected, and these may be mixed and used. The concentration of the organic polymer in the dope is preferably 5 to 25% by weight.

【0026】相分離剤は該有機高分子に対して貧溶媒で
あり水と相溶化するものであれば用いることが可能であ
る。該有機高分子がPVdF、PVdF共重合体、及び
これらを主体するPVdF系ポリマーであるとき、例え
ば水やアルコール類が好適に選ばれ、特に重合体を含む
プロピレングリコールの類、エチレングリコール、トリ
プロピレングリコール(TPG)、1,3−ブタンジオ
ール、1,4−ブタンジオール、ポリエチレングリコー
ルモノエチルエーテル、メタノール、エタノール、グリ
セリン等の多価アルコール等が好適に選ばれる。該ドー
プ中の相分離剤の濃度は該有機溶剤と相分離剤の混合溶
媒中0〜60重量%の範囲で好適に選ればれる。
The phase separating agent can be used as long as it is a poor solvent for the organic polymer and is compatible with water. When the organic polymer is PVdF, a PVdF copolymer, or a PVdF-based polymer containing them as a main component, for example, water and alcohols are preferably selected, and in particular, propylene glycols including polymers, ethylene glycol, and tripropylene. Glycol (TPG), 1,3-butanediol, 1,4-butanediol, polyethylene glycol monoethyl ether, polyhydric alcohols such as methanol, ethanol and glycerin are preferably selected. The concentration of the phase separation agent in the dope is suitably selected within the range of 0 to 60% by weight in the mixed solvent of the organic solvent and the phase separation agent.

【0027】凝固浴は水と該ドープの有機溶剤溶剤及び
相分離剤の混合液が好適に用いられる。水の割合は30
〜90重量%の範囲が好適であり、有機溶剤と相分離剤
の量比はドープにおけるこれらの量比と合わせた方が生
産上好ましい。本発明のセパレータは、該有機高分子
と、それを溶解する揮発性溶媒と可塑剤とを混合溶解
し、この溶液状態のドープをポリオレフィン微多孔膜に
塗布し、次いで乾燥し揮発性溶媒を除去後、可塑剤を溶
解して該有機高分子を溶解しない揮発性溶剤で可塑剤を
抽出後、乾燥を行い多孔膜とする乾式製膜法により得る
こともできる。
For the coagulation bath, a mixed solution of water, an organic solvent solvent of the dope and a phase separating agent is preferably used. The proportion of water is 30
The preferred range is from 90 to 90% by weight, and the amount ratio of the organic solvent and the phase separating agent is more preferably the same as the amount ratio of the dope in terms of production. The separator of the present invention is prepared by mixing and dissolving the organic polymer, a volatile solvent that dissolves the organic polymer, and a plasticizer, coating the dope in a solution state on a polyolefin microporous membrane, and then drying to remove the volatile solvent. Alternatively, it can be obtained by a dry film-forming method in which the plasticizer is extracted with a volatile solvent that dissolves the plasticizer and does not dissolve the organic polymer and then dried to form a porous film.

【0028】本発明のセパレータの製法としては、これ
らのなかでも上記の湿式製膜法が、多孔質層の多孔化制
御を容易にし、かつポリオレフィン微多孔膜との一体化
も同時に行うことができるのでより好適である。 [非水系二次電池]本発明の非水系二次電池は、リチウ
ムを可逆的にドープ・脱ドープ可能な正極及び負極とセ
パレータを備え、非水系電解液を用いた非水系二次電池
であり、本発明の非水系二次電池用セパレータを用いる
ことを特徴とし、他の構成は公知のものである。以下、
詳細に説明する。
Among these, as the method for producing the separator of the present invention, the above-mentioned wet film-forming method facilitates the control of the porosity of the porous layer and can be integrated with the polyolefin microporous membrane at the same time. Therefore, it is more preferable. [Non-Aqueous Secondary Battery] The non-aqueous secondary battery of the present invention is a non-aqueous secondary battery that includes a positive electrode and a negative electrode capable of reversibly doping and dedoping lithium and a separator, and uses a non-aqueous electrolyte solution. The non-aqueous secondary battery separator of the present invention is used, and other configurations are known. Less than,
The details will be described.

【0029】(正極)本発明の非水系二次電池の正極
は、代表的にはリチウムイオンを吸蔵放出する活物質と
バインダーポリマー及び集電体とから構成される。前記
活物質としては、種々のリチウム含有酸化物やカルコゲ
ン化合物を挙げることができる。リチウム含有酸化物と
しては、LiCoO2などのリチウム含有コバルト酸化
物、LiNiO2などのリチウム含有ニッケル酸化物、
LiMn2 4などのリチウム含有マンガン複合酸化物、
リチウム含有ニッケルコバルト酸化物、リチウム含有非
晶質五酸化バナジウムなどを挙げることができる。ま
た、カルコゲン化合物としては、二硫化チタン、二硫化
モリブデンなどを挙げることができる。
(Positive Electrode) The positive electrode of the non-aqueous secondary battery of the present invention
Is typically an active material that absorbs and releases lithium ions
It is composed of a binder polymer and a current collector. The above
Examples of active materials include various lithium-containing oxides and chalcogenides.
Compounds may be mentioned. Lithium-containing oxide
Then LiCoO2Lithium-containing cobalt oxide such as
Thing, LiNiO2Lithium-containing nickel oxide, such as
LiMn2O FourLithium-containing manganese composite oxide, such as
Lithium-containing nickel cobalt oxide, lithium-containing non-
Examples thereof include crystalline vanadium pentoxide. Well
Also, as chalcogen compounds, titanium disulfide, disulfide
Examples thereof include molybdenum.

【0030】バインダーポリマーとしては、ポリビニリ
デンフルオライド(PVdF);弗化ビニリデン(Vd
F)とヘキサフロロプロピレン(HFP)、パーフロロ
メチルビニルーテル(PFMV)、テトラフロロエチレ
ン(TFE)との二元共重合体;VdF/HFP/TF
E、VdF/HFP/CTFEなどのPVdFを主成分
とする三元共重合体樹脂;ポリテトラフロロエチレン、
フッ素系ゴムなどのフッ素系樹脂や、スチレンーブタジ
エン共重合体、スチレンーアクリロニトリル共重合体、
エチレンープロピレンーターポリマーなどの炭化水素系
ポリマーやカルボキシメチルセルロース、ポリイミド樹
脂などを用いることができるがこれに限定されるもので
はない。また、これらは単独で用いても、2種以上を混
合して用いても構わない。
As the binder polymer, polyvinylidene fluoride (PVdF); vinylidene fluoride (Vd)
F) and hexafluoropropylene (HFP), perfluoromethyl vinyl ether (PFMV), tetrafluoroethylene (TFE) binary copolymer; VdF / HFP / TF
E, a terpolymer resin containing PVdF as a main component such as VdF / HFP / CTFE; polytetrafluoroethylene,
Fluorine resin such as fluorine rubber, styrene-butadiene copolymer, styrene-acrylonitrile copolymer,
Hydrocarbon-based polymers such as ethylene-propylene-terpolymer, carboxymethyl cellulose, and polyimide resins can be used, but are not limited thereto. These may be used alone or in combination of two or more.

【0031】バインダーポリマーの添加量は、活物質1
00重量部に対して3〜30重量部の範囲が好ましい。
バインダーが3重量部未満の場合、活物質をつなぎ止め
る十分な結着力が得られず好ましくない。また、それが
30重量部より多くなると、正極における活物質密度が
低下し、結果的に電池のエネルギー密度低下を引起こし
好ましくなくなる。
The amount of binder polymer added depends on the amount of active material 1
A range of 3 to 30 parts by weight is preferable with respect to 00 parts by weight.
If the amount of the binder is less than 3 parts by weight, a sufficient binding force for holding the active material cannot be obtained, which is not preferable. On the other hand, if it exceeds 30 parts by weight, the density of the active material in the positive electrode decreases, resulting in a decrease in the energy density of the battery, which is not preferable.

【0032】集電体としては、酸化安定性の優れた材料
が好適に用いられる。具体的には、アルミニウム、ステ
ンレススチール、ニッケル、炭素などを挙げることがで
きる。特に好適には、ホイル状のアルミニウムが用いら
れる。また、形状については、箔状、メッシュ状のもの
を用いることができる。
As the current collector, a material having excellent oxidation stability is preferably used. Specifically, aluminum, stainless steel, nickel, carbon, etc. can be mentioned. Particularly preferably, foil-shaped aluminum is used. Regarding the shape, a foil shape or a mesh shape can be used.

【0033】また、本発明の正極は、人造黒鉛、カーボ
ンブラック(アセチレンブラック)、ニッケル粉末など
を導電助材として含有しても構わない。導電助剤として
はカーボンブラックが特に好ましい。その添加量として
は0〜10重量部の範囲が好ましい。
The positive electrode of the present invention may contain artificial graphite, carbon black (acetylene black), nickel powder or the like as a conductive auxiliary material. Carbon black is particularly preferable as the conductive additive. The amount added is preferably in the range of 0 to 10 parts by weight.

【0034】本発明の正極の製造法は特に限定されるも
のではなく公知の方法を用いることができる。例えば、
下記の方法などを採用することができる。 活物質、バインダーポリマー、バインダーを溶解する
揮発性溶媒を所定量混合溶解し、活物質のペーストを作
製する。得られたペーストを集電体上に塗工後、揮発性
溶媒を乾燥除去し製膜する方法。 活物質、バインダーポリマー、バインダーを溶解する
水溶性の溶媒を所定量混合溶解し、活物質のペーストを
作製する。得られたペーストを集電体上に塗工後、得ら
れた塗膜を水系の凝固浴へ浸漬し、バインダーポリマー
の凝固を行ない、ついで膜を水洗・乾燥し製膜する方
法。
The method for producing the positive electrode of the present invention is not particularly limited, and known methods can be used. For example,
The following method can be adopted. A predetermined amount of the active material, the binder polymer, and the volatile solvent that dissolves the binder are mixed and dissolved to prepare a paste of the active material. A method in which the obtained paste is applied onto a current collector, and then the volatile solvent is dried and removed to form a film. A predetermined amount of the active material, the binder polymer, and the water-soluble solvent that dissolves the binder are mixed and dissolved to prepare a paste of the active material. A method of coating the obtained paste on a current collector, immersing the obtained coating film in an aqueous coagulation bath to coagulate the binder polymer, and then washing and drying the film to form a film.

【0035】(負極)次に、本発明の負極について説明
する。本発明の負極は、リチウムを主成分とする金属ま
たはリチウムイオンを吸蔵放出する炭素質活物質とバイ
ンダーポリマー及び集電体とから構成される。前記炭素
質活物質としては、ポリアクリロニトリル、フェノール
樹脂、フェノールノボラック樹脂、セルロースなどの有
機高分子化合物を焼結したもの、コークスやピッチを焼
結したもの、人造黒鉛や天然黒鉛に代表される炭素質材
料を挙げることができる。
(Negative Electrode) Next, the negative electrode of the present invention will be described. The negative electrode of the present invention is composed of a metal containing lithium as a main component or a carbonaceous active material that absorbs and releases lithium ions, a binder polymer, and a current collector. As the carbonaceous active material, polyacrylonitrile, phenol resin, phenol novolac resin, those obtained by sintering an organic polymer compound such as cellulose, those obtained by sintering coke or pitch, carbon represented by artificial graphite or natural graphite. Quality materials can be mentioned.

【0036】バインダーポリマーとしては、前述した正
極と同様のものを用いることができる。バインダーポリ
マーの添加量は、活物質100重量部に対して3〜30
重量部の範囲が好ましい。バインダーが3重量部未満の
場合、活物質をつなぎ止める十分な結着力が得られず好
ましくない。また、それが30重量部より多くなると、
負極における活物質密度が低下し、結果的に電池のエネ
ルギー密度低下を引き起し好ましくなくなる。
As the binder polymer, those similar to the above-mentioned positive electrode can be used. The amount of the binder polymer added is 3 to 30 with respect to 100 parts by weight of the active material.
A range of parts by weight is preferred. If the amount of the binder is less than 3 parts by weight, a sufficient binding force for holding the active material cannot be obtained, which is not preferable. Also, if it exceeds 30 parts by weight,
The active material density in the negative electrode is reduced, resulting in a decrease in the energy density of the battery, which is not preferable.

【0037】集電体としては、還元安定性の優れた材料
が好適に用いられる。具体的には、金属銅、ステンレス
スチール、ニッケル、炭素などを挙げることができる。
特に好適には、箔状およびメッシュ状の銅が用いられ
る。また、本発明の負極は、人造黒鉛、カーボンブラッ
ク(アセチレンブラック)、ニッケル粉末などを導電助
材として含有しても構わない。
As the current collector, a material having excellent reduction stability is preferably used. Specific examples thereof include metallic copper, stainless steel, nickel and carbon.
Particularly preferably, foil-shaped and mesh-shaped copper is used. Further, the negative electrode of the present invention may contain artificial graphite, carbon black (acetylene black), nickel powder or the like as a conductive auxiliary material.

【0038】本発明非水系二次電池の負極は正極同様に
公知の方法で製造される。 (非水系電解液)本発明の非水系二次電池では非水溶媒
にリチウム塩を溶解した非水系電解液を用いることがで
きる。
The negative electrode of the non-aqueous secondary battery of the present invention is manufactured by a known method like the positive electrode. (Non-Aqueous Electrolyte) In the non-aqueous secondary battery of the present invention, a non-aqueous electrolyte in which a lithium salt is dissolved in a non-aqueous solvent can be used.

【0039】具体的なリチウム塩としては、ホウ四弗化
リチウム(LiBF4)、過塩素酸リチウム(LiCl
4)、六弗化リン酸リチウム(LiPF6)、六弗化砒
素リチウム(LIAsF6)、トリフロロスルフォン酸
リチウム(CF3SO3Li)、リチウムパーフロロメチ
ルスルフォニルイミド[LiN(CF3SO22]およ
びリチウムパーフロロエチルスルフォニルイミド[Li
N(C25SO22]等を用いることができる。また、
そのリチウム塩の濃度としては、0.2から2M(モル
/l)の範囲が好適に用いられる。
Specific lithium salts include lithium borotetrafluoride (LiBF 4 ) and lithium perchlorate (LiCl
O 4 ), lithium hexafluorophosphate (LiPF 6 ), lithium arsenic hexafluoride (LIAsF 6 ), lithium trifluorosulphonate (CF 3 SO 3 Li), lithium perfluoromethylsulfonyl imide [LiN (CF 3 SO 4 2 ) 2 ] and lithium perfluoroethylsulfonylimide [Li
N (C 2 F 5 SO 2 ) 2 ] and the like can be used. Also,
The concentration of the lithium salt is 0.2 to 2M (molar
The range of / l) is preferably used.

【0040】また、これらリチウム塩を溶解する非水溶
媒としては、プロピレンカーボネート(PC)、エチレ
ンカーボネート(EC)、ブチレンカーボネート(B
C)、ジメチルカーボネート(DMC)、ジエチルカー
ボネート(DEC)、ビニレンカーボネート(VC)、
メチルエチルカーボネート(MEC)、1,2-ジメトキシ
エタン(DME)、1,2-ジエトキシエタン(DEE)、
γーブチロラクトン(γ−BL)、スルフォラン、アセ
トニトリル等の単独溶媒や、これら2種類以上を混合し
た混合溶媒も採用できる。特に、PC、EC、γ−B
L、DMC、DEC、MECおよびDMEから選ばれる
少なくとも1種以上の溶媒が好適に用いられる。
As the non-aqueous solvent for dissolving these lithium salts, propylene carbonate (PC), ethylene carbonate (EC), butylene carbonate (B
C), dimethyl carbonate (DMC), diethyl carbonate (DEC), vinylene carbonate (VC),
Methyl ethyl carbonate (MEC), 1,2-dimethoxyethane (DME), 1,2-diethoxyethane (DEE),
A single solvent such as γ-butyrolactone (γ-BL), sulfolane or acetonitrile, or a mixed solvent obtained by mixing two or more kinds of these can also be used. Especially, PC, EC, γ-B
At least one solvent selected from L, DMC, DEC, MEC and DME is preferably used.

【0041】(外装)本発明の非水系二次電池の外装に
は、一般的に用いられているステンレス、アルミ等の缶
の他、アルミラミネートフィルムが好適に用いられる。
また、アルミラミネートフィルムには種々のタイプのも
のがあるが、非水系二次電池用に用いられているもので
あれば特に限定されるものではない。
(Exterior) As the exterior of the non-aqueous secondary battery of the present invention, an aluminum laminate film is preferably used in addition to the commonly used cans such as stainless steel and aluminum.
Further, there are various types of aluminum laminated films, but they are not particularly limited as long as they are used for non-aqueous secondary batteries.

【0042】(製造法)本発明の非水系二次電池は公知
の非水系二次電池の製造法により好適に製造できる。す
なわち、正極、セパレータ、負極を順次重ね合わせ、正
極/セパレータ/負極という電池エレメントを作製す
る。これを外装に封入することで製造できる。電解液は
外装封入前に注入しても封入後に注入しても構わない。
本発明のセパレータの場合、電極との接着性に優れるの
でアルミラミネートフィルム外装においても上記のよう
な製造法で非水系二次電池を製造しても特に問題はない
が、電極とセパレータの接着性をより強固なものとする
場合は、電池エレメントを加圧処理や熱処理してもよ
い。この処理は電解液注入前でも注入後でもよい。ま
た、外装封入後電解液を注入した後、加熱エージング処
理することによっても接着性は強固なものとなる。この
加熱エージングは充電前でも適当な充電深度まで充電し
た後でもよい。
(Manufacturing Method) The non-aqueous secondary battery of the present invention can be preferably manufactured by a known non-aqueous secondary battery manufacturing method. That is, a positive electrode, a separator, and a negative electrode are sequentially stacked to produce a battery element of positive electrode / separator / negative electrode. It can be manufactured by enclosing this in an exterior. The electrolytic solution may be injected before or after the enclosure.
In the case of the separator of the present invention, there is no particular problem in manufacturing a non-aqueous secondary battery by the manufacturing method as described above even in the aluminum laminate film exterior because it has excellent adhesiveness to the electrode, but the adhesiveness of the electrode and the separator is good. In order to make the battery stronger, the battery element may be subjected to pressure treatment or heat treatment. This treatment may be performed before or after the electrolytic solution is injected. Further, the adhesiveness can be strengthened by heat aging treatment after injecting the electrolytic solution after enclosing the outer package. This heating aging may be performed before charging or after charging to an appropriate charging depth.

【0043】[0043]

【実施例】以下、実施例により本発明を詳細に説明す
る。ただし、本発明は以下の実施例に限定されるもので
はない。
The present invention will be described in detail below with reference to examples. However, the present invention is not limited to the following examples.

【0044】[実施例1]該有機高分子として、共重合
組成がVdF/HFP/CTFE=92.0/4.5/
3.5(重量比)、Mw=41万であるフッ素系ポリマ
ーを用いた。該フッ素系ポリマーをDMAc(有機溶
剤):TPG(相分離剤)=6:4(重量比)である混
合溶媒に12重量%となるように溶解しドープを調整し
た。
Example 1 As the organic polymer, the copolymer composition was VdF / HFP / CTFE = 92.0 / 4.5 /
A fluoropolymer having a Mw of 410,000 (weight ratio) of 3.5 was used. The fluorine-containing polymer was dissolved in a mixed solvent of DMAc (organic solvent): TPG (phase separating agent) = 6: 4 (weight ratio) so as to be 12% by weight to adjust the dope.

【0045】該多孔質支持体にはポリプロピレン微多孔
膜(セルガード社製 セルガード#2400)を用い
た。このポリプロピレン微多孔膜の膜厚は25.6μ
m、目付14.8g/m2であった。
A polypropylene microporous membrane (Celgard # 2400 manufactured by Celgard) was used as the porous support. The thickness of this polypropylene microporous film is 25.6μ.
m and areal weight was 14.8 g / m 2 .

【0046】ポリプロピレン微多孔膜の表裏両面に該ド
ープを塗工した。このドープを塗工したポリプロピレン
微多孔膜を凝固浴へ浸漬し凝固した。ここで凝固浴組成
は水:DMAc:TPG=5:3:2とした。次いで、
水洗・乾燥し本発明の非水系二次電池用セパレータを製
膜した。
The dope was coated on both front and back surfaces of a polypropylene microporous film. The polypropylene microporous membrane coated with this dope was immersed in a coagulation bath to coagulate. Here, the coagulation bath composition was water: DMAc: TPG = 5: 3: 2. Then
It was washed with water and dried to form a film of the non-aqueous secondary battery separator of the present invention.

【0047】作製したポリプロピレン微多孔膜の表裏両
面のほぼ全面に多孔質層が積層され、微多孔膜と多孔質
層が一体化された本発明の非水系二次電池用セパレータ
の特性は以下の通りであった。多孔質層の空隙率67.
2%、セパレータの膜厚39.5μm、多孔質層総厚み
14.0μmであり、片面それぞれの多孔質層厚みは
7.1μm、6.9μmで、片面それぞれの目付は4.
1g/m2、4.0g/m2。SEM観察結果、表面には
孔径0.1〜0.5μmの孔が点在している様子が観察
され、表面開孔率は概ね10%程度であった。さらに、
作製したセパレータは有意にカールすることはなかっ
た。
The characteristics of the separator for a non-aqueous secondary battery of the present invention in which a porous layer is laminated on almost the entire front and back surfaces of the produced polypropylene microporous membrane and the microporous membrane and the porous layer are integrated are as follows. It was on the street. Porosity of porous layer 67.
2%, the film thickness of the separator was 39.5 μm, the total thickness of the porous layer was 14.0 μm, the thickness of the porous layer on each side was 7.1 μm and 6.9 μm, and the basis weight on each side was 4.
1 g / m 2 , 4.0 g / m 2 . As a result of SEM observation, it was observed that holes having a pore diameter of 0.1 to 0.5 μm were scattered on the surface, and the surface open area ratio was about 10%. further,
The produced separator did not curl significantly.

【0048】[実施例2]該有機高分子として、共重合
組成がVdF/HFP/CTFE=92.0/4.5/
3.5(重量比)、Mw=41万であるフッ素系ポリマ
ーを用いた。該フッ素系ポリマーをDMAc(有機溶
剤):TPG(相分離剤)=55:45(重量比)であ
る混合溶媒に8重量%となるように溶解しドープを調整
した。
Example 2 As the organic polymer, the copolymer composition was VdF / HFP / CTFE = 92.0 / 4.5 /
A fluoropolymer having a Mw of 410,000 (weight ratio) of 3.5 was used. The fluoropolymer was dissolved in a mixed solvent of DMAc (organic solvent): TPG (phase separating agent) = 55: 45 (weight ratio) so as to be 8% by weight to adjust the dope.

【0049】該多孔質支持体にはポリプロピレン微多孔
膜(セルガード社製 セルガード#2400)を用い
た。このポリプロピレン微多孔膜の膜厚は25.6μ
m、目付14.8g/m2であった。
A polypropylene microporous membrane (Celgard # 2400 manufactured by Celgard) was used as the porous support. The thickness of this polypropylene microporous film is 25.6μ.
m and areal weight was 14.8 g / m 2 .

【0050】ポリプロピレン微多孔膜の表裏両面に該ド
ープを塗工した。この該ドープを塗工したポリプロピレ
ン微多孔膜を凝固浴へ浸漬し凝固した。ここで凝固浴組
成は水:DMAc:TPG=5:3:2とした。次い
で、水洗・乾燥し本発明の非水系二次電池用セパレータ
を製膜した。
The dope was applied to both front and back surfaces of a polypropylene microporous film. The polypropylene microporous membrane coated with the dope was immersed in a coagulation bath to coagulate. Here, the coagulation bath composition was water: DMAc: TPG = 5: 3: 2. Then, it was washed with water and dried to form a film of the separator for a non-aqueous secondary battery of the present invention.

【0051】作製したポリプロピレン微多孔膜の表裏両
面のほぼ全面に多孔質層が積層され、微多孔膜と多孔質
層が一体化された本発明の非水系二次電池用セパレータ
の特性は以下の通りであった。多孔質層の空隙率72.
9%、セパレータの膜厚34.2μm、多孔質層総厚み
8.6μmであり、片面それぞれの多孔質層厚みは4.
3μm、4.3μmで、片面それぞれの目付は2.1g
/m2、2.0g/m2。SEM観察の結果、表面には孔
径0.1〜0.5μmの孔が点在している様子が観察さ
れ、表面開孔率は概ね20%程度であった。さらに、作
製したセパレータは有意にカールすることはなかった。
The characteristics of the separator for a non-aqueous secondary battery of the present invention in which a porous layer is laminated on almost the entire front and back surfaces of the produced polypropylene microporous membrane and the microporous membrane and the porous layer are integrated are as follows. It was on the street. Porosity of porous layer 72.
9%, the thickness of the separator was 34.2 μm, the total thickness of the porous layer was 8.6 μm, and the thickness of the porous layer on each side was 4.
3μm and 4.3μm, each side has a basis weight of 2.1g
/ M 2 , 2.0 g / m 2 . As a result of SEM observation, it was observed that holes having a pore diameter of 0.1 to 0.5 μm were scattered on the surface, and the surface open area ratio was about 20%. Furthermore, the produced separator did not curl significantly.

【0052】[比較例1]実施例1で用いたフッ素系ポ
リマーをDMAcに12重量%となるように溶解した溶
液をドープとし、凝固浴を水とした以外は実施例1と同
様の方法で非水系二次電池用セパレータを作製した。作
製されたセパレータの表面をSEMで観察したが孔は観
察されなかった。
[Comparative Example 1] The same procedure as in Example 1 was repeated, except that the solution prepared by dissolving the fluoropolymer used in Example 1 in DMAc in an amount of 12% by weight was used as the dope and the coagulation bath was water. A non-aqueous secondary battery separator was produced. The surface of the produced separator was observed by SEM, but no hole was observed.

【0053】[比較例2]実施例1で用いたフッ素系ポ
リマーをDMAcに12重量%となるように溶解した溶
液をドープとし、これをポリプロピレン微多孔膜(セル
ガード社製 セルガード#2400)に実施例1と同様
に表裏に塗工した。塗工後乾燥させポリプロピレン微多
孔膜表裏に該フッ素系ポリマーからなる緻密膜を製膜す
ることで非水系二次電池用セパレータを作製した。
[Comparative Example 2] A solution prepared by dissolving the fluoropolymer used in Example 1 in DMAc in an amount of 12% by weight was used as a dope, which was applied to a polypropylene microporous membrane (Celgard # 2400 manufactured by Celgard). Coating was performed on the front and back in the same manner as in Example 1. A non-aqueous secondary battery separator was produced by coating and drying and then forming a dense film made of the fluoropolymer on the front and back of the polypropylene microporous film.

【0054】[実施例3] 「正極」コバルト酸リチウム(LiCoO2、日本化学
工業(株)製)粉末89.5重量部とアセチレンブラッ
ク4.5重量部及びPVdFの乾燥重量が6重量部とな
るように、6重量%のPVdFのNMP溶液を用い、正
極剤ペーストを作製した。得られたペーストを厚さ20
μmのアルミ箔上に塗布乾燥後プレスして、厚さ97μ
mの正極を得た。
Example 3 "Positive electrode" 89.5 parts by weight of lithium cobalt oxide (LiCoO 2 , manufactured by Nippon Kagaku Kogyo Co., Ltd.) powder, 4.5 parts by weight of acetylene black and 6 parts by weight of PVdF dry. As a result, a positive electrode paste was prepared by using a 6 wt% PVdF NMP solution. The resulting paste has a thickness of 20
97μ thickness after coating and drying on aluminum foil of μm
m positive electrode was obtained.

【0055】「負極」負極活物質としてメソフェーズカ
ーボンマイクロビーズ(MCMB、大阪瓦斯化学(株)
製)粉末87重量部とアセチレンブラック3重量部及
び、PVdFの乾燥重量が10重量部となるように、6
重量%のPVdFのNMP溶液を用い、負極剤ペースト
を作製した。得られたペーストを厚さ18μmの銅箔上
に塗布乾燥後プレスして、厚さ90μmの負極を作製し
た。
"Negative electrode" Mesophase carbon microbeads (MCMB, Osaka Gas Chemical Co., Ltd.) as a negative electrode active material
Powder), 87 parts by weight of powder, 3 parts by weight of acetylene black, and 10 parts by weight of PVdF dry weight.
A negative electrode paste was prepared using a Nd solution of PVdF in a weight percentage. The obtained paste was applied on a copper foil having a thickness of 18 μm, dried and pressed to produce a negative electrode having a thickness of 90 μm.

【0056】「ボタン電池の作製」実施例1及び2で作
製したセパレータと上記の正極及び負極を用いてボタン
電池(CR2032)を作製した。電解液には1M L
iPF6 EC/DEC/MEC(1/2/1重量比)
を用いた。このボタン電池の4.2V定電流・定電圧充
電、2.75V定電流放電における0.2C放電に対す
る2C放電の放電容量比を測定した。結果を表1に示
す。
[Preparation of Button Battery] A button battery (CR2032) was prepared using the separator prepared in Examples 1 and 2 and the above positive electrode and negative electrode. 1 M L for electrolyte
iPF 6 EC / DEC / MEC (1/2/1 weight ratio)
Was used. The discharge capacity ratio of 2C discharge to 0.2C discharge at 4.2V constant current / constant voltage charge and 2.75V constant current discharge of this button battery was measured. The results are shown in Table 1.

【0057】[比較例3]比較例1、2で作製したセパ
レータ及びポリプロピレン微多孔膜(セルガード社製
セルガード#2400)を用いて実施例3と同様にボタ
ン電池を作製し、同様の測定を行った。結果を表1に示
す。
[Comparative Example 3] Separators and polypropylene microporous membranes produced in Comparative Examples 1 and 2 (manufactured by Celgard)
A button battery was prepared in the same manner as in Example 3 using Cell Guard # 2400), and the same measurement was performed. The results are shown in Table 1.

【0058】[0058]

【表1】 [Table 1]

【0059】表1より本発明のセパレータにおいては、
ポリオレフィン微多孔膜上へ塗工した多孔質層によるイ
オン伝導性の低下がほとんどないことが分かる。
From Table 1, in the separator of the present invention,
It can be seen that there is almost no reduction in ionic conductivity due to the porous layer coated on the polyolefin microporous membrane.

【0060】[実施例4]実施例3の正極及び負極と実
施例1及び2で作製したセパレータを用い、これらを重
ね合わせ正極/セパレータ/負極からなる電池エレメン
トを成型した。この電池エレメントをアルミラミネート
フィルムパックに入れ、減圧下で電解液を注入し、アル
ミラミネートフィルムパックを封止した。ここで、電解
液には、1M LiPF6 EC/DEC/MEC(1
/2/1重量比)を用いた。このフィルム外装電池は良
好に作動し、充放電測定後電池を解体したところセパレ
ータと電極は十分に接着されていた。
Example 4 Using the positive electrode and negative electrode of Example 3 and the separator prepared in Examples 1 and 2, these were stacked to form a battery element consisting of positive electrode / separator / negative electrode. This battery element was placed in an aluminum laminate film pack, and an electrolytic solution was injected under reduced pressure to seal the aluminum laminate film pack. Here, 1 M LiPF 6 EC / DEC / MEC (1
/ 2/1 weight ratio) was used. This film-clad battery worked well, and when the battery was disassembled after the charge / discharge measurement, the separator and the electrode were sufficiently bonded.

【0061】[0061]

【発明の効果】以上詳述してきたように本発明によれ
ば、イオン透過性に優れかつ接着性良好な多孔質層をポ
リオレフィン微多孔膜の表裏に塗工することで、電極と
の接着性が良好でかつポリオレフィン微多孔膜に比べイ
オン伝導性の低下がなく、一体化によるハンドリング性
に優れたセパレータを提供することが可能となる。本発
明は、特にフィルム外装電池のセパレータとして好適で
ある。
As described above in detail, according to the present invention, the porous layer having excellent ion permeability and good adhesiveness is coated on the front and back surfaces of the microporous polyolefin membrane to thereby improve the adhesiveness to the electrode. It is possible to provide a separator which is excellent in ionic conductivity and has a lower ionic conductivity than that of the microporous polyolefin membrane, and which is excellent in handleability due to integration. The present invention is particularly suitable as a separator for a film-clad battery.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 佐野 弘樹 山口県岩国市日の出町2番1号 帝人株式 会社岩国研究センター内 (72)発明者 大道 高弘 山口県岩国市日の出町2番1号 帝人株式 会社岩国研究センター内 Fターム(参考) 5H021 AA06 CC04 EE04 EE10 EE15 EE27 HH02 HH03 5H029 AJ00 AK03 AK05 AL06 AL07 AM02 AM03 AM04 AM05 AM07 DJ04 DJ13 EJ12 EJ14 HJ00 HJ04 HJ06 HJ09    ─────────────────────────────────────────────────── ─── Continued front page    (72) Inventor Hiroki Sano             2-1, Hinodecho, Iwakuni, Yamaguchi Prefecture Teijin Limited             Company Iwakuni Research Center (72) Inventor Takahiro Omido             2-1, Hinodecho, Iwakuni, Yamaguchi Prefecture Teijin Limited             Company Iwakuni Research Center F-term (reference) 5H021 AA06 CC04 EE04 EE10 EE15                       EE27 HH02 HH03                 5H029 AJ00 AK03 AK05 AL06 AL07                       AM02 AM03 AM04 AM05 AM07                       DJ04 DJ13 EJ12 EJ14 HJ00                       HJ04 HJ06 HJ09

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 リチウムのドープ・脱ドープにより起電
力を得る非水系二次電池に用いるセパレータにおいて、
該セパレータが、ポリオレフィン微多孔膜の表裏全面
に、電解液に膨潤しこれを保持する有機高分子からなる
多孔質層が配置されて該ポリオレフィン微多孔膜と一体
化され、 該多孔質層の空隙率が50〜90%である 該多孔質層表面に孔径0.05〜10μmの孔が点在
している 表裏の該多孔質層の総厚みが20μm以下であり、該
多孔質層の厚みが片面それぞれでは1μm以上である ことを特徴とする非水系二次電池用セパレータ。
1. A separator used in a non-aqueous secondary battery, which obtains an electromotive force by doping / dedoping lithium,
The separator is provided with a porous layer made of an organic polymer that swells and holds an electrolyte solution on the entire front and back surfaces of the polyolefin microporous membrane, and is integrated with the polyolefin microporous membrane, and the voids of the porous layer are integrated. The total thickness of the porous layers on the front and back sides in which pores having a pore diameter of 0.05 to 10 μm are scattered on the surface of the porous layer having a ratio of 50 to 90% is 20 μm or less, and the thickness of the porous layer is A separator for a non-aqueous secondary battery, characterized in that each side has a thickness of 1 μm or more.
【請求項2】 表面開孔率が1〜80%であることを特
徴とする請求項1記載の非水系二次電池用セパレータ。
2. The separator for a non-aqueous secondary battery according to claim 1, which has a surface porosity of 1 to 80%.
【請求項3】 該有機高分子が、ポリフッ化ビニリデン
(PVdF)、PVdF共重合体、またはこれらを主体
とするPVdF系ポリマーであることを特徴とする請求
項1または2いずれかに記載の非水系二次電池用セパレ
ータ。
3. The non-woven fabric according to claim 1, wherein the organic polymer is polyvinylidene fluoride (PVdF), a PVdF copolymer, or a PVdF-based polymer containing them as a main component. Water-based secondary battery separator.
【請求項4】 リチウムを可逆的にドープ・脱ドープ可
能な正極及び負極とセパレータを備え、非水系電解液を
用いた非水系二次電池において、該セパレータとして請
求項1〜3いずれかに記載の非水系二次電池用セパレー
タを用いることを特徴とする非水系二次電池。
4. A non-aqueous secondary battery comprising a positive electrode and a negative electrode capable of reversibly doping / de-doping lithium, and a separator, wherein the separator is any one of claims 1 to 3. A non-aqueous secondary battery characterized by using the non-aqueous secondary battery separator of.
JP2001276316A 2001-09-12 2001-09-12 Non-aqueous secondary battery separator and non-aqueous secondary battery Expired - Lifetime JP4127989B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001276316A JP4127989B2 (en) 2001-09-12 2001-09-12 Non-aqueous secondary battery separator and non-aqueous secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001276316A JP4127989B2 (en) 2001-09-12 2001-09-12 Non-aqueous secondary battery separator and non-aqueous secondary battery

Publications (2)

Publication Number Publication Date
JP2003086162A true JP2003086162A (en) 2003-03-20
JP4127989B2 JP4127989B2 (en) 2008-07-30

Family

ID=19101036

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001276316A Expired - Lifetime JP4127989B2 (en) 2001-09-12 2001-09-12 Non-aqueous secondary battery separator and non-aqueous secondary battery

Country Status (1)

Country Link
JP (1) JP4127989B2 (en)

Cited By (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005123091A (en) * 2003-10-17 2005-05-12 Yuasa Corp Nonaqueous electrolyte secondary battery
JPWO2004088671A1 (en) * 2003-03-31 2006-07-06 トレキオン株式会社 Composite polyelectrolyte composition
JP2007157571A (en) * 2005-12-07 2007-06-21 Nitto Denko Corp Porous film for electrolyte, electrolyte provided therefrom, and manufacturing method of electrode/electrolyte element using it
US7311994B2 (en) 2002-09-17 2007-12-25 Tomoegawa Paper Co., Ltd. Separator for lithium ion secondary battery and lithium ion secondary battery provided therewith
JP2008504650A (en) * 2004-06-25 2008-02-14 セルガード,インコーポレイテッド Li / MnO2 battery separator with selective ion transport
WO2009054477A1 (en) * 2007-10-26 2009-04-30 Nitto Denko Corporation Porous film having reactive polymer layer thereon for use in battery separator, and use of the porous film
JP2009212086A (en) * 2008-02-06 2009-09-17 Sony Corp Separator and battery using the same
JP2009535764A (en) * 2006-04-28 2009-10-01 エルジー・ケム・リミテッド Separation membrane for battery including gel polymer layer
JP2010192200A (en) * 2009-02-17 2010-09-02 Sony Corp Nonaqueous electrolyte secondary battery
JP2011138762A (en) * 2009-12-04 2011-07-14 Sony Corp Nonaqueous electrolyte secondary battery, and separator
JP2012074403A (en) * 2012-01-19 2012-04-12 Sony Corp Secondary battery
JP2012227066A (en) * 2011-04-21 2012-11-15 Sony Corp Separator and nonaqueous electrolyte battery, battery pack, electronic apparatus, electric vehicle, power storage device and power system
US20130089772A1 (en) * 2011-04-08 2013-04-11 Teijin Limited Separator for nonaqueous secondary battery, and nonaqueous secondary battery
US20130089771A1 (en) * 2011-04-08 2013-04-11 Teijin Limited Separator for nonaqueous secondary battery, and nonaqueous secondary battery
US20130095365A1 (en) * 2011-04-08 2013-04-18 Teijin Limited Separator for nonaqueous secondary battery, and nonaqueous secondary battery
US8455053B2 (en) 2007-07-06 2013-06-04 Sony Corporation Separator, battery using the same, and method for manufacturing separator
EP2696391A1 (en) * 2011-04-08 2014-02-12 Teijin Limited Nonaqueous secondary battery separator and nonaqueous secondary battery
WO2014065258A1 (en) * 2012-10-22 2014-05-01 ダイキン工業株式会社 Separator, and secondary battery
CN103947009A (en) * 2011-11-15 2014-07-23 帝人株式会社 Separator for nonaqueous secondary batteries, method for producing same, and nonaqueous secondary battery
JP2014160684A (en) * 2014-06-10 2014-09-04 Sony Corp Secondary battery separator and secondary battery
KR20150049974A (en) * 2013-10-31 2015-05-08 주식회사 엘지화학 A separator having low resistance for secondary battery
US20150207122A1 (en) * 2012-07-30 2015-07-23 Teijin Limited Separator for nonaqueous electrolyte battery, and nonaqueous electrolyte battery
JP2015179619A (en) * 2014-03-19 2015-10-08 三菱製紙株式会社 Separator for electrochemical element
US9269937B2 (en) 2006-04-28 2016-02-23 Lg Chem, Ltd. Method for preparing separator for battery with gel polymer layer
US9887406B2 (en) 2012-03-09 2018-02-06 Teijin Limited Separator for non-aqueous secondary battery, method for manufacturing the same, and non-aqueous secondary battery
US9985262B2 (en) 2005-04-04 2018-05-29 Murata Manufacturing Co., Ltd. Battery
WO2018155287A1 (en) * 2017-02-23 2018-08-30 東レ株式会社 Porous film, separator for rechargeable battery, and rechargeable battery
WO2019181286A1 (en) * 2018-03-20 2019-09-26 三洋電機株式会社 Non-aqueous electrolyte secondary battery and method of manufacturing non-aqueous electrolyte secondary battery
WO2020003805A1 (en) * 2018-06-27 2020-01-02 東レ株式会社 Porous film, separator for secondary battery, and secondary battery
KR20200056379A (en) * 2017-09-26 2020-05-22 도레이 카부시키가이샤 Porous film, secondary battery separator and secondary battery
WO2020203901A1 (en) 2019-03-29 2020-10-08 東レ株式会社 Microporous polyolefin film, separator for battery, secondary battery, and method for producing microporous polyolefin film
CN114566758A (en) * 2021-12-29 2022-05-31 武汉中兴创新材料技术有限公司 Film, preparation method thereof and battery comprising film

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW201315785A (en) 2011-09-26 2013-04-16 Sumitomo Chemical Co Adhesive resin composition for secondary battery
CN103828114B (en) 2011-09-26 2018-03-09 住友化学株式会社 Secondary cell adhesive resin composition
JP5282181B1 (en) 2011-10-21 2013-09-04 帝人株式会社 Non-aqueous secondary battery separator and non-aqueous secondary battery
KR101434377B1 (en) 2011-10-21 2014-08-27 데이진 가부시키가이샤 Nonaqueous secondary battery separator and non-aqueous secondary battery
CN103891002B (en) * 2011-10-21 2017-03-15 帝人株式会社 Diaphragm for non-water system secondary battery and non-aqueous secondary battery
WO2014021291A1 (en) 2012-07-30 2014-02-06 帝人株式会社 Nonaqueous electrolyte battery separator and nonaqueous electrolyte battery
US10326120B2 (en) 2012-07-30 2019-06-18 Teijin Limited Separator for nonaqueous electrolyte battery, nonaqueous electrolyte battery, and method for producing nonaqueous electrolyte battery
CN104508861B (en) 2012-07-30 2018-06-15 帝人株式会社 Separator for non-aqueous electrolyte battery and nonaqueous electrolyte battery
CN104508864B (en) 2012-07-30 2017-04-19 帝人株式会社 Non-aqueous electrolyte battery separator and non-aqueous electrolyte battery
CN106415886B (en) 2014-06-30 2020-02-04 帝人株式会社 Separator for nonaqueous secondary battery and nonaqueous secondary battery
KR102410233B1 (en) 2015-03-30 2022-06-17 에스케이이노베이션 주식회사 Strong adhesive and high porous separator for secondary batteries and method of manufacturing the same
KR102604599B1 (en) 2015-04-02 2023-11-22 에스케이이노베이션 주식회사 Multi-layered lithium ion battery separator and method of manufacturing the same
KR102588911B1 (en) 2015-07-02 2023-10-16 데이진 가부시키가이샤 Separator for non-aqueous secondary battery, non-aqueous secondary battery and manufacturing method of non-aqueous secondary battery
JP6205525B1 (en) 2015-11-11 2017-09-27 帝人株式会社 Non-aqueous secondary battery separator and non-aqueous secondary battery
CN108352484B (en) 2015-11-11 2021-08-06 帝人株式会社 Separator for nonaqueous secondary battery and nonaqueous secondary battery
KR102434168B1 (en) 2016-09-21 2022-08-19 데이진 가부시키가이샤 Separator for non-aqueous secondary battery and non-aqueous secondary battery
WO2019107521A1 (en) 2017-11-30 2019-06-06 帝人株式会社 Nonaqueous secondary battery separator and nonaqueous secondary battery
CN111919310A (en) 2018-03-16 2020-11-10 帝人株式会社 Separator for nonaqueous secondary battery and nonaqueous secondary battery
JP2020155208A (en) 2019-03-18 2020-09-24 帝人株式会社 Separator for non-aqueous secondary battery and non-aqueous secondary battery
JP7416522B2 (en) 2019-03-19 2024-01-17 帝人株式会社 Separators for non-aqueous secondary batteries and non-aqueous secondary batteries

Cited By (65)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7311994B2 (en) 2002-09-17 2007-12-25 Tomoegawa Paper Co., Ltd. Separator for lithium ion secondary battery and lithium ion secondary battery provided therewith
JP4674660B2 (en) * 2003-03-31 2011-04-20 パイオトレック株式会社 Composite polymer electrolyte composition
JPWO2004088671A1 (en) * 2003-03-31 2006-07-06 トレキオン株式会社 Composite polyelectrolyte composition
KR101211455B1 (en) * 2003-03-31 2012-12-12 파이오트렉쿠 가부시키가이샤 composite polymer electrolyte composition
JP2005123091A (en) * 2003-10-17 2005-05-12 Yuasa Corp Nonaqueous electrolyte secondary battery
JP4686968B2 (en) * 2003-10-17 2011-05-25 株式会社Gsユアサ Non-aqueous electrolyte secondary battery
JP2008504650A (en) * 2004-06-25 2008-02-14 セルガード,インコーポレイテッド Li / MnO2 battery separator with selective ion transport
US9985262B2 (en) 2005-04-04 2018-05-29 Murata Manufacturing Co., Ltd. Battery
JP2007157571A (en) * 2005-12-07 2007-06-21 Nitto Denko Corp Porous film for electrolyte, electrolyte provided therefrom, and manufacturing method of electrode/electrolyte element using it
US9269937B2 (en) 2006-04-28 2016-02-23 Lg Chem, Ltd. Method for preparing separator for battery with gel polymer layer
JP2009535764A (en) * 2006-04-28 2009-10-01 エルジー・ケム・リミテッド Separation membrane for battery including gel polymer layer
JP2015028942A (en) * 2006-04-28 2015-02-12 エルジー・ケム・リミテッド Separation membrane for battery with gel polymer layer
US8455053B2 (en) 2007-07-06 2013-06-04 Sony Corporation Separator, battery using the same, and method for manufacturing separator
US9627669B2 (en) 2007-07-06 2017-04-18 Sony Corporation Separator including glass layer covering polyolefin resin layer having a three-dimensional mesh framework, and battery using the same
US10424772B2 (en) 2007-07-06 2019-09-24 Murata Manufacturing Co., Ltd. Separator, battery and electronic device
WO2009054477A1 (en) * 2007-10-26 2009-04-30 Nitto Denko Corporation Porous film having reactive polymer layer thereon for use in battery separator, and use of the porous film
EP2214227A4 (en) * 2007-10-26 2014-03-12 Nitto Denko Corp Porous film having reactive polymer layer thereon for use in battery separator, and use of the porous film
EP2214227A1 (en) * 2007-10-26 2010-08-04 Nitto Denko Corporation Porous film having reactive polymer layer thereon for use in battery separator, and use of the porous film
JP2009212086A (en) * 2008-02-06 2009-09-17 Sony Corp Separator and battery using the same
US8231999B2 (en) 2008-02-06 2012-07-31 Sony Corporation Separator and battery using the same
JP2010192200A (en) * 2009-02-17 2010-09-02 Sony Corp Nonaqueous electrolyte secondary battery
US9831481B2 (en) 2009-12-04 2017-11-28 Sony Corporation Nonaqueous electrolyte secondary battery and separator
US9356273B2 (en) 2009-12-04 2016-05-31 Sony Corporation Nonaqueous electrolyte secondary battery and separator
JP2011138762A (en) * 2009-12-04 2011-07-14 Sony Corp Nonaqueous electrolyte secondary battery, and separator
EP2696393A1 (en) * 2011-04-08 2014-02-12 Teijin Limited Nonaqueous secondary battery separator and nonaqueous secondary battery
US9065119B2 (en) 2011-04-08 2015-06-23 Teijin Limited Separator for nonaqueous secondary battery, and nonaqueous secondary battery
EP2696391A1 (en) * 2011-04-08 2014-02-12 Teijin Limited Nonaqueous secondary battery separator and nonaqueous secondary battery
US9431641B2 (en) 2011-04-08 2016-08-30 Teijin Limited Separator for nonaqueous secondary battery, and nonaqueous secondary battery
US10193117B2 (en) 2011-04-08 2019-01-29 Teijin Limited Separator for nonaqueous secondary battery, and nonaqueous secondary battery
EP2696391A4 (en) * 2011-04-08 2014-02-12 Teijin Ltd Nonaqueous secondary battery separator and nonaqueous secondary battery
EP2696393A4 (en) * 2011-04-08 2014-02-12 Teijin Ltd Nonaqueous secondary battery separator and nonaqueous secondary battery
US20130089772A1 (en) * 2011-04-08 2013-04-11 Teijin Limited Separator for nonaqueous secondary battery, and nonaqueous secondary battery
US20130089771A1 (en) * 2011-04-08 2013-04-11 Teijin Limited Separator for nonaqueous secondary battery, and nonaqueous secondary battery
US9281508B2 (en) 2011-04-08 2016-03-08 Teijin Limited Separator for nonaqueous secondary battery, and nonaqueous secondary battery
US20130095365A1 (en) * 2011-04-08 2013-04-18 Teijin Limited Separator for nonaqueous secondary battery, and nonaqueous secondary battery
US9269938B2 (en) 2011-04-08 2016-02-23 Teijin Limited Separator for nonaqueous secondary battery, and nonaqueous secondary battery
JP2012227066A (en) * 2011-04-21 2012-11-15 Sony Corp Separator and nonaqueous electrolyte battery, battery pack, electronic apparatus, electric vehicle, power storage device and power system
TWI565123B (en) * 2011-11-15 2017-01-01 帝人股份有限公司 Separator for non-aqueous type secondary battery, method of producing the same, and non-aqueous type secondary battery
CN103947009A (en) * 2011-11-15 2014-07-23 帝人株式会社 Separator for nonaqueous secondary batteries, method for producing same, and nonaqueous secondary battery
JP2012074403A (en) * 2012-01-19 2012-04-12 Sony Corp Secondary battery
US9887406B2 (en) 2012-03-09 2018-02-06 Teijin Limited Separator for non-aqueous secondary battery, method for manufacturing the same, and non-aqueous secondary battery
US20150207122A1 (en) * 2012-07-30 2015-07-23 Teijin Limited Separator for nonaqueous electrolyte battery, and nonaqueous electrolyte battery
JPWO2014065258A1 (en) * 2012-10-22 2016-09-08 ダイキン工業株式会社 Separator and secondary battery
WO2014065258A1 (en) * 2012-10-22 2014-05-01 ダイキン工業株式会社 Separator, and secondary battery
KR20150049974A (en) * 2013-10-31 2015-05-08 주식회사 엘지화학 A separator having low resistance for secondary battery
JP2015179619A (en) * 2014-03-19 2015-10-08 三菱製紙株式会社 Separator for electrochemical element
JP2014160684A (en) * 2014-06-10 2014-09-04 Sony Corp Secondary battery separator and secondary battery
WO2018155287A1 (en) * 2017-02-23 2018-08-30 東レ株式会社 Porous film, separator for rechargeable battery, and rechargeable battery
CN110114211A (en) * 2017-02-23 2019-08-09 东丽株式会社 Porous membrane, secondary cell diaphragm and secondary cell
US11637351B2 (en) 2017-02-23 2023-04-25 Toray Industries, Inc. Porous film, separator for rechargeable battery, and rechargeable battery
JPWO2018155287A1 (en) * 2017-02-23 2019-12-12 東レ株式会社 Porous film, secondary battery separator and secondary battery
KR20200056379A (en) * 2017-09-26 2020-05-22 도레이 카부시키가이샤 Porous film, secondary battery separator and secondary battery
KR102613667B1 (en) * 2017-09-26 2023-12-14 도레이 카부시키가이샤 Porous films, separators for secondary batteries and secondary batteries
JPWO2019181286A1 (en) * 2018-03-20 2021-03-11 三洋電機株式会社 Manufacturing method of non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery
CN111886748A (en) * 2018-03-20 2020-11-03 三洋电机株式会社 Nonaqueous electrolyte secondary battery and method for manufacturing nonaqueous electrolyte secondary battery
WO2019181286A1 (en) * 2018-03-20 2019-09-26 三洋電機株式会社 Non-aqueous electrolyte secondary battery and method of manufacturing non-aqueous electrolyte secondary battery
JP7331692B2 (en) 2018-06-27 2023-08-23 東レ株式会社 Porous film, secondary battery separator and secondary battery
JPWO2020003805A1 (en) * 2018-06-27 2021-05-13 東レ株式会社 Porous film, rechargeable battery separator and rechargeable battery
CN111902965A (en) * 2018-06-27 2020-11-06 东丽株式会社 Porous film, secondary battery separator, and secondary battery
WO2020003805A1 (en) * 2018-06-27 2020-01-02 東レ株式会社 Porous film, separator for secondary battery, and secondary battery
CN111902965B (en) * 2018-06-27 2024-02-09 东丽株式会社 Porous film, separator for secondary battery, and secondary battery
KR20210148119A (en) 2019-03-29 2021-12-07 도레이 카부시키가이샤 Manufacturing method of polyolefin microporous membrane, battery separator, secondary battery and polyolefin microporous membrane
WO2020203901A1 (en) 2019-03-29 2020-10-08 東レ株式会社 Microporous polyolefin film, separator for battery, secondary battery, and method for producing microporous polyolefin film
CN114566758A (en) * 2021-12-29 2022-05-31 武汉中兴创新材料技术有限公司 Film, preparation method thereof and battery comprising film
CN114566758B (en) * 2021-12-29 2024-03-29 武汉中兴创新材料技术有限公司 Film, preparation method thereof and battery comprising film

Also Published As

Publication number Publication date
JP4127989B2 (en) 2008-07-30

Similar Documents

Publication Publication Date Title
JP4127989B2 (en) Non-aqueous secondary battery separator and non-aqueous secondary battery
KR101923787B1 (en) Protective film, separator using same, and secondary battery
KR101434377B1 (en) Nonaqueous secondary battery separator and non-aqueous secondary battery
JP3085532B2 (en) Homogeneous solid polymer alloy electrolyte, method for producing the same, composite electrode using the same, lithium polymer battery, lithium ion polymer battery, and method for producing the same
JP4431304B2 (en) Lithium ion secondary battery separator and lithium ion secondary battery provided with the same
JP5394610B2 (en) Nonaqueous electrolyte secondary battery
JP4109522B2 (en) Lithium ion secondary battery separator and lithium ion secondary battery using the same
US6051343A (en) Polymeric solid electrolyte and lithium secondary cell using the same
JP4981220B2 (en) Non-aqueous secondary battery separator and non-aqueous secondary battery
JP2001135359A (en) Nonaqueous electrolyte battery
KR19990088434A (en) Polymeric membranes having electrolytes and secondary cells using the same
JP4606705B2 (en) Non-aqueous secondary battery separator and non-aqueous secondary battery
JP5357518B2 (en) ELECTRODE BODY FOR STORAGE ELEMENT AND NON-AQUEOUS LITHIUM TYPE STORAGE ELEMENT CONTAINING THE SAME
JPH11354162A (en) Polymer electrolyte secondary battery, and manufacture thereof
JP2006073221A (en) Separator for lithium ion secondary battery, and lithium ion secondary battery
JP4086474B2 (en) Electrolyte-supported polymer film, battery separator, secondary battery using them, and method for producing the same
JP2014026946A (en) Separator for nonaqueous electrolyte battery, and nonaqueous electrolyte battery
JP5066804B2 (en) Lithium ion secondary battery
JP2004327422A (en) Composite polymer electrolyte having different morphology for lithium secondary battery and method of manufacturing the same
JP2006066298A (en) Lithium secondary battery
JP5017769B2 (en) Nonaqueous electrolyte secondary battery
JP2000315523A (en) Electrolytic solution carrying polymer film and secondary battery using it
JP2007242575A (en) Nonaqueous electrolyte solution secondary battery
JP2003178804A (en) Nonaqueous electrolyte secondary battery
JP4187434B2 (en) Lithium ion secondary battery separator and lithium ion secondary battery

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050622

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071218

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080212

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080422

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080513

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110523

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4127989

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110523

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120523

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130523

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130523

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140523

Year of fee payment: 6

EXPY Cancellation because of completion of term