JP2003081654A - Synthetic quartz glass, and production method therefor - Google Patents

Synthetic quartz glass, and production method therefor

Info

Publication number
JP2003081654A
JP2003081654A JP2001269725A JP2001269725A JP2003081654A JP 2003081654 A JP2003081654 A JP 2003081654A JP 2001269725 A JP2001269725 A JP 2001269725A JP 2001269725 A JP2001269725 A JP 2001269725A JP 2003081654 A JP2003081654 A JP 2003081654A
Authority
JP
Japan
Prior art keywords
quartz glass
synthetic quartz
heat
less
concentration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001269725A
Other languages
Japanese (ja)
Inventor
Toshio Nakajima
稔夫 中島
Naoki Tsuji
直樹 辻
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Coorstek KK
Original Assignee
Toshiba Ceramics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Ceramics Co Ltd filed Critical Toshiba Ceramics Co Ltd
Priority to JP2001269725A priority Critical patent/JP2003081654A/en
Publication of JP2003081654A publication Critical patent/JP2003081654A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/06Glass compositions containing silica with more than 90% silica by weight, e.g. quartz
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C4/00Compositions for glass with special properties
    • C03C4/0071Compositions for glass with special properties for laserable glass
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C4/00Compositions for glass with special properties
    • C03C4/0085Compositions for glass with special properties for UV-transmitting glass
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2201/00Glass compositions
    • C03C2201/06Doped silica-based glasses
    • C03C2201/20Doped silica-based glasses containing non-metals other than boron or halide
    • C03C2201/21Doped silica-based glasses containing non-metals other than boron or halide containing molecular hydrogen
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2201/00Glass compositions
    • C03C2201/06Doped silica-based glasses
    • C03C2201/30Doped silica-based glasses containing metals
    • C03C2201/40Doped silica-based glasses containing metals containing transition metals other than rare earth metals, e.g. Zr, Nb, Ta or Zn

Landscapes

  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Glass Melting And Manufacturing (AREA)
  • Re-Forming, After-Treatment, Cutting And Transporting Of Glass Products (AREA)
  • Glass Compositions (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide synthetic quartz glass in which the emission of green fluorescence and red fluorescence is suppressed even when ultraviolet rays, in particular, strong ultraviolet rays of short wavelengths of an excimer laser or the like are applied thereto, and which has excellent transmittance of short wavelength ultraviolet rays and can be suitably used as an optical member, and to provide a production method therefor. SOLUTION: The base material of synthetic quartz glass produced by a direct method or a soot method or a molding thereof is heat-treated. The base material of synthetic quartz glass or the molding thereof consists of a carbon material in which the concentration of Cu is <=0.1 ppm, is stored in a vessel preliminarily heat-treated at >=1,200 deg.C under the reduced pressure or in an inert gas atmosphere, and is subjected to the heat treatment, so that the synthetic quartz glass having a Cu concentration of <=0.1 ppb, and a hydrogen concentration of 1×10<18> molecules/cm<3> or higher is obtained.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、合成石英ガラスお
よびその製造方法に関し、より詳細には、紫外線、特
に、エキシマレーザを照射した際における、緑色蛍光お
よび赤色蛍光の発生が抑制され、耐レーザ性に優れ、光
学用部材として好適な合成石英ガラスおよびその製造方
法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a synthetic quartz glass and a method for producing the same, and more specifically, it suppresses the generation of green fluorescence and red fluorescence when irradiated with ultraviolet rays, particularly excimer laser, and is laser resistant. TECHNICAL FIELD The present invention relates to a synthetic quartz glass having excellent properties and suitable as an optical member and a method for producing the same.

【0002】[0002]

【従来の技術】近年、半導体素子の超微細化に対応し
て、集積回路製造用露光機の光源には、KrF(波長:
248nm)、ArF(波長:193nm)等を用いた
エキシマレーザ等の短波長の強力な紫外線レーザが使用
されている。そして、このエキシマレーザ装置に用いら
れるレンズ、プリズム、窓材等の光学用部材としては、
一般に、300nm程度以下の短波長の紫外線に対する
透過率が高いことから、合成石英ガラスが使用されてい
る。
2. Description of the Related Art In recent years, KrF (wavelength:
248 nm), ArF (wavelength: 193 nm) and other excimer lasers using short wavelength strong ultraviolet lasers are used. And, as the optical member such as a lens, a prism and a window material used in this excimer laser device,
Generally, synthetic quartz glass is used because it has a high transmittance for ultraviolet rays having a short wavelength of about 300 nm or less.

【0003】しかしながら、光学用部材として製造され
た高純度の合成石英ガラスであっても、前記エキシマレ
ーザを照射した際、500nm付近にスペクトルピーク
を有する緑色蛍光および650nm付近にスペクトルピ
ークを有する赤色蛍光が発生することが認められてい
た。
However, even with high-purity synthetic quartz glass manufactured as an optical member, when it is irradiated with the excimer laser, green fluorescence having a spectrum peak near 500 nm and red fluorescence having a spectrum peak near 650 nm are obtained. Was observed to occur.

【0004】このような蛍光の発生は、光学系の調整等
において使用されるHe−Neレーザに近い波長である
ため、実用上問題となるものであった。したがって、光
学用石英ガラス、特に、集積回路製造用露光機等の半導
体素子製造装置に用いられる光学用石英ガラスにおい
て、上記のような蛍光の発生を抑制することが望まれて
いた。
The generation of such fluorescence is a practical problem because it has a wavelength close to that of a He-Ne laser used for adjusting an optical system. Therefore, it has been desired to suppress the above-mentioned generation of fluorescence in the optical quartz glass, particularly in the optical quartz glass used in the semiconductor device manufacturing apparatus such as an exposure machine for manufacturing an integrated circuit.

【0005】しかしながら、上記のような緑色蛍光およ
び赤色蛍光が発生する原因については、前者が石英ガラ
スに含まれる金属不純物に起因するものであり、一方、
後者が石英ガラス中の酸素欠陥に起因するものであるこ
とは指摘されていたが、原因の特定は、まだ明確にはさ
れていなかった。したがって、除去すべき元素または制
御すべき要因等が特定されておらず、上記した蛍光の発
生を抑制するための有効な対策は、十分にはなされてい
なかった。
However, the cause of the above-mentioned green fluorescence and red fluorescence is that the former is due to the metal impurities contained in the quartz glass.
It has been pointed out that the latter is due to oxygen defects in quartz glass, but the cause has not been clarified yet. Therefore, the elements to be removed or the factors to be controlled have not been specified, and the effective measures for suppressing the above-mentioned generation of fluorescence have not been sufficiently taken.

【0006】[0006]

【発明が解決しようとする課題】ところで、光学用合成
石英ガラスは、一般に、高純度の四塩化ケイ素(SiC
4 )等を出発原料とし、直接法やスート法等によっ
て、合成石英ガラスの母材が製造され、この母材を所定
の形状に成形加工し、さらに、アニール処理等すること
によって、合成石英ガラス部材とされる。このとき、前
記成形加工およびアニール処理等の熱処理工程において
は、合成石英ガラスの母材は、容器(鋳型)に収容され
る。そして、この容器の材質としては、通常、カーボン
材が用いられる。
By the way, synthetic quartz glass for optics is generally used in high-purity silicon tetrachloride (SiC).
l 4 ) etc. as a starting material, a base material of synthetic quartz glass is manufactured by a direct method or a soot method, etc., and the base material is molded into a predetermined shape, and then annealed, etc. It is a glass member. At this time, in the heat treatment process such as the molding process and the annealing process, the base material of the synthetic quartz glass is housed in a container (mold). A carbon material is usually used as the material of this container.

【0007】前記合成石英ガラスの母材は、金属不純物
等が少なく、高純度であるが、前記熱処理工程におい
て、収容される容器と接触する部分およびその周辺、特
に、表層部分は、容器を構成するカーボン材に含まれる
不純物によって汚染される。なお、ここで言う金属不純
物とは、Na、K、Ca、Mg等のアルカリ金属および
アルカリ土類金属、Fe、Ti、V、Ni、Cr、Cu
等の遷移金属を指す。
The base material of the synthetic quartz glass is high in purity with few metal impurities and the like, but in the heat treatment step, the portion which contacts with the container to be housed and its periphery, especially the surface layer part constitutes the container. It is polluted by impurities contained in the carbon material. The metal impurities referred to here are alkali metals and alkaline earth metals such as Na, K, Ca and Mg, Fe, Ti, V, Ni, Cr and Cu.
And other transition metals.

【0008】このため、容器を構成するカーボン材に関
しては、予め純化処理等が施されるが、上述のとおり、
緑色蛍光および赤色蛍光の発生は、それらの原因となる
元素が特定されていないため、その発生を抑制するため
の有効な対策は、十分になされていなかった。したがっ
て、従来は、合成石英ガラスの母材またはその成形体の
表層部分を研削して除去する等の対処法しか見出せず、
高価な高純度合成石英ガラス部材の歩留を低下させる要
因にもなっていた。
For this reason, the carbon material forming the container is subjected to a purification treatment or the like in advance.
Since the elements causing the green fluorescence and the red fluorescence have not been identified, effective measures for suppressing the generation have not been sufficiently taken. Therefore, conventionally, only the coping method such as grinding and removing the surface layer portion of the base material of the synthetic quartz glass or the molded body thereof can be found,
It has also been a factor that reduces the yield of expensive high-purity synthetic quartz glass members.

【0009】そこで、本発明者らは、上記のような蛍光
が発生することなく、エキシマレーザ装置等の光学装置
における光学用部材として好適に用いることができる合
成石英ガラスを提供するため、前記蛍光の発生原因を究
明し、その原因が除去された合成石英ガラスの製法方法
を確立するため、鋭意研究を重ねた。その結果、前記緑
色蛍光は、合成石英ガラスに含まれるCu濃度と相関が
あり、また、前記赤色蛍光は、石英ガラスに含まれる水
素濃度と相関があることを見出し、この知見に基づき、
本発明を完成するに至った。
Therefore, the present inventors provide a synthetic quartz glass that can be suitably used as an optical member in an optical device such as an excimer laser device without generating the above-mentioned fluorescence. In order to investigate the cause of the occurrence and to establish the manufacturing method of the synthetic quartz glass from which the cause was removed, intensive research was conducted. As a result, it was found that the green fluorescence has a correlation with the Cu concentration contained in the synthetic quartz glass, and the red fluorescence has a correlation with the hydrogen concentration contained in the quartz glass. Based on this finding,
The present invention has been completed.

【0010】本発明は、紫外線、特に、エキシマレーザ
等による短波長の強力な紫外線が照射された場合におい
ても、前記緑色蛍光および赤色蛍光の発生が抑制され、
短波長の紫外線の透過性に優れ、光学用部材として好適
に用いることができる合成石英ガラスおよびその製造方
法を提供することを目的とするものである。
According to the present invention, the generation of the green fluorescence and the red fluorescence is suppressed even when irradiated with ultraviolet rays, particularly strong ultraviolet rays having a short wavelength such as excimer laser,
It is an object of the present invention to provide a synthetic quartz glass which is excellent in transmittance of ultraviolet rays having a short wavelength and can be suitably used as an optical member, and a method for producing the same.

【0011】[0011]

【課題を解決するための手段】本発明に係る合成石英ガ
ラスは、Cuの含有濃度が0.1ppb以下であり、か
つ、水素の含有濃度が1×1018分子/cm3 以上であ
ることを特徴とする。Cu濃度が低減されることによ
り、紫外線、特に、エキシマレーザ等の短波長の強力な
紫外線が照射された場合であっても、緑色蛍光の発生が
抑制され、かつ、水素を比較的高濃度で含有することに
より、赤色蛍光の発生も抑制される。
The synthetic quartz glass according to the present invention has a Cu content concentration of 0.1 ppb or less and a hydrogen content concentration of 1 × 10 18 molecules / cm 3 or more. Characterize. By reducing the Cu concentration, the generation of green fluorescence is suppressed and hydrogen is kept at a relatively high concentration even when irradiated with ultraviolet rays, especially strong ultraviolet rays of short wavelength such as excimer laser. By containing it, generation of red fluorescence is also suppressed.

【0012】本発明に係る合成石英ガラスの製造方法
は、直接法またはスート法によって製造された合成石英
ガラスの母材またはその成形体を熱処理する工程におい
て、前記合成石英ガラスの母材またはその成形体は、C
uの含有濃度が0.1ppm以下であるカーボン材によ
って構成され、かつ、予め、減圧下または不活性ガス雰
囲気下にて、1200℃以上での熱処理が施された容器
に収容されて、熱処理されることを特徴とする。Cuの
含有濃度が0.1ppm以下の低濃度のカーボン材によ
って構成された容器を、予め使用前に、所定の条件下に
て熱処理して純化させることにより、該容器に収容され
る合成石英ガラスの不純物金属等による汚染を防止し、
さらに、上記の緑色および赤色蛍光を発生しない合成石
英ガラスを得ることができる。
In the method for producing synthetic quartz glass according to the present invention, in the step of heat-treating the synthetic quartz glass base material produced by the direct method or the soot method or the shaped body thereof, the synthetic quartz glass base material or the shaped body thereof is heat-treated. The body is C
It is made of a carbon material having a u content concentration of 0.1 ppm or less, and is housed in a container that has been previously heat-treated at 1200 ° C. or higher under reduced pressure or in an inert gas atmosphere, and then heat-treated. It is characterized by A synthetic quartz glass housed in a container made of a low-concentration carbon material having a Cu content concentration of 0.1 ppm or less is heat-treated and purified under predetermined conditions before use. To prevent contamination by impurity metals,
Furthermore, it is possible to obtain the synthetic quartz glass that does not generate the above green and red fluorescence.

【0013】前記容器の熱処理は、20Torr以下の
減圧下にて、1200℃以上1900℃以下で行われる
ことが好ましい。このような条件下で熱処理を行うこと
により、Cuが0.1ppm程度含まれている場合で
も、通常の分析方法による検出限界(0.01ppm)
以下まで低減させ、容器を構成するカーボン材を純化さ
せることができる。
The heat treatment of the container is preferably performed at a temperature of 1200 ° C. or more and 1900 ° C. or less under a reduced pressure of 20 Torr or less. By performing heat treatment under such conditions, even when Cu is contained in an amount of about 0.1 ppm, the detection limit (0.01 ppm) by the usual analysis method
It is possible to reduce the amount to the following and to purify the carbon material forming the container.

【0014】[0014]

【発明の実施の形態】以下、本発明を詳細に説明する。
本発明に係る合成石英ガラスは、Cuの含有濃度が0.
1ppb以下であり、かつ、水素の含有濃度が1×10
18分子/cm3 以上であることを特徴とするものであ
る。上述したように、石英ガラスの紫外線照射による蛍
光の発生に関しては、500nm付近にスペクトルピー
クを有する緑色蛍光の発生は、Cuの含有濃度と相関が
あり、Cu濃度が0.1ppb以下に低減されることに
より、KrF(波長:248nm)、ArF(波長:1
93nm)等のエキシマレーザのような短波長の強力な
紫外線が照射された場合であっても、前記緑色蛍光の発
生が抑制される。また、650nm付近にスペクトルピ
ークを有する赤色蛍光の発生は、水素の含有濃度と相関
があることが認められ、水素を1×1018分子/cm3
以上の比較的高濃度で含有することにより、前記赤色蛍
光の発生が抑制される。
BEST MODE FOR CARRYING OUT THE INVENTION The present invention will be described in detail below.
The synthetic quartz glass according to the present invention has a Cu content concentration of 0.
1 ppb or less, and the hydrogen content concentration is 1 × 10
It is characterized by being 18 molecules / cm 3 or more. As described above, regarding the fluorescence generation by the ultraviolet irradiation of the quartz glass, the generation of the green fluorescence having the spectrum peak near 500 nm is correlated with the Cu content concentration, and the Cu concentration is reduced to 0.1 ppb or less. As a result, KrF (wavelength: 248 nm), ArF (wavelength: 1
The generation of the green fluorescence is suppressed even when a strong ultraviolet ray having a short wavelength such as an excimer laser (for example, 93 nm) is irradiated. Further, the generation of red fluorescence having a spectrum peak near 650 nm was confirmed to be correlated with the hydrogen content concentration, and hydrogen was added at 1 × 10 18 molecules / cm 3.
By containing the above relatively high concentration, the generation of the red fluorescence is suppressed.

【0015】前記合成石英ガラス中のCuの含有濃度が
0.1ppbを超える場合は、エキシマレーザのような
短波長の強力な紫外線が照射された際の緑色蛍光の発生
は抑制されない。このCu含有濃度は、好ましくは、
0.03ppb以下である。
When the concentration of Cu contained in the synthetic quartz glass exceeds 0.1 ppb, the generation of green fluorescence upon irradiation with strong ultraviolet rays having a short wavelength such as excimer laser is not suppressed. This Cu content concentration is preferably
It is 0.03 ppb or less.

【0016】また、前記合成石英ガラス中の水素の含有
濃度が1×1018分子/cm3 未満である場合は、前記
エキシマレーザを照射した際の赤色蛍光の発生は抑制さ
れない。この水素の含有濃度は、好ましくは、3×10
18分子/cm3 以上1×10 19分子/cm3 以下であ
る。
The content of hydrogen in the synthetic quartz glass
Concentration is 1 × 1018Molecule / cm3 If less than,
The generation of red fluorescence when irradiated with an excimer laser is suppressed.
I can't. The hydrogen content concentration is preferably 3 × 10 5.
18Molecule / cm3 1 x 10 or more 19Molecule / cm3 Below
It

【0017】前記水素の含有濃度については、直接法に
より製造された合成石英ガラスは、本来、5×1016
子/cm3 以上含有しているが、合成石英ガラスの母材
を加工する際の熱処理工程が長時間となる場合等は、拡
散により水素濃度が低下する場合がある。したがって、
例えば、水素の含有濃度が5×1018分子/cm3 であ
る合成石英ガラスの母材から、約200mm×200m
m×100mmの成形体を得るための加熱成形等の熱処
理は、500Torr以下の減圧下にて、約1900℃
で、30分間〜1時間程度で行うことが好ましい。
Regarding the content concentration of hydrogen, the synthetic quartz glass produced by the direct method originally contains 5 × 10 16 molecules / cm 3 or more, but when the base material of the synthetic quartz glass is processed, When the heat treatment process takes a long time, the hydrogen concentration may decrease due to diffusion. Therefore,
For example, from a base material of synthetic quartz glass having a hydrogen content concentration of 5 × 10 18 molecules / cm 3 , about 200 mm × 200 m
Heat treatment such as heat molding to obtain a m × 100 mm molded body is performed at about 1900 ° C. under a reduced pressure of 500 Torr or less.
Then, it is preferable to carry out it for about 30 minutes to 1 hour.

【0018】上記熱処理等の途中工程において水素の含
有濃度が低下した場合、または、合成石英ガラスの母材
自体の水素の含有濃度が1×1018分子/cm3 未満で
ある場合には、例えば、水素ガス雰囲気中でのアニール
処理等により、合成石英ガラス中に水素を導入させ、そ
の水素の含有濃度を1×1018分子/cm3 以上に調整
することができる。
When the hydrogen content concentration is lowered in the intermediate step of the heat treatment or the like, or when the hydrogen content concentration of the base material itself of the synthetic quartz glass is less than 1 × 10 18 molecule / cm 3 , for example, It is possible to introduce hydrogen into the synthetic quartz glass by annealing treatment in a hydrogen gas atmosphere or the like, and adjust the hydrogen content concentration to 1 × 10 18 molecules / cm 3 or more.

【0019】なお、前記合成石英ガラスが、集積回路製
造用露光機等の半導体素子製造装置等における光学用部
材として用いられる場合には、Cu濃度および水素濃度
が上記範囲内であることに加えて、さらに、Na、K、
Li等のアルカリ金属、Ca、Mg、Sr、Ba等のア
ルカリ土類金属およびFe、Ti、V、Ni、Cr、C
u等の遷移金属元素、すなわち、不純物金属元素の含有
濃度の合計が50ppb以下であることが、製造される
半導体素子の金属不純物による汚染を防止する等の観点
から好ましい。
When the synthetic quartz glass is used as an optical member in a semiconductor device manufacturing apparatus such as an exposure device for manufacturing an integrated circuit, the Cu concentration and the hydrogen concentration are in the above ranges. , And Na, K,
Alkali metal such as Li, alkaline earth metal such as Ca, Mg, Sr, Ba and Fe, Ti, V, Ni, Cr, C
A total content concentration of transition metal elements such as u, that is, impurity metal elements is preferably 50 ppb or less from the viewpoint of preventing contamination of the manufactured semiconductor element by metal impurities.

【0020】次に、本発明に係る合成石英ガラスの製造
方法を、詳細に説明する。まず、直接法またはスート法
により、合成石英ガラスの母材を製造する。そして、必
要に応じて、得られた石英ガラスの母材をカーボン材か
らなる鋳型を用いて所定の形状に加熱成形する。次い
で、この得られた成形体を、処理容器中でアニール処理
し、所定の合成石英ガラス部材を得る。このとき、鋳型
またはアニール処理容器等の容器としては、Cuの含有
濃度が0.1ppm以下の高純度カーボン材により構成
され、かつ、使用前に予め、減圧下または不活性ガス雰
囲気下にて、1200℃以上で熱処理したものを用い
る。
Next, the method for producing synthetic quartz glass according to the present invention will be described in detail. First, the base material of synthetic quartz glass is manufactured by the direct method or the soot method. Then, if necessary, the obtained quartz glass base material is heat-molded into a predetermined shape using a mold made of a carbon material. Then, the obtained molded body is annealed in a processing container to obtain a predetermined synthetic quartz glass member. At this time, the container such as the mold or the annealing container is made of a high-purity carbon material having a Cu content concentration of 0.1 ppm or less, and before use, under reduced pressure or an inert gas atmosphere, The thing heat-processed at 1200 degreeC or more is used.

【0021】直接法またはスート法によって製造された
合成石英ガラスの母材自体は、高純度の四塩化ケイ素等
を出発原料とするため、通常、不純物金属はほとんど含
有されておらず、高純度のシリカからなる。一方、合成
石英ガラスの成形体中には、その成形体の表面から約2
0mmまでの表層部分に集中して、不純物金属等の汚染
物質が存在している。このことから、成形体の不純物金
属による汚染は、専ら熱処理の際に用いられる容器との
接触により、その容器を構成するカーボン材中に含まれ
る不純物金属が拡散移動することによるものであると考
えられる。したがって、本発明に係る製造方法は、Cu
の含有濃度が0.1ppm以下の低濃度のカーボン材に
よって構成された上記容器を、予め使用前に、所定の条
件下にて熱処理して純化させることにより、該容器に収
容される合成石英ガラスの不純物金属等による汚染を防
止し、さらに、上述した緑色および赤色蛍光を発生しな
い合成石英ガラスを製造するものである。
Since the base material itself of synthetic quartz glass produced by the direct method or the soot method uses high-purity silicon tetrachloride or the like as a starting material, it usually contains almost no impurity metal and has high purity. It consists of silica. On the other hand, in the molded body of synthetic quartz glass, about 2 mm from the surface of the molded body.
Contaminants such as impurity metals are concentrated in the surface layer up to 0 mm. From this, it is considered that the contamination of the molded body with the impurity metal is due to the diffusion and movement of the impurity metal contained in the carbon material forming the container due to the contact with the container used exclusively during the heat treatment. To be Therefore, the manufacturing method according to the present invention uses Cu
The synthetic quartz glass contained in the container is heat-treated in advance under a predetermined condition to purify the container made of a low-concentration carbon material having a content concentration of 0.1 ppm or less before use. The present invention is intended to prevent the contamination by the impurity metal and the like and further to manufacture the synthetic quartz glass which does not generate the above-mentioned green and red fluorescence.

【0022】前記カーボン材のCuの含有濃度が0.1
ppmを超える場合には、このカーボン材により構成さ
れた容器を上記所定条件下にて熱処理した場合であって
も、十分に純化されず、Cuの含有濃度が、通常の分析
方法による検出限界(0.01ppm)以下にはならな
い。このため、この容器に収容されて熱処理された合成
石英ガラスのCuの含有濃度は、0.1ppb以下とす
ることは困難である。
The concentration of Cu contained in the carbon material is 0.1.
If it exceeds ppm, it will not be sufficiently purified even if the container made of this carbon material is heat-treated under the above-mentioned predetermined conditions, and the Cu content concentration will not reach the detection limit ( It does not fall below 0.01 ppm). Therefore, it is difficult to set the Cu content concentration of the synthetic quartz glass housed in this container and heat-treated to 0.1 ppb or less.

【0023】また、Cuの含有濃度が0.1ppm程度
のカーボン材からなる容器であっても、合成石英ガラス
の熱処理容器として使用する前に、上記所定条件下にて
熱処理しない場合も、この容器に収容されて熱処理され
た合成石英ガラスのCuの含有濃度を0.1ppb以下
にすることは困難である。
Even if a container made of a carbon material having a Cu content concentration of about 0.1 ppm is not heat-treated under the above-mentioned predetermined conditions before being used as a heat-treatment container for synthetic quartz glass, this container is also used. It is difficult to set the Cu content concentration of the synthetic quartz glass housed in and heat-treated to 0.1 ppb or less.

【0024】上記容器の熱処理は、20Torr以下の
減圧下、または、ヘリウム、アルゴン等の不活性ガス雰
囲気下にて、1200℃以上1900℃以下で、30分
間以上10時間以下行うことが好ましい。より好ましく
は、前記熱処理温度は1800〜1900℃であり、熱
処理時間は1時間以上3時間以下である。この熱処理
は、カーボン材を純化させるための処理であり、これに
より、Cuが0.1ppm程度含まれている場合でも、
検出限界(0.01ppm)以下まで低減させることが
できる。
The heat treatment of the above-mentioned container is preferably carried out under reduced pressure of 20 Torr or less or in an atmosphere of an inert gas such as helium or argon at 1200 ° C. or more and 1900 ° C. or less for 30 minutes or more and 10 hours or less. More preferably, the heat treatment temperature is 1800 to 1900 ° C., and the heat treatment time is 1 hour or more and 3 hours or less. This heat treatment is a treatment for purifying the carbon material, so that even if Cu is contained in an amount of about 0.1 ppm,
It can be reduced to below the detection limit (0.01 ppm).

【0025】前記熱処理を20Torr以下の減圧下、
または、ヘリウム、アルゴン等の不活性ガス雰囲気下で
行うのは、熱処理中に、カーボン材が酸化することを防
止するためである。
The heat treatment is performed under a reduced pressure of 20 Torr or less,
Alternatively, the reason for carrying out in an atmosphere of an inert gas such as helium or argon is to prevent the carbon material from being oxidized during the heat treatment.

【0026】また、前記熱処理温度が1200℃未満の
場合は、1時間程度、熱処理した場合であっても、カー
ボン材のCuの含有濃度は上記検出限界以下にまでは低
減されず、前記カーボン材により構成される容器に収容
される合成石英ガラスへの不純物金属の拡散移行は、十
分に抑制されない。
Further, when the heat treatment temperature is lower than 1200 ° C., the Cu content concentration of the carbon material is not reduced below the above detection limit even after the heat treatment for about 1 hour. The diffusion transfer of the impurity metal to the synthetic quartz glass housed in the container constituted by is not sufficiently suppressed.

【0027】本発明に係る製造方法に係る合成石英ガラ
スの母材には、光学用部材に好適なものとして、直接法
またはスート法によって、高純度の四塩化ケイ素等の高
純度原料から製造された、高純度の石英ガラスが用いら
れる。直接法は、一般に、ベルヌーイ炉を用いて、酸水
素火炎バーナー中で四塩化ケイ素を加水分解させること
により石英ガラスを合成し、この石英ガラスを、スプレ
ー状に吹付けるようにして塊状に育成させる方法であ
る。この直接法によって合成された石英ガラスは、酸水
素火炎中で合成されるため、通常、約500ppm以上
の水酸基(−OH)を含み、かつ、5×1016分子/c
3 以上の水素を含有している。
The synthetic quartz glass base material according to the production method of the present invention is produced from a high-purity raw material such as high-purity silicon tetrachloride by a direct method or a soot method, which is suitable for optical members. In addition, high-purity quartz glass is used. The direct method generally uses a Bernoulli furnace to synthesize quartz glass by hydrolyzing silicon tetrachloride in an oxyhydrogen flame burner, and grows this quartz glass in a lump form by spraying it. Is the way. Since the quartz glass synthesized by this direct method is synthesized in an oxyhydrogen flame, it usually contains about 500 ppm or more of hydroxyl groups (—OH) and contains 5 × 10 16 molecules / c.
It contains m 3 or more hydrogen.

【0028】一方、スート法は、一旦、シリカのすす
(スート)を形成させ、水分を除去した後、これを約1
500℃で焼き固めて石英ガラスの母材を得る方法であ
り、CVD法、VAD法等の各種の製造方法がある。こ
のスート法は、直接法に比べて水酸基濃度が低く、2段
階でガラス化させるため、フッ素、GeO2 等のドープ
等の各種の応用処理が可能である。このスート法によっ
て合成された石英ガラスの水素の含有濃度は、通常、5
×1016分子/cm3 以下である。
On the other hand, in the soot method, soot of silica is once formed, water is removed, and then about 1
This is a method of obtaining a quartz glass base material by baking at 500 ° C., and there are various manufacturing methods such as a CVD method and a VAD method. The soot method has a lower hydroxyl group concentration than the direct method, and vitrification is performed in two steps, so various applied treatments such as doping of fluorine and GeO 2 are possible. Quartz glass synthesized by this soot method usually has a hydrogen content of 5
× 10 16 molecule / cm 3 or less.

【0029】上記製造方法によって得られた合成石英ガ
ラスの母材中に含まれる水素は、その後の熱処理等の途
中工程において、拡散により、合成石英ガラス中の含有
濃度が低下したり、または、合成石英ガラスの母材自体
の水素の含有濃度が1×10 18分子/cm3 未満である
場合もある。この場合は、上述したように、水素ガス雰
囲気中でアニール処理等することにより、その水素の含
有濃度を1×1018分子/cm3 以上に調整することが
できる。
Synthetic quartz glass obtained by the above manufacturing method
The hydrogen contained in the base metal of the lath will be used during the subsequent heat treatment.
Inclusion in synthetic quartz glass due to diffusion in the middle process
Concentration decreases or synthetic quartz glass base material itself
Concentration of hydrogen in 1x10 18Molecule / cm3 Is less than
In some cases. In this case, as described above, a hydrogen gas atmosphere is used.
By annealing in an atmosphere, the hydrogen content is reduced.
Concentrated to 1 x 1018Molecule / cm3 Can be adjusted more
it can.

【0030】したがって、本発明に係る製造方法によれ
ば、Cuの含有濃度が0.1ppb以下であり、かつ、
水素の含有濃度が1×1018分子/cm3 以上である合
成石英ガラスを得ることができ、上述した緑色および赤
色蛍光を発生しない合成石英ガラスを、その表層部分を
研削することなく、歩留よく、効率的に製造することが
できる。
Therefore, according to the manufacturing method of the present invention, the Cu content concentration is 0.1 ppb or less, and
A synthetic quartz glass having a hydrogen content concentration of 1 × 10 18 molecules / cm 3 or more can be obtained, and the above-mentioned synthetic quartz glass that does not emit green and red fluorescence can be obtained without grinding the surface layer portion. Good and efficient manufacturing is possible.

【0031】[0031]

【実施例】以下、本発明を実施例に基づきさらに具体的
に説明するが、本発明は下記の実施例により制限される
ものではない。 [実施例1]Cuの含有濃度が0.1ppmのカーボン
材により構成された熱処理容器を、予め、20Torr
の減圧下、1850℃で1時間熱処理し、この熱処理を
2回繰り返した。この容器を用いて、直接法によって製
造した合成石英ガラスの母材を、500Torrの減圧
下にて、1800〜1900℃で1時間熱処理し、約2
00×200×100mmの直方体状の合成石英ガラス
成形体を得た。この成形体の表面から10mmの部分に
おいて試料を採取し、ICP−MS装置(誘導結合プラ
ズマ質量分析装置)による純度分析、ラマン分光計によ
る水素濃度分析を行った。また、前記試料に200H
z、3mJ/cm2 ・pulseのArFエキシマレー
ザを1×105 pulse照射して、緑色および赤色蛍
光の発生を目視により観察した。上記分析および観察の
結果を表1に示す。
EXAMPLES The present invention will be described in more detail based on the following examples, but the invention is not intended to be limited by the following examples. [Example 1] A heat treatment container made of a carbon material having a Cu content concentration of 0.1 ppm was previously set to 20 Torr.
Under reduced pressure, heat treatment was performed at 1850 ° C. for 1 hour, and this heat treatment was repeated twice. Using this container, the base material of synthetic quartz glass produced by the direct method is heat-treated at 1800 to 1900 ° C. for 1 hour under a reduced pressure of 500 Torr to obtain about 2
A rectangular parallelepiped synthetic quartz glass compact having a size of 00 × 200 × 100 mm was obtained. A sample was taken at a portion of 10 mm from the surface of this molded body, and purity analysis by an ICP-MS device (inductively coupled plasma mass spectrometer) and hydrogen concentration analysis by a Raman spectrometer were performed. In addition, 200H for the sample
The ArF excimer laser of z, 3 mJ / cm 2 · pulse was irradiated at 1 × 10 5 pulse, and the generation of green and red fluorescence was visually observed. The results of the above analysis and observation are shown in Table 1.

【0032】[実施例2]Cuの含有濃度が0.08p
pmのカーボン材により構成された熱処理容器を、予
め、20Torrの減圧下にて、1800℃で1時間熱
処理し、この熱処理を2回繰り返した。この容器を用い
て、直接法によって製造した合成石英ガラスの母材を、
500Torr以下の減圧下にて、1800〜1900
℃で30分間熱処理し、約200×200×100mm
の直方体状の合成石英ガラス成形体を得た。この成形体
について、実施例1と同様にして、表層部分の純度分
析、水素濃度分析および蛍光の観察を行った。これらの
結果を表1に示す。
[Example 2] Cu content concentration is 0.08 p
A heat treatment container made of pm carbon material was previously heat-treated at 1800 ° C. for 1 hour under a reduced pressure of 20 Torr, and this heat treatment was repeated twice. Using this container, the base material of synthetic quartz glass manufactured by the direct method,
1800 to 1900 under reduced pressure of 500 Torr or less
Heat treated for 30 minutes at ℃, about 200 × 200 × 100mm
A rectangular parallelepiped synthetic quartz glass molded body was obtained. For this molded product, in the same manner as in Example 1, the surface layer portion was subjected to purity analysis, hydrogen concentration analysis, and fluorescence observation. The results are shown in Table 1.

【0033】[比較例1]Cuの含有濃度が0.50p
pmのカーボン材により構成された熱処理容器を用い
て、直接法によって製造した合成石英ガラスの母材を、
500Torr以下の減圧下にて、1800〜1900
℃で1時間熱処理し、約200×200×100mmの
直方体状の合成石英ガラス成形体を得た。この成形体に
ついて、実施例1と同様にして、表層部分の純度分析、
水素濃度分析および蛍光の観察を行った。これらの結果
を表1に示す。なお、蛍光の観察の結果、強い緑色蛍光
が認められたため、この緑色蛍光が発生しない石英ガラ
スを得るためには、成形体の表層部を約15mm研削す
る必要があった。
[Comparative Example 1] The Cu content concentration is 0.50 p.
Using a heat treatment container made of pm carbon material, a base material of synthetic quartz glass manufactured by the direct method,
1800 to 1900 under reduced pressure of 500 Torr or less
The mixture was heat-treated at 0 ° C. for 1 hour to obtain a rectangular parallelepiped synthetic quartz glass molded body of about 200 × 200 × 100 mm. For this molded body, in the same manner as in Example 1, the purity analysis of the surface layer portion,
Hydrogen concentration analysis and fluorescence observation were performed. The results are shown in Table 1. As a result of observing the fluorescence, strong green fluorescence was observed. Therefore, in order to obtain quartz glass that does not generate this green fluorescence, it was necessary to grind the surface layer portion of the molded body by about 15 mm.

【0034】[比較例2]Cuの含有濃度が0.33p
pmのカーボン材により構成された熱処理容器を用い
て、直接法によって製造した合成石英ガラスの母材を、
500Torr以下の減圧下にて、1800〜1900
℃で1時間熱処理し、約200×200×100mmの
直方体状の合成石英ガラス成形体を得た。この成形体に
ついて、実施例1と同様にして、表層部分の純度分析、
水素濃度分析および蛍光の観察を行った。これらの結果
を表1に示す。なお、蛍光の観察の結果、強い緑色蛍光
が認められたため、この緑色蛍光が発生しない石英ガラ
スを得るためには、成形体の表層部を約12mm研削す
る必要があった。
[Comparative Example 2] Cu content concentration is 0.33 p
Using a heat treatment container made of pm carbon material, a base material of synthetic quartz glass manufactured by the direct method,
1800 to 1900 under reduced pressure of 500 Torr or less
The mixture was heat-treated at 0 ° C. for 1 hour to obtain a rectangular parallelepiped synthetic quartz glass molded body of about 200 × 200 × 100 mm. For this molded body, in the same manner as in Example 1, the purity analysis of the surface layer portion,
Hydrogen concentration analysis and fluorescence observation were performed. The results are shown in Table 1. As a result of observing the fluorescence, strong green fluorescence was recognized. Therefore, in order to obtain quartz glass that does not generate this green fluorescence, it was necessary to grind the surface layer portion of the molded body by about 12 mm.

【0035】[比較例3]Cuの含有濃度が0.11p
pmのカーボン材により構成された熱処理容器を用い
て、直接法によって製造した合成石英ガラスの母材を、
500Torr以下の減圧下にて、1800〜1900
℃で3時間熱処理し、約200×200×100mmの
直方体状の合成石英ガラス成形体を得た。この成形体に
ついて、実施例1と同様にして、表層部分の純度分析、
水素濃度分析および蛍光の観察を行った。これらの結果
を表1に示す。なお、蛍光の観察の結果、強い緑色蛍光
および弱い赤色蛍光が認められたため、この緑色および
赤色蛍光が発生しない石英ガラスを得るためには、成形
体の表層部を約12mm研削する必要があった。
[Comparative Example 3] Cu content concentration is 0.11 p
Using a heat treatment container made of pm carbon material, a base material of synthetic quartz glass manufactured by the direct method,
1800 to 1900 under reduced pressure of 500 Torr or less
Heat treatment was carried out at 0 ° C. for 3 hours to obtain a rectangular parallelepiped synthetic quartz glass molded body of about 200 × 200 × 100 mm. For this molded body, in the same manner as in Example 1, the purity analysis of the surface layer portion,
Hydrogen concentration analysis and fluorescence observation were performed. The results are shown in Table 1. As a result of observing the fluorescence, strong green fluorescence and weak red fluorescence were recognized. Therefore, in order to obtain quartz glass that does not generate the green and red fluorescence, it was necessary to grind the surface layer portion of the molded body by about 12 mm. .

【0036】[比較例4]Cuの含有濃度が0.12p
pmのカーボン材により構成された熱処理容器を、予
め、20Torrの減圧下、1700℃で1時間熱処理
し、この熱処理を2回繰り返した。この容器を用いて、
直接法によって製造した合成石英ガラスの母材を、50
0Torr以下の減圧下にて、1800〜1900℃で
10時間熱処理し、約200×200×100mmの直
方体状の合成石英ガラス成形体を得た。この成形体につ
いて、実施例1と同様にして、表層部分の純度分析、水
素濃度分析および蛍光の観察を行った。これらの結果を
表1に示す。なお、蛍光の観察の結果、強い赤色蛍光が
認められたため、この赤色蛍光が発生しない石英ガラス
を得るためには、成形体の表層部を約10mm研削する
必要があった。
[Comparative Example 4] The Cu content concentration is 0.12 p.
A heat treatment container made of pm carbon material was previously heat-treated at 1700 ° C. for 1 hour under a reduced pressure of 20 Torr, and this heat treatment was repeated twice. With this container,
The synthetic quartz glass base material produced by the direct method is
Heat treatment was performed at 1800 to 1900 ° C. for 10 hours under a reduced pressure of 0 Torr or less to obtain a rectangular parallelepiped synthetic quartz glass molded body of about 200 × 200 × 100 mm. For this molded product, in the same manner as in Example 1, the surface layer portion was subjected to purity analysis, hydrogen concentration analysis, and fluorescence observation. The results are shown in Table 1. As a result of observing the fluorescence, strong red fluorescence was recognized. Therefore, in order to obtain quartz glass that does not generate this red fluorescence, it was necessary to grind the surface layer portion of the molded body by about 10 mm.

【0037】[比較例5]Cuの含有濃度が0.11p
pmのカーボン材により構成された熱処理容器を、予
め、20Torrの減圧下、1850℃で1時間熱処理
した。この容器を用いて、直接法によって製造した合成
石英ガラスの母材を、500Torr以下の減圧下に
て、1800〜1900℃で10時間熱処理し、約20
0×200×100mmの直方体状の合成石英ガラス成
形体を得た。この試料について、実施例1と同様にし
て、表層部分の純度分析、水素濃度分析および蛍光の観
察を行った。これらの結果を表1に示す。なお、蛍光の
観察の結果、強い赤色蛍光が認められたため、この赤色
蛍光が発生しない石英ガラスを得るためには、成形体の
表層部を約10mm研削する必要があった。
[Comparative Example 5] Cu content concentration is 0.11 p.
A heat treatment container made of a pm carbon material was previously heat-treated at 1850 ° C. for 1 hour under a reduced pressure of 20 Torr. Using this container, the base material of synthetic quartz glass produced by the direct method is heat-treated at 1800 to 1900 ° C. for 10 hours under a reduced pressure of 500 Torr or less,
A rectangular parallelepiped synthetic quartz glass molded body having a size of 0 × 200 × 100 mm was obtained. For this sample, in the same manner as in Example 1, the surface layer was subjected to purity analysis, hydrogen concentration analysis, and fluorescence observation. The results are shown in Table 1. As a result of observing the fluorescence, strong red fluorescence was recognized. Therefore, in order to obtain quartz glass that does not generate this red fluorescence, it was necessary to grind the surface layer portion of the molded body by about 10 mm.

【0038】[比較例6]Cuの含有濃度が0.11p
pmのカーボン材により構成された熱処理容器を、予
め、20Torrの減圧下、1200℃で1時間熱処理
し、この熱処理を2回繰り返した。この容器を用いて、
直接法によって製造した合成石英ガラスの母材を、50
0Torr以下の減圧下にて、1800〜1900℃で
10時間熱処理し、約200×200×100mmの直
方体状の合成石英ガラス成形体を得た。この試料につい
て、実施例1と同様にして、表層部分の純度分析、水素
濃度分析および蛍光の観察を行った。これらの結果を表
1に示す。なお、蛍光の観察の結果、強い赤色蛍光が認
められたため、この赤色蛍光が発生しない石英ガラスを
得るためには、成形体の表層部を約10mm研削する必
要があった。
[Comparative Example 6] The Cu content concentration is 0.11 p.
A heat treatment container made of a pm carbon material was previously heat-treated at 1200 ° C. for 1 hour under a reduced pressure of 20 Torr, and this heat treatment was repeated twice. With this container,
The synthetic quartz glass base material produced by the direct method is
Heat treatment was performed at 1800 to 1900 ° C. for 10 hours under a reduced pressure of 0 Torr or less to obtain a rectangular parallelepiped synthetic quartz glass molded body of about 200 × 200 × 100 mm. For this sample, in the same manner as in Example 1, the surface layer was subjected to purity analysis, hydrogen concentration analysis, and fluorescence observation. The results are shown in Table 1. As a result of observing the fluorescence, strong red fluorescence was recognized. Therefore, in order to obtain quartz glass in which this red fluorescence was not generated, it was necessary to grind the surface layer portion of the molded body by about 10 mm.

【0039】[0039]

【表1】 [Table 1]

【0040】表1に示したとおり、Cuの含有濃度が
0.1ppb以下であり、かつ、水素の含有濃度が1×
1018分子/cm3 以上である合成石英ガラス(実施例
1、2)は、ArFエキシマレーザ(波長:193n
m)を照射した際、500nm付近にスペクトルピーク
を有する緑色蛍光および650nm付近にスペクトルピ
ークを有する赤色蛍光の発生は認められなかった。一
方、Cuの含有濃度が0.1ppbを超える場合(比較
例1〜3)は、緑色蛍光の発生が認められた。また、水
素の含有濃度が1×1018分子/cm3 未満である場合
(比較例3〜6)は、赤色蛍光の発生が認められた。
As shown in Table 1, the Cu content is 0.1 ppb or less and the hydrogen content is 1 ×.
Synthetic quartz glass having 10 18 molecules / cm 3 or more (Examples 1 and 2) was obtained by using an ArF excimer laser (wavelength: 193n).
Upon irradiation with m), neither green fluorescence having a spectrum peak near 500 nm nor red fluorescence having a spectrum peak near 650 nm was observed. On the other hand, when the Cu content concentration exceeded 0.1 ppb (Comparative Examples 1 to 3), generation of green fluorescence was observed. When the hydrogen content concentration was less than 1 × 10 18 molecules / cm 3 (Comparative Examples 3 to 6), red fluorescence was observed.

【0041】さらに、表1に示した結果から、カーボン
材により構成された熱処理容器のCuの含有濃度が0.
1ppm程度である場合は、20Torr以下の減圧下
にて、1200℃以上で熱処理することにより、該容器
のCuの含有濃度を検出限界(0.01ppm)以下と
なることが認められた(実施例1および2、比較例4〜
6)。
Further, from the results shown in Table 1, the Cu content concentration of the heat treatment container made of the carbon material is 0.
In the case of about 1 ppm, it was confirmed that the Cu content concentration in the container was reduced to the detection limit (0.01 ppm) or less by heat treatment at 1200 ° C. or more under a reduced pressure of 20 Torr or less (Examples) 1 and 2, Comparative Example 4 to
6).

【0042】以上より、Cuの含有濃度が0.1ppm
以下であるカーボン材により構成され、かつ、予め、2
0Torr以下の減圧下にて、1200℃以上での熱処
理が施された容器に、Cuの含有濃度が0.1ppb以
下であり、かつ、水素の含有濃度が1×1018分子/c
3 以上である合成石英ガラスを収容して熱処理を行う
ことにより、上記緑色および赤色蛍光を発生しない合成
石英ガラスが得られることが認められた。
From the above, the Cu content concentration is 0.1 ppm.
It is composed of the following carbon materials,
A container heat-treated at a temperature of 1200 ° C. or higher under a reduced pressure of 0 Torr or less has a Cu content concentration of 0.1 ppb or less and a hydrogen content concentration of 1 × 10 18 molecules / c.
It was confirmed that the synthetic quartz glass that does not emit the green and red fluorescence can be obtained by housing the synthetic quartz glass having a size of m 3 or more and performing the heat treatment.

【0043】[0043]

【発明の効果】以上のとおり、本発明に係る合成石英ガ
ラスは、紫外線、特に、エキシマレーザ等による短波長
の強力な紫外線が照射された場合においても、緑色蛍光
および赤色蛍光の発生が抑制され、短波長の紫外線の透
過性に優れているため、フォトマスク基板、エキシマレ
ーザ装置に用いられるレンズ、プリズム、窓材等の光学
用部材として好適に用いることができる。また、本発明
に係る合成石英ガラスの製造方法によれば、上記緑色蛍
光および赤色蛍光の発生が抑制された合成石英ガラス
を、歩留よく、効率的に製造することができる。
As described above, the synthetic quartz glass according to the present invention suppresses the generation of green fluorescence and red fluorescence even when it is irradiated with ultraviolet rays, especially strong ultraviolet rays of a short wavelength such as excimer laser. Since it has excellent transparency to short-wavelength ultraviolet light, it can be suitably used as an optical member such as a photomask substrate, a lens used in an excimer laser device, a prism, and a window material. Further, according to the method for producing synthetic quartz glass according to the present invention, the synthetic quartz glass in which the generation of the green fluorescence and the red fluorescence is suppressed can be efficiently produced with a good yield.

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 4G014 AH00 4G015 EA04 4G062 AA04 BB02 CC01 DA08 MM02 NN01    ─────────────────────────────────────────────────── ─── Continued front page    F-term (reference) 4G014 AH00                 4G015 EA04                 4G062 AA04 BB02 CC01 DA08 MM02                       NN01

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 Cuの含有濃度が0.1ppb以下であ
り、かつ、水素の含有濃度が1×1018分子/cm3
上であることを特徴とする合成石英ガラス。
1. A synthetic quartz glass having a Cu content concentration of 0.1 ppb or less and a hydrogen content concentration of 1 × 10 18 molecules / cm 3 or more.
【請求項2】 直接法またはスート法によって製造され
た合成石英ガラスの母材またはその成形体を熱処理する
工程において、 前記合成石英ガラスの母材またはその成形体は、Cuの
含有濃度が0.1ppm以下であるカーボン材によって
構成され、かつ、予め、減圧下または不活性ガス雰囲気
下にて、1200℃以上での熱処理が施された容器に収
容されて、熱処理されることを特徴とする合成石英ガラ
スの製造方法。
2. In the step of heat-treating a synthetic quartz glass base material or a molded body thereof manufactured by a direct method or a soot method, the synthetic quartz glass base material or a molded body thereof has a Cu content concentration of 0. A synthetic method, characterized in that it is made of a carbon material of 1 ppm or less, and is housed in a container that has been previously heat-treated at 1200 ° C. or more under reduced pressure or in an inert gas atmosphere and heat-treated. Quartz glass manufacturing method.
【請求項3】 前記容器の熱処理は、20Torr以下
の減圧下にて、1200℃以上1900℃以下で行われ
ることを特徴とする請求項2記載の合成石英ガラスの製
造方法。
3. The method for producing synthetic quartz glass according to claim 2, wherein the heat treatment of the container is performed at a temperature of 1200 ° C. or more and 1900 ° C. or less under a reduced pressure of 20 Torr or less.
JP2001269725A 2001-09-06 2001-09-06 Synthetic quartz glass, and production method therefor Pending JP2003081654A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001269725A JP2003081654A (en) 2001-09-06 2001-09-06 Synthetic quartz glass, and production method therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001269725A JP2003081654A (en) 2001-09-06 2001-09-06 Synthetic quartz glass, and production method therefor

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2006290006A Division JP2007063128A (en) 2006-10-25 2006-10-25 Method for manufacturing synthetic quartz glass for optical use

Publications (1)

Publication Number Publication Date
JP2003081654A true JP2003081654A (en) 2003-03-19

Family

ID=19095495

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001269725A Pending JP2003081654A (en) 2001-09-06 2001-09-06 Synthetic quartz glass, and production method therefor

Country Status (1)

Country Link
JP (1) JP2003081654A (en)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003104746A (en) * 2001-09-28 2003-04-09 Shinetsu Quartz Prod Co Ltd Method of manufacturing synthetic quartz glass material and synthetic quartz glass material
JP2007106663A (en) * 2005-09-15 2007-04-26 Toshiba Ceramics Co Ltd Method for producing silica glass
EP1854769A1 (en) * 2005-03-01 2007-11-14 Nikon Corporation Synthetic quartz glass molded product, molding method therefor and method for inspecting synthetic quartz glass molded product
US7635544B2 (en) 2004-09-13 2009-12-22 Hoya Corporation Transparent substrate for mask blank and mask blank
US7700244B2 (en) 2004-09-16 2010-04-20 Hoya Corporation Mask blank providing system, mask blank providing method, mask blank transparent substrate manufacturing method, mask blank manufacturing method, and mask manufacturing method
US7898650B2 (en) 2005-02-18 2011-03-01 Hoya Corporation Inspection method for transparent article
US7901840B2 (en) 2005-02-25 2011-03-08 Hoya Corporation Mask blank transparent substrate manufacturing method, mask blank manufacturing method, and exposure mask manufacturing method
US7972702B2 (en) 2005-06-10 2011-07-05 Hoya Corporation Defect inspection method for a glass substrate for a mask blank, glass substrate for a mask blank, mask blank, exposure mask, method of producing a glass substrate for a mask blank, method of producing a mask blank, and method of producing an exposure mask
US20130271945A1 (en) 2004-02-06 2013-10-17 Nikon Corporation Polarization-modulating element, illumination optical apparatus, exposure apparatus, and exposure method
US9341954B2 (en) 2007-10-24 2016-05-17 Nikon Corporation Optical unit, illumination optical apparatus, exposure apparatus, and device manufacturing method
US9423698B2 (en) 2003-10-28 2016-08-23 Nikon Corporation Illumination optical apparatus and projection exposure apparatus
US9678437B2 (en) 2003-04-09 2017-06-13 Nikon Corporation Illumination optical apparatus having distribution changing member to change light amount and polarization member to set polarization in circumference direction
US9678332B2 (en) 2007-11-06 2017-06-13 Nikon Corporation Illumination apparatus, illumination method, exposure apparatus, and device manufacturing method
US9885872B2 (en) 2003-11-20 2018-02-06 Nikon Corporation Illumination optical apparatus, exposure apparatus, and exposure method with optical integrator and polarization member that changes polarization state of light
US9891539B2 (en) 2005-05-12 2018-02-13 Nikon Corporation Projection optical system, exposure apparatus, and exposure method
US10101666B2 (en) 2007-10-12 2018-10-16 Nikon Corporation Illumination optical apparatus, exposure apparatus, and device manufacturing method

Cited By (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003104746A (en) * 2001-09-28 2003-04-09 Shinetsu Quartz Prod Co Ltd Method of manufacturing synthetic quartz glass material and synthetic quartz glass material
US9885959B2 (en) 2003-04-09 2018-02-06 Nikon Corporation Illumination optical apparatus having deflecting member, lens, polarization member to set polarization in circumference direction, and optical integrator
US9678437B2 (en) 2003-04-09 2017-06-13 Nikon Corporation Illumination optical apparatus having distribution changing member to change light amount and polarization member to set polarization in circumference direction
US9760014B2 (en) 2003-10-28 2017-09-12 Nikon Corporation Illumination optical apparatus and projection exposure apparatus
US9423698B2 (en) 2003-10-28 2016-08-23 Nikon Corporation Illumination optical apparatus and projection exposure apparatus
US10281632B2 (en) 2003-11-20 2019-05-07 Nikon Corporation Illumination optical apparatus, exposure apparatus, and exposure method with optical member with optical rotatory power to rotate linear polarization direction
US9885872B2 (en) 2003-11-20 2018-02-06 Nikon Corporation Illumination optical apparatus, exposure apparatus, and exposure method with optical integrator and polarization member that changes polarization state of light
US20130271945A1 (en) 2004-02-06 2013-10-17 Nikon Corporation Polarization-modulating element, illumination optical apparatus, exposure apparatus, and exposure method
US10241417B2 (en) 2004-02-06 2019-03-26 Nikon Corporation Polarization-modulating element, illumination optical apparatus, exposure apparatus, and exposure method
US10234770B2 (en) 2004-02-06 2019-03-19 Nikon Corporation Polarization-modulating element, illumination optical apparatus, exposure apparatus, and exposure method
US10007194B2 (en) 2004-02-06 2018-06-26 Nikon Corporation Polarization-modulating element, illumination optical apparatus, exposure apparatus, and exposure method
US7635544B2 (en) 2004-09-13 2009-12-22 Hoya Corporation Transparent substrate for mask blank and mask blank
US7700244B2 (en) 2004-09-16 2010-04-20 Hoya Corporation Mask blank providing system, mask blank providing method, mask blank transparent substrate manufacturing method, mask blank manufacturing method, and mask manufacturing method
US7998644B2 (en) 2004-09-16 2011-08-16 Hoya Corporation Mask blank providing system, mask blank providing method, mask blank transparent substrate manufacturing method, mask blank manufacturing method, and mask manufacturing method
US8318388B2 (en) 2004-09-16 2012-11-27 Hoya Corporation Mask blank providing system, mask blank providing method, mask blank transparent substrate manufacturing method, mask blank manufacturing method, and mask manufacturing method
US7898650B2 (en) 2005-02-18 2011-03-01 Hoya Corporation Inspection method for transparent article
US8107063B2 (en) 2005-02-18 2012-01-31 Hoya Corporation Transparent article
US8026025B2 (en) 2005-02-25 2011-09-27 Hoya Corporation Mask blank transparent substrate manufacturing method, mask blank manufacturing method, and exposure mask manufacturing method
TWI454835B (en) * 2005-02-25 2014-10-01 Hoya Corp Mask blank transparent substrate manufacturing method, mask blank manufacturing method, and exposure mask manufacturing method
US7901840B2 (en) 2005-02-25 2011-03-08 Hoya Corporation Mask blank transparent substrate manufacturing method, mask blank manufacturing method, and exposure mask manufacturing method
EP1854769A1 (en) * 2005-03-01 2007-11-14 Nikon Corporation Synthetic quartz glass molded product, molding method therefor and method for inspecting synthetic quartz glass molded product
EP1854769A4 (en) * 2005-03-01 2010-07-28 Synthetic quartz glass molded product, molding method therefor and method for inspecting synthetic quartz glass molded product
US8539793B2 (en) 2005-03-01 2013-09-24 Nikon Corporation Method of molding synthetic silica glass molded body
US8679994B2 (en) 2005-03-01 2014-03-25 Nikon Corporation Method of inspecting synthetic silicia glass molded body
US9891539B2 (en) 2005-05-12 2018-02-13 Nikon Corporation Projection optical system, exposure apparatus, and exposure method
US7972702B2 (en) 2005-06-10 2011-07-05 Hoya Corporation Defect inspection method for a glass substrate for a mask blank, glass substrate for a mask blank, mask blank, exposure mask, method of producing a glass substrate for a mask blank, method of producing a mask blank, and method of producing an exposure mask
JP2007106663A (en) * 2005-09-15 2007-04-26 Toshiba Ceramics Co Ltd Method for producing silica glass
US10101666B2 (en) 2007-10-12 2018-10-16 Nikon Corporation Illumination optical apparatus, exposure apparatus, and device manufacturing method
US9857599B2 (en) 2007-10-24 2018-01-02 Nikon Corporation Optical unit, illumination optical apparatus, exposure apparatus, and device manufacturing method
US9341954B2 (en) 2007-10-24 2016-05-17 Nikon Corporation Optical unit, illumination optical apparatus, exposure apparatus, and device manufacturing method
US9678332B2 (en) 2007-11-06 2017-06-13 Nikon Corporation Illumination apparatus, illumination method, exposure apparatus, and device manufacturing method

Similar Documents

Publication Publication Date Title
KR100359947B1 (en) Excimer laser and silica glass optical material for the same and its manufacturing method
JP2003081654A (en) Synthetic quartz glass, and production method therefor
EP0546196B1 (en) Synthetic quartz glass optical member for excimer laser and production thereof
US20030195107A1 (en) Synthetic quartz glass and process for producing it
US7491475B2 (en) Photomask substrate made of synthetic quartz glass and photomask
US7452518B2 (en) Process for treating synthetic silica powder and synthetic silica powder treated thereof
TWI393689B (en) Component of quartz glass for use in semiconductor manufacture and method for producing the same
EP1125897B1 (en) Synthetic quartz glass and method for preparing the same
JP5796492B2 (en) Deep UV optical member and method of manufacturing the same
EP1754689B1 (en) Synthetic quartz glass substrate for excimer lasers and making method
JP4066632B2 (en) Synthetic quartz glass optical body and manufacturing method thereof
JP5471478B2 (en) Method for producing synthetic quartz glass for excimer laser
JP4470054B2 (en) Synthetic quartz glass and manufacturing method thereof
JPH0388742A (en) Synthetic silica glass optical body and production therefor
JP4193358B2 (en) Synthetic quartz glass optical member and manufacturing method thereof
JP2005298330A (en) Synthetic quartz glass and its manufacturing method
JPH0891867A (en) Ultraviolet ray transmitting synthetic quartz glass and its production
JP3671732B2 (en) ArF excimer laser, optical member for KrF excimer laser, and method for manufacturing photomask substrate
JP3368932B2 (en) Transparent quartz glass and its manufacturing method
JP2007063128A (en) Method for manufacturing synthetic quartz glass for optical use
JPH0829960B2 (en) Ultraviolet laser optical components
JP2002087833A (en) Optical quartz glass for uv and process for producing the same glass
JP4085633B2 (en) Synthetic quartz glass for optical components
JPH0624997B2 (en) Optical components for laser light
JPH03101282A (en) Optical system member for laser light

Legal Events

Date Code Title Description
A977 Report on retrieval

Effective date: 20050525

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Effective date: 20050530

Free format text: JAPANESE INTERMEDIATE CODE: A131

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050728

A02 Decision of refusal

Effective date: 20060829

Free format text: JAPANESE INTERMEDIATE CODE: A02