JP2003052357A - Marine microorganism, and method for manufacturing carotenoid pigment and/or higher unsaturated fatty acid by using the microorganism - Google Patents

Marine microorganism, and method for manufacturing carotenoid pigment and/or higher unsaturated fatty acid by using the microorganism

Info

Publication number
JP2003052357A
JP2003052357A JP2001243436A JP2001243436A JP2003052357A JP 2003052357 A JP2003052357 A JP 2003052357A JP 2001243436 A JP2001243436 A JP 2001243436A JP 2001243436 A JP2001243436 A JP 2001243436A JP 2003052357 A JP2003052357 A JP 2003052357A
Authority
JP
Japan
Prior art keywords
strain
carotenoid
dha
fatty acid
medium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001243436A
Other languages
Japanese (ja)
Inventor
Yasuhiro Aki
庸裕 秋
Osamu Suzuki
修 鈴木
Kazuhisa Ono
和久 小埜
Masako Shigeta
征子 重田
Masaji Kawamoto
正次 河本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Science and Technology Agency
Original Assignee
Japan Science and Technology Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Science and Technology Corp filed Critical Japan Science and Technology Corp
Priority to JP2001243436A priority Critical patent/JP2003052357A/en
Publication of JP2003052357A publication Critical patent/JP2003052357A/en
Pending legal-status Critical Current

Links

Landscapes

  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a new microorganism having high productivity of a carotenoid substance and a higher unsaturated fatty acid, which are nutritional supplements, and a method for manufacturing the carotenoid substance and the higher unsaturated fatty acid in high yields by using the microorganism. SOLUTION: KH 105 strain (FERM P-18431) of the genus Schizochytrium. A method comprising culturing the strain KH 105 in a medium and collecting a carotenoid substance and/or a higher unsaturated fatty acid from the culture products.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】この出願の発明は、新規の海
洋性微生物と、この微生物を用いてカロテノイド系色素
および/または高度不飽和脂肪酸を製造する方法に関す
るものである。
TECHNICAL FIELD The present invention relates to a novel marine microorganism and a method for producing a carotenoid pigment and / or a polyunsaturated fatty acid using this microorganism.

【0002】[0002]

【従来の技術】カロテノイド(またはカロチノイド)系
物質は、動植物界を通じて広範な分布を示す黄色、だい
だい色ないし紅色を呈する色素の総称である。例えば、
人参、トマト、イチゴ、ほうれん草など緑黄色野菜の、
その野菜としての色を出している脂溶性の色素等がそれ
である。この色素群を大別すると、炭化水素カロテノイ
ドである「カロテン(またはカロチン)」(酸素を含ま
ない)とキサントフィル(酸素を含む)に分けられる。
前者の代表はα−カロテン、β−カロテン、リコピンな
どであり、後者はルテイン、クリプトキサンチン、ゼア
キサンチンなどに代表される。これらの色素が体に良い
ということは、ずいぶん前から言われていたが、最近の
研究によってそれがさらに明確にされてきている。現在
の「元気で長生きするためには」という調査・研究のほ
とんどの分野で「抗酸化の栄養素」が重要であると言う
ことが実証されつつある。そのなかで最も重要な栄養素
の1つとして知られているのが、600種類を超える数が
確認されているカロテノイド群である。これらのカロテ
ノイドは1種類で摂取するよりも、カロテノイド群とし
て摂取する方が老化を防ぐためには有効であるともいわ
れている。すなわち、カロテノイドはそれぞれが違った
体の場所に貯蔵され、その場所で何らかの防御的な機能
を果たしているとされている(たとえば眼の網膜はルテ
インを貯蔵し、網膜の酸化を防ぐ役割をする。)したが
って、β−カロテンなどのように1種類だけのカロテノ
イドの摂取よりも、複合された形で摂取するほうが望ま
しいとされている。
2. Description of the Related Art Carotenoid (or carotenoid) type substances are a general term for pigments which exhibit a wide distribution throughout the animal and plant kingdom and which exhibit a yellow color, a reddish color or a reddish color. For example,
Green and yellow vegetables such as carrots, tomatoes, strawberries, spinach,
That is a fat-soluble pigment that gives off the color of the vegetable. This pigment group is roughly classified into a hydrocarbon carotenoid "carotene (or carotene)" (which does not contain oxygen) and xanthophyll (which contains oxygen).
The former is represented by α-carotene, β-carotene, lycopene and the like, and the latter is represented by lutein, cryptoxanthin and zeaxanthin. It has been said for a long time that these pigments are good for the body, but recent studies have made them even clearer. It is becoming more and more demonstrated that "antioxidant nutrients" are important in most of the fields of the current research "to live long and healthy". One of the most important nutrients among them is the carotenoid group, which has been confirmed to have more than 600 kinds. It is said that ingestion of these carotenoids as a carotenoid group is more effective in preventing aging than ingestion of one type. That is, carotenoids are said to be stored in different body locations and perform some protective function at that location (for example, the retina of the eye stores lutein and plays a role in preventing retinal oxidation). Therefore, it is said that it is preferable to take in a complex form rather than taking only one kind of carotenoid such as β-carotene.

【0003】従来、600以上の異なる細菌、酵母、菌
類、および植物についてカロテン生成能を有する生物が
知られているが、現在それらの内のわずか2種、βカロ
テンおよびアスタキサンチンが微生物から商業的に生産
されているにすぎない。アスタキサンチンは古典的突然
変異によって作成されたパフィア株(Phaffia)で産生さ
れている。
Conventionally, more than 600 different bacteria, yeasts, fungi, and plants having carotenogenic ability are known, but only two of them, β-carotene and astaxanthin, are commercially available from microorganisms. It is only produced. Astaxanthin is produced in a paffia strain created by classical mutation.

【0004】カロテノイドは、ステロール、ホパノー
ル、ドリコール等のイソプレノイドと途中まで共通なイ
ソプレン基本生合成経路によって合成される。ヒドロキ
シメチルグルタリル・CoA(HMG-CoA)は、メバロン酸を経
て、C5のイソペンテニルピロリン(IPP)に変換され、IP
Pは異性化反応によりジメチルアリルピロリン酸(DMAPP)
に変換される。さらに、DMAPPはC5のIPPと順次に縮合
することにより、C10のゲラニルピロリン酸(GPP)、C
15のファルネシルピロリン酸(FPP)、C20のゲラニルゲ
ラニルピロリン酸(GGPP)というふうに、炭素数を5つづ
つ延ばしていく。
[0004] Carotenoids are synthesized by an isoprene basic biosynthetic pathway that is partially common with isoprenoids such as sterols, hopanol, and dolichol. Hydroxymethylglutaryl CoA (HMG-CoA) is converted to C 5 isopentenylpyrroline (IPP) via mevalonic acid
P is dimethylallyl pyrophosphate (DMAPP) by isomerization reaction
Is converted to. Further, DMAPP is sequentially condensed with C 5 IPP to give C 10 geranylpyrophosphate (GPP), C 10
The number of carbon atoms is increased by 5, such as 15 farnesyl pyrophosphate (FPP) and C 20 geranylgeranyl pyrophosphate (GGPP).

【0005】カロテノイドに特異的な生合成経路は、GG
PPにおいてイソプレン基本生合成経路から分岐する。す
なわち、2分子のGGPPが縮合して、最初のカロテノイド
である無色のフィトエン(phytoene)が合成される。フィ
トエンは不飽和化反応によりリコペン(lycopene)に変換
され、さらに、リコペンは環化反応によりβ−カロテン
(β-carotene)に変換される。そして、β−カロテンに
水酸基やケト基などが導入され、ゼアキサンチン(zeaxa
nthin)やアスタキサンチン(astaxanthin)などの種々の
キサントフィルが合成される。
A biosynthetic pathway specific to carotenoids is GG
It branches from the isoprene-based biosynthetic pathway in PP. That is, two molecules of GGPP are condensed to synthesize the first carotenoid, colorless phytoene. Phytoene is converted into lycopene by a desaturation reaction, and lycopene is further converted into β-carotene by a cyclization reaction. Then, a hydroxyl group or a keto group is introduced into β-carotene, and zeaxanthin (zeaxa
Various xanthophylls such as nthin and astaxanthin are synthesized.

【0006】カロテノイドの生合成を担う遺伝子の知見
は、ここ10年間位の間に爆発的に進展した。たとえば、
植物常在非光合成細菌Erwinia uredovoraのカロテノイ
ド生合成遺伝子群を、その黄色の色調を指標に大腸菌に
クローニングし、これらの遺伝子のいろいろな組み合わ
せを大腸菌などの微生物に導入、発現させることによ
り、これらの遺伝子の機能が明らかにされている。その
結果、フィトエン、リコペン、β−カロテン、ゼアキサ
ンチン、ゼアキサンチン−β−D−ジグルコシドを生合
成するのに必要な遺伝子群を取得できるようになってい
る(三沢典彦,「遺伝子レベルで解明されたカロテノイ
ド生合成経路」蛋白質 核酸 酵素,41, 337-346,199
6)。しかし、これらの方法はなお操作が複雑なため実
用には至っていない。
[0006] The knowledge of genes responsible for carotenoid biosynthesis has exploded in the last 10 years. For example,
The carotenoid biosynthetic genes of the plant resident non-photosynthetic bacterium Erwinia uredovora are cloned into Escherichia coli using the yellow color as an index, and various combinations of these genes are introduced into microorganisms such as Escherichia coli and expressed, thereby expressing these genes. The function of the gene has been clarified. As a result, it has become possible to obtain a gene group necessary for biosynthesizing phytoene, lycopene, β-carotene, zeaxanthin, and zeaxanthin-β-D-diglucoside (Norihiko Misawa, “Carotenoids clarified at the gene level. "Biosynthetic pathway" protein nucleic acid enzyme, 41, 337-346,199
6). However, these methods have not been put to practical use because the operations are still complicated.

【0007】現在実用に供されている植物からの具体的
なカロテノイド製造方法としては、かんきつ類等の黄色
色素を含む原材料を、加熱湯中に浸漬し、湯温により脱
水してカロテノイドを含んだ原材料を回収し、脱油して
乾燥、粉砕する方法(特公平4-38388号公報)、さらに
果皮等のカロテノイド含有天然物の粉砕物を水中で生体
高分子分解酵素と反応せしめ、酵素反応を終えた時点で
遠心分離により固液分離を行い、水溶性成分と固形成分
を分離し得られた固形物を乾燥、粉砕してカロテノイド
系粉末色素を製造する方法(特開昭62-190090号公報)
等が報告されている。
As a specific method for producing carotenoids from plants currently in practical use, a raw material containing a yellow pigment such as citrus is soaked in hot water and dehydrated by hot water temperature to produce a carotenoid-containing raw material. Method of recovering, deoiling, drying and crushing (Japanese Patent Publication No. 4-38388), and further crushing carotenoid-containing natural products such as pericarp in water with biopolymer degrading enzyme to complete the enzymatic reaction. A method for producing a carotenoid powder pigment by solid-liquid separation by centrifugation at a certain time, separating the water-soluble component and the solid component, and drying and pulverizing the obtained solid (Japanese Patent Laid-Open No. 62-190090).
Etc. have been reported.

【0008】一方、ドコサヘキサエン酸(DHA)は必須脂
肪酸の一種であるが、ヒトの生体内では生成されず、生
体外から摂取せざるを得ない物質である。このDHAは大
脳皮質、網膜のシナプス膜や光受容膜などのリン脂質に
多く存在する高度不飽和脂肪酸(PUFA)であり、学習能や
視覚機能に重要な役割を果たすと考えられている。さら
に制癌、血中脂質低下、抗血栓、抗炎症や抗アレルギー
などの作用が報告され、その多用な生理機能が注目され
る一方で、体外からの摂取による栄養強化・調整を目的
とした食品・飼料添加物としての需要が高まっている。
しかし、その供給源は主にカツオやマグロの眼窩脂肪で
あり、高純度DHAの生産工程に改善が重ねられているも
のの、さらなるコストダウンとそのための新たな供給源
が求められている。また、カツオやマグロにおいても、
これを生体内で生成しているのではなく、海水中の微生
物が生産したものを摂取することにより、体内に蓄積し
ているに過ぎない。これに対して、ごく最近になって中
間体であるγ−リノレン酸(GLA)やエイコサペンタエン
酸(EPA)の生合成に関する全ての酵素の遺伝子が単離さ
れ、それらを導入した形質転換植物の創製が現実味を帯
びてきた。しかし、DHAに至るまでにはさらに2〜3段
階が必要とされ、関与する酵素も未同定である。このよ
うに、遺伝子組換えによる油脂生産では各種不飽和脂肪
酸をターゲットとして、特に米国で急速な技術進展を見
せているが、DHA生成に関しては、いまだ目途が立って
いない。
On the other hand, docosahexaenoic acid (DHA) is a kind of essential fatty acid, but it is a substance that is not produced in the human body and must be ingested from outside the body. This DHA is a polyunsaturated fatty acid (PUFA) that is abundant in phospholipids such as synaptic membranes and photoreceptor membranes of the cerebral cortex and retina, and is considered to play an important role in learning ability and visual function. In addition, anti-cancer, hypolipidemic, anti-thrombotic, anti-inflammatory and anti-allergic actions have been reported, and while their diverse physiological functions have been noted, foods intended to enhance and regulate nutrition by ingestion from outside the body.・ Demand for feed additives is increasing.
However, its source is mainly orbital fat of skipjack and tuna, and although improvements have been made in the production process of high-purity DHA, further cost reduction and a new source for that are required. Also, in skipjack and tuna,
It is not produced in the body, but is merely accumulated in the body by ingesting what is produced by the microorganisms in seawater. On the other hand, most recently, the genes of all enzymes involved in the biosynthesis of γ-linolenic acid (GLA) and eicosapentaenoic acid (EPA), which are intermediates, have been isolated, and transgenic plants containing them have been isolated. Creation has become a reality. However, a few more steps are required to reach DHA, and the enzyme involved is unidentified. Thus, in the production of fats and oils by gene recombination, various unsaturated fatty acids are targeted, and rapid technological progress has been made, especially in the United States, but DHA production is still unclear.

【0009】魚油以外からのDHAの供給源として、微生
物による生産方法が考えられている。DHA含有油脂を生
産する微生物としては、深海から分離された細菌ビブリ
オマリナス(Vibrio marinus)(ATCC 15381)や深海魚の腸
内から分離されたビブリオ属細菌、鞭毛菌類であるラビ
リンチュラ(Labyrinthulina)類のトラストキトリウム(T
hraustocytrium) 属に属するスラウストキトリウム ア
ウレウム(Thraustochytrium aureum)(ATCC34304)、ジャ
ポノキトリウム(Japonochytrium sp.)(ATCC 28207)、微
細藻類であるシクロテラ クリプティカ(Cyclotella cry
ptica)などが知られており、これらの微生物を利用した
培養法によるDHA含有油脂の生産も検討されてきた(P.K.
Bajapai, P.Bajapai and O.P.Ward, J.Am.Oil Chem.So
c.,68:509(1991)および特開平1-199588号公報参照)。
As a source of DHA other than fish oil, a production method using microorganisms is considered. Examples of microorganisms that produce DHA-containing fats and oils include Vibrio marinus (ATCC 15381), a bacterium isolated from the deep sea, Vibrio spp. Trust Chitrium (T
Thraustochytrium aureum (ATCC34304), Japonochytrium sp. (ATCC 28207), a microalgae, Cyclotella cry
ptica) is known, and the production of DHA-containing fats and oils by a culture method using these microorganisms has been studied (PK
Bajapai, P.Bajapai and OPWard, J.Am.Oil Chem.So
c., 68: 509 (1991) and JP-A-1-199588).

【0010】スラウストキトリウム アウレウム(Thraus
tochytrium aureum)(ATCC 34304)については、例えば、
Journal of Fermentation and Bioengineering Vol.81,
No.1,76-78 (1996)に、この微生物によるDHA生産の詳細
な報告がある。しかしながら、これらの微生物による方
法によれば、培地1リットル当りのDHA含有油脂の生産
量が100〜700mg程度と少ない。従って、DHAの生産量と
しても培地1リットル当たり数十mgから500mg程度とき
わめて低い水準に止まっている。
Thraustochytrium Aureum (Thraus
For tochytrium aureum) (ATCC 34304), for example,
Journal of Fermentation and Bioengineering Vol.81,
No. 1,76-78 (1996) has a detailed report on DHA production by this microorganism. However, according to the method using these microorganisms, the amount of DHA-containing oil / fat produced per liter of medium is as low as about 100 to 700 mg. Therefore, the amount of DHA produced per liter of culture medium is as low as several tens to 500 mg.

【0011】これら微生物の中で、特に優れた生物とし
て、最近ラビリンチュラ類のシゾキトリウム(Schizochy
trium)属に属する新種、シゾキトリウム属SR21株を用い
るものが注目されている。Journal of American Oil Ch
emists' Society Vol.73,No.11, 1421-1426には、この
微生物によるドコサペンタエン酸(DPA)およびDHA生産の
詳細な報告がある。
Among these microorganisms, the labyrinthine Schizochytrium (Schizochytrium) has recently been mentioned as a particularly excellent organism.
A new species belonging to the genus Strium, Schizochytrium SR21 strain has been attracting attention. Journal of American Oil Ch
emists' Society Vol.73, No.11, 1421-1426 has a detailed report on the production of docosapentaenoic acid (DPA) and DHA by this microorganism.

【0012】当初、このSR21株は、スラウストキトリウ
ム(Thraustochytrium)属の微生物であると考えられた。
しかし、その菌学的性質を詳しく調べた結果、この菌株
はシゾキトリウム(Schizochytrium)属の新種と認められ
る微生物であることがわかった。
Initially, this SR21 strain was considered to be a microorganism of the genus Thraustochytrium.
However, as a result of detailed examination of its mycological properties, it was found that this strain is a microorganism recognized as a new species of the genus Schizochytrium.

【0013】以上、従来技術を概観してきたところによ
ると、海洋性微生物によるカロテノイド系物質、および
DHAの産生能力を利用して、カロテノイド系物質およびD
HAを生産しうることは十分な可能性を示しているが、な
お、それら微生物による産生物質の偏在および低収率に
より商業レベルには達していない。
According to the overview of the prior art as described above, carotenoid substances by marine microorganisms, and
Utilizing the production capacity of DHA, carotenoids and D
Although it is possible to produce HA, it has not reached the commercial level due to the uneven distribution of the substances produced by these microorganisms and the low yield.

【0014】[0014]

【発明が解決しようとする課題】以上のように、カロテ
ノイド系色素およびDHA 生産能を有する微生物を利用し
たカロテノイド系色素およびDHAの工業的生産法は未だ
確立されていない。また、カロテノイド系色素およびDH
Aの生産能が高い、工業的生産に利用可能な微生物も未
だ知られていない。
As described above, an industrial production method of carotenoid pigment and DHA using a microorganism having the ability to produce carotenoid pigment and DHA has not been established yet. In addition, carotenoid pigments and DH
A microorganism that has a high productivity of A and can be used for industrial production is not yet known.

【0015】この出願の発明は、以上のとおりの従来技
術に鑑みてなされたものであって、カロテノイド系物質
および高度不飽和脂肪酸の生産能の高い微生物を提供す
ることを課題としている。
The invention of this application has been made in view of the above-mentioned conventional techniques, and an object thereof is to provide a microorganism having a high ability to produce carotenoid substances and highly unsaturated fatty acids.

【0016】またこの出願の発明は、前記の微生物を用
いて、従来よりもカロテノイド系物質および高度不飽和
脂肪酸を高収率でしかも複雑な工程を要せず製造する方
法を提供することを課題としている。
Further, the invention of this application is to provide a method for producing a carotenoid-based substance and a polyunsaturated fatty acid in a higher yield than in the prior art using the above-mentioned microorganism and without requiring complicated steps. I am trying.

【0017】[0017]

【課題を解決するための手段】この出願の発明者らは、
これまでに主としてDHA生産性を有する微生物そのも
の、およびそのDHA生合成系で働く酵素群の遺伝子を酵
母などの微生物あるいは植物において発現させることに
より次世代型DHA供給源を提供できるようにすることを
目的とした研究を実施してきたが、この目的にかなう微
生物源として高DHA生産性の真核微生物であるラビリン
チュラ類微生物に注目してきた。この微生物群は基本的
に海洋性で、落葉などの分解者として働いており、海洋
魚類に蓄積するPUFAの1次生産者と考えられている。し
かし、微生物分類上は藻類にも真菌類にも属さず、その
生態についてはほとんど明らかにされていない。また、
DHAなどのPUFAの生産への応用を目的とする系統立った
探索、分類、分析も十分なされてきたとは言えない。そ
こで発明者らは、まず海水沿岸域から単離した数100種
におよぶDHA生産菌について、その脂質生産特性の分析
を実施した。その中で、優れた増殖性と脂質生産性、さ
らに色素生産性を示す優秀な株を見出すに至り、さらに
その菌株の至適培養条件などを詳細に解明し、新たな色
素ならびにDHA供給源としての可能性を見出し、この発
明を完成するに至った。
Means for Solving the Problems The inventors of the present application
Up to now, it has been possible to provide a next-generation DHA supply source by expressing mainly in the microorganism itself having DHA productivity, and the genes of the enzymes that act in the DHA biosynthesis system in microorganisms such as yeast or plants. Although we have carried out the research aimed at, we have focused our attention on labyrinthuloid microorganisms, which are eukaryotic microorganisms with high DHA productivity, as a microbial source for this purpose. This microbial group is basically marine, acts as a decomposer of leaf litter, and is considered to be the primary producer of PUFA that accumulates in marine fish. However, in terms of the classification of microorganisms, it does not belong to algae or fungi, and its ecology is hardly known. Also,
It cannot be said that systematic search, classification, and analysis for the purpose of application of PUFA such as DHA to production have been sufficient. Therefore, the inventors first analyzed the lipid production characteristics of several hundred DHA-producing bacteria isolated from seawater coastal areas. Among them, we have found an excellent strain that exhibits excellent growth and lipid productivity, as well as pigment productivity. Furthermore, we have clarified in detail the optimal culture conditions for the strain, and as a new dye and DHA supply source. The present invention has been completed and the present invention has been completed.

【0018】この出願は、従って、前記の課題を解決す
るための発明として、新規海洋性微生物であるシゾキト
リウム(Schizochytrium)属KH105株(FERM P-18431)を
提供する。
[0018] Therefore, as an invention for solving the above-mentioned problems, this application provides a novel marine microorganism, Schizochytrium sp. Strain KH105 (FERM P-18431).

【0019】またこの出願の発明は、前記微生物KH105
株(FERM P-18431)を培地中で培養し、培養物からカロ
テノイド系色素および/または高度不飽和脂肪酸を採取
することを特徴とする、カロテノイド系物質および/ま
たは高度不飽和脂肪酸の製造方法を提供する。
The invention of this application also relates to the above-mentioned microorganism KH105.
A method for producing a carotenoid substance and / or a polyunsaturated fatty acid, which comprises culturing a strain (FERM P-18431) in a medium and collecting a carotenoid pigment and / or a polyunsaturated fatty acid from the culture. provide.

【0020】この発明の方法によれば、カロテノイド系
色素と高度不飽和脂肪酸をそれぞれ高効率で製造するこ
とができる。また、カロテノイド系色素と高度不飽和脂
肪酸とを同時に高効率で製造することができる。特に、
微生物から抽出された高度不飽和脂肪酸は極度に酸化さ
れやすく、これを含む油脂の品質を低下させる原因とな
っている。カロテノイド系色素は抗酸化作用を有してい
るため、両者を単一の微生物から同時に製造すること
は、高度不飽和脂肪酸の酸化を抑制するために極めて効
果的である。
According to the method of the present invention, a carotenoid pigment and a polyunsaturated fatty acid can be produced with high efficiency. Moreover, a carotenoid pigment and a polyunsaturated fatty acid can be simultaneously produced with high efficiency. In particular,
Polyunsaturated fatty acids extracted from microorganisms are extremely susceptible to oxidation, which is a cause of deterioration in the quality of oils and fats containing them. Since carotenoid pigments have antioxidant effects, simultaneous production of both from a single microorganism is extremely effective in suppressing the oxidation of highly unsaturated fatty acids.

【0021】この製造方法の発明においては、培地中の
海水濃度を50%以上とすること、培地中の炭素源が、グ
ルコース、グリセロール、酢酸ナトリウムの1以上であ
ること、培地中の窒素源が、ペプトン、硝酸ナトリウ
ム、硝酸カリウムの1以上であることをそれぞれ好まし
い態様としている。
In the invention of this production method, the concentration of seawater in the medium is 50% or more, the carbon source in the medium is one or more of glucose, glycerol and sodium acetate, and the nitrogen source in the medium is , Peptone, sodium nitrate, and potassium nitrate are preferably one or more.

【0022】なお、この発明のシゾキトリウム(Schizoc
hytrium)属KH105株(FERM P-18431)は形態上からシゾ
キトリウム属に分類はしているが、必ずしもこの分類が
確定的なものではなく、未確定な部分が多い。
The Schizochytrium of the present invention (Schizoc
The KH105 strain of the genus hytrium (FERM P-18431) is classified into the genus Schizochytrium from the viewpoint of morphology, but this classification is not necessarily definitive and there are many undetermined parts.

【0023】以下、この出願の発明について実施形態を
詳しく説明する。
The embodiments of the invention of this application will be described in detail below.

【0024】[0024]

【発明の実施の形態】この発明のKH105株は、海水より
単離された海洋性微生物であり、カロテノイド系物質お
よびDHA等の高度不飽和脂肪酸を高度に産生する。このK
H105株の培養に使用する培地は、この菌株が良好に生育
するものであれば、いかなる組成の培地であっても良
く、また、菌体増殖用と物質生産用にそれぞれ異なる2
種類の培地を用いても良い。培地は液体培地または固体
培地を使用することができ、培地成分として、炭素源の
他に、窒素源および無機イオン等を含有していても良
い。また、培地の海水濃度は50%以上とすることが好ま
しい。
BEST MODE FOR CARRYING OUT THE INVENTION The KH105 strain of the present invention is a marine microorganism isolated from seawater and highly produces carotenoid substances and highly unsaturated fatty acids such as DHA. This K
The medium used for culturing the H105 strain may be of any composition as long as the strain can grow well, and it is different for the bacterial cell growth and the substance production.
Different types of media may be used. A liquid medium or a solid medium can be used as the medium, and as the medium components, in addition to the carbon source, a nitrogen source and inorganic ions may be contained. The concentration of seawater in the medium is preferably 50% or more.

【0025】菌体増殖用の培地における炭素源は特に制
限はなく、公知の炭素源を使用することができるが、酢
酸、リンゴ酸、コハク酸、プロピオン酸、バルミチン酸
等の低級脂肪酸、デンプン、ショ糖等が好ましく使用で
きる。これらの炭素源は、単独または混合して培地に添
加することができる。一方、カロテノイド系物質および
/または高度不飽和脂肪酸の生産用の培地には、炭素源
として、グルコース、グリセロール、酢酸ナトリウムの
1以上を添加することが好ましい。また、この炭素源の
濃度を6-12%とすることが好ましい。
There are no particular restrictions on the carbon source in the medium for growing the bacterial cells, and known carbon sources can be used, but lower fatty acids such as acetic acid, malic acid, succinic acid, propionic acid, and barmitic acid, starch, Sucrose and the like can be preferably used. These carbon sources can be added to the medium alone or in combination. On the other hand, it is preferable to add one or more of glucose, glycerol and sodium acetate as a carbon source to the medium for producing the carotenoid substance and / or the polyunsaturated fatty acid. Further, it is preferable that the concentration of the carbon source is 6-12%.

【0026】また、窒素源としては、硫酸アンモニウ
ム、硝酸アンモニウム等の無機窒素化合物、およびペプ
トン、酵母エキス等の有機窒素源が利用できる。カロテ
ノイド系物質および/または高度不飽和脂肪酸の生産用
の培地には、ペプトン、硝酸ナトリウム、硝酸カリウム
の1以上を添加することが好ましい。
As the nitrogen source, inorganic nitrogen compounds such as ammonium sulfate and ammonium nitrate, and organic nitrogen sources such as peptone and yeast extract can be used. It is preferable to add one or more of peptone, sodium nitrate, and potassium nitrate to the medium for producing carotenoid substances and / or highly unsaturated fatty acids.

【0027】さらに、無機イオンとしては、リン酸イオ
ン、マグネシウムイオン、カルシウムイオン、カリウム
イオン、鉄イオン、銅イオン、マンガンイオン等が挙げ
られ、これら無機イオンを培地に無機塩等の形で含有さ
せても良い。
Further, examples of the inorganic ion include phosphate ion, magnesium ion, calcium ion, potassium ion, iron ion, copper ion, manganese ion and the like, and these inorganic ions are contained in the medium in the form of inorganic salt or the like. May be.

【0028】この発明の微生物の培養方法としては、振
とう培養法等の液体培地による培養法および寒天培地等
の固体培地による培養法等が利用できる。カロテノイド
系物質および/または高度不飽和脂肪酸を生産する場合
には、培養温度は例えば20〜35℃、好ましくは25〜30℃
であり、培養時間は、菌体量ならびに物質生産量等に応
じて決めることができるが、0.5日〜5日間、より好まし
くは1日〜3日間程度が適当である。
As a method of culturing the microorganism of the present invention, a method of culturing with a liquid medium such as a shaking culturing method and a method of culturing with a solid medium such as an agar medium can be used. When producing carotenoid substances and / or highly unsaturated fatty acids, the culture temperature is, for example, 20 to 35 ° C, preferably 25 to 30 ° C.
The culturing time can be determined according to the amount of cells, the amount of substance produced, etc., but 0.5 day to 5 days, more preferably about 1 day to 3 days is suitable.

【0029】このような培養の後、培養物から公知に手
段によってカロテノイド系物質および/または高度不飽
和脂肪酸を単離・精製することができる。例えば、塩析
や硫安沈殿法、透析、遠心分離、限外濾過、ゲル濾過、
SDS-PAGE、等電点電気泳動、イオン交換クロマトグラフ
ィー、疎水性クロマトグラフィー、アフィニティークロ
マトグラフィー、逆相クロマトグラフィーなどが挙げら
れる。
After such culture, the carotenoid substance and / or polyunsaturated fatty acid can be isolated and purified from the culture by known means. For example, salting out or ammonium sulfate precipitation method, dialysis, centrifugation, ultrafiltration, gel filtration,
Examples include SDS-PAGE, isoelectric focusing, ion exchange chromatography, hydrophobic chromatography, affinity chromatography, reverse phase chromatography and the like.

【0030】以下、この発明のKH105株のスクリーニン
グ方法、菌学的性質等について詳しく説明する。 1. 方法 1.1 DHA生産菌のスクリーニング 滅菌水で希釈した海水サンプルの水面に適量の松花粉を
浮かべて2〜4日間静置し、白金耳で松花粉を寒天培地
(3%グルコース, 0.1%ペプトン、0.05%酵母エキ
ス、50%人工海水(ASW)、2%寒天)に移して塗り広げ
た。28℃で数日間培養し、現れたコロニーを新たな寒天
培地上に塗り広げてさらに培養することにより純化し
た。寒天培地上に生育したコロニーを寒天ごと切り抜い
て取り、オープン内で一晩乾燥した後、菌体脂質の抽出
および脂肪酸組成の測定を行った(Akiet al.(1998)Lipi
d Composition of Newly Isolated Polyunsaturated Fa
tty Acid Producing fungus, Achlya sp.ma-2801,J Fer
ment Bioeng 86:504-507)。 1.2 培養および脂質分析 液体培養は50ml培地を含む200ml 容バッフルフラスコで
28℃、2〜7日間振盪培養することにより行った。脂肪
酸などの油脂類を添加する場合はtergitol NP-40を1%
となるように加えて培養した。遠心分離により集菌した
後、湿菌体または乾燥菌体をガラスビーズ存在下、クロ
ロホルム−メタノール混液(2:1、v/v)中でホモジナイズ
し、ろ過、水洗、脱水後、濃縮したものを菌体総脂質と
し、秤量した。脂質の1%クロロホルム溶液に等量の10
%塩酸−メタノールを加えて60℃で3時間加熱すること
により脂肪酸のメチルエステル化を行い、そのヘキサン
抽出物についてキャピラリガスクロマトグラフィ(GC)に
より脂肪酸組成を測定した。内部標準としてアラキジン
酸またはノナデカン酸を用い、脂肪酸含量を算出した。
脂肪酸分子種の同定はGC−マススペクトロメトリー分析
により行った。色素成分の分析のために、上で得たクロ
ロホルム相を適量まで濃縮した。暗所において薄層クロ
マトグラフィ(シリカゲル60:Merck)(TLC) を行い、
色素成分を分離した。展開溶媒はアセトン−ヘキサン
(3:7,v/v)を用いた。色素成分の定量はデンシトメータ
ーを用いて行った。 1.3 分子系統解析 菌体を遠心分離によって回収し、溶解液(8M urea,2%
SDS, 0.15 %NaCl, 1mM EDTA, 100mM Tris-HCl, pH7.
5)および液体窒素の存在下で破砕した(Murrayand Thom
pson (1980)Rapid isolation of high molecular weigh
t plant DNA.Nucleic Acid Res 8:4321-4325)。全ゲノ
ムDNAはフェノールクロロホルム法(Sambrook et al.(19
89) Analysis and Cloning of eukaryotic genomic DN
A, In:Nolan C,Ferguson M(eds) Molecular Cloning:A
Laboratory Manual,ed 2,Cold Spring Harbor Laborato
ry Press, Cold Spring Harbor,pp9-31)によって精製
し、PCR反応の鋳型として用いた。18SリボソームRNA(r
RNA)遺伝子の増幅にはオリゴDNAプライマー18sl(5'-CCA
ACCTGGTTGATCCTGCCAGTA-3':配列番号1)および18s12(5'
-CCTTGTTACGACTTCACCTTCCTCT-3':配列番号2)を用いた
(Honda et al. (1999) Molecular phylogeny of labyri
nthulids and thrsustochytrids based on the sequenc
ing of 18S ribosomal RNA gene. J Eukaryot Microbio
l 46:637-647)。PCR反応液(50μl)は5μl 10×PCR b
uffer、20mM dNTPs、0.5μM各プライマー、2units Taq
pclymerase、2μgゲノムDNAを含む。95℃、5minの変
性後、95℃×30sec、55℃×1min、72℃×30secの反応
を30回繰り返し、最後に72℃、10min伸長反応を行っ
た。得られた遺伝子断片のDNA塩基配列はPCR増幅産物あ
るいはそれをpGEM-T Easy Vector(Promega)に挿入して
得たプラスミドを鋳型として、Gene Rapidsシークエン
サー(Amersham Pharmacia Blotech.)を用いて解析し
た。分子系統解析および系統樹の作成はCafeteria roen
bergensisおよびHaematococcuspluvialisをアウトグル
ープとした距離法(Saitou and Nei (1987) The neighbo
r-joining method:a new method for reconstructing p
hylogenetic trees.MolBiol Evol 4:406-425)によって
行った。 2. DHA生産菌KH105株の単離 広島湾および呉湾を中心とした瀬戸内海沿岸の50地点お
よび西表島沿岸のマングローブ群生域の10地点において
海水サンプルを採取して、松花粉を用いた釣り餌法によ
り合計約500種の菌を単離し、純化した。これら各菌株
の菌体内総脂質中の脂肪酸組成をGC分析により調べた結
果、DHAを総脂肪酸中に30%以上含有するものが25種、
エイコサペンタエン酸(EPA)を15%以上含有するものが
3種、さらにアラキドン酸(AA)を25%以上含有するもの
が3種、それぞれ見出された。その中で、顕著量のDHA
およびn-6ドコサペンタエン酸(DPA)を生産し、かつ高増
殖性を示したKH105株に注目した(図1)。フラスコレ
ベルでの液体培養において、総脂質中のPUFA組成はDHA
27.9%、DPA 8.5 %であった(表1)。また、菌体は橙
色ないし橙黄色を呈し、菌体内にカロテノイド様色素を
蓄積していることが推察された。しかし、色素生産性で
光合成系を有する多くの藻類の脂質中に見いだされるn-
3 オクタデカテトラエン酸(C18:4n-3)は検出されなかっ
た。
The method of screening the KH105 strain of the present invention, the mycological properties, etc. will be described in detail below. 1. Method 1.1 Screening for DHA-producing bacteria A suitable amount of pine pollen is floated on the surface of a seawater sample diluted with sterilized water and left standing for 2 to 4 days, and the pine pollen is agar with a platinum loop (3% glucose, 0.1% peptone). , 0.05% yeast extract, 50% artificial seawater (ASW), 2% agar) and spread. After culturing at 28 ° C. for several days, the appeared colonies were spread on a new agar medium and further cultivated for purification. The colonies grown on the agar medium were cut out together with the agar and dried overnight in an open chamber, and then the lipids of the bacterial cells were extracted and the fatty acid composition was measured (Aki et al. (1998) Lipi.
d Composition of Newly Isolated Polyunsaturated Fa
tty Acid Producing fungus, Achlya sp.ma-2801, J Fer
ment Bioeng 86: 504-507). 1.2 Culture and lipid analysis Liquid cultures are performed in 200 ml baffle flasks containing 50 ml medium.
It was carried out by shaking culture at 28 ° C. for 2 to 7 days. When adding fats and oils such as fatty acids, 1% of tergitol NP-40
Were added and cultured. After collecting cells by centrifugation, wet cells or dried cells were homogenized in the presence of glass beads in a chloroform-methanol mixture (2: 1, v / v), filtered, washed with water, dehydrated, and concentrated. The total lipids of the cells were used and weighed. Equal amount of 10 in 1% chloroform solution of lipid
% Hydrochloric acid-methanol was added and the mixture was heated at 60 ° C. for 3 hours to methylate the fatty acid, and the hexane extract was measured for the fatty acid composition by capillary gas chromatography (GC). The fatty acid content was calculated using arachidic acid or nonadecanoic acid as an internal standard.
Identification of fatty acid molecular species was performed by GC-mass spectrometry analysis. The chloroform phase obtained above was concentrated to an appropriate amount for analysis of the dye components. Perform thin layer chromatography (silica gel 60: Merck) (TLC) in the dark,
The pigment component was separated. Developing solvent is acetone-hexane
(3: 7, v / v) was used. The quantification of the dye component was performed using a densitometer. 1.3 Molecular phylogenetic analysis Bacteria were collected by centrifugation and lysed (8M urea, 2%
SDS, 0.15% NaCl, 1 mM EDTA, 100 mM Tris-HCl, pH 7.
5) and liquid nitrogen (Murray and Thom
pson (1980) Rapid isolation of high molecular weigh
t plant DNA.Nucleic Acid Res 8: 4321-4325). Total genomic DNA was phenol-chloroform method (Sambrook et al. (19
89) Analysis and Cloning of eukaryotic genomic DN
A, In: Nolan C, Ferguson M (eds) Molecular Cloning: A
Laboratory Manual, ed 2, Cold Spring Harbor Laborato
ry Press, Cold Spring Harbor, pp9-31) and used as a template for PCR reaction. 18S ribosomal RNA (r
For amplification of (RNA) gene, oligo DNA primer 18sl (5'-CCA
ACCTGGTTGATCCTGCCAGTA-3 ': SEQ ID NO: 1) and 18s12 (5'
-CCTTGTTACGACTTCACCTTCCTCT-3 ': SEQ ID NO: 2) was used
(Honda et al. (1999) Molecular phylogeny of labyri
nthulids and thrsustochytrids based on the sequenc
ing of 18S ribosomal RNA gene. J Eukaryot Microbio
l 46: 637-647). PCR reaction solution (50 μl) is 5 μl 10 x PCR b
uffer, 20 mM dNTPs, 0.5 μM each primer, 2 units Taq
Contains pclymerase, 2 μg genomic DNA. After denaturing at 95 ° C. for 5 minutes, the reaction of 95 ° C. × 30 sec, 55 ° C. × 1 min, 72 ° C. × 30 sec was repeated 30 times, and finally the extension reaction was performed at 72 ° C. for 10 min. The DNA nucleotide sequence of the obtained gene fragment was analyzed using a PCR amplification product or a plasmid obtained by inserting it into pGEM-T Easy Vector (Promega) as a template and using a Gene Rapids sequencer (Amersham Pharmacia Blotech.). Cafeteria roen for molecular phylogenetic analysis and creation of phylogenetic trees
bergensis and Haematococcus pluvialis as an outgroup distance method (Saitou and Nei (1987) The neighbo
r-joining method: a new method for reconstructing p
hylogenetic trees. Mol Biol Evol 4: 406-425). 2. Isolation of DH-producing strain KH105 strain Seawater samples were collected at 50 points on the Seto Inland Sea coast centering on Hiroshima Bay and Kure Bay and 10 points on the mangrove community on the coast of Iriomote Island, and fishing using pine pollen was performed. About 500 species of bacteria were isolated and purified by the bait method. As a result of examining the fatty acid composition in the total lipids in the cells of each of these strains by GC analysis, 25 kinds of DHA contained 30% or more in the total fatty acids,
It was found that three kinds contained eicosapentaenoic acid (EPA) in an amount of 15% or more, and three kinds contained arachidonic acid (AA) in an amount of 25% or more, respectively. Among them, a significant amount of DHA
Attention was paid to the KH105 strain which produced n-6 docosapentaenoic acid (DPA) and showed high proliferation (Fig. 1). In flask-level liquid culture, PUFA composition in total lipid was DHA.
It was 27.9% and DPA 8.5% (Table 1). In addition, it was speculated that the cells were orange or orange-yellow and accumulated carotenoid-like pigment in the cells. However, n- found in many algal lipids that are pigment-producing and have photosynthetic systems
3 Octadecatetraenoic acid (C18: 4n-3) was not detected.

【0031】以上のとおりに単離したKH105株は、2001
年7月25日付で独立行政法人産業技術総合研究所特許生
物寄託センターに、受託番号FERM P-18431として特許寄
託されている。
The KH105 strain isolated as described above was used in 2001
On July 25, 2013, the patent was deposited at the National Institute of Advanced Industrial Science and Technology, Patent Biological Depository Center, with the deposit number FERM P-18431.

【0032】[0032]

【表1】 [Table 1]

【0033】3. KH105株の種属同定 18S rRNA遺伝子のDNA塩基配列に基づく分子系統解析を
行うため、まずKH105株の当遺伝子をPCRによって増幅
し、PCR産物を鋳型としてそのDNA塩基配列を解析してい
たところ、一部の領域においてシークエンサーによるシ
グナルが重複したため解読できなかった。これは鋳型と
したPCR産物中に一部だけ配列が異なる複数のDNA断片が
存在することを示している。18S RAN遺伝子はゲノム上
において多コピーで存在するが、このような多様性は報
告されていなかったので、さらに詳細を解析することに
した。PCR産物をクローニングして得られたクローンか
らランダムに10個を選択し、それぞれについてDNA塩基
配列を決定したところ、図2のように21〜23bpにわたる
5種類の異なる配列が見いだされた。興味深いことに、
この領域は本多らによって見いだされたThraustochytri
d phylogenetic group(TPG)に特異的な挿入配列(Honda
et al. (1999): 前出)の部位と一致した。TPGはこの特
異的な配列の存在によって新たにグループ化されたThra
ustochytrium属やSchizochytrium属などの一部のラビリ
ンチュラ類海洋性微生物を含む分類群である。TPG特異
的配列は18S rRNAにおいてregion 8 helix 46の位置に
あるが(Neefs et al.(1993) Compilation of small rib
osomal subunit RNA structures. Nucleic Acids Res 2
1:3025-3049)、種属によって配列が異なり、その機能は
明らかではない。したがって、KH105株において見いだ
された多様性の意義も不明であるが、この微生物および
その近縁微生物の分子マーカとして利用できる可能性が
ある。少なくともこの特徴的な配列の存在から、KH105
株がThraustochytrium属やSchizochytrium属などのラビ
リンチュラ類に含まれることが強く示唆された。
3. Species identification of KH105 strain In order to perform a molecular phylogenetic analysis based on the DNA base sequence of the 18S rRNA gene, the gene of KH105 strain was first amplified by PCR, and its DNA base sequence was analyzed using the PCR product as a template. However, it could not be decoded because the signals from the sequencer overlapped in some areas. This indicates that a plurality of DNA fragments differing in sequence only partially exist in the PCR product used as the template. Although the 18S RAN gene exists in multiple copies on the genome, since such diversity has not been reported, it was decided to analyze it in further detail. Ten clones were randomly selected from the clones obtained by cloning the PCR product, and the DNA base sequence was determined for each clone. As shown in FIG. 2, five different sequences ranging from 21 to 23 bp were found. Interestingly,
This region was discovered by Honda et al. Thraustochytri
d Phylogenetic group (TPG) -specific insertion sequence (Honda
It coincided with the site of et al. (1999): supra. TPGs are newly grouped by the presence of this specific sequence Thra
It is a taxon that contains some labyrinthula marine microorganisms such as Ustochytrium and Schizochytrium. The TPG-specific sequence is located at region 8 helix 46 in 18S rRNA (Neefs et al. (1993) Compilation of small rib
Nucleic Acids Res 2
1: 3025-3049), the sequence differs depending on the species and its function is not clear. Therefore, although the significance of the diversity found in the KH105 strain is unknown, it may be used as a molecular marker for this microorganism and its related microorganisms. At least due to the presence of this characteristic sequence, KH105
It was strongly suggested that the strain is contained in Labyrinthula such as Thraustochytrium and Schizochytrium.

【0034】そこでラビリンチュラ類の微生物群を対照
としてKH105株の分子系統解析を行ったところ、図3の
系統樹に示されるようにS.limacinum SR21に最も近縁で
あることが分かった。実際、KH105株の脂肪酸組成(表
1)や培地中炭素現の資化性(後述)はSR21株のそれと
極めてよく似ていた(Yokochi et al. (1998) Optimizat
ion of docosahexaenoic acid production by Schizoch
ytrium limacinum SR21. Appl Microbio Biotechnol 4
9:72-76) 。さらに、KH105株の生活環を顕微鏡観察した
ところ、Schizochytrium属に特有の栄養細胞の連続二分
裂が観察された(図1)(Honda et al. (1998) Schizoc
hytnum hmacmum sp.nov.,a new thraustochyirid from
a mangrove area in the west Pacific Ocean. Mycol R
es 102-439-448)。これらの事実から、KH105株はSchizo
chytrium属に含まれると結論した。しかし、S.limacinu
m SR21株とKH105株の18Sr RNA遺伝子は86.3%(1544 bp
の比較)の相同性に過ぎず、SR21株が色素を生産しない
ことから、同種であるという結論には至っていない。実
際、ラビリンチュラ類に属する微生物群については、形
態などを基準にした従来の分類・命名と分子系統解析に
よる分類が必ずしも一致していない。これは、ラビリン
チュラ微生物が多彩な生活環を有し、培養条件によって
形態が著しく変化することなどが原因であると考えられ
るため、今後、統一した条件での形態観察が必要であ
る。また、EF1-αなどタンパク質のアミノ酸配列での分
子系統解析を加えた再編成も有効かもしれない(Roger e
t al. (1999) An evaluation of elongation factor 1
alpha as a phylogenetic markerfor eukaryotes. Mol
Biol Evol 16:218-233)。
Then, when the molecular phylogenetic analysis of the KH105 strain was carried out using the labyrinthula microbial group as a control, it was found that it was the closest relative to S. limacinum SR21 as shown in the phylogenetic tree of FIG. In fact, the fatty acid composition of KH105 strain (Table 1) and the assimilability of carbon expression in the medium (described later) were very similar to those of SR21 strain (Yokochi et al. (1998) Optimizat
ion of docosahexaenoic acid production by Schizoch
ytrium limacinum SR21. Appl Microbio Biotechnol 4
9: 72-76). Furthermore, when the life cycle of the KH105 strain was observed under a microscope, continuous mitosis of vegetative cells peculiar to the genus Schizochytrium was observed (Fig. 1) (Honda et al. (1998) Schizoc
hytnum hmacmum sp.nov., a new thraustochyirid from
a mangrove area in the west Pacific Ocean. Mycol R
es 102-439-448). From these facts, the KH105 strain is Schizo
It was concluded that it is included in the chytrium genus. But S.limacinu
18Sr RNA gene of mSR21 strain and KH105 strain was 86.3% (1544 bp
However, since the SR21 strain does not produce pigment, it cannot be concluded that it is the same species. In fact, regarding the group of microorganisms belonging to the Labyrinthula, the conventional classification and nomenclature based on morphology and the classification by molecular phylogenetic analysis do not necessarily match. It is considered that this is because the labyrinthula microorganisms have various life cycles and the morphology changes remarkably depending on the culture conditions. Therefore, morphological observation under unified conditions is required in the future. In addition, reorganization that adds molecular phylogenetic analysis to the amino acid sequence of proteins such as EF1-α may be effective (Roger e
t al. (1999) An evaluation of elongation factor 1
alpha as a phylogenetic marker for eukaryotes. Mol
Biol Evol 16: 218-233).

【0035】以下、実施例を示してこの出願の発明につ
いてさらに詳細かつ具体的に説明するが、この出願の発
明は以下の例によって限定されるものではない。
Hereinafter, the invention of this application will be described in more detail and specifically with reference to Examples, but the invention of this application is not limited by the following examples.

【0036】[0036]

【実施例】実施例1:KH105株からのカロテノイド系色
素の取得 以下に示す方法により、KH105株からカロテノイド色素
を採取した。
Examples Example 1: Acquisition of carotenoid pigments from KH105 strain Carotenoid pigments were collected from KH105 strain by the following method.

【0037】グルコース(またはガラクトース、フルク
トース、マンノース、アラビノース、グリセロール)3
%、酵母エキス0.5%、ペプトン1.5%、人工海水50%を
含む培地50mlを200mlエルレンマイヤーフラスコに入
れ、120℃で20分間殺菌した。
Glucose (or galactose, fructose, mannose, arabinose, glycerol) 3
%, Yeast extract 0.5%, peptone 1.5%, artificial seawater 50%, 50 ml of a medium was placed in a 200 ml Erlenmeyer flask and sterilized at 120 ° C. for 20 minutes.

【0038】シゾキトリウム属KH105株をコーンミール
アガー0.85%、バクトアガー0.75%、人工海水50%を含
む寒天培地に植菌し、コロニーを形成させた。一白金耳
を取り、50ml培地に植菌し、レシプロシェーカー(160rp
m)により28℃で2日間培養した。
The Schizochytrium sp. Strain KH105 was inoculated on an agar medium containing 0.85% of corn meal agar, 0.75% of bactoagar and 50% of artificial seawater to form colonies. Take one platinum loop, inoculate in 50 ml medium, and use a reciprocal shaker (160 rp).
The cells were cultured at 28 ° C. for 2 days.

【0039】培養後、遠心分離(3000rpm,10min)により
菌体を回収し、蒸留水で2回洗浄した。30mlのアセトン
/メタノール(7:3)を加え、等量程度のガラスビーズと
ともに氷冷下でホモジナイス(10000rpm,5min)した。無
水硫酸ナトリウムを適量加えて脱水した後、窒素気流
下、室温で蒸発乾固した。これを−20℃で遮光保存し
た。
After culturing, cells were collected by centrifugation (3000 rpm, 10 min) and washed twice with distilled water. 30 ml of acetone / methanol (7: 3) was added, and homogenized (10000 rpm, 5 min) under ice-cooling together with approximately the same amount of glass beads. After dehydration by adding an appropriate amount of anhydrous sodium sulfate, the mixture was evaporated to dryness at room temperature under a nitrogen stream. This was stored at -20 ° C protected from light.

【0040】濃縮したカロテノイド色素のアセトン溶液
をシリカゲル薄層プレート(シリカゲル60)にスポット
し、展開溶媒としてアセトン/ヘキサン(3:7)を用いて
遮光条件下でクロマト展開した。このとき、溶媒には酸
化防止剤としてエトキシクインを7.5mg/mlとなるよう
に加えた。
The concentrated solution of carotenoid dye in acetone was spotted on a silica gel thin layer plate (silica gel 60) and subjected to chromatographic development under light-shielding conditions using acetone / hexane (3: 7) as a developing solvent. At this time, ethoxyquin was added to the solvent as an antioxidant at 7.5 mg / ml.

【0041】カラムクロマトグラフ用シリカゲル60を13
0℃で3時間加熱処理して活性化させた。これをクロロ
ホルムに懸濁し、20cm高程度のカラムに詰めた。クロロ
ホルム、ヘキサンで順次カラムを洗浄した後、カロテノ
イド色素サンプルをアプライした。
13 silica gel 60 for column chromatography
It was activated by heat treatment at 0 ° C. for 3 hours. This was suspended in chloroform and packed in a 20 cm high column. After washing the column sequentially with chloroform and hexane, a carotenoid dye sample was applied.

【0042】溶出溶媒として、カラム2倍量のヘキサ
ン、ヘキサン/アセトン(50:1)、同(20:1)、同(10:
1)、同(4:1)、アセトンを用いて段階溶出させた。視認
できる部分はバンドの色合いを見て分画し、そうでない
部分は経時的に画分を採取した。以上の操作をできるだ
け遮光条件下で行った。
As the elution solvent, hexane, hexane / acetone (50: 1), the same (20: 1) and the same (10:
1), the same (4: 1), and stepwise elution with acetone. The visible part was fractionated by looking at the color of the band, and the other part was fractionated with time. The above operation was performed under the shaded condition as much as possible.

【0043】色素成分のヘキサン溶液の400〜500nmにお
ける吸光度を分光光度計で測定した。また、450nmにお
ける吸光度をもとに、吸光係数からβ−カロテン濃度を
算出した。
The absorbance of the hexane solution of the dye component at 400 to 500 nm was measured with a spectrophotometer. Further, based on the absorbance at 450 nm, the β-carotene concentration was calculated from the extinction coefficient.

【0044】E(1%)/(1cm)=2592 図4に抽出成分の薄層クロマト分析の結果を示す。E (1%) / (1cm) = 2592 FIG. 4 shows the results of thin layer chromatographic analysis of the extracted components.

【0045】これによってKH105株に由来する色素成分
として、β−カロテン、アスタキサンチンおよびアスタ
キサンチン脂肪酸エステルが確認された。
As a result, β-carotene, astaxanthin and astaxanthin fatty acid ester were confirmed as pigment components derived from the KH105 strain.

【0046】図5に分画された色素成分の薄層クロマト
分析の結果を示す。
FIG. 5 shows the results of thin layer chromatographic analysis of the fractionated dye components.

【0047】図6には図5中に示す分画された色素成分
(Fr.1, Fr.2およびFr.5)の吸光特性を示す。
FIG. 6 shows the absorption characteristics of the fractionated dye components (Fr.1, Fr.2 and Fr.5) shown in FIG.

【0048】β−カロテンは単一色素成分として分画さ
れ、420nm, 450nm, 475nmに吸光極大を示した。β−カ
ロテンは培地1リットルあたり約1〜5mgが生産されて
いた。薄層クロマト分析におけるスポット強度から、ア
スタキサンチンおよびその脂肪酸エステルは培地1リッ
トルあたり約2〜10mgが生産されていた。実施例2:KH
105株からのカロテノイド色素とDHAの取得以下に示す方
法により、KH105株からカロテノイド色素とDHAなどの高
度不飽和脂肪酸を同時に取得した。
Β-carotene was fractionated as a single dye component, and exhibited absorption maximums at 420 nm, 450 nm and 475 nm. About 1 to 5 mg of β-carotene was produced per liter of medium. From the spot intensity in the thin layer chromatographic analysis, about 2 to 10 mg of astaxanthin and its fatty acid ester were produced per liter of the medium. Example 2: KH
Acquisition of carotenoid pigment and DHA from strain 105 The carotenoid pigment and highly unsaturated fatty acids such as DHA were simultaneously obtained from strain KH105 by the method described below.

【0049】培地、植菌、培養は実施例1と同様とし
た。培養後、遠心分離(3000rpm, 10min)により菌体を回
収し、蒸留水で2回洗浄した。30mlのクロロホルム/メ
タノール(2:1)を加え、等量程度のガラスビーズととも
に水冷下でホモジナイズ10000rpm, 5min)した。遠心分
離(3000rpm, 10min)した後、クロロホルム層を取り、窒
素気流下、室温で蒸発乾固した。これを−20℃で遮光保
存した。
The medium, inoculation, and culture were the same as in Example 1. After culturing, the cells were collected by centrifugation (3000 rpm, 10 min) and washed twice with distilled water. 30 ml of chloroform / methanol (2: 1) was added, and the mixture was homogenized with water in an amount of glass beads under water cooling (10000 rpm, 5 min). After centrifugation (3000 rpm, 10 min), the chloroform layer was taken and evaporated to dryness at room temperature under a nitrogen stream. This was stored at -20 ° C protected from light.

【0050】カロテノイド色素の薄層クロマト分析は実
施例1と同じ方法で行った。
Thin layer chromatographic analysis of carotenoid dye was carried out in the same manner as in Example 1.

【0051】脂質は10%塩酸/メタノール液を等量加え
て、60℃で3時間加熱することにより、加水分解および
メチルエステル化した。窒素気流下、60℃で蒸発乾固し
た後、ヘキサンと蒸留水を1mlずつ加え、激しく攪拌し
た後、遠心分離(3000rpm, 3min)した。ヘキサン層を取
り、再度窒素気流下、60℃で蒸発乾固した。50μlのヘ
キサンに溶解して、ガスクロマトグラフィーによる脂肪
酸組成分析を行った。
The lipid was hydrolyzed and methyl-esterified by adding an equal amount of 10% hydrochloric acid / methanol solution and heating at 60 ° C. for 3 hours. After evaporating to dryness at 60 ° C. under a nitrogen stream, hexane and distilled water (1 ml each) were added, and the mixture was vigorously stirred and then centrifuged (3000 rpm, 3 min). The hexane layer was taken, and again evaporated to dryness at 60 ° C under a nitrogen stream. It was dissolved in 50 μl of hexane and the fatty acid composition was analyzed by gas chromatography.

【0052】カロテノイド色素の薄層クロマト分析の結
果は、実施例1において図4に示したものと同じものが
得られた。
The results of thin layer chromatographic analysis of carotenoid dyes were the same as those shown in FIG. 4 in Example 1.

【0053】脂肪酸組成分析の結果は、表1に示した通
りであった。
The results of fatty acid composition analysis are shown in Table 1.

【0054】以上のように、KH105株由来のクロロホル
ム抽出された脂質成分から、β−カロテンやアスタキサ
ンチンを含むカロテノイド色素とDHA(27.9%)やDPA(8.
5%)を含む高度不飽和脂肪酸を同時に抽出することがで
きた。 実施例3:KH105からのDHAを含む高度不飽和脂肪酸の取
得 以下に示す方法により、KH105株を用いてDHAを含む高度
不飽和脂肪酸を大量に生産した。
As described above, from the chloroform-extracted lipid components derived from the KH105 strain, carotenoid pigments containing β-carotene and astaxanthin, DHA (27.9%) and DPA (8.
Polyunsaturated fatty acids containing 5%) could be extracted simultaneously. Example 3: Acquisition of highly unsaturated fatty acid containing DHA from KH105 By the method shown below, a large amount of highly unsaturated fatty acid containing DHA was produced using KH105 strain.

【0055】グルコース9%、酵母エキス1%、ペプト
ン2%、人工海水50%を含む培地(pH7.0)2リットルを3
リットルのジャーファーメンター槽に入れ、120℃で20
分間殺菌した。
3 liters of a medium (pH 7.0) containing 9% glucose, 1% yeast extract, 2% peptone and 50% artificial seawater was added.
Place in a liter jar fermenter tank, 120 ° C for 20
Sterilized for a minute.

【0056】シゾキトリウム属KH105株をコーンミール
アガー0.85%、バクトアガー0.76%、人工海水50%を含
む寒天培地に植菌し、コロニーを形成させた。一白金耳
を取り、50ml培地に植菌し、レシプロシェーカー(160rp
m)により28℃で2日間培養した。
The Schizochytrium sp. Strain KH105 was inoculated on an agar medium containing 0.85% cornmeal agar, 0.76% bactoagar and 50% artificial seawater to form colonies. Take one platinum loop, inoculate in 50 ml medium, and use a reciprocal shaker (160 rp).
The cells were cultured at 28 ° C. for 2 days.

【0057】これを2リットル培地に植菌し、28℃、攪
拌速度500rpm、通気量5リットル/minで7日間培養し
た。
This was inoculated into a 2 liter medium and cultured for 7 days at 28 ° C., a stirring speed of 500 rpm, and an aeration rate of 5 liter / min.

【0058】培養中および培養後の培養液を10mlずつ採
取し、遠心分離(3000rpm, 10min)により菌体を回収して
105℃で数時間乾燥させた。この重量を測定することに
より、菌体量を算出した。乾菌体を細かく破砕した後、
10mlのクロロホルム/メタノール(2:1)を加え、氷冷下
でホモジナイス(10000rpm, 5min)した。遠心分離(3000r
pm, 10min)した後、クロロホルム層を取り、窒素気流
下、室温で蒸発乾固した。
10 ml of the culture solution was collected during and after the culture, and the cells were collected by centrifugation (3000 rpm, 10 min).
It was dried at 105 ° C for several hours. By measuring this weight, the amount of bacterial cells was calculated. After finely crushing the dry cells,
10 ml of chloroform / methanol (2: 1) was added, and the mixture was homogenized (10000 rpm, 5 min) under ice cooling. Centrifuge (3000r
After that, the chloroform layer was removed and evaporated to dryness at room temperature under a nitrogen stream.

【0059】内部標準としてアラキジン酸標準物質を50
μg相当量加えた。これを−20℃で遮光保存した。
An arachidic acid standard substance was used as an internal standard.
μg equivalent amount was added. This was stored at -20 ° C protected from light.

【0060】抽出した脂質に10%塩酸/メタノール液を
等量加えて、60℃で3時間加熱することにより、加水分
解およびメチルエステル化した。窒素気流下、60℃で蒸
発乾固した後、ヘキサンと蒸留水を1mlずつ加え、激し
く攪拌した後、遠心分離(3000rpm, 3min)した。ヘキサ
ン層を取り、再度窒素気流下、60℃で蒸発乾固した。50
μlのヘキサンに溶解して、ガスクロマトグラフィーに
よる脂肪酸組成分析を行った。総脂質量および各脂肪酸
量は内部標準物質との比較により算出した。
An equal amount of a 10% hydrochloric acid / methanol solution was added to the extracted lipid, and the mixture was heated at 60 ° C. for 3 hours for hydrolysis and methyl esterification. After evaporating to dryness at 60 ° C. under a nitrogen stream, hexane and distilled water (1 ml each) were added, and the mixture was vigorously stirred and then centrifuged (3000 rpm, 3 min). The hexane layer was taken, and again evaporated to dryness at 60 ° C under a nitrogen stream. 50
After dissolving in μl of hexane, fatty acid composition analysis by gas chromatography was performed. The total lipid amount and each fatty acid amount were calculated by comparison with the internal standard substance.

【0061】図7にKH105株のジャーファーメンター培
養の結果を示す。
FIG. 7 shows the results of jar fermenter culture of KH105 strain.

【0062】KH105株のジャーファーメンター培養によ
り、培養83時間の時点で最大値として乾菌体17g/リット
ル、全脂肪酸9.9g/リットル、DHA3.4g/リットルが得ら
れた。 実施例4:KH105株によるDHA生産条件の検討 KH105株を基本培地(グルコース3%、酵母エキス 0.5
%、ペプトン1%、人工海水50%)において28℃でフラ
スコ培養(50ml)したところ、36−48hrで定常期に達し、
それ以後はDHA生産量も増加しないことが分かった。人
工海水濃度が50−100%のときに菌体増殖およびDHA生産
量が最大となった(図8)ので、それ以後は前述のごと
く人工海水濃度は50%とすることにした。数種類の炭素
源および油脂類についてKH105株の資化性とDHA生産量を
調べたところ、グルコースを用いたときに最大となり、
グリセロールや酢酸ナトリウムも適していることが分か
った(表2)。
By jar fermenter culture of the KH105 strain, 17 g / liter of dry cells, 9.9 g / liter of total fatty acids and 3.4 g / liter of DHA were obtained as maximum values at the time of 83 hours of culture. Example 4: Examination of DHA production conditions by KH105 strain KH105 strain was used as a basic medium (glucose 3%, yeast extract 0.5.
%, Peptone 1%, artificial seawater 50%), flask culture (50 ml) at 28 ° C. reached a stationary phase in 36-48 hr,
It was found that DHA production did not increase after that. When the artificial seawater concentration was 50-100%, the cell growth and the DHA production reached the maximum (Fig. 8), so it was decided to set the artificial seawater concentration to 50% as described above. When the assimilation and DHA production of the KH105 strain were examined for several types of carbon sources and fats and oils, the maximum was obtained when glucose was used,
Glycerol and sodium acetate have also been found to be suitable (Table 2).

【0063】[0063]

【表2】 [Table 2]

【0064】それらと比較して、サッカロースやマルト
ースなどの二糖、あるいは多糖である可溶性デンプンで
は低い値が得られた。炭素源の資化性に関するこの傾向
はSR21株のそれと似ている(Honda et al. (1998) Schiz
ochytnum hmacmum sp. nov.,a new thraustochyirid fr
om a mangrove area in the west Pacific Ocean. Myco
l Res 102:439-448)。次に窒素源について調べた結果、
ペプトンが最も適していることが分かった(表2)。酵
母エキスの場合は脂質蓄積量が低かったものの、増殖性
やDHA含率は高かったので、これらを組み合わせて用い
ることにした。予備実験により、ペプトンと酵母エキス
の量比としては2:1が適していることが分かった。
As compared with them, a lower value was obtained with soluble starch which is a disaccharide such as sucrose or maltose or a polysaccharide. This tendency for carbon source assimilation is similar to that of the SR21 strain (Honda et al. (1998) Schiz
ochytnum hmacmum sp. nov., a new thraustochyirid fr
om a mangrove area in the west Pacific Ocean. Myco
l Res 102: 439-448). Next, as a result of examining the nitrogen source,
It was found that peptone was the most suitable (Table 2). In the case of yeast extract, the lipid accumulation was low, but the proliferation and DHA content were high, so we decided to use them in combination. Preliminary experiments revealed that a suitable ratio of peptone and yeast extract was 2: 1.

【0065】グルコース濃度について検討したところ、
6−12%においてほぼ同等のDHA生産性を得たが、9%
で最も高かった(1.1g DHA/L;図9)。また、15%でも
0.8g/L程度のDHA生産性を示し、高濃度培地に耐性を示
す興味深い菌株であることが分かった。次に種々の窒素
源濃度について比較したところ、ペプトン2%、酵母エ
キス1%を用いたときに最も高いDHA生産量を示した
(1.2g−DHA/L;図10)。このとき、生物量(バイオマ
ス)は11.4g/L、総脂肪酸量は5.2g/L、総脂肪酸中のDHA
含率は23.1%であった。したがって、少なくともフラス
コレベルでは、KH105株によるDHA生産に関する至適培地
組成はグルコース9%、ペプトン2%、酵母エキス1
%、人工海水50%であることが分かった。
When the glucose concentration was examined,
6-12% yielded almost the same DHA productivity, but 9%
Was highest (1.1 g DHA / L; Fig. 9). Also, even at 15%
It was found to be an interesting strain showing a DHA productivity of about 0.8 g / L and resistant to a high concentration medium. Next, when various nitrogen source concentrations were compared, the highest DHA production was shown when 2% peptone and 1% yeast extract were used (1.2 g-DHA / L; FIG. 10). At this time, biomass (biomass) was 11.4 g / L, total fatty acid content was 5.2 g / L, and DHA in total fatty acid was
The content was 23.1%. Therefore, at least at the flask level, the optimal medium composition for DHA production by the KH105 strain is glucose 9%, peptone 2%, yeast extract 1
%, Artificial seawater 50%.

【0066】以上のように、KH105株はフラスコレベル
での2日間の培養で最大1.2g/LのDHA生産性を示した。
この値は、現在最もDHA生産性が高いとされるSR21株に
おいて、ほぼ同条件での分析で報告された生産性(0.7−
1.5g/L;(Yokochi et al. (1998) Optimization of do
cosahexaenoic acid production by Schizochytrium li
macinum SR21, Appl Microbiol Biotechnol 49;72-76)
に匹敵するものであり、工業利用などに有望な株である
と言える。また、予備実験レベルで通気量(溶存酸素
量)が重要な因子であることが示唆されており、今後大
スケールでの培養を行う場合はこの点についても厳密に
制御する必要があると考えられる。
As described above, the KH105 strain showed a maximum DHA productivity of 1.2 g / L after 2 days of culture at the flask level.
This value corresponds to the productivity (0.7-0.7) reported in the analysis under almost the same conditions for the SR21 strain, which is currently considered to have the highest DHA productivity.
1.5g / L; (Yokochi et al. (1998) Optimization of do
cosahexaenoic acid production by Schizochytrium li
macinum SR21, Appl Microbiol Biotechnol 49; 72-76)
Can be said to be a promising strain for industrial use. Further, it has been suggested that the aeration rate (dissolved oxygen content) is an important factor at the preliminary experiment level, and it is considered that this point also needs to be strictly controlled when culturing on a large scale in the future. .

【0067】[0067]

【発明の効果】以上詳しく説明したとおり、この出願の
発明によって、増殖性および油脂蓄積性に優れ、カロテ
ノイド系物質およびドコサヘキサエン酸(DHA)生産能が
高い新規微生物が提供される。この微生物を用いること
によって、食品、医薬品の分野で有用なカロテノイド系
物質およびDHA含有量の高い油脂を、従来にない高収率
で効率よく製造することができる。この発明による方法
で製造された物質は混合物のまま、食品、医薬品として
供しても効果は大きいが、この発明の製造方法により得
られるカロテノイド系物質およびDHA含有油脂は、イコ
サペンタエン酸(表1のC20:5n-3)含有割合が低いの
で、油脂からDHAの分離・精製も容易である。したがっ
て、そのDHA含有油脂から効率よくDHAを製造することが
できる。すなわち、この発明により、特に現在、かんき
つ類より分類精製されているカロテノイド系物質および
魚油から分離精製されているDHA含有油脂に代わる、培
養法によるカロテノイド系物質およびDHA含有油脂であ
って、イコサペンタエン酸含有割合の極めて低いDHA含
有油脂の優れた製造法が提供される。
INDUSTRIAL APPLICABILITY As described in detail above, the invention of this application provides a novel microorganism which is excellent in proliferative properties and oil and fat accumulation properties, and has a high ability to produce carotenoid substances and docosahexaenoic acid (DHA). By using this microorganism, it is possible to efficiently produce carotenoid substances and fats and oils having a high DHA content, which are useful in the fields of foods and pharmaceuticals, at high yields that have never been achieved. The substance produced by the method according to the present invention has a great effect even if it is used as a food or a medicine as it is as a mixture. However, the carotenoid substance and the DHA-containing oil and fat obtained by the production method of the present invention contain icosapentaenoic acid (C20 in Table 1). : 5n-3) The low content ratio makes it easy to separate and purify DHA from fats and oils. Therefore, DHA can be efficiently produced from the DHA-containing oil and fat. That is, according to the present invention, in particular, carotenoid substances and DHA-containing fats and oils by the culture method, which replace the DHA-containing fats and oils separated and purified from the carotenoid-based substances and fish oils that are currently classified and purified from citrus, and which contain icosapentaenoic acid, An excellent method for producing a fat and oil containing DHA having an extremely low ratio is provided.

【0068】[0068]

【配列表】 SEQUENCE LISTING <110> Japan Science and Technology Corporation <120> A marine bacterium and a method for producing carotenoid substance and/or poly unsaturated fatty acids by using the bacterium <130> NP01274 <160> <210> 1 <211> 24 <212> DNA <213> Artificial sequence <220> <223> Description of artificial sequence: Synthesized oligonucleotide <400> 1 ccaacctggt tgatcctgcc agta 24 <210> 2 <211> 25 <212> DNA <213> Artificial sequence <220> <223> Description of artificial sequence: Synthesized oligonucleotide <400> 2 ccttgttacg acttcacctt cctct 25[Sequence list] SEQUENCE LISTING <110> Japan Science and Technology Corporation <120> A marine bacterium and a method for producing carotenoid substance      and / or poly unsaturated fatty acids by using the bacterium <130> NP01274 <160> <210> 1 <211> 24 <212> DNA <213> Artificial sequence <220> <223> Description of artificial sequence: Synthesized oligonucleotide <400> 1 ccaacctggt tgatcctgcc agta 24 <210> 2 <211> 25 <212> DNA <213> Artificial sequence <220> <223> Description of artificial sequence: Synthesized oligonucleotide <400> 2 ccttgttacg acttcacctt cctct 25

【図面の簡単な説明】[Brief description of drawings]

【図1】シゾキトリウム(Schizochytrium)属KH105株の
顕微鏡写真を示す。
FIG. 1 shows a micrograph of Schizochytrium KH105 strain.

【図2】シゾキトリウム(Schizochytrium)属KH105株18S
rRNA遺伝子上のDNA塩基配列をThraustochytrid phyloge
netic group(TPG)に特異的な挿入配列と比較して示す。
Figure 2: Schizochytrium KH105 strain 18S
Thraustochytrid phyloge DNA sequence of rRNA gene
It is shown in comparison with the insertion sequence specific to the netic group (TPG).

【図3】ラビリンチュラ類の微生物群を対照としてKH10
5株の分子系統解析を行った結果の系統樹を示す。
[Fig. 3] KH10 with a labyrinthula microbial group as a control
The phylogenetic tree resulting from the molecular phylogenetic analysis of 5 strains is shown.

【図4】KH105株色素成分の薄層クロマト分析の結果を
示す。
FIG. 4 shows the results of thin layer chromatographic analysis of KH105 strain dye components.

【図5】図4で分画された色素成分の薄層クロマト分析
の結果を示す。
FIG. 5 shows the results of thin layer chromatographic analysis of the dye components fractionated in FIG.

【図6】図5で分画された色素の吸光特性を示す。FIG. 6 shows the absorption characteristics of the dyes fractionated in FIG.

【図7】KH105株のジャーファーメンター培養の結果を
示す。
FIG. 7 shows the results of jar fermenter culture of KH105 strain.

【図8】KH105株によるDHA生成に及ぼす人工海水濃度
(50−100%)の影響を示す。
FIG. 8 shows the effect of artificial seawater concentration (50-100%) on DHA production by the KH105 strain.

【図9】KH105株によるDHA生成に及ぼすグルコース濃度
の影響を示す。
FIG. 9 shows the effect of glucose concentration on DHA production by strain KH105.

【図10】KH105株によるDHA生成に及ぼす窒素源濃度の
影響を示す。
FIG. 10 shows the effect of nitrogen source concentration on DHA production by KH105 strain.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) C12R 1:645) C12R 1:645 (C12P 7/64 C12R 1:645) (C12P 23/00 C12R 1:645) (72)発明者 重田 征子 広島県佐伯郡大野町沖塩屋2−9−13 (72)発明者 河本 正次 広島県東広島市西条中央8丁目6−3− 203 Fターム(参考) 4B064 AD88 AH01 CA05 CC03 CD02 CD09 CD20 CD21 CD30 DA10 DA20 4B065 AA58X AC08 BA22 BB02 BB06 BB08 BB12 BB15 BB19 BB22 BB24 BB40 BC01 CA05 CA13 ─────────────────────────────────────────────────── ─── Continuation of front page (51) Int.Cl. 7 identification code FI theme code (reference) C12R 1: 645) C12R 1: 645 (C12P 7/64 C12R 1: 645) (C12P 23/00 C12R 1: 645) (72) Inventor, Seiko Shigeta 2-9-13, Oki-Shioya, Ono-cho, Saiki-gun, Hiroshima Prefecture (72) Shoji Kawamoto, 8-3-3, Saijo Chuo, Higashi-Hiroshima City, Hiroshima Prefecture (reference) 4B064 AD88 AH01 CA05 CC03 CD02 CD09 CD20 CD21 CD30 DA10 DA20 4B065 AA58X AC08 BA22 BB02 BB06 BB08 BB12 BB15 BB19 BB22 BB24 BB40 BC01 CA05 CA13

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】 シゾキトリウム(Schizochytrium)属KH10
5株(FERM P-18431)。
1. A schizochytrium genus KH10.
5 shares (FERM P-18431).
【請求項2】 シゾキトリウム(Schizochytrium)属KH10
5株(FERM P-18431)を培地中で培養し、培養物からカ
ロテノイド系色素を採取することを特徴とする、カロテ
ノイド系物質の製造方法。
2. A Schizochytrium genus KH10.
A method for producing a carotenoid substance, which comprises culturing 5 strains (FERM P-18431) in a medium and collecting a carotenoid pigment from the culture.
【請求項3】 シゾキトリウム(Schizochytrium)属KH10
5株(FERM P-18431)を培地中で培養し、培養物からカ
ロテノイド系物質および高度不飽和脂肪酸を採取するこ
とを特徴とする、カロテノイド系物質および高度不飽和
脂肪酸の製造方法。
3. A Schizochytrium genus KH10.
A method for producing a carotenoid substance and a polyunsaturated fatty acid, which comprises culturing 5 strains (FERM P-18431) in a medium and collecting the carotenoid substance and the polyunsaturated fatty acid from the culture.
【請求項4】 シゾキトリウム(Schizochytrium)属KH10
5株(FERM P-18431)を培地中で培養し、培養物から高
度不飽和脂肪酸を採取することを特徴とする、高度不飽
和脂肪酸の製造方法。
4. A schizochytrium genus KH10.
A method for producing a highly unsaturated fatty acid, which comprises culturing 5 strains (FERM P-18431) in a medium and collecting the highly unsaturated fatty acid from the culture.
【請求項5】 培地中の海水濃度を50%以上とする請求
項2から4のいずれかの製造方法。
5. The method according to claim 2, wherein the concentration of seawater in the medium is 50% or more.
【請求項6】 培地中の炭素源が、グルコース、グリセ
ロール、酢酸ナトリウムの1以上である請求項2から5
のいずれかの製造方法。
6. The carbon source in the medium is one or more of glucose, glycerol and sodium acetate.
One of the manufacturing method of.
【請求項7】 炭素源の濃度を6−12%とする請求項6
の製造方法。
7. The carbon source concentration is 6-12%.
Manufacturing method.
【請求項8】 培地中の窒素源が、ペプトン、硝酸ナト
リウム、硝酸カリウムの1以上である請求項2から7の
いずれかの製造方法。
8. The method according to claim 2, wherein the nitrogen source in the medium is at least one of peptone, sodium nitrate and potassium nitrate.
JP2001243436A 2001-08-10 2001-08-10 Marine microorganism, and method for manufacturing carotenoid pigment and/or higher unsaturated fatty acid by using the microorganism Pending JP2003052357A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001243436A JP2003052357A (en) 2001-08-10 2001-08-10 Marine microorganism, and method for manufacturing carotenoid pigment and/or higher unsaturated fatty acid by using the microorganism

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001243436A JP2003052357A (en) 2001-08-10 2001-08-10 Marine microorganism, and method for manufacturing carotenoid pigment and/or higher unsaturated fatty acid by using the microorganism

Publications (1)

Publication Number Publication Date
JP2003052357A true JP2003052357A (en) 2003-02-25

Family

ID=19073528

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001243436A Pending JP2003052357A (en) 2001-08-10 2001-08-10 Marine microorganism, and method for manufacturing carotenoid pigment and/or higher unsaturated fatty acid by using the microorganism

Country Status (1)

Country Link
JP (1) JP2003052357A (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007143479A (en) * 2005-11-28 2007-06-14 Kyushu Univ Method for producing long-chain highly unsaturated fatty acid-containing phospholipid by using microorganism of genus schizochytrium
CN102732049A (en) * 2012-06-04 2012-10-17 华中科技大学 Method for preparing and extracting carotenoid from microbial thalli
JP2015509733A (en) * 2012-03-16 2015-04-02 フェルメンタル Production of docosahexaenoic acid and astaxanthin in mixed nutrition mode by Schizochytrium
JP2015226533A (en) * 2014-05-07 2015-12-17 株式会社ヤクルト本社 Food and drink containing algae-derived component
CN105685766A (en) * 2014-11-27 2016-06-22 丰益(上海)生物技术研发中心有限公司 Microalgae broth exopolysaccharide and its preparation method and use
JP2017511149A (en) * 2014-04-17 2017-04-20 ワンス イノヴェイションズ, インコーポレイテッドOnce Innovations, Inc. Light sources adapted to the spectral sensitivity of plants
WO2017094804A1 (en) * 2015-12-01 2017-06-08 日本水産株式会社 Docosahexaenoic acid-containing oil and method for producing same
WO2019131502A1 (en) * 2017-12-26 2019-07-04 国立大学法人広島大学 Method for producing lipids
JP2020510716A (en) * 2017-02-22 2020-04-09 カーギル インコーポレイテッド Purification of DHA-containing oil
CN112481189A (en) * 2020-12-29 2021-03-12 嘉必优生物技术(武汉)股份有限公司 Method for domesticating schizochytrium limacinum and application thereof
CN114134049A (en) * 2021-12-01 2022-03-04 清远一生自然生物研究院有限公司 Schizochytrium SL-916 for co-production of DHA and beta-carotene and application thereof

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007143479A (en) * 2005-11-28 2007-06-14 Kyushu Univ Method for producing long-chain highly unsaturated fatty acid-containing phospholipid by using microorganism of genus schizochytrium
JP2015509733A (en) * 2012-03-16 2015-04-02 フェルメンタル Production of docosahexaenoic acid and astaxanthin in mixed nutrition mode by Schizochytrium
CN102732049A (en) * 2012-06-04 2012-10-17 华中科技大学 Method for preparing and extracting carotenoid from microbial thalli
CN102732049B (en) * 2012-06-04 2014-03-12 华中科技大学 Method for preparing and extracting carotenoid from microbial thalli
JP2017511149A (en) * 2014-04-17 2017-04-20 ワンス イノヴェイションズ, インコーポレイテッドOnce Innovations, Inc. Light sources adapted to the spectral sensitivity of plants
JP2015226533A (en) * 2014-05-07 2015-12-17 株式会社ヤクルト本社 Food and drink containing algae-derived component
CN105685766A (en) * 2014-11-27 2016-06-22 丰益(上海)生物技术研发中心有限公司 Microalgae broth exopolysaccharide and its preparation method and use
JPWO2017094804A1 (en) * 2015-12-01 2018-09-13 日本水産株式会社 Docosahexaenoic acid-containing oil and method for producing the same
WO2017094804A1 (en) * 2015-12-01 2017-06-08 日本水産株式会社 Docosahexaenoic acid-containing oil and method for producing same
US10844316B2 (en) 2015-12-01 2020-11-24 Nippon Suisan Kaisha, Ltd. Docosahexaenoic acid-containing oil and method for producing same
US11525103B2 (en) 2015-12-01 2022-12-13 Nippon Suisan Kaisha, Ltd. Docosahexaenoic acid-containing oil and method for producing same
JP2020510716A (en) * 2017-02-22 2020-04-09 カーギル インコーポレイテッド Purification of DHA-containing oil
WO2019131502A1 (en) * 2017-12-26 2019-07-04 国立大学法人広島大学 Method for producing lipids
CN112481189A (en) * 2020-12-29 2021-03-12 嘉必优生物技术(武汉)股份有限公司 Method for domesticating schizochytrium limacinum and application thereof
CN112481189B (en) * 2020-12-29 2022-08-09 嘉必优生物技术(武汉)股份有限公司 Method for domesticating schizochytrium limacinum and application thereof
CN114134049A (en) * 2021-12-01 2022-03-04 清远一生自然生物研究院有限公司 Schizochytrium SL-916 for co-production of DHA and beta-carotene and application thereof
CN114134049B (en) * 2021-12-01 2023-08-25 清远一生自然生物研究院有限公司 Schizochytrium limacinum SL-916 capable of co-producing DHA and beta-carotene and application thereof

Similar Documents

Publication Publication Date Title
Zittelli et al. Production of eicosapentaenoic acid by Nannochloropsis sp. cultures in outdoor tubular photobioreactors
US7063957B2 (en) Methods for production of astaxanthin from the green microalgae Chlorella in dark-heterotrophic cultures
US5935808A (en) Carotenoid-producing bacterial species and process for production of carotenoids using same
Han et al. Biology and commercial aspects of Haematococcus pluvialis
JP2010042024A (en) Method for production of arachidonic acid
JP2010519927A (en) Method for producing high-purity carotenoids by fermentation of selected bacterial strains or mutants thereof that structurally overproduce carotenoids
EP2147113A1 (en) Efficient astaxanthin production strains derived from haematococcus pluvialis
EP0608172B1 (en) Phaffia rhodozyma mutants, process for the production of beta-caroten and use of a beta-caroten rich biomass
CN113430215A (en) Acetyl CoA synthetase gene RKACS1 and application thereof
JP2003052357A (en) Marine microorganism, and method for manufacturing carotenoid pigment and/or higher unsaturated fatty acid by using the microorganism
AU2011312987A1 (en) Heterotrophic microbial production of xanthophyll pigments
Maldonade et al. Selection and characterization of carotenoid-producing yeasts from Campinas region, Brazil
CN116964189A (en) Novel schizochytrium strain and method for producing polyunsaturated fatty acid using same
CA2539069C (en) Process for producing carotenoid compound
MARTIN Optimization Of Photobioreactor For Astaxanthin Production In Chlorella Zofingiensis.
JP2005522193A (en) Process for the production of astaxanthin by fermentation of selected strains of Xanthophyllomyces dendrrous house
RU2754686C1 (en) New strains of microalgae of thraustochytrium genus and method for producing polyunsaturated fatty acids using these strains
KR102452966B1 (en) Nannochloropsis sp. G1-5 strain having high productivity of carotenoid-based antioxidant pigments and unsaturated fatty acids and use thereof
KR102286087B1 (en) Chlamydomonas mutants and use thereof
Lee Microbial Production of Astaxanthin
O’Callaghan Biotechnology in natural food colours: The role of bioprocessing
KR100249731B1 (en) Mutant yeast producing astaxanthin and method of preparation thereof
KR102647564B1 (en) Lutein and oleic acid-producing novel microalgae of Asterarcys quadricellulare AQYS21 and its culturing method
JP2019017328A (en) Useful lipid production method using green algae
KR102402601B1 (en) Composition and method for producing hydroxy fatty acid or dihydroxy fatty acid using 9-lipoxygenase or variant thereof

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061205

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070205

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080219