JP2003068338A - Controller of fuel reforming system for moving body - Google Patents

Controller of fuel reforming system for moving body

Info

Publication number
JP2003068338A
JP2003068338A JP2001252593A JP2001252593A JP2003068338A JP 2003068338 A JP2003068338 A JP 2003068338A JP 2001252593 A JP2001252593 A JP 2001252593A JP 2001252593 A JP2001252593 A JP 2001252593A JP 2003068338 A JP2003068338 A JP 2003068338A
Authority
JP
Japan
Prior art keywords
fuel
flow rate
evaporator
acceleration
mass flow
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001252593A
Other languages
Japanese (ja)
Other versions
JP3882550B2 (en
Inventor
Yutaka Tazaki
豊 田崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP2001252593A priority Critical patent/JP3882550B2/en
Publication of JP2003068338A publication Critical patent/JP2003068338A/en
Application granted granted Critical
Publication of JP3882550B2 publication Critical patent/JP3882550B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01BBOILING; BOILING APPARATUS ; EVAPORATION; EVAPORATION APPARATUS
    • B01B1/00Boiling; Boiling apparatus for physical or chemical purposes ; Evaporation in general
    • B01B1/005Evaporation for physical or chemical purposes; Evaporation apparatus therefor, e.g. evaporation of liquids for gas phase reactions

Landscapes

  • Fuel Cell (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Hydrogen, Water And Hydrids (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a control method for a reforming system to suppress the phase difference between the fuel input and output of an evaporator. SOLUTION: The reforming system for a moving body comprises: a fuel reformer 103 which forms a reformed gas composed mainly of hydrogen from water vapor, vapor of gaseous fuel or liquid fuel and oxygen; an evaporator 102 which converts water and liquid fuel to water vapor and vapor of liquid fuel; combustion apparatuses 107 and 701 which form a high temperature gas to heat the evaporator 102; and a means of supplying fuel to the fuel reformer 103; and comprises: a fuel flow adjustor 704 to adjust the fuel amount supplied to the combustion apparatus 701; a bypass control valve 703 to adjust the amount of the combustion gas flow bypassing the evaporator 102 and passing through a bypass 702; and a means of controlling the both in accordance with an acceleration rate and load required by the moving body.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、移動体用燃料改質シス
テムの制御装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a control device for a fuel reforming system for mobile bodies.

【0002】[0002]

【従来の技術】図1に燃料電池自動車で代表される移動
体用燃料改質システムの従来例を示す。
2. Description of the Related Art FIG. 1 shows a conventional example of a fuel reforming system for a moving body represented by a fuel cell vehicle.

【0003】燃料タンク100内の水と燃料であるメタノ
ールの混合液は蒸発器102に送られ、加熱蒸発され、水
とメタノールの混合気体となって混合器180に送気され
る。また圧縮器104より混合器180に空気が送気され、混
合蒸気と空気は混合器180で混合された後、ATR(オート
サーマル反応器)103に送気される。
A mixed liquid of water and methanol, which is a fuel, in the fuel tank 100 is sent to an evaporator 102, heated and evaporated, and becomes a mixed gas of water and methanol and sent to a mixer 180. Further, air is sent from the compressor 104 to the mixer 180, and the mixed vapor and air are mixed by the mixer 180 and then sent to the ATR (auto thermal reactor) 103.

【0004】ATR103は燃料であるメタノールを、水なら
びに空気内の酸素を用いて、下記の触媒反応により燃料
改質し、水素リッチな改質ガスを生成する。
The ATR 103 reforms fuel, that is, methanol as a fuel, using water and oxygen in the air by the following catalytic reaction to produce a hydrogen-rich reformed gas.

【0005】[0005]

【式1】 [Formula 1]

【0006】ATR103の運転温度は300〜600℃であり、熱
力学的化学平衡より数パーセントオーダーの一酸化炭素
を含む改質ガスが得られる。一酸化炭素は固体高分子型
燃料電池200の白金等からなる燃料極電極触媒を被毒
し、その活性を著しく低下させてしまうため、下記のシ
フト反応器105ならびにPROX(選択酸化)反応器106から
なる一酸化炭素クリーナシステムにより、数十〜100ppm
にまで一酸化炭素を低減した上で燃料電池200に供給す
る必要がある。
The operating temperature of ATR103 is 300 to 600 ° C., and a reformed gas containing carbon monoxide on the order of several percent is obtained by thermodynamic chemical equilibrium. Since carbon monoxide poisons the anode electrode catalyst made of platinum or the like of the polymer electrolyte fuel cell 200 and significantly reduces its activity, the shift reactor 105 and PROX (selective oxidation) reactor 106 described below are used. With a carbon monoxide cleaner system consisting of several tens to 100 ppm
It is necessary to reduce the amount of carbon monoxide and supply it to the fuel cell 200.

【0007】数パーセントオーダーの一酸化炭素を含む
改質ガスは、シフト反応器105に送られ一酸化炭素が低
減される。シフト反応器105の運転温度は200〜300℃で
あり、熱力学的化学平衡により十分の数パーセントオー
ダーの一酸化炭素を含む改質ガスとなる。必要な酸素は
圧縮器104により空気として供給される。PROX反応器106
では水素雰囲気下で酸化反応を行う。
The reformed gas containing carbon monoxide on the order of several percent is sent to the shift reactor 105 to reduce carbon monoxide. The operating temperature of the shift reactor 105 is 200 to 300 ° C., and thermodynamic chemical equilibrium results in a reformed gas containing carbon monoxide in the order of several percent. The required oxygen is supplied by the compressor 104 as air. PROX reactor 106
Then, the oxidation reaction is performed in a hydrogen atmosphere.

【0008】燃料電池200において、改質ガス中の水素
を全て利用することは不可能であり、一部の水素を残し
た発電に使用済みの改質ガスと、一部の酸素を残した発
電に使用済みの空気とを、触媒が充填された排気ガス燃
焼器107に送気・燃焼する。これにより得られた高温の
排気ガスは、蒸発器102に送気され、メタノールと水と
を蒸発させるためのエネルギーとして再利用される。
In the fuel cell 200, it is impossible to use all the hydrogen in the reformed gas, and the reformed gas that has been used for power generation with some hydrogen left and power generation with some oxygen left The spent air and the air are sent to the exhaust gas combustor 107 filled with a catalyst and burned. The high-temperature exhaust gas thus obtained is sent to the evaporator 102 and reused as energy for evaporating methanol and water.

【0009】500はPROX反応器106に供給される空気の流
量を制御する流量制御弁、501はATR反応器103に供給さ
れる空気の流量を制御する流量制御弁、502は燃料電池2
00の空気極に供給される空気の流量を制御する流量制御
弁である。510は燃料電池200の燃料極の運転圧力を調整
するための圧力制御弁、511は燃料電池200の空気極の運
転圧力を調整するための圧力制御弁である。520、521は
燃料電池200の燃料極側および空気極側の運転圧力を検
出する圧力センサーであり、これらの圧力が同一になる
ように圧力調整が成される。
Reference numeral 500 is a flow rate control valve for controlling the flow rate of air supplied to the PROX reactor 106, 501 is a flow rate control valve for controlling the flow rate of air supplied to the ATR reactor 103, and 502 is the fuel cell 2.
This is a flow rate control valve that controls the flow rate of the air supplied to the 00 air electrode. 510 is a pressure control valve for adjusting the operating pressure of the fuel electrode of the fuel cell 200, and 511 is a pressure control valve for adjusting the operating pressure of the air electrode of the fuel cell 200. 520 and 521 are pressure sensors that detect the operating pressures on the fuel electrode side and the air electrode side of the fuel cell 200, and the pressure is adjusted so that these pressures become the same.

【0010】400は移動体のエネルギー管理を行うコン
トローラであり、改質システムの運転負荷信号402をコ
ントローラ401に送る。コントローラ401は運転負荷信号
402に基づきART反応器103に必要な燃料流量ならびに空
気流量となるようにポンプ170を駆動し、蒸発器102に供
給する液体燃料の流量を制御すると共に、流量制御弁50
1により燃料改質に用いる供給空気量を制御する。601、
602はそれぞれ燃料改質に用いる燃料流量および空気流
量の流量センサーである。
Reference numeral 400 is a controller for managing the energy of the moving body, and sends an operation load signal 402 of the reforming system to the controller 401. Controller 401 is the operating load signal
Based on 402, the pump 170 is driven so that the fuel flow rate and the air flow rate required for the ART reactor 103 are controlled, the flow rate of the liquid fuel supplied to the evaporator 102 is controlled, and the flow rate control valve 50
1 controls the amount of supply air used for fuel reforming. 601,
Reference numerals 602 are flow rate sensors for the fuel flow rate and the air flow rate, which are used for fuel reforming.

【0011】起動時等、蒸発器102の迅速な昇温が必要
な場合、改質ガスは燃料電池200を経由せずバイパス700
により直接排気ガス燃焼器107に供給し蒸発器102の昇温
を促進する例もある(特開2000−63104)。
When it is necessary to quickly raise the temperature of the evaporator 102 at the time of start-up, the reformed gas does not pass through the fuel cell 200 and is bypassed by the bypass 700.
There is also an example in which the temperature is directly supplied to the exhaust gas combustor 107 to accelerate the temperature rise of the evaporator 102 (Japanese Patent Laid-Open No. 2000-63104).

【0012】また、負荷変動に対応するため二つ以上の
蒸発器を具備し、その各々に燃焼バーナを設け負荷と連
動して燃料量を制御する例もある(特開2000−10046
2)。
There is also an example in which two or more evaporators are provided to cope with load fluctuations, and a combustion burner is provided for each of them to control the fuel amount in conjunction with the load (Japanese Patent Laid-Open No. 2000-10046).
2).

【0013】[0013]

【発明が解決しようとしている問題点】これら改質シス
テムは、負荷変動時(加・減速時等)の過渡運転条件に
おいてアクセルと連動(アクセル開度と直接連動する場
合とコントローラ400を介する場合あり)し、蒸発器102
に供給される入力燃料(液体)の質量流量(以下入力)
と出力燃料(蒸気)の質量流量(以下出力)との間に位
相差が生じるという問題があった。この位相差により、
必要とする電気量を発生できない、またはその過不足分
の電気量をバッテリで補償する場合バッテリ容量が増大
してしまうという問題が生じる。
[Problems to be Solved by the Invention] These reforming systems may interlock with the accelerator (direct interlock with the accelerator opening) or via the controller 400 under transient operating conditions during load changes (acceleration / deceleration, etc.). ) And the evaporator 102
Flow rate of input fuel (liquid) supplied to
There is a problem that a phase difference occurs between the output and the mass flow rate of output fuel (steam) (hereinafter referred to as output). Due to this phase difference,
There is a problem that the required amount of electricity cannot be generated or the battery capacity increases when the battery compensates for the excess or deficiency of the amount of electricity.

【0014】そこで、本発明は、以上の問題点を鑑み成
されたもので、過渡運転条件においての蒸発器の入・出
力間に位相差が生じない、または、出力がアクセル開度
と連動した質量流量が得られる移動体用燃料改質システ
ムの制御装置を提供することを目的とする。
Therefore, the present invention has been made in view of the above problems, and there is no phase difference between the input and output of the evaporator under transient operating conditions, or the output is linked with the accelerator opening. An object of the present invention is to provide a controller for a fuel reforming system for a mobile body, which can obtain a mass flow rate.

【0015】[0015]

【問題点を解決するための手段】第1の発明は、水蒸気
と気体燃料ないしは液体燃料の蒸気と、酸素を含む気体
とを用いて水素を含む改質ガスを生成する燃料改質器
と、前記改質ガスの水素と、酸素の供給を受けて化学反
応により発電を行う燃料電池と、水ないしは液体燃料か
ら前記水蒸気ないしは液体燃料の蒸気を生成する蒸発器
と、前記燃料電池からの排ガスを燃焼することにより前
記蒸発器を加熱するための排気燃焼ガスを生成する第一
燃焼器と、前記燃料改質器に前記水蒸気と気体燃料ない
しは液体燃料の蒸気を供給する手段を有する移動体用燃
料改質システムにおいて、燃料流量を調整する燃料流量
調整装置を備え、前記燃料流量を調整された燃料を燃焼
することにより前記蒸発器を加熱するための高温ガスを
生成する第二燃焼器と、前記蒸発器を迂回して前記排気
燃焼ガスを流すバイパス通路、及び、このバイパス通路
の開度を調整するバイパス制御弁と、移動体に要求され
る加速度と、負荷に応じて、前記燃料流量調整装置と前
記バイパス制御弁を制御する手段とを備える。
A first aspect of the present invention is a fuel reformer for producing a reformed gas containing hydrogen by using steam, vapor of a gaseous fuel or liquid fuel, and a gas containing oxygen. Hydrogen of the reformed gas, a fuel cell that receives supply of oxygen to generate electricity by a chemical reaction, an evaporator that generates the water vapor or vapor of the liquid fuel from water or liquid fuel, and exhaust gas from the fuel cell A fuel for a mobile body having a first combustor for generating exhaust combustion gas for heating the evaporator by burning, and a means for supplying the steam and the vapor of a gaseous fuel or a liquid fuel to the fuel reformer. In the reforming system, a second combustor that includes a fuel flow rate adjusting device that adjusts the fuel flow rate, and that burns the fuel whose fuel flow rate is adjusted to generate high-temperature gas for heating the evaporator. A bypass passage for bypassing the evaporator to flow the exhaust combustion gas, a bypass control valve for adjusting the opening degree of the bypass passage, an acceleration required for the moving body, and the fuel flow rate according to a load. An adjusting device and means for controlling the bypass control valve are provided.

【0016】第2の発明は、第1の発明において、前記
燃料入力加速度が正の方向に大きい場合には前記第二燃
焼器への燃料流量を多くする。
In a second aspect based on the first aspect, the fuel flow rate to the second combustor is increased when the fuel input acceleration is large in the positive direction.

【0017】第3の発明は、第1または2の発明におい
て、前記燃料入力加速度が負の方向に大きい場合には、
前記バイパス制御弁の開度を大きくする。
In a third aspect based on the first or second aspect, when the fuel input acceleration is large in the negative direction,
The opening degree of the bypass control valve is increased.

【0018】第4の発明は第1から3の何れか一つの発
明において、加速度が正の時には負荷が小さいほど前記
第二燃焼器への燃料流量を多くし、負の時には負荷が大
きいほど前記バイパス制御弁の開度を小さくする。
In a fourth aspect of the invention, in any one of the first to third aspects of the invention, the fuel flow rate to the second combustor increases as the load decreases when the acceleration is positive, and the load increases as the load increases when the acceleration is negative. Reduce the bypass control valve opening.

【0019】第5の発明は、第1から4の何れか一つの
発明において、前記蒸発器へ要求される発生蒸気質量流
量と実際の発生蒸気質量流量との差異に応じて、前記第
二燃焼器への燃料流量および前記バイパス制御弁の開度
を制御する。
A fifth aspect of the present invention is the fuel cell system according to any one of the first to fourth aspects, wherein the second combustion is performed in accordance with a difference between a generated vapor mass flow rate required for the evaporator and an actual generated vapor mass flow rate. The flow rate of fuel to the container and the opening of the bypass control valve are controlled.

【0020】第6の発明は、第5の発明において、前記
第二燃焼器への燃料流量をまず前記蒸発器へ要求される
発生蒸気質量流量の加速度に基づくマップにより設定
し、且つ、前記要求される発生蒸気質量流量と前記実際
の発生蒸気質量流量を検知しマップ値を補正する。
In a sixth aspect based on the fifth aspect, the fuel flow rate to the second combustor is first set by a map based on the acceleration of the generated vapor mass flow rate required for the evaporator, and the demand is set. The generated steam mass flow rate and the actual generated steam mass flow rate are detected to correct the map value.

【0021】第7の発明は、第1から6の何れか一つの
発明において、前記加速度が正の時には、実際に前記蒸
発器に入力する燃料質量流量を、前記要求される発生蒸
気質量流量に比べ大きな加速度で、また負の時には、実
際に前記蒸発器に入力する燃料質量流量を、前記要求さ
れる発生蒸気質量流量に比べ負の方向に大きな加速度で
制御する。
In a seventh aspect based on any one of the first to sixth aspects, when the acceleration is positive, the fuel mass flow rate actually input to the evaporator is made equal to the required generated steam mass flow rate. The mass flow rate of fuel that is actually input to the evaporator is controlled with a larger acceleration in the negative direction than with the required generated steam mass flow rate when the acceleration is negative.

【0022】[0022]

【作用及び効果】第1の発明によれば、過渡運転時にお
いての蒸発器の入出力間に生じる位相差を小さくでき
る。
According to the first invention, the phase difference between the input and output of the evaporator during the transient operation can be reduced.

【0023】第2の発明によれば、加速が正の方向に大
きくなるにしたがって蒸発器の熱量の不足も大きくなる
が、燃焼器への燃料供給を増加することで高温ガスの熱
量が多くなり、蒸発記の熱量の不足を抑制でき、加速時
において蒸発器の入出力間に生じる位相差を小さくでき
る。
According to the second aspect of the invention, as the acceleration increases in the positive direction, the heat quantity in the evaporator also increases, but the heat quantity of the hot gas increases as the fuel supply to the combustor increases. In addition, it is possible to suppress a shortage of heat of evaporation and reduce the phase difference between the input and output of the evaporator during acceleration.

【0024】第3の発明によれば、加速度が負の方向に
大きくなるにしたがって蒸発器の熱量の余剰分も大きく
なるが、バイパス制御弁の開度を増やすことで、熱量の
余剰分を逃がすことができ、減速時において蒸発器の入
出力間に生じる位相差を小さくできる。
According to the third aspect of the invention, as the acceleration increases in the negative direction, the excess amount of heat of the evaporator also increases. However, by increasing the opening of the bypass control valve, the excess amount of heat is released. It is possible to reduce the phase difference between the input and output of the evaporator during deceleration.

【0025】第4の発明によれば、正の加速度が要求さ
れた時は負荷の小さい加速の初期ほど蒸発器に多く熱量
を供給し、負の加速度が要求された時は負荷が大きい時
ほど燃焼器で発生する熱量全体に対する逃す熱の割合が
小さくなるので、バイパス制御弁の開度を小さくするこ
とにより、正または負の加速時において蒸発器の入出力
間に生じる位相差を小さくできる。
According to the fourth aspect of the invention, when a positive acceleration is required, more heat is supplied to the evaporator in the early stage of acceleration with a small load, and when negative acceleration is required, a larger load is used. Since the proportion of the heat released to the total amount of heat generated in the combustor becomes small, the phase difference generated between the input and output of the evaporator at the time of positive or negative acceleration can be made small by making the opening degree of the bypass control valve small.

【0026】第5の発明によれば、実際の蒸発器の入力
と出力の差によって蒸発器へ供給する熱量を調整できる
ので、過渡運転時において蒸発器の入出力間に生じる位
相差を小さくできる。
According to the fifth aspect of the invention, the amount of heat supplied to the evaporator can be adjusted by the difference between the actual input and output of the evaporator, so that the phase difference between the input and output of the evaporator during transient operation can be reduced. .

【0027】第6の発明によれば、実際の蒸発器の入力
と出力の差によってマップを補正し、蒸発器へ供給する
熱量を補正できるので、蒸発器の入出力に生じる位相差
をより小さくできる。
According to the sixth aspect of the invention, the map can be corrected by the difference between the actual input and output of the evaporator and the amount of heat supplied to the evaporator can be corrected, so that the phase difference between the input and output of the evaporator can be made smaller. it can.

【0028】第7の発明によれば、正の加速時には燃焼
器に供給する熱量が小さくて済むため、燃焼器への燃料
供給量を小さくできる。負の加速時には蒸発器をバイパ
スして逃がす熱を少なくできるので、熱の損失を少なく
できる。
According to the seventh aspect of the invention, since the amount of heat supplied to the combustor at the time of positive acceleration is small, the amount of fuel supplied to the combustor can be made small. Since heat that escapes by bypassing the evaporator can be reduced during negative acceleration, heat loss can be reduced.

【0029】[0029]

【発明の実施の形態】本発明の制御が行われる改質シス
テムの構成を図2に示す。図1に示した従来技術の構成
に、排気ガス燃焼器107とは独立した燃焼器701、燃料タ
ンク100から燃焼器701への供給燃料を制御するインジェ
クタ704、排気ガス燃焼器107からの高温ガスが蒸発器10
2を迂回するためのバイパス通路702、そのバイパス通路
702上に設置し迂回する流量を制御する迂回流量制御バ
ルブ703が追加されており他の構成は従来技術と同じで
ある。インジェクタ704および迂回流量制御バルブ703は
コントローラ401により制御される。
FIG. 2 shows the configuration of a reforming system in which the control of the present invention is performed. In addition to the structure of the prior art shown in FIG. 1, a combustor 701 independent of the exhaust gas combustor 107, an injector 704 for controlling the fuel supplied from the fuel tank 100 to the combustor 701, and a high temperature gas from the exhaust gas combustor 107 Has an evaporator 10
Bypass passage 702 for bypassing 2, bypass passage
A bypass flow rate control valve 703 is installed on the 702 to control the bypass flow rate, and other configurations are the same as those of the conventional art. The injector 704 and the bypass flow control valve 703 are controlled by the controller 401.

【0030】次に、第1の実施形態における制御方法を
図5、図6(各々加・減速時)に、その結果得られる加
・減速時蒸発特性を図3、図4に示す。ここで、加速は
正の加速、減速は負の加速である。
Next, the control method in the first embodiment is shown in FIGS. 5 and 6 (acceleration / deceleration, respectively), and the resulting evaporation characteristics during acceleration / deceleration are shown in FIGS. 3 and 4. Here, acceleration is positive acceleration and deceleration is negative acceleration.

【0031】車両の加速時には、図5に示すマップに従
い燃焼器701への燃料流量をインジェクタ704により制御
する。(図5のa〜fは図3のa〜fに対応する。)即
ち、負荷が小さく入力加速度が大きいほど燃料流量を多
く、負荷が大きく加速度が小さいほど燃料流量を少なく
する、言い換えれば、ある一定の入力加速度が生じた時
に、負荷が大きくなるほど燃料流量を少なくする設定と
なっており、時々刻々変化する条件に応じたマップに従
い燃料流量を制御する。
When the vehicle is accelerated, the fuel flow rate to the combustor 701 is controlled by the injector 704 according to the map shown in FIG. (A to f in FIG. 5 correspond to a to f in FIG. 3) That is, the fuel flow rate increases as the load decreases and the input acceleration increases, and the fuel flow decreases as the load increases and the acceleration decreases. In other words, When a certain input acceleration is generated, the fuel flow rate is set to decrease as the load increases, and the fuel flow rate is controlled according to a map according to the condition that changes momentarily.

【0032】負荷が大きい時、つまり蒸発器102に供給
される燃料流量が多い時には、燃料電池200からの排気
ガスも多くなり、燃焼器107で生成される高温ガスも多
くなる。そのため、燃焼器701で生成する高温ガスは少
なくても十分な蒸発が行えるので、燃焼器701に供給す
る燃料を少なくする。また、加速度が大きくなるに従
い、蒸発器102の熱量の不足が大きくなるので、燃焼器7
01に供給する燃料流量を増加することで、蒸発器102の
熱量の不足を抑制することができる。その結果、図3の
発生燃料蒸気質量燃料特性(出力)は破線(本制御を行
わない場合)から実線まで改善され、加速時における入
・出力間に生じる位相差を抑制できる。
When the load is large, that is, when the flow rate of the fuel supplied to the evaporator 102 is large, the exhaust gas from the fuel cell 200 also increases, and the high temperature gas generated in the combustor 107 also increases. Therefore, the high-temperature gas generated in the combustor 701 can be sufficiently vaporized even with a small amount, so that the fuel supplied to the combustor 701 is reduced. Further, as the acceleration increases, the amount of heat in the evaporator 102 becomes insufficient, so the combustor 7
By increasing the flow rate of the fuel supplied to 01, it is possible to suppress the shortage of the heat amount of the evaporator 102. As a result, the generated fuel vapor mass fuel characteristic (output) in FIG. 3 is improved from the broken line (when this control is not performed) to the solid line, and the phase difference between the input and output during acceleration can be suppressed.

【0033】減速時には、図6に示すマップに従いバイ
パス制御弁703の開度を制御する。(図6のa〜fはそ
れぞれ図4のa〜fに対応する)即ち、負荷が大きく入
力減速度が小さいほどバイパス制御弁703の開度を小さ
く、負荷が小さく減速度が大きいほどバイパス制御弁70
3の開度を大きくする、言い換えれば、減速度が同じで
あれば、負荷が大きいほどバイパス制御弁703の開度を
小さくする設定となっており、時々刻々と変化する条件
に応じマップに従いバイパス制御弁703の開度を制御す
る。
During deceleration, the opening degree of the bypass control valve 703 is controlled according to the map shown in FIG. (A to f of FIG. 6 correspond to a to f of FIG. 4, respectively) That is, the opening of the bypass control valve 703 decreases as the load increases and the input deceleration decreases, and the bypass control decreases as the load decreases and the deceleration increases. Valve 70
The opening degree of 3 is increased, in other words, if the deceleration is the same, the opening degree of the bypass control valve 703 is set to be smaller as the load is larger, and the bypass according to the map changes according to the momentary conditions. The opening degree of the control valve 703 is controlled.

【0034】負荷が大きい時と小さい時で減速度が一定
であれば、蒸発器102に供給する燃料の減少量も同じで
あり、蒸発器102に供給するべき熱量の減少量も同じに
なる。ここで、蒸発器102に供給するべき熱量の減少量
が同じである場合には、負荷が大きい時は小さい時に比
べ、もともと蒸発器102に供給している熱量が多いの
で、負荷が大きいほど、もともと蒸発器102に供給して
いる熱量にたいする減少割合は少なくて済む。すなわ
ち、もともとの流量に対してバイパスすべき流量の割合
は、高負荷のほうが小さくてよいので、バイパス制御弁
703の開度も小さくてよい。その結果、図4の発生蒸気
燃料蒸気質量流量特性(出力)は破線から実線まで改善
され、減速時における入・出力間に生じる位相差を抑制
できる。
If the deceleration is constant when the load is large and when the load is small, the amount of reduction of the fuel supplied to the evaporator 102 is the same, and the amount of heat to be supplied to the evaporator 102 is also the same. Here, when the amount of decrease in the amount of heat to be supplied to the evaporator 102 is the same, the amount of heat originally supplied to the evaporator 102 is larger when the load is large compared to when the load is small. The rate of decrease in the amount of heat originally supplied to the evaporator 102 can be small. That is, the ratio of the flow rate to be bypassed to the original flow rate may be smaller under high load, so the bypass control valve
The opening degree of 703 may be small. As a result, the generated vapor fuel vapor mass flow rate characteristic (output) in FIG. 4 is improved from the broken line to the solid line, and the phase difference between the input and output during deceleration can be suppressed.

【0035】以上の制御により、加速が要求された時に
は負荷の小さい加速の初期ほど蒸発器102により多くの
熱量を供給し、減速が要求された時には負荷の大きい減
速の初期ほど蒸発器102に供給する熱をより多く逃がす
ことができ、入出力間の位相差を抑制することが可能と
なる。
According to the above control, when acceleration is requested, a larger amount of heat is supplied to the evaporator 102 in the early stage of acceleration with a small load, and when deceleration is requested, it is supplied to the evaporator 102 in an early stage of deceleration with a large load. The generated heat can be released more, and the phase difference between the input and the output can be suppressed.

【0036】なお、蒸発器102の入力の加速度とはアク
セル開度より決定される要求発生蒸気質量流量の時間変
化率であり、負荷とは定格を4/4とするロードを示
し、要求発生蒸気流量に比例する。
The input acceleration of the evaporator 102 is the time rate of change of the required generated steam mass flow rate, which is determined by the accelerator opening, and the load is a load with a rating of 4/4. Proportional to flow rate.

【0037】図9、図10に第2の実施形態の制御方法
に用いる制御マップを、図7、8にその制御の結果得ら
れる加・減速時の蒸発特性を示す。
9 and 10 show control maps used in the control method of the second embodiment, and FIGS. 7 and 8 show evaporation characteristics during acceleration / deceleration obtained as a result of the control.

【0038】蒸発器102で生成された蒸気の質量流量を
検知する流量センサー601の信号(出力)と入力との差異
を検知して、その差異より燃焼器701に供給する燃料流
量およびバイパス制御弁703の開度を制御する。図7、
図8に上記同様、加減速時の入・出力特性と出力と入力
の差(Δq)を示す。図7、図8の破線は本実施形態を
行わない場合の発生蒸気質量流量特性、実線は本制御を
採用した場合の発生蒸気質量流量特性を示す。
The difference between the signal (output) and the input of the flow rate sensor 601 for detecting the mass flow rate of the vapor generated in the evaporator 102 is detected, and the fuel flow rate to be supplied to the combustor 701 and the bypass control valve are detected from the difference. The opening degree of 703 is controlled. 7,
Similar to the above, FIG. 8 shows the input / output characteristics during acceleration / deceleration and the difference (Δq) between the output and the input. The broken lines in FIGS. 7 and 8 show the generated steam mass flow rate characteristics when the present embodiment is not performed, and the solid lines show the generated steam mass flow rate characteristics when the present control is adopted.

【0039】Δqが負の場合(入力>出力;加速時)は
図9に示すマップに従い燃料流量の制御を行う。つま
り、入力と出力の差が大きくなるほど燃焼器701への燃
料流量を増加させ、蒸発器102をより加熱することによ
り出力を増加させる。その後、入・出力間の差が小さく
なるにつれ燃料流量を減少させ、蒸発器102の出力増加
に伴い増加する燃料電池200からの排気ガスによる蒸発
器102の加熱に移行する。
When Δq is negative (input>output; during acceleration), the fuel flow rate is controlled according to the map shown in FIG. That is, as the difference between the input and the output becomes larger, the fuel flow rate to the combustor 701 is increased, and the evaporator 102 is further heated to increase the output. After that, as the difference between the input and the output becomes smaller, the fuel flow rate is decreased, and the heating of the evaporator 102 is started by the exhaust gas from the fuel cell 200 which increases as the output of the evaporator 102 increases.

【0040】一方、Δqが正の場合(入力<出力;減速
時)には図10に示すマップに従いバイパス制御弁703
の開度の制御を行う。つまり、入・出力の差が大きくな
る(出力が入力に対して大きくなる)ほどバイパス制御
弁703の開度を大きくして余剰分の熱を逃がし、その
後、入・出力の差が小さくなるにつれバイパス制御弁70
3の開度を小さくする。
On the other hand, when Δq is positive (input <output; during deceleration), the bypass control valve 703 is used according to the map shown in FIG.
Control the opening degree of. That is, as the difference between the input and the output becomes larger (the output becomes larger than the input), the opening degree of the bypass control valve 703 is increased to release the excess heat, and thereafter, as the difference between the input and the output becomes smaller. Bypass control valve 70
Decrease the opening of 3.

【0041】このように、実際の蒸発器102の入力と出
力の差によって蒸発器102へ供給する熱量を調整できる
ので、発生蒸気質量流量特性を要求発生蒸気質量流量特
性に近づけることができ、過渡運転時においての蒸発器
102の入出力間に生じる位相差をより小さくすることが
できる。
In this way, the amount of heat supplied to the evaporator 102 can be adjusted by the difference between the actual input and output of the evaporator 102, so that the generated steam mass flow rate characteristic can be brought close to the required generated steam mass flow rate characteristic, and the transient steam mass flow rate characteristic can be obtained. Evaporator during operation
The phase difference between the input and output of 102 can be made smaller.

【0042】第3の実施形態の制御方法を図11のフロ
ーチャートに示す。入力(液体)の加減速度に基づく図
5、6のマップと同様に時々刻々と変化する位相差に基
づく図9、図10のマップを双方連動させて燃焼器701
の燃料噴出流量とバイパス制御弁703の開度を制御する
ことにより、図3、図4の鎖線で示すように蒸発器102
の入力(液体)と出力(蒸気)との位相差を低減するこ
とが可能となる。
The control method of the third embodiment is shown in the flowchart of FIG. Similar to the maps of FIGS. 5 and 6 based on the acceleration / deceleration of the input (liquid), the maps of FIG. 9 and FIG.
By controlling the fuel injection flow rate of the fuel and the opening degree of the bypass control valve 703, the evaporator 102 can be controlled as shown by the chain lines in FIGS.
It is possible to reduce the phase difference between the input (liquid) and the output (vapor).

【0043】具体的には、図11のフローチャートにお
いて、まず、図5、図6より燃焼器701へ供給する燃料
流量およびバイパス制御弁703の開度の初期値を与え、
ステップS1においてその制御下で生じた入力(液)と
発生蒸気質量流量(出力)を検知する。次にステップS
2において入出力の位相差(Δq)を算出する。ステッ
プS3に進み、その値に応じた補正を図9、10で行
い、図5、6に示した一点鎖線のようにマップを補正す
る。次にステップS4にて、補正の結果Δqが許容値で
あるかどうか判断し、許容値でなければ再び補正をおこ
なうためステップS3に戻り、許容値であればそれ以上
の補正は必要ないと判断し、以下、上記制御を繰り返
す。このような制御により、次回からの制御においては
図3、図4の一点鎖線のように入力と出力の位相差を小
さくすることができる。このように、実際の蒸発器102
の入力と出力の差によってマップを修正し、蒸発器へ供
給する熱量を補正できるので蒸発器の入出力間の生じる
位相差をより小さくできる。
Specifically, in the flowchart of FIG. 11, first, the initial values of the flow rate of fuel supplied to the combustor 701 and the opening degree of the bypass control valve 703 are given from FIGS.
In step S1, the input (liquid) generated under the control and the generated steam mass flow rate (output) are detected. Then step S
In 2, the input / output phase difference (Δq) is calculated. Proceeding to step S3, the correction according to the value is performed in FIGS. 9 and 10, and the map is corrected as indicated by the alternate long and short dash line in FIGS. Next, in step S4, it is determined whether or not the correction result Δq is an allowable value. If it is not an allowable value, the process returns to step S3 to perform the correction again, and if it is an allowable value, it is determined that no further correction is necessary. Then, the above control is repeated thereafter. With such control, the phase difference between the input and the output can be reduced in the control from the next time as shown by the alternate long and short dash line in FIGS. Thus, the actual evaporator 102
Since the map can be corrected by the difference between the input and the output of the above and the amount of heat supplied to the evaporator can be corrected, the phase difference between the input and output of the evaporator can be made smaller.

【0044】第4の実施形態における発生蒸気質量流量
特性を図12、13に示す。
The generated steam mass flow rate characteristics in the fourth embodiment are shown in FIGS.

【0045】要求蒸気出力に対し入力(液体)の流量特
性を、位相差を加味して決定する。即ち、図12に示す
ように加速時には要求蒸気出力(点線)に対して大きな
加速度を持った流量特性(実線)、図13に示すように
減速時には要求蒸気出力(点線)に対して大きな減速度
を持った流量特性(実線)に沿った燃料質量流量を蒸発
器102に入力する。このような制御を行うことにより加
速もしくは減速初期の入出力の差は発生するものの、加
速度は液および2相の接触伝熱面積を積極的に増大、減
速時には液及び2相の接触伝熱断面積を減少させること
により図12、図13に示すように発生蒸気質量流量
(点線)を要求発生蒸気質量流量特性(実線)に近づけ
ることが可能になる。
The input (liquid) flow rate characteristic with respect to the required steam output is determined by taking the phase difference into consideration. That is, as shown in FIG. 12, a flow rate characteristic (solid line) having a large acceleration with respect to the required steam output (dotted line) during acceleration, and a large deceleration with respect to the required steam output (dotted line) during deceleration as shown in FIG. A fuel mass flow rate along a flow rate characteristic (solid line) with is input to the evaporator 102. Although such control causes a difference between the input and output at the initial stage of acceleration or deceleration, the acceleration positively increases the contact heat transfer area of the liquid and the two phases, and during the deceleration, the contact heat transfer interruption of the liquid and the two phases is interrupted. By reducing the area, it becomes possible to bring the generated steam mass flow rate (dotted line) close to the required generated steam mass flow rate characteristic (solid line) as shown in FIGS.

【0046】ここで、第4の実施形態では燃焼器701や
バイパス制御弁703を使わなくても、過渡時の蒸気発生
の追従性を向上できる。そこで、第1〜3の実施形態に
第4の実施形態を適用すれば、蒸気発生の追従性を向上
できた分だけ、加速時には燃焼器701に供給する熱量が
小さくて済むため、燃焼器701への燃料供給量を小さく
でき、また減速時には、蒸発器102を迂回して逃がす熱
を少なくできるので、熱の損失を少なくできる。
Here, in the fourth embodiment, the followability of steam generation during a transition can be improved without using the combustor 701 or the bypass control valve 703. Therefore, if the fourth embodiment is applied to the first to third embodiments, the amount of heat supplied to the combustor 701 at the time of acceleration can be small by the amount that the followability of steam generation can be improved, and thus the combustor 701 can be used. The amount of fuel supplied to the fuel tank can be reduced, and the heat that bypasses the evaporator 102 and escapes can be reduced during deceleration, so heat loss can be reduced.

【0047】なお、蒸発器の入力と出力の差が小さくな
るように、加速中にバイパス制御弁703を、減速中に燃
焼器701の燃料流量を制御するようにしてもよい。この
ように、本発明は上記実施形態に限定されるわけではな
く、特許請求の範囲に記載した技術的思想の範囲以内で
様々な変更が成し得ることは言うまでもない。
The bypass control valve 703 may be controlled during acceleration and the fuel flow rate of the combustor 701 may be controlled during deceleration so that the difference between the input and output of the evaporator becomes small. As described above, it is needless to say that the present invention is not limited to the above embodiment and various modifications can be made within the scope of the technical idea described in the claims.

【図面の簡単な説明】[Brief description of drawings]

【図1】従来技術における改質システムの構成図であ
る。
FIG. 1 is a configuration diagram of a reforming system in a conventional technique.

【図2】本実施形態における改質システムの構成図であ
る。
FIG. 2 is a configuration diagram of a reforming system in the present embodiment.

【図3】従来技術と第1の実施形態の加速時における蒸
発特性である。
FIG. 3 is an evaporation characteristic during acceleration according to the related art and the first embodiment.

【図4】従来技術と第1の実施形態の減速時における蒸
発特性である。
FIG. 4 is an evaporation characteristic during deceleration of the related art and the first embodiment.

【図5】第1の実施形態の加速時における燃料流量と負
荷のマップである。
FIG. 5 is a map of fuel flow rate and load during acceleration according to the first embodiment.

【図6】第1の実施形態の減速時におけるバイパス制御
弁の開度と負荷のマップである。
FIG. 6 is a map of the opening and load of the bypass control valve during deceleration according to the first embodiment.

【図7】従来技術と第2の実施形態の加速時における蒸
発特性である。
FIG. 7 is an evaporation characteristic at the time of acceleration in the related art and the second embodiment.

【図8】従来技術と第2の実施形態の減速時における蒸
発特性である。
FIG. 8 is an evaporation characteristic at the time of deceleration of the related art and the second embodiment.

【図9】第2の実施形態の加速時における燃料流量と負
荷のマップである。
FIG. 9 is a map of fuel flow rate and load during acceleration according to the second embodiment.

【図10】第2の実施形態の減速時におけるバイパス制
御弁の開度と負荷のマップである。
FIG. 10 is a map of the opening degree and load of the bypass control valve during deceleration according to the second embodiment.

【図11】第3の実施形態における改質システムを制御
するフローチャートである。
FIG. 11 is a flowchart for controlling the reforming system according to the third embodiment.

【図12】第4の実施形態の加速時における発生蒸気質
量流量および要求発生蒸気質量流量である。
FIG. 12 is a generated steam mass flow rate and a required generated steam mass flow rate during acceleration according to the fourth embodiment.

【図13】第4の実施形態の減速時における発生蒸気質
量流量および要求発生蒸気質量流量である。
FIG. 13 is a generated steam mass flow rate and a required generated steam mass flow rate during deceleration of the fourth embodiment.

【符号の説明】[Explanation of symbols]

100 燃料タンク 102 蒸発器 103 オートサーマル反応器(ATR) 104 圧縮器 105 シフト反応器 106 PROX反応器 107 排気ガス燃焼器 170 燃料ポンプ 180 混合器 200 燃料電池 400 コントローラ 401 コントローラ 402 運転負荷信号 500 PROX反応器への空気流量制御弁 501 ATR反応器への空気流量制御弁 502 燃料電池への空気流量制御弁 510 燃料極の圧力制御弁 511 空気極の圧力制御弁 520 燃料極側圧力センサー 521 酸素極側圧力センサー 601 供給燃料の流量センサー 602 供給空気の流量センサー 700 燃料電池200のバイパス 701 燃焼器 702 蒸発器102のバイパス通路 703 バイパス制御弁 104 インジェクタ 100 fuel tank 102 evaporator 103 Auto Thermal Reactor (ATR) 104 compressor 105 shift reactor 106 PROX reactor 107 Exhaust gas combustor 170 Fuel pump 180 mixer 200 fuel cell 400 controller 401 controller 402 Operation load signal Air flow control valve to 500 PROX reactor 501 ATR Reactor Air Flow Control Valve 502 Air flow control valve to fuel cell 510 Fuel electrode pressure control valve 511 Air electrode pressure control valve 520 Fuel electrode side pressure sensor 521 Oxygen electrode side pressure sensor 601 Fuel supply flow rate sensor 602 Supply air flow rate sensor 700 Fuel cell 200 bypass 701 Combustor 702 Evaporator 102 bypass passage 703 Bypass control valve 104 injector

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】水蒸気と気体燃料ないしは液体燃料の蒸気
と、酸素を含む気体とを用いて水素を含む改質ガスを生
成する燃料改質器と、 前記改質ガスに含まれる水素と、酸素の供給を受けて化
学反応により発電を行う燃料電池と、 水ないしは液体燃料から前記水蒸気ないしは液体燃料の
蒸気を生成する蒸発器と、 前記燃料電池からの排ガスを燃焼することにより前記蒸
発器を加熱するための排気燃焼ガスを生成する第一燃焼
器と、 前記燃料改質器に前記水蒸気と気体燃料ないしは液体燃
料の蒸気を供給する手段を有する移動体用燃料改質シス
テムにおいて、 燃料流量を調整する燃料流量調整装置を備え、前記燃料
流量を調整された燃料を燃焼することにより前記蒸発器
を加熱するための高温ガスを生成する第二燃焼器と、 前記蒸発器を迂回して前記排気燃焼ガスを流すバイパス
通路、及び、このバイパス通路の開度を調整するバイパ
ス制御弁と、 移動体に要求される加速度と負荷に応じて、前記燃料流
量調整装置と前記バイパス制御弁を制御する手段とを備
えたことを特徴とする移動体用燃料改質システムの制御
装置。
1. A fuel reformer for producing a reformed gas containing hydrogen by using steam, vapor of a gaseous fuel or liquid fuel, and a gas containing oxygen, and hydrogen and oxygen contained in the reformed gas. Of the fuel cell for generating electric power by a chemical reaction in response to the supply of water, an evaporator for generating water vapor or vapor of the liquid fuel from water or liquid fuel, and heating the evaporator by burning exhaust gas from the fuel cell. In the fuel reforming system for a moving body, the first combustor for generating exhaust combustion gas for controlling the fuel reformer, and means for supplying the steam and the vapor of the gaseous fuel or the liquid fuel to the fuel reformer are adjusted. A second combustor for producing a high temperature gas for heating the evaporator by burning the fuel whose fuel flow rate is adjusted; and bypassing the evaporator. A bypass passage for flowing the exhaust combustion gas, a bypass control valve for adjusting the opening degree of the bypass passage, and the fuel flow rate adjusting device and the bypass control valve according to the acceleration and load required for the moving body. A control device of a fuel reforming system for a mobile body, comprising: a control means.
【請求項2】前記加速度が正の方向に大きい場合には前
記第二燃焼器への燃料流量を多くする請求項1に記載の
移動体用燃料改質システムの制御装置。
2. The control device for a fuel reforming system for a moving body according to claim 1, wherein the fuel flow rate to the second combustor is increased when the acceleration is large in the positive direction.
【請求項3】前記加速度が負の方向に大きい場合には、
前記バイパス制御弁の開度を大きくする請求項1または
2に記載の移動体用燃料改質システムの制御装置。
3. When the acceleration is large in the negative direction,
The control device for a fuel reforming system for a mobile body according to claim 1, wherein the opening degree of the bypass control valve is increased.
【請求項4】前記加速度が正の時には負荷が小さいほど
前記第二燃焼器への燃料流量を多くし、負の時には負荷
が大きいほど前記バイパス制御弁の開度を小さくする請
求項1から3の何れか一つに記載の移動体用燃料改質シ
ステムの制御装置。
4. When the acceleration is positive, the fuel flow rate to the second combustor increases as the load decreases, and when the acceleration is negative, the opening degree of the bypass control valve decreases as the load increases. A control device for a fuel reforming system for a mobile body according to any one of 1.
【請求項5】前記蒸発器へ要求される発生蒸気質量流量
と実際の発生蒸気質量流量との差異に応じて、前記第二
燃焼器への燃料流量および前記バイパス制御弁の開度を
制御する請求項1から4の何れか一つに記載の移動体用
燃料改質システムの制御装置。
5. The fuel flow rate to the second combustor and the opening degree of the bypass control valve are controlled according to the difference between the generated steam mass flow rate required for the evaporator and the actual generated steam mass flow rate. The control device for a fuel reforming system for a mobile body according to claim 1.
【請求項6】前記第二燃焼器への燃料流量をまず前記蒸
発器へ要求される発生蒸気質量流量の加速度に基づくマ
ップにより設定し、且つ、前記要求される発生蒸気質量
流量と前記実際の発生蒸気質量流量を検知しマップ値を
補正する請求項5に記載の移動体用燃料改質システムの
制御装置。
6. The fuel flow rate to the second combustor is first set by a map based on the acceleration of the generated steam mass flow rate required for the evaporator, and the required generated steam mass flow rate and the actual flow rate are set. The control device for a fuel reforming system for a mobile body according to claim 5, wherein the generated steam mass flow rate is detected to correct the map value.
【請求項7】前記加速度が正の時には、実際に前記蒸発
器に入力する燃料質量流量を、前記要求される発生蒸気
質量流量に比べ大きな加速度で、また負の時には、実際
に前記蒸発器に入力する燃料質量流量を、前記要求され
る発生蒸気質量流量に比べ負の方向に大きな加速度で、
それぞれ制御する請求項4から6の何れか一つに記載の
移動体用燃料改質システムの制御装置。
7. When the acceleration is positive, the fuel mass flow rate actually input to the evaporator is larger than the required generated steam mass flow rate, and when the acceleration is negative, the fuel mass flow rate is actually supplied to the evaporator. The fuel mass flow rate to be input is a large acceleration in the negative direction as compared with the required generated steam mass flow rate,
The control device for a fuel reforming system for a mobile body according to any one of claims 4 to 6, which controls each.
JP2001252593A 2001-08-23 2001-08-23 Control device for mobile fuel reforming system Expired - Fee Related JP3882550B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001252593A JP3882550B2 (en) 2001-08-23 2001-08-23 Control device for mobile fuel reforming system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001252593A JP3882550B2 (en) 2001-08-23 2001-08-23 Control device for mobile fuel reforming system

Publications (2)

Publication Number Publication Date
JP2003068338A true JP2003068338A (en) 2003-03-07
JP3882550B2 JP3882550B2 (en) 2007-02-21

Family

ID=19081040

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001252593A Expired - Fee Related JP3882550B2 (en) 2001-08-23 2001-08-23 Control device for mobile fuel reforming system

Country Status (1)

Country Link
JP (1) JP3882550B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8041500B2 (en) * 2010-04-08 2011-10-18 Ford Global Technologies, Llc Reformate control via accelerometer
JP2018097944A (en) * 2016-12-08 2018-06-21 株式会社デンソー Fuel cell system

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8041500B2 (en) * 2010-04-08 2011-10-18 Ford Global Technologies, Llc Reformate control via accelerometer
US8352160B2 (en) 2010-04-08 2013-01-08 Ford Global Technologies, Llc Reformate control via accelerometer
JP2018097944A (en) * 2016-12-08 2018-06-21 株式会社デンソー Fuel cell system

Also Published As

Publication number Publication date
JP3882550B2 (en) 2007-02-21

Similar Documents

Publication Publication Date Title
US7070633B2 (en) Fuel gas generating apparatus for a fuel cell
JP2001335301A (en) Hydrogen producing system
JP4147659B2 (en) Control device for reformer
JP4854848B2 (en) Control method of heat treatment system
JP3750597B2 (en) Catalytic combustor
JP2001338665A (en) Fuel cell system
EP1258935B1 (en) Raw fuel vaporizing apparatus and fuel cell system equipped with raw fuel vaporizing apparatus
JP2004006093A (en) Fuel treating equipment and fuel cell power generation system
JP2000034102A (en) Controller of reformer
JPWO2018029829A1 (en) Fuel cell system and control method of fuel cell system
US6607855B2 (en) Control system for fuel cell
JP4902165B2 (en) Fuel cell reformer and fuel cell system comprising the fuel cell reformer
JP3882550B2 (en) Control device for mobile fuel reforming system
JP5102938B2 (en) Fuel cell power generation system and starting method thereof
US10439237B2 (en) Fuel cell system and control of collector and burner when stopped
JPH08293312A (en) Fuel cell system
JP4357306B2 (en) Fuel reformer and fuel cell system
JP7176263B2 (en) FUEL CELL SYSTEM AND METHOD OF CONTROLLING FUEL CELL SYSTEM
JP2004014174A (en) Fuel cell system
JP2003077517A (en) Fuel cell system
JP6938918B2 (en) Fuel cell system
JP4346943B2 (en) System using reformer
JP2005093345A (en) Fuel cell system
JP2000034101A (en) Controller of reformer
JP2005166271A (en) Reformed fuel cell system for movable body

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20041025

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20041102

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041228

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060131

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060329

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060425

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060620

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20061024

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20061106

R150 Certificate of patent or registration of utility model

Ref document number: 3882550

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101124

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111124

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121124

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121124

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131124

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees