JP2003049158A - Abrasive particle and abrasive body - Google Patents

Abrasive particle and abrasive body

Info

Publication number
JP2003049158A
JP2003049158A JP2001242263A JP2001242263A JP2003049158A JP 2003049158 A JP2003049158 A JP 2003049158A JP 2001242263 A JP2001242263 A JP 2001242263A JP 2001242263 A JP2001242263 A JP 2001242263A JP 2003049158 A JP2003049158 A JP 2003049158A
Authority
JP
Japan
Prior art keywords
particles
polishing
abrasive
plate
particle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2001242263A
Other languages
Japanese (ja)
Inventor
Hiroko Sawaki
裕子 澤木
Mikio Kishimoto
幹雄 岸本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Maxell Holdings Ltd
Original Assignee
Hitachi Maxell Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Maxell Ltd filed Critical Hitachi Maxell Ltd
Priority to JP2001242263A priority Critical patent/JP2003049158A/en
Priority to PCT/JP2002/008171 priority patent/WO2003014251A1/en
Priority to GB0408299A priority patent/GB2396157B/en
Priority to US10/490,630 priority patent/US20040244675A1/en
Publication of JP2003049158A publication Critical patent/JP2003049158A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Light Guides In General And Applications Therefor (AREA)
  • Polishing Bodies And Polishing Tools (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide inexpensive abrasive particles having excellent polishing ability which replaces conventional diamond particles as particles for polishing optical connectors. SOLUTION: The abrasive particles are composed of metal oxide particles, having plate-like shape and 10-1,000 nm average particle diameter in a direction of particle plate surface, in which >=50% particles have holes in a thickness direction of the plate.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、主として、光コネ
クタの端面研磨、とくに仕上げ研磨前の粗研磨に使用さ
れる研磨粒子および研磨シートなどの研磨体に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention mainly relates to a polishing body such as polishing particles and a polishing sheet used for polishing an end face of an optical connector, particularly for rough polishing before finish polishing.

【0002】[0002]

【従来の技術】光コネクタは、光ファイバを用いた通信
において、光ファイバ同士または光ファイバと光/電気
変換器などの機器をつなぐときに用いられている。この
光コネクタは、ジルコニアなどのセラミックスからでき
たフェルールの軸中心にガラスファイバが固定されてお
り、このようなセラミックス/ガラス複合構造の状態で
その端面が高精度に研磨されるものである。
2. Description of the Related Art Optical connectors are used in communication using optical fibers to connect optical fibers with each other or with optical fibers and equipment such as an optical / electrical converter. In this optical connector, a glass fiber is fixed to the axial center of a ferrule made of ceramics such as zirconia, and its end face is highly accurately polished in such a ceramic / glass composite structure.

【0003】光コネクタの端面は、粗研磨、仕上げ研磨
などの複数の研磨工程を経て仕上げられており、とくに
仕上げ研磨が光反射減衰率や接続損失などの性能に大き
く影響する。仕上げ研磨は、光コネクタの高精度化の観
点から、検討され、たとえば特開平10−277957
号公報では、シリカを研磨剤とした研磨液や研磨シート
を用いるのが好ましいとしている。
The end face of the optical connector is finished through a plurality of polishing steps such as rough polishing and finish polishing, and the finish polishing has a great influence on performances such as light reflection attenuation rate and connection loss. The finishing polishing has been studied from the viewpoint of improving the accuracy of the optical connector, and for example, Japanese Patent Laid-Open No. 10-277957.
In the publication, it is preferable to use a polishing liquid or a polishing sheet containing silica as a polishing agent.

【0004】ところで、光コネクタは、同時に複数本研
磨されるが、同じ研磨工程を経ているにもかかわらず、
微妙に光反射減衰率に差が生じることがある。この原因
を調べたところ、仕上げ研磨前のフェルールの研磨状態
が影響し、粗研磨の段階でフェルール研磨面に深い傷が
入ると、研磨性の低いシリカを研磨剤とした仕上げ研磨
後に微小な傷が残存し、光反射減衰率が低くなることが
わかった。
By the way, a plurality of optical connectors are polished at the same time.
There may be a slight difference in the optical return loss. Upon investigating the cause of this, the polishing state of the ferrule before final polishing had an effect, and when deep scratches were formed on the ferrule polished surface during the rough polishing stage, minute scratches were produced after the final polishing with silica, which had low abrasiveness, as the abrasive. Remained, and the light reflection attenuation rate was lowered.

【0005】このように光反射減衰率が低くなったもの
は、仕上げ研磨を繰り返し行うことで上記微小な傷を除
去でき、光反射減衰率を規定値まで高めることができ
る。しかしながら、このような再研磨を行うことは研磨
時間を長びかせる結果となり,光コネクタの生産性に支
障をきたしやすい。よって、粗研磨の段階でフェルール
研磨面に深い傷が入らないようにすることが望まれる。
In the case where the light reflection attenuation factor is low as described above, the minute scratches can be removed by repeating the finish polishing, and the light reflection attenuation factor can be increased to the specified value. However, such re-polishing results in a longer polishing time, which tends to hinder the productivity of the optical connector. Therefore, it is desirable to prevent deep scratches on the ferrule polished surface during the rough polishing.

【0006】従来、粗研磨では、研磨剤として高硬度の
ダイヤモンド粒子をこれ単独で使用した研磨シートまた
は研磨液が用いられてきた。ダイヤモンド粒子単独を研
磨剤とした場合、セラミックスフェルールの研磨性は向
上するが、軸中心にあるガラスファイバ部分を過度に研
磨してファイバの引き込み段差が大きくなったり、フェ
ルール端面に欠けや傷つきを生じやすい。
Conventionally, in the rough polishing, a polishing sheet or a polishing liquid using high hardness diamond particles alone as an abrasive has been used. When diamond particles alone are used as an abrasive, the ceramic ferrule's abrasivity is improved, but the glass fiber part at the center of the axis is excessively abraded to increase the fiber pull-in step, and the ferrule end face becomes chipped or scratched. Cheap.

【0007】その対策として、粒子サイズが小さくかつ
粒子サイズの揃ったダイヤモンド粒子を使用することが
考えられる。ダイヤモンド粒子は、一般に、比較的大き
な粒子サイズの結晶を粉砕することにより、特定の大き
さに調整しているが、粒子サイズを揃えるためには、選
別する必要があり、歩留りが悪く、かつ工程が複雑にな
るため、コストが高くなるという欠点がある。
As a countermeasure, it is considered to use diamond particles having a small particle size and a uniform particle size. Diamond particles are generally adjusted to a specific size by crushing crystals having a relatively large particle size, but in order to make the particle sizes uniform, it is necessary to select, the yield is poor, and the process However, there is a disadvantage in that the cost becomes high because of the complexity.

【0008】[0008]

【発明が解決しようとする課題】本発明は、上記の事情
に照らし、光コネクタなどの研磨用として、従来のダイ
ヤモンド粒子に代わる、安価でかつすぐれた研磨能を有
する研磨粒子と、これを使用した研磨シートなどの研磨
体を提供することを目的としている。
SUMMARY OF THE INVENTION In view of the above circumstances, the present invention uses abrasive particles, which are inexpensive and have excellent polishing ability, as an alternative to conventional diamond particles for polishing optical connectors and the like. It is intended to provide a polishing body such as a polished sheet.

【0009】[0009]

【課題を解決するための手段】本発明者らは、上記の目
的に対し、鋭意検討した結果、粒子の形状が板状で、か
つ板厚方向に孔を有する特定粒子径の金属酸化物粒子を
使用することにより、安価でかつすぐれた研磨能を有す
る研磨粒子とこれを使用した研磨シートなどの研磨体が
得られることを知り、本発明を完成した。
Means for Solving the Problems The inventors of the present invention have made extensive studies as to the above objects, and as a result, have a metal oxide particle having a specific particle diameter, which has a plate shape and has pores in the plate thickness direction. The present invention has been completed by knowing that the use of the above-mentioned product makes it possible to obtain abrasive particles which are inexpensive and have excellent polishing ability and an abrasive body such as an abrasive sheet using the same.

【0010】すなわち、本発明は、粒子の形状が板状
で、粒子板面方向の平均粒子径が10nmから1,00
0nmの範囲にあり、かつ50%以上の粒子が板厚方向
に孔を有する金属酸化物粒子からなることを特徴とする
研磨粒子、とくに、上記の孔の大きさが平均で1nmか
ら100nmの範囲にある上記構成の研磨粒子、また、
上記の金属酸化物粒子が、鉄または鉄を主体として含有
し、さらにアルミニウム、シリコン、希土類元素および
ジルコニウムの中から選ばれる少なくとも1種の元素を
含有する上記構成の研磨粒子に係るものである。
That is, according to the present invention, the particles have a plate-like shape, and the average particle diameter in the particle plate surface direction is from 10 nm to 1.00.
Abrasive particles characterized by being in the range of 0 nm and 50% or more of the particles being metal oxide particles having pores in the plate thickness direction, in particular, the size of the pores is in the range of 1 nm to 100 nm on average. Abrasive particles having the above-mentioned configuration,
The above-mentioned metal oxide particles are related to the abrasive particles having the above-mentioned constitution, which mainly contains iron or iron and further contains at least one element selected from aluminum, silicon, rare earth elements and zirconium.

【0011】また、本発明は、結合剤中に研磨剤を分散
した研磨層を可撓性支持体上に設けてなる研磨体におい
て、上記の研磨剤が、前記構成の研磨粒子からなること
を特徴とする研磨体に係るものである。この研磨体に
は、研磨シートのほか、テープ状、ディスク状、カード
状などの種々の形態のものが含まれる。
Further, according to the present invention, in a polishing body comprising a flexible support and a polishing layer in which the polishing agent is dispersed in a binder, the above-mentioned polishing agent comprises polishing particles having the above-mentioned constitution. The present invention relates to a characteristic polishing body. The abrasive body includes various forms such as a tape shape, a disk shape, and a card shape in addition to the polishing sheet.

【0012】[0012]

【発明の実施の形態】本発明においては、研磨粒子とし
て、粒子の形状が板状で、粒子板面方向の平均粒子径が
10nmから1,000nmの範囲にあり、かつ50%
以上の粒子が板厚方向に孔を有する金属酸化物粒子を使
用したことを特徴としている。このような研磨粒子によ
れば、セラミックス/ガラス複合構造である光コネクタ
の端面研磨などに対し、すぐれた研磨能を発揮させるこ
とができる。
BEST MODE FOR CARRYING OUT THE INVENTION In the present invention, the abrasive particles have a plate-like shape and have an average particle diameter in the plate surface direction of 10 nm to 1,000 nm, and 50%.
The above particles are characterized by using metal oxide particles having pores in the plate thickness direction. Such polishing particles can exhibit excellent polishing ability for end face polishing of an optical connector having a ceramic / glass composite structure.

【0013】すなわち、本発明の上記研磨粒子では、そ
の硬度がダイヤモンド粒子に比べて本質的に低い金属酸
化物粒子からなるため、低硬度部材を過度に研磨しすぎ
るということがなく、低硬度部材に対して十分に対応で
きる一方、形状が板状でかつ板厚方向に孔を有している
ため、この孔により端面の部分か増加して、そのぶん研
磨能が向上し、セラミックスフェルールなどの高硬度部
材の研磨性にすぐれたものとなり、高硬度部材に対して
も十分に対応させることができる。そのうえ、研磨時に
発生する粉塵が上記の孔内に捕捉されることになり、研
磨面の傷つきの原因となる研磨残渣が発生しにくいとい
う効果も奏される。
That is, the above-mentioned abrasive particles of the present invention are composed of metal oxide particles whose hardness is essentially lower than that of diamond particles, so that the low-hardness member will not be excessively polished and the low-hardness member will not be excessively polished. On the other hand, since the shape is plate-like and has holes in the plate thickness direction, the number of end faces increases due to these holes, and the polishing ability is improved accordingly. The high-hardness member has excellent polishing properties and can be sufficiently applied to the high-hardness member. In addition, dust generated during polishing is trapped in the above holes, and the effect that polishing residues that cause scratches on the polishing surface is less likely to occur is also obtained.

【0014】これに対し、従来のダイヤモンド粒子で
は、セラミックスフェルールなどの高硬度部材の研磨性
にはすぐれるが、セラミックスよりも低硬度なガラスな
どの柔らかい部材が共存する被研磨物には、低硬度部材
を研磨しすぎ、所望の形状または表面性が得られない。
本発明は、このダイヤモンド粒子の欠点を克服し、セラ
ミックス/ガラス複合構造である光コネクタの端面研磨
などに対して、すぐれた研磨能を発揮し、同時に研磨傷
の発生を防止でき、さらにダイヤモンド粒子のような高
価な粒子を用いないため、低コスト化もはかれるもので
ある。
On the other hand, the conventional diamond particles are excellent in polishing property for high hardness members such as ceramic ferrules, but are low for objects to be polished in which soft members such as glass having lower hardness than ceramics coexist. The hardness member is excessively polished and the desired shape or surface property cannot be obtained.
The present invention overcomes the drawbacks of the diamond particles, exhibits excellent polishing ability for polishing the end face of an optical connector having a ceramic / glass composite structure, and at the same time can prevent the occurrence of polishing scratches. Since no expensive particles such as the above are used, the cost can be reduced.

【0015】ところで、粒子の中央付近に孔のあいた環
状の酸化鉄粒子は、特開昭61−266311号、特開
昭61−266313号などの公報で、すでに公知であ
り、盤状ゲーサイト粒子を加熱、脱水、還元して、環状
マグネタイト粒子とし、これをコバルトで変性して、磁
気記録用の磁性粉末としての用途が提案されている。ま
た、特公平3−21489号公報には、水酸化ナトリウ
ムとアルキルアミンを加えた水溶液に塩化鉄水溶液を滴
下して水酸化鉄を沈殿させ、熟成、洗浄、pHの調整
後、水熱処理を施して盤状のゲーサイト粒子を得、これ
を加熱脱水して、中央に孔のあいた環状のヘマタイト粒
子、マグネタイト粒子、ガンマ酸化鉄粒子などを得、塗
料補強用などの顔料、複合材料用などの補強剤、医療材
料、磁性粉末として電子材料などへの利用が提案されて
いる。
By the way, ring-shaped iron oxide particles having pores near the center of the particles are already known in the publications of JP-A-61-266311 and JP-A-61-266313, and discotic goethite particles are known. Has been proposed to be used as a magnetic powder for magnetic recording by heating, dehydrating, and reducing it into cyclic magnetite particles, which is modified with cobalt. Further, in Japanese Examined Patent Publication No. 3-21489, iron chloride aqueous solution is added dropwise to an aqueous solution containing sodium hydroxide and alkylamine to precipitate iron hydroxide, and after aging, washing and pH adjustment, hydrothermal treatment is performed. To obtain disc-shaped goethite particles, heat and dehydrate them to obtain annular hematite particles with holes in the center, magnetite particles, gamma iron oxide particles, pigments for paint reinforcement, composite materials, etc. It has been proposed to use as a reinforcing agent, a medical material, and an electronic material as a magnetic powder.

【0016】本発明者らは、このような孔のあいた酸化
鉄粒子のうち、ヘマタイト粒子の研磨剤としての用途に
着目した。すなわち、粒子内に存在する孔により粒子端
面が増加して高い研磨能が得られ、また研磨残渣が上記
孔に捕捉されて、研磨残渣が生じにくくなるものと考
え、これに基づいて、板状ヘマタイト粒子の粒子サイズ
や、孔の大きさ、孔数の分布などについて、広範囲に検
討した。その結果、中央に孔のあいた板状ヘマタイト粒
子のほか、粒子内に多くの孔が存在する板状ヘマタイト
粒子も得られ、これら粒子がいずれも研磨剤としてすぐ
れた性能を発揮することがわかった。また、ヘマタイト
粒子中の鉄の一部をアルミニウムやジルコニウムなど、
他の金属元素で置換すると、酸化鉄粒子の硬度を制御で
き、これにより一段とすぐれた研磨能を発現できること
もわかった。
The present inventors have focused their attention on the application of hematite particles as an abrasive among the iron oxide particles having such pores. That is, it is considered that the pores present in the particles increase the particle end faces to obtain a high polishing ability, and that the polishing residue is trapped in the pores, and the polishing residue is less likely to be generated. We extensively studied the particle size of hematite particles, the size of pores, and the distribution of the number of pores. As a result, in addition to the plate-shaped hematite particles having a hole in the center, plate-shaped hematite particles having many holes in the particles were also obtained, and it was found that these particles all exhibit excellent performance as an abrasive. . Also, some of the iron in the hematite particles may be aluminum or zirconium,
It was also found that by substituting with another metal element, the hardness of the iron oxide particles can be controlled, and thereby a more excellent polishing ability can be exhibited.

【0017】以下、本発明の研磨粒子の製造方法の一例
として、ヘマタイト粒子を製造する方法について、説明
する。最初に、アルカリ水溶液、たとえば水酸化ナトリ
ウムとアルキルアミンを加えた水溶液に、塩化鉄水溶液
を滴下し、撹拌処理して、水酸化鉄を沈殿させる。その
際、液温は、粒子形状、粒子サイズ、孔のサイズや数な
どを左右するため、適宜の温度を選択する。通常、液温
が高いほど、粒子サイズが大きくなり、孔数が増大し、
逆に低くなるほど、粒子サイズが小さくなり、孔数も減
少していき、中央に1個の孔のあいた形状をとるように
なる。液温は、通常0〜40℃の範囲とするのが好まし
い。0℃より低くしても、粒子サイズの変化は少なく、
冷却コストが高くなるという不利があり、また40℃よ
り高くすると、板状以外の不定形の物質が混在しやすく
なる。
A method for producing hematite particles will be described below as an example of the method for producing abrasive particles of the present invention. First, an aqueous iron chloride solution is added dropwise to an alkaline aqueous solution, for example, an aqueous solution containing sodium hydroxide and an alkylamine, and the mixture is stirred to precipitate iron hydroxide. At that time, since the liquid temperature influences the particle shape, particle size, pore size and number, etc., an appropriate temperature is selected. Generally, the higher the liquid temperature, the larger the particle size, the larger the number of pores,
On the contrary, the lower the particle size, the smaller the particle size and the number of holes, and the shape has one hole in the center. The liquid temperature is usually preferably in the range of 0 to 40 ° C. Even if the temperature is lower than 0 ° C, the change in particle size is small,
There is a disadvantage that the cooling cost becomes high, and if it is higher than 40 ° C., amorphous substances other than plate-like substances are likely to be mixed.

【0018】つぎに、このように沈殿させた水酸化鉄を
熟成し、洗浄し、水酸化ナトリウムなどを加えてpHを
調整したのち、オートクレーブ中で水熱処理を施して、
板状のゲーサイト粒子を得る。ここで、水熱処理の温度
としては、通常は、120〜250℃の範囲とするのが
好ましい。120℃より低い温度となると、板状形状に
結晶成長させにくく、また250℃より高い温度となる
と、高い水蒸気圧が発生するため、装置への負荷が大き
くなり、好ましくない。
Next, the iron hydroxide thus precipitated is aged, washed and adjusted to pH by adding sodium hydroxide or the like, and then hydrothermally treated in an autoclave,
Plate-like goethite particles are obtained. Here, the hydrothermal treatment temperature is usually preferably in the range of 120 to 250 ° C. When the temperature is lower than 120 ° C., it is difficult to grow crystals into a plate shape, and when the temperature is higher than 250 ° C., a high water vapor pressure is generated, which increases the load on the apparatus, which is not preferable.

【0019】ついで、上記板状のゲーサイト粒子に対
し、加熱脱水処理を施すことにより、粒子内に孔を有す
る板状のヘマタイト粒子(α−Fe2 3 粒子)を生成
する。加熱脱水処理を施す前に、加熱脱水時の粒子間焼
結防止を目的として、シリカまたはアルミナによる被着
処理を行うのが望ましい。加熱脱水処理は、空気中で、
通常、200〜800℃の温度範囲で行うのがよい。2
00℃より低い温度となると、粒子内に孔が形成されに
くく、800℃を超える温度となると、粒子間の焼結が
生じやすくくなり、板状の形状が崩れやすくなる。
Then, the plate-like goethite particles are subjected to a heat dehydration treatment to form plate-like hematite particles (α-Fe 2 O 3 particles) having pores in the particles. Before applying the heat dehydration treatment, it is desirable to perform a deposition treatment with silica or alumina for the purpose of preventing inter-particle sintering during heat dehydration. Heat dehydration treatment is performed in air,
Usually, it is good to carry out in the temperature range of 200 to 800 ° C. Two
When the temperature is lower than 00 ° C., pores are not easily formed in the particles, and when the temperature is higher than 800 ° C., sintering between particles is likely to occur and the plate-like shape is likely to collapse.

【0020】このような方法により製造されるヘマタイ
ト粒子は、粒子形状が板状で、その平均粒子径が10n
mから1,000nmの範囲にある。平均粒子径が10
nm未満では研磨能が小さく、1,000nmを超える
と研磨面が粗くなりやすい。粒子形状が板状であるか否
かは、シャドウィング法(斜め方向から金属を蒸着した
ときの影の長さから板厚さを計測し、粒子径と比較して
板状か否かを判別する方法)で確認できる。また、この
ヘマタイト粒子を研磨層中に分散させた研磨体にあって
は、断面観察法(断面観察から板厚さを計測し、表面観
察から得られた粒子径と比較して板状か否かを判別する
方法)で確認できる。板状比(板厚さ/粒子径)は、通
常、2〜20の範囲にあるのが望ましい。
The hematite particles produced by such a method have a plate-like particle shape and an average particle diameter of 10 n.
It is in the range of m to 1,000 nm. Average particle size is 10
If it is less than nm, the polishing ability is small, and if it exceeds 1,000 nm, the polished surface tends to be rough. Whether the particle shape is plate-like is determined by the shadowing method (the plate thickness is measured from the length of the shadow when metal is vapor-deposited from an oblique direction, and compared with the particle diameter to determine whether it is plate-like or not. Method). Further, in the case of the abrasive body in which the hematite particles are dispersed in the polishing layer, the cross-section observation method (the plate thickness is measured from the cross-section observation and compared with the particle diameter obtained from the surface observation to determine whether it is plate-like It can be confirmed by the method of determining whether). The plate ratio (plate thickness / particle diameter) is usually preferably in the range of 2 to 20.

【0021】また、このヘマタイト粒子は、ほぼすべて
の粒子が板厚方向に孔を有するが、この孔は1個の粒子
内に1個または複数個存在する。孔の大きさ(つまり直
径)は平均で1nmから100nmの範囲にあるのがよ
い。1nm未満では研磨残渣の捕捉効果が小さくなり、
100nmを超えると研磨能の向上効果が小さくなる。
また、板厚方向の孔の大きさは、粒子板面方向の粒子径
の5〜90%の範囲にあるのが望ましい。なお、上記の
孔は、貫通孔または凹みを意味し、このような孔は、透
過型電子顕微鏡写真で観察したとき、白または粒子自体
より白っぽく見える部分である。孔の部分は、粒子のな
い部分の黒化度を0、孔のない粒子部分の黒化度を10
としたとき、黒化度が8以下の部分である。透過型電子
顕微鏡写真の倍率は、観察する板状粒子の粒子径、孔径
によって異なるが、通常は、孔が1mmから10mmに見え
る倍率の1〜100万倍である。
Although almost all the hematite particles have pores in the plate thickness direction, one or more pores are present in each particle. The size (that is, diameter) of the holes should be in the range of 1 nm to 100 nm on average. If it is less than 1 nm, the effect of capturing polishing residue becomes small,
If it exceeds 100 nm, the effect of improving the polishing ability becomes small.
The size of the holes in the plate thickness direction is preferably in the range of 5 to 90% of the particle diameter in the particle plate surface direction. The above-mentioned holes mean through-holes or dents, and such holes are white or particles that appear whitish than the particles themselves when observed by a transmission electron micrograph. For the hole portion, the blackness degree of the portion without particles is 0, and the blackness degree of the particle portion without holes is 10
In this case, the blackening degree is 8 or less. The magnification of a transmission electron micrograph varies depending on the particle diameter and pore diameter of the plate-like particles to be observed, but is usually 1 to 1,000,000 times the magnification at which pores appear to be 1 mm to 10 mm.

【0022】さらに、上記のヘマタイト粒子は、鉄また
は鉄を主体として含有してなるものであるが、上記の製
造方法において、水酸化鉄を沈殿させる際に、塩化鉄水
溶液中に塩化アルミウニウムや塩化ジルコニウムなどの
他の金属塩を添加させると、最終的にこれらの金属元素
を含有するヘマタイト粒子、つまり、ヘマタイト粒子中
の鉄の一部が上記他の金属元素で置換した構造の金属酸
化物粒子を生成できる。上記他の金属元素には、アルミ
ニウムやジルコニウムのほか、シリコン、希土類元素な
どがあり、これらの元素で置換することにより、酸化鉄
粒子の硬度を制御でき、これにより研磨能をさらに高め
ることができる。
Further, the above-mentioned hematite particles are mainly composed of iron or iron. In the above-mentioned production method, when the iron hydroxide is precipitated, aluminum chloride or chloride is added to the aqueous solution of iron chloride. When other metal salts such as zirconium are added, hematite particles finally containing these metal elements, that is, metal oxide particles having a structure in which a part of iron in the hematite particles is replaced with the other metal element described above. Can be generated. The other metal elements include aluminum and zirconium, as well as silicon and rare earth elements. By substituting these elements, the hardness of the iron oxide particles can be controlled, and thereby the polishing ability can be further enhanced. .

【0023】また、上記の例は、鉄または鉄を主体とし
た酸化鉄系粒子に関するが、本発明の研磨粒子は、これ
に限定されず、上記同様の方法で製造される粒子の形状
が板状で、粒子板面方向の平均粒子径が10nmから
1,000nmの範囲にあり、板厚方向に孔を有するも
のであれば、各種の金属酸化物粒子を含むものである。
また、その際、金属酸化物粒子のすべて、つまり100
%が上記孔を有している必要はなく、50%以上の粒子
が上記孔を有しておればよい。
Although the above examples relate to iron or iron oxide-based particles mainly composed of iron, the abrasive particles of the present invention are not limited to this, and the shape of the particles produced by the same method as described above is a plate. As long as the particles have an average particle diameter in the plate surface direction in the range of 10 nm to 1,000 nm and have pores in the plate thickness direction, various metal oxide particles are included.
At that time, all of the metal oxide particles, that is, 100
% Need not have the above holes, and 50% or more of the particles may have the above holes.

【0024】本発明において,このようなヘマタイト粒
子を代表例とする板状の金属酸化物粒子は、研磨粒子と
して前記すぐれた研磨能を発揮するため、研磨液や、研
磨シートなどの研磨体用の研磨剤として最適であり、光
コネクタなどの研磨用として安価でかつすぐれた研磨能
を有する研磨液や研磨体を提供できる。以下、とくに本
発明の研磨体について、さらに詳しく説明する。
In the present invention, the plate-shaped metal oxide particles represented by such hematite particles as the abrasive particles exhibit the above-mentioned excellent polishing ability, so that they are used for polishing liquids and polishing bodies such as polishing sheets. A polishing liquid and a polishing body that are optimal as polishing agents, and that are inexpensive and have excellent polishing ability for polishing optical connectors and the like can be provided. The abrasive body of the present invention will be described in more detail below.

【0025】本発明の研磨体は、結合剤中に研磨剤を分
散した研磨層を可撓性支持体上に設けて、シート状、テ
ープ状、ディスク状、カード状などの種々の形態とした
ものであって、上記の研磨剤として、本発明の研磨粒
子、すなわち、粒子の形状が板状で、粒子板面方向の平
均粒子径が10nmから1,000nmの範囲にあり、
かつ50%以上の粒子が板厚方向に孔を有する金属酸化
物粒子を使用したことを大きな特徴としたものである。
The polishing body of the present invention is provided with a polishing layer in which a polishing agent is dispersed in a binder on a flexible support, and has various forms such as a sheet shape, a tape shape, a disk shape and a card shape. As the above-mentioned abrasive, the abrasive particles of the present invention, that is, the particles have a plate shape, and the average particle diameter in the particle plate surface direction is in the range of 10 nm to 1,000 nm,
Further, the main feature is that 50% or more of the particles are metal oxide particles having pores in the plate thickness direction.

【0026】研磨剤を分散する結合剤には、塩化ビニル
樹脂、塩化ビニル−酢酸ビニル共重合樹脂、塩化ビニル
−ビニルアルコール共重合樹脂、塩化ビニル−酢酸ビニ
ル−無水マレイン酸共重合樹脂、塩化ビニル−水酸基含
有アルキルアクリレート共重合樹脂、ニトロセルロー
ス、ポリエステル樹脂、ポリウレタン樹脂などがあり、
これらの中から、1種または2種以上が組み合わせて用
いられる。とくに、塩化ビニル系樹脂とポリウレタン樹
脂とを併用するか、あるいはポリエステル樹脂を使用す
るのが好ましい。上記のポリウレタン樹脂としては、ポ
リエステルポリウレタン、ポリエーテルポリウレタン、
ポリエーテルポリエステルポリウレタン、ポリカーボネ
ートポリウレタン、ポリエステルポリカーボネートポリ
ウレタンなどがある。これらの結合剤は、研磨粒子10
0重量部あたり、通常5〜45重量部、好ましくは10
〜40重量部の割合で用いられる。
As the binder for dispersing the abrasive, vinyl chloride resin, vinyl chloride-vinyl acetate copolymer resin, vinyl chloride-vinyl alcohol copolymer resin, vinyl chloride-vinyl acetate-maleic anhydride copolymer resin, vinyl chloride. -Hydroxyl group-containing alkyl acrylate copolymer resin, nitrocellulose, polyester resin, polyurethane resin, etc.,
Of these, one kind or a combination of two or more kinds is used. In particular, it is preferable to use a vinyl chloride resin and a polyurethane resin together, or to use a polyester resin. As the above polyurethane resin, polyester polyurethane, polyether polyurethane,
Examples include polyether polyester polyurethane, polycarbonate polyurethane, and polyester polycarbonate polyurethane. These binders are used for the abrasive particles 10
5 to 45 parts by weight, preferably 10 per 0 parts by weight
It is used in a proportion of about 40 parts by weight.

【0027】上記の結合剤とともに、結合剤中に含まれ
る官能基などと結合させて架橋する熱硬化性の架橋剤を
併用してもよい。このような架橋剤としては、トリレン
ジイソシアネート、ヘキサメチレンジイソシアネート、
イソホロンジイソシアネートなどや、これらのイソシア
ネート類とトリメチロールプロパンなどの水酸基を複数
個有するものとの反応生成物、上記イソシアネート類の
縮合生成物などの各種のポリイソシアネートが用いられ
る。これらの架橋剤は、結合剤100重量部あたり、通
常5〜30重量部の割合で用いられる。
In addition to the above-mentioned binder, a thermosetting cross-linking agent which bonds with a functional group contained in the binder and cross-links may be used together. As such a cross-linking agent, tolylene diisocyanate, hexamethylene diisocyanate,
Various polyisocyanates such as isophorone diisocyanate, a reaction product of these isocyanates with a compound having a plurality of hydroxyl groups such as trimethylolpropane, and a condensation product of the above isocyanates are used. These crosslinking agents are usually used in a proportion of 5 to 30 parts by weight per 100 parts by weight of the binder.

【0028】研磨層には、上記の研磨剤および結合剤の
ほか、研磨剤の分散性を向上するための分散剤や、潤滑
性を付与するための潤滑剤を添加できる。また、帯電防
止のために、カーボンブラックを添加することができ
る。上記の分散剤としては、従来から公知のものをいず
れも使用できる。また、潤滑剤としては、グラファイ
ト、二硫化モリブデンなどの固形潤滑剤や、従来公知の
液体潤滑剤を、単独でまたは2種以上混合して使用する
ことができる。これらの潤滑剤の中でも、とくに炭素数
12〜24の脂肪酸が好ましく用いられる。
In addition to the above-mentioned abrasive and binder, a dispersant for improving the dispersibility of the abrasive and a lubricant for imparting lubricity can be added to the abrasive layer. In addition, carbon black can be added to prevent charging. As the dispersant, any of the conventionally known dispersants can be used. As the lubricant, solid lubricants such as graphite and molybdenum disulfide, and conventionally known liquid lubricants can be used alone or in combination of two or more. Among these lubricants, fatty acids having 12 to 24 carbon atoms are preferably used.

【0029】なお、潤滑剤を使用する場合、生産性の点
から、別工程を設ける必要のない、研磨層形成用の塗布
液中に潤滑剤を直接添加する方法を採用するのがよい。
この場合、研磨剤100重量部あたり、脂肪酸などの潤
滑剤が0.2〜10重量部、好ましくは0.5〜5重量
部となる割合とするのがよい。また、帯電防止のための
カーボンブラックは、研磨剤100重量部あたり、通常
0.1〜50重量部となる割合とするのが望ましい。
When a lubricant is used, it is preferable to employ a method of directly adding the lubricant to the coating liquid for forming the polishing layer, which does not require a separate step from the viewpoint of productivity.
In this case, the ratio of the lubricant such as fatty acid is 0.2 to 10 parts by weight, preferably 0.5 to 5 parts by weight, per 100 parts by weight of the abrasive. Further, it is desirable that the carbon black for antistatic is usually 0.1 to 50 parts by weight per 100 parts by weight of the abrasive.

【0030】可撓性支持体としては、従来から使用され
ている非磁性支持体をすべて使用することができる。具
体的には、ポリエチレンテレフタレート、ポリエチレン
ナフタレートなどのポリエステル類、ポリオレフィン
類、セルローストリアセテート、ポリカーボネート、ポ
リアミド、ポリイミド、ポリアミドイミド、ポリスルフ
ォン、アラミド、芳香族ポリアミドなどからなる、厚さ
が通常3〜300μmのフィルムまたはシートが用いら
れる。
As the flexible support, any conventionally used non-magnetic support can be used. Specifically, it is made of polyesters such as polyethylene terephthalate and polyethylene naphthalate, polyolefins, cellulose triacetate, polycarbonate, polyamide, polyimide, polyamideimide, polysulfone, aramid, aromatic polyamide, etc., and usually has a thickness of 3 to 300 μm. Film or sheet of is used.

【0031】本発明の上記構成の研磨体は、たとえば、
有機溶剤中に研磨剤、その結合剤、必要により分散剤、
潤滑剤、カーボンブラックなどを混合分散させてなる研
磨層形成用の塗布液を調製し、この塗布液を上記の可撓
性支持体上に塗布し、乾燥することにより、作製するこ
とができる。
The abrasive body having the above-mentioned structure of the present invention is, for example,
Abrasive in organic solvent, its binder, if necessary dispersant,
It can be prepared by preparing a coating liquid for forming a polishing layer, which is obtained by mixing and dispersing a lubricant, carbon black, etc., coating the coating liquid on the above flexible support, and drying.

【0032】塗布液の調製に用いる有機溶剤としては、
ベンゼン、トルエン、キシレンなどの芳香族系溶剤、ア
セトン、シクロヘキサノン、メチルエチルケトン、メチ
ルイソブチルケトンなどのケトン系溶剤、酢酸エチル、
酢酸ブチルなどの酢酸エステル系溶剤、ジメチルカーボ
ネート、ジエチルカーボネートなどの炭酸エステル系溶
剤、エタノール、イソプロパノールなどのアルコール系
溶剤のほか、ヘキサン、テトラヒドロフラン、ジメチル
ホルムアミドなどが挙げられる。
The organic solvent used for preparing the coating solution is
Aromatic solvents such as benzene, toluene, xylene, ketone solvents such as acetone, cyclohexanone, methyl ethyl ketone, methyl isobutyl ketone, ethyl acetate,
In addition to acetic acid ester solvents such as butyl acetate, carbonic acid ester solvents such as dimethyl carbonate and diethyl carbonate, alcohol solvents such as ethanol and isopropanol, hexane, tetrahydrofuran, dimethylformamide and the like can be mentioned.

【0033】このように形成される研磨層の厚さは、厚
すぎるとフェルールと研磨シートとの接触が悪くなるた
め、30μm以下、通常は、1〜30μmとするのが好
ましく、2〜25μmとするのがより好ましい。
If the thickness of the polishing layer thus formed is too thick, the contact between the ferrule and the polishing sheet will be poor. Therefore, the thickness is preferably 30 μm or less, usually 1 to 30 μm, and preferably 2 to 25 μm. More preferably.

【0034】研磨体の作製においては、可撓性支持体上
に研磨層形成用の塗布液を塗布し、乾燥したのち、必要
により、コットンロール、プラスチックロール、金属ロ
ールを用いたカレンダによる表面処理を行ってもよい。
このカレンダ処理を行うことにより、研磨層の表面粗度
をうまく調整でき、これによりフェルールの仕上げ面の
向上と傷の発生防止にさらに好結果を得ることができ
る。
In the preparation of the polishing body, a coating liquid for forming a polishing layer is applied onto a flexible support, dried and, if necessary, surface treated by a calendar using a cotton roll, a plastic roll or a metal roll. You may go.
By carrying out this calendering treatment, the surface roughness of the polishing layer can be adjusted well, and by doing so, more favorable results can be obtained in improving the finished surface of the ferrule and preventing scratches.

【0035】[0035]

【実施例】以下に、本発明の実施例を記載して、より具
体的に説明する。ただし、本発明はこれらの実施例にの
み限定されるものではない。なお、以下の各例におい
て、部とあるのは重量部を意味するものとする。
EXAMPLES The present invention will be described in more detail below by way of its examples. However, the present invention is not limited to these examples. In each of the following examples, "parts" means "parts by weight".

【0036】実施例1 <孔を有する板状のアルファ酸化鉄粒子の製造>下記の
2種類の水溶液を調製した。 A液:塩化第二鉄(FeCl3 ・6H2 O) 20g 水 500cc B液:水酸化ナトリウム 30g モノエタノールアミン 50cc 水 1,000cc
Example 1 <Production of plate-shaped alpha iron oxide particles having pores> The following two types of aqueous solutions were prepared. Solution A: Ferric chloride (FeCl 3 .6H 2 O) 20 g Water 500 cc Solution B: Sodium hydroxide 30 g Monoethanolamine 50 cc Water 1,000 cc

【0037】上記のA液およびB液を12℃に保持し、
撹拌しながら、A液をB液中に約1時間かけて滴下し
た。滴下終了後、さらに1時間撹拌した。このようにし
て得られた沈殿物を、室温で約20時間放置したのち、
純水で洗浄し、水酸化ナトリウム水溶液を加えてpHを
11.3に調整し、オートクレーブを用いて、150℃
で1時間の水熱処理を施した。この水熱処理により、板
状のゲーサイト(α−FeOOH)粒子が得られた。
The above liquids A and B were kept at 12 ° C.,
The liquid A was added dropwise to the liquid B over about 1 hour with stirring. After completion of dropping, the mixture was further stirred for 1 hour. The precipitate thus obtained is left at room temperature for about 20 hours,
Wash with pure water, adjust the pH to 11.3 by adding sodium hydroxide aqueous solution, and use an autoclave at 150 ° C.
Was subjected to hydrothermal treatment for 1 hour. By this hydrothermal treatment, plate-like goethite (α-FeOOH) particles were obtained.

【0038】この板状のゲーサイト粒子に対して、Si
2 換算で1重量%になるように、ケイ酸ナトリウム水
溶液を攪拌しなが添加し、塩酸によりpHを7.3に調
整して、SiO2 による被覆処理を行った。ろ過・乾燥
させたのち、空気中、600℃で1時間加熱脱水した。
この加熱脱水処理により、孔を有するアルファ酸化鉄
(α−Fe2 3 )粒子を得た。この粒子は、粒子板面
方向の平均粒子径が65nmで、中央付近に直径が平均
30nmの孔を有する板状粒子であった。図1は、この
アルファ酸化鉄粒子の電子顕微鏡写真を示したものであ
る。
For the plate-like goethite particles, Si
An aqueous solution of sodium silicate was added with stirring so that the content of O 2 was 1% by weight, the pH was adjusted to 7.3 with hydrochloric acid, and coating with SiO 2 was performed. After filtering and drying, the product was heated and dehydrated in air at 600 ° C. for 1 hour.
By this heat dehydration treatment, alpha iron oxide (α-Fe 2 O 3 ) particles having pores were obtained. This particle was a plate-like particle having an average particle diameter of 65 nm in the particle plate surface direction and having pores with an average diameter of 30 nm near the center. FIG. 1 is an electron micrograph of the alpha iron oxide particles.

【0039】 <研磨層形成用の塗布液成分> 孔を有する板状アルファ酸化鉄粒子 200部 (平均粒子径:65nm、孔の平均直径:30nm) 塩化ビニル−酢酸ビニル共重合体 30部 (UCC社製の「VAGH」) ポリウレタン樹脂 25部 (東洋紡製の「バイロンUR8300」) メチルエチルケトン 150部 トルエン 150部 シクロヘキサノン 130部[0039]   <Coating liquid components for forming polishing layer>     Plate-shaped alpha iron oxide particles having pores 200 parts     (Average particle diameter: 65 nm, average diameter of pores: 30 nm)     Vinyl chloride-vinyl acetate copolymer 30 parts     ("VAGH" made by UCC)     Polyurethane resin 25 parts     ("Byron UR8300" manufactured by Toyobo)     Methyl ethyl ketone 150 parts     150 parts of toluene     Cyclohexanone 130 parts

【0040】上記の塗布液成分を撹拌、混合したのち、
サンドミルで分散させ、研磨層形成用の塗布液を調製し
た。この塗布液を、厚さが75μmのポリエチレンテレ
フタレートフイルムからなる可撓性支持体の片面に、カ
レンダ処理後の厚さが10μmとなるように、塗布し、
乾燥した。カレンダで鏡面化処理したのち、所定幅に裁
断して、研磨テープを作製した。
After stirring and mixing the above-mentioned coating liquid components,
It was dispersed by a sand mill to prepare a coating liquid for forming a polishing layer. This coating solution is applied to one surface of a flexible support made of polyethylene terephthalate film having a thickness of 75 μm so that the thickness after calendaring is 10 μm,
Dried. After being mirror-finished with a calendar, it was cut into a predetermined width to produce a polishing tape.

【0041】実施例2 B液中にA液を滴下する際、両液の保持温度を12℃か
ら24℃に変更した以外は、実施例1と同様にして、粒
子板面方向の平均粒子径が210nmで、直径が10〜
30nmの孔を多数有するアルファ酸化鉄粒子を得た。
図2は、このアルファ酸化鉄粒子の電子顕微鏡写真を示
したものである。このアルファ酸化鉄粒子を用いて、実
施例1と同様にして、研磨テープを作製した。
Example 2 The average particle diameter in the particle plate surface direction was the same as in Example 1 except that the holding temperature of both solutions was changed from 12 ° C. to 24 ° C. when the solution A was dropped into the solution B. Is 210 nm and the diameter is 10
Alpha iron oxide particles having a large number of 30 nm pores were obtained.
FIG. 2 shows an electron micrograph of the alpha iron oxide particles. Using the alpha iron oxide particles, a polishing tape was prepared in the same manner as in Example 1.

【0042】実施例3 A液として、塩化第二鉄を20g使用する代わりに、塩
化第二鉄を16g、塩化アルミニウム(AlCl3 ・6
2 O)を3.5g使用し、かつ、B液中にA液を滴下
する際、両液の保持温度を12℃から24℃に変更し、
さらに、水熱処理を施す前のpHを11.3から10.
5に変更した以外は、実施例1と同様にして、粒子板面
方向の平均粒子径が200nmで、直径が15〜40n
mの孔を多数有するアルミニウム含有のアルファ酸化鉄
粒子を得た。図3は、このアルファ酸化鉄粒子の電子顕
微鏡写真を示したものである。このアルファ酸化鉄粒子
を用いて、実施例1と同様にして、研磨テープを作製し
た。
[0042] As Example 3 A solution of ferric chloride in place of 20g used, ferric chloride 16g, aluminum chloride (AlCl 3 · 6
H 2 O) 3.5 g and when the solution A is dropped into the solution B, the holding temperature of both solutions is changed from 12 ° C. to 24 ° C.
Further, the pH before the hydrothermal treatment is 11.3 to 10.
In the same manner as in Example 1 except that the particle size was changed to 5, the average particle size in the particle plate surface direction was 200 nm, and the diameter was 15 to 40 n.
Aluminum-containing alpha iron oxide particles having a large number of m pores were obtained. FIG. 3 shows an electron micrograph of the alpha iron oxide particles. Using the alpha iron oxide particles, a polishing tape was prepared in the same manner as in Example 1.

【0043】比較例1 孔を有する板状アルファ酸化鉄粒子に代えて、中心粒子
サイズの公称値が0.15μmの単結晶ダイヤモンド微
粒子を用いた以外は、実施例1と同様にして、塗布液を
調製し、さらに研摩テープを作製した。
Comparative Example 1 A coating solution was prepared in the same manner as in Example 1 except that single crystal diamond fine particles having a nominal center particle size of 0.15 μm were used in place of the plate-like alpha iron oxide particles having pores. Was prepared, and further an abrasive tape was prepared.

【0044】比較例2 孔を有する板状アルファ酸化鉄粒子に代えて、平均粒子
径が0.13μm、モース硬度が5の球状に近い形状を
もった市販のアルファ酸化鉄粒子を用いた以外は、実施
例1と同様にして、塗布液を調製し、さらに研摩テープ
を作製した。
COMPARATIVE EXAMPLE 2 A commercially available alpha iron oxide particle having an average particle diameter of 0.13 μm and a Mohs hardness of 5 having a nearly spherical shape was used in place of the plate-like alpha iron oxide particle having pores. A coating solution was prepared in the same manner as in Example 1, and a polishing tape was prepared.

【0045】比較例3 孔を有する板状アルファ酸化鉄粒子に代えて、平均粒子
径が0.22μm、モース硬度が5の孔を持たない市販
の板状のアルファ酸化鉄粒子を用いた以外は、実施例1
と同様にして、塗布液を調製し、さらに研摩テープを作
製した。
Comparative Example 3 A plate-like alpha iron oxide particle having a mean particle size of 0.22 μm and a Mohs hardness of 5 and having no hole was used in place of the plate-like alpha iron oxide particle having a hole. Example 1
A coating solution was prepared in the same manner as in, and an abrasive tape was prepared.

【0046】上記の実施例1〜3および比較例1〜3の
各研磨テープを用いて、下記の方法により、ジルコニア
セラミツクに対する研磨試験を行い、その性能を評価し
た。結果は、表1に示されるとおりであった。
Using each of the polishing tapes of Examples 1 to 3 and Comparative Examples 1 to 3 described above, a polishing test was performed on zirconia ceramics by the following method to evaluate the performance. The results are as shown in Table 1.

【0047】<研磨試験>研磨テープの両端をガラス板
上に固定し、表面に水を含ませた状態で、表面性測定機
(新東科学製の「HEIDON−14DR」)を用い
て、摺動速度3,000mm/分、摺動スケール20mm、
荷重20gの条件で、直径5mmのジルコニア球(ニッカ
トー製)を100回、往復摺動させ、ジルコニア球の磨
耗度合いと、ジルコニア球表面の磨耗痕を顕微鏡で観察
し、下記のように評価した。 §.磨耗度合い ×:ほとんど磨耗していない △:わずかだけ磨耗している ○:かなり磨耗している ◎:顕著に磨耗している §.磨耗痕 ×:表面に傷が5本以上ある △:表面に傷が3〜4本ある ○:表面に傷が1〜2本ある ◎:表面に傷が全くない
<Polishing Test> Both ends of the polishing tape were fixed on a glass plate, and the surface was wet with water by using a surface property measuring instrument (“HEIDON-14DR” manufactured by Shinto Scientific Co., Ltd.). Dynamic speed 3,000 mm / min, sliding scale 20 mm,
A zirconia ball having a diameter of 5 mm (manufactured by Nikkato) was reciprocally slid 100 times under a load of 20 g, and the degree of wear of the zirconia ball and the wear marks on the surface of the zirconia ball were observed with a microscope and evaluated as follows. §. Degree of wear ×: Almost not worn △: Slightly worn ○: Very worn ◎: Remarkably worn §. Abrasion mark ×: There are 5 or more scratches on the surface Δ: There are 3 to 4 scratches on the surface ○: There are 1 to 2 scratches on the surface ◎: There is no scratch on the surface

【0048】 [0048]

【0049】上記表1の結果から明らかなように、研磨
剤としてダイアモンド粒子を用いた比較例1の研磨テー
プは、磨耗度合いが大きく、研摩能にすぐれているが、
研摩傷も多く発生している。また、球状のアルファ酸化
鉄粒子を用いた比較例2の研摩テープでは、研摩傷の発
生は少ないが、研摩能に明らかに劣っている。また、板
状のアルファ酸化鉄粒子を用いた比較例3の研摩テープ
では、上記の比較例2に比べて研磨能は若干向上する
が、なお十分とはいえない。
As is clear from the results shown in Table 1, the polishing tape of Comparative Example 1 using diamond particles as the abrasive has a large degree of wear and is excellent in polishing ability.
Many abrasive scratches have also occurred. Further, the polishing tape of Comparative Example 2 using spherical alpha iron oxide particles has few scratches, but is clearly inferior in polishing ability. Further, the polishing tape of Comparative Example 3 using the plate-shaped alpha iron oxide particles slightly improved the polishing ability as compared with Comparative Example 2 described above, but it was still not sufficient.

【0050】これに対して、本発明の実施例1〜3の研
磨テープでは、いずれも、ダイヤモンド粒子を用いた比
較例1の研摩テープに比べて、研摩能はやや小さいもの
の、満足できる範囲内であり、しかも研摩傷の発生が少
なく、研摩テープとしてバランスの取れた、実用的にす
ぐれたものであることがわかる。
On the other hand, the polishing tapes of Examples 1 to 3 of the present invention all have a polishing ability slightly lower than that of the polishing tape of Comparative Example 1 using diamond particles, but within a satisfactory range. In addition, it was found that there were few scratches, and the polishing tape was well balanced and practically excellent.

【0051】[0051]

【発明の効果】以上のように、本発明は、従来のダイヤ
モンド粒子に代えて、粒子の形状が板状で、かつ板厚方
向に孔を有する特定粒子径の金属酸化物粒子を使用した
ことにより、光コネクタなどの研磨用として、安価でか
つすぐれた研磨能を有する研磨粒子とこれを使用した研
磨シートなどの研磨体を提供できる。
As described above, according to the present invention, metal oxide particles having a specific particle diameter, which are plate-shaped and have pores in the plate thickness direction, are used in place of conventional diamond particles. As a result, it is possible to provide abrasive particles that are inexpensive and have excellent abrasive ability for polishing optical connectors and the like, and abrasive bodies such as abrasive sheets using the abrasive particles.

【図面の簡単な説明】[Brief description of drawings]

【図1】実施例1で製造した研磨粒子の粒子構造を示す
電子顕微鏡写真である。
FIG. 1 is an electron micrograph showing a particle structure of abrasive particles produced in Example 1.

【図2】実施例2で製造した研磨粒子の粒子構造を示す
電子顕微鏡写真である。
2 is an electron micrograph showing the particle structure of abrasive particles produced in Example 2. FIG.

【図3】実施例3で製造した研磨粒子の粒子構造を示す
電子顕微鏡写真である。
FIG. 3 is an electron micrograph showing a particle structure of abrasive particles produced in Example 3.

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 2H038 CA22 3C063 AA03 AB07 BB01 BB06 BC03 BG08 BG22 EE01    ─────────────────────────────────────────────────── ─── Continued front page    F-term (reference) 2H038 CA22                 3C063 AA03 AB07 BB01 BB06 BC03                       BG08 BG22 EE01

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 粒子の形状が板状で、粒子板面方向の平
均粒子径が10nmから1,000nmの範囲にあり、
かつ50%以上の粒子が板厚方向に孔を有する金属酸化
物粒子からなることを特徴とする研磨粒子。
1. The particles have a plate-like shape, and the average particle diameter in the particle plate surface direction is in the range of 10 nm to 1,000 nm.
Also, 50% or more of the particles are metal oxide particles having pores in the plate thickness direction, and are abrasive particles.
【請求項2】 孔の大きさが平均で1nmから100n
mの範囲にある請求項1に記載の研磨粒子。
2. The average pore size is 1 nm to 100 n.
The abrasive particles according to claim 1, which are in the range of m.
【請求項3】 金属酸化物粒子は、鉄または鉄を主体と
して含有し、さらにアルミニウム、シリコン、希土類元
素およびジルコニウムの中から選ばれる少なくとも1種
の元素を含有する請求項1または2に記載の研磨粒子。
3. The metal oxide particle according to claim 1, which contains iron or iron as a main component and further contains at least one element selected from aluminum, silicon, a rare earth element and zirconium. Abrasive particles.
【請求項4】 結合剤中に研磨剤を分散した研磨層を可
撓性支持体上に設けてなる研磨体において、上記の研磨
剤が、請求項1〜3のいずれかに記載の研磨粒子からな
ることを特徴とする研磨体。
4. A polishing body comprising a flexible support and a polishing layer in which the polishing agent is dispersed in a binder, wherein the polishing agent is the polishing particles according to any one of claims 1 to 3. A polishing body comprising:
JP2001242263A 2001-08-09 2001-08-09 Abrasive particle and abrasive body Withdrawn JP2003049158A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2001242263A JP2003049158A (en) 2001-08-09 2001-08-09 Abrasive particle and abrasive body
PCT/JP2002/008171 WO2003014251A1 (en) 2001-08-09 2002-08-09 Non-magnetic particles having a plate shape and method for production thereof, abrasive material, polishing article and abrasive fluid comprising such particles
GB0408299A GB2396157B (en) 2001-08-09 2002-08-09 Non-magnetic particles having a plate shape and method for production thereof,abrasive material,polishing article and abrasive fluid comprising such particles
US10/490,630 US20040244675A1 (en) 2001-08-09 2002-08-09 Non-magnetic particles having a plate shape and method for production thereof, abrasive material, polishing article and abrasive fluid comprising such particles

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001242263A JP2003049158A (en) 2001-08-09 2001-08-09 Abrasive particle and abrasive body

Publications (1)

Publication Number Publication Date
JP2003049158A true JP2003049158A (en) 2003-02-21

Family

ID=19072566

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001242263A Withdrawn JP2003049158A (en) 2001-08-09 2001-08-09 Abrasive particle and abrasive body

Country Status (1)

Country Link
JP (1) JP2003049158A (en)

Cited By (43)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8123828B2 (en) 2007-12-27 2012-02-28 3M Innovative Properties Company Method of making abrasive shards, shaped abrasive particles with an opening, or dish-shaped abrasive particles
US8142891B2 (en) 2008-12-17 2012-03-27 3M Innovative Properties Company Dish-shaped abrasive particles with a recessed surface
US8142531B2 (en) 2008-12-17 2012-03-27 3M Innovative Properties Company Shaped abrasive particles with a sloping sidewall
US8142532B2 (en) * 2008-12-17 2012-03-27 3M Innovative Properties Company Shaped abrasive particles with an opening
US8753558B2 (en) 2011-12-30 2014-06-17 Saint-Gobain Ceramics & Plastics, Inc. Forming shaped abrasive particles
US8753742B2 (en) 2012-01-10 2014-06-17 Saint-Gobain Ceramics & Plastics, Inc. Abrasive particles having complex shapes and methods of forming same
US8758461B2 (en) 2010-12-31 2014-06-24 Saint-Gobain Ceramics & Plastics, Inc. Abrasive particles having particular shapes and methods of forming such particles
US8764863B2 (en) 2011-12-30 2014-07-01 Saint-Gobain Ceramics & Plastics, Inc. Composite shaped abrasive particles and method of forming same
US8764865B2 (en) 2008-12-17 2014-07-01 3M Innovative Properties Company Shaped abrasive particles with grooves
US8840694B2 (en) 2011-06-30 2014-09-23 Saint-Gobain Ceramics & Plastics, Inc. Liquid phase sintered silicon carbide abrasive particles
US8840695B2 (en) 2011-12-30 2014-09-23 Saint-Gobain Ceramics & Plastics, Inc. Shaped abrasive particle and method of forming same
US8840696B2 (en) 2012-01-10 2014-09-23 Saint-Gobain Ceramics & Plastics, Inc. Abrasive particles having particular shapes and methods of forming such particles
JP2014240350A (en) * 2008-12-26 2014-12-25 日揮触媒化成株式会社 Production method of micro ring-like inorganic oxide particle having through hole
US8986409B2 (en) 2011-06-30 2015-03-24 Saint-Gobain Ceramics & Plastics, Inc. Abrasive articles including abrasive particles of silicon nitride
US9074119B2 (en) 2012-12-31 2015-07-07 Saint-Gobain Ceramics & Plastics, Inc. Particulate materials and methods of forming same
US9150765B2 (en) 2009-12-22 2015-10-06 3M Innovative Properties Company Transfer assisted screen printing method of making shaped abrasive particles and the resulting shaped abrasive particles
US9200187B2 (en) 2012-05-23 2015-12-01 Saint-Gobain Ceramics & Plastics, Inc. Shaped abrasive particles and methods of forming same
US9242346B2 (en) 2012-03-30 2016-01-26 Saint-Gobain Abrasives, Inc. Abrasive products having fibrillated fibers
US9440332B2 (en) 2012-10-15 2016-09-13 Saint-Gobain Abrasives, Inc. Abrasive particles having particular shapes and methods of forming such particles
US9457453B2 (en) 2013-03-29 2016-10-04 Saint-Gobain Abrasives, Inc./Saint-Gobain Abrasifs Abrasive particles having particular shapes and methods of forming such particles
US9517546B2 (en) 2011-09-26 2016-12-13 Saint-Gobain Ceramics & Plastics, Inc. Abrasive articles including abrasive particulate materials, coated abrasives using the abrasive particulate materials and methods of forming
US9566689B2 (en) 2013-12-31 2017-02-14 Saint-Gobain Abrasives, Inc. Abrasive article including shaped abrasive particles
US9604346B2 (en) 2013-06-28 2017-03-28 Saint-Gobain Cermaics & Plastics, Inc. Abrasive article including shaped abrasive particles
US9676981B2 (en) 2014-12-24 2017-06-13 Saint-Gobain Ceramics & Plastics, Inc. Shaped abrasive particle fractions and method of forming same
US9707529B2 (en) 2014-12-23 2017-07-18 Saint-Gobain Ceramics & Plastics, Inc. Composite shaped abrasive particles and method of forming same
US9771507B2 (en) 2014-01-31 2017-09-26 Saint-Gobain Ceramics & Plastics, Inc. Shaped abrasive particle including dopant material and method of forming same
US9783718B2 (en) 2013-09-30 2017-10-10 Saint-Gobain Ceramics & Plastics, Inc. Shaped abrasive particles and methods of forming same
US9803119B2 (en) 2014-04-14 2017-10-31 Saint-Gobain Ceramics & Plastics, Inc. Abrasive article including shaped abrasive particles
US9902045B2 (en) 2014-05-30 2018-02-27 Saint-Gobain Abrasives, Inc. Method of using an abrasive article including shaped abrasive particles
US9914864B2 (en) 2014-12-23 2018-03-13 Saint-Gobain Ceramics & Plastics, Inc. Shaped abrasive particles and method of forming same
US9938440B2 (en) 2015-03-31 2018-04-10 Saint-Gobain Abrasives, Inc./Saint-Gobain Abrasifs Fixed abrasive articles and methods of forming same
US10106714B2 (en) 2012-06-29 2018-10-23 Saint-Gobain Ceramics & Plastics, Inc. Abrasive particles having particular shapes and methods of forming such particles
US10137556B2 (en) 2009-06-22 2018-11-27 3M Innovative Properties Company Shaped abrasive particles with low roundness factor
US10196551B2 (en) 2015-03-31 2019-02-05 Saint-Gobain Abrasives, Inc. Fixed abrasive articles and methods of forming same
US10557067B2 (en) 2014-04-14 2020-02-11 Saint-Gobain Ceramics & Plastics, Inc. Abrasive article including shaped abrasive particles
US10563105B2 (en) 2017-01-31 2020-02-18 Saint-Gobain Ceramics & Plastics, Inc. Abrasive article including shaped abrasive particles
US10711171B2 (en) 2015-06-11 2020-07-14 Saint-Gobain Ceramics & Plastics, Inc. Abrasive article including shaped abrasive particles
US10759024B2 (en) 2017-01-31 2020-09-01 Saint-Gobain Ceramics & Plastics, Inc. Abrasive article including shaped abrasive particles
US10865148B2 (en) 2017-06-21 2020-12-15 Saint-Gobain Ceramics & Plastics, Inc. Particulate materials and methods of forming same
US11230653B2 (en) 2016-09-29 2022-01-25 Saint-Gobain Abrasives, Inc. Fixed abrasive articles and methods of forming same
US11718774B2 (en) 2016-05-10 2023-08-08 Saint-Gobain Ceramics & Plastics, Inc. Abrasive particles and methods of forming same
US11926019B2 (en) 2019-12-27 2024-03-12 Saint-Gobain Ceramics & Plastics, Inc. Abrasive articles and methods of forming same
US11959009B2 (en) 2016-05-10 2024-04-16 Saint-Gobain Ceramics & Plastics, Inc. Abrasive particles and methods of forming same

Cited By (88)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8123828B2 (en) 2007-12-27 2012-02-28 3M Innovative Properties Company Method of making abrasive shards, shaped abrasive particles with an opening, or dish-shaped abrasive particles
US10987780B2 (en) 2008-12-17 2021-04-27 3M Innovative Properties Company Shaped abrasive particles with a sloping sidewall
US8764865B2 (en) 2008-12-17 2014-07-01 3M Innovative Properties Company Shaped abrasive particles with grooves
US8142532B2 (en) * 2008-12-17 2012-03-27 3M Innovative Properties Company Shaped abrasive particles with an opening
US9890309B2 (en) 2008-12-17 2018-02-13 3M Innovative Properties Company Abrasive article with shaped abrasive particles with grooves
KR101800900B1 (en) 2008-12-17 2017-11-23 쓰리엠 이노베이티브 프로퍼티즈 컴파니 Shaped abrasive particles with an opening
US9938439B2 (en) 2008-12-17 2018-04-10 3M Innovative Properties Company Production tool to make abrasive particles with grooves
US8142891B2 (en) 2008-12-17 2012-03-27 3M Innovative Properties Company Dish-shaped abrasive particles with a recessed surface
US8142531B2 (en) 2008-12-17 2012-03-27 3M Innovative Properties Company Shaped abrasive particles with a sloping sidewall
US11767454B2 (en) 2008-12-17 2023-09-26 3M Innovative Properties Company Production tool to make abrasive particles with grooves
JP2014240350A (en) * 2008-12-26 2014-12-25 日揮触媒化成株式会社 Production method of micro ring-like inorganic oxide particle having through hole
US10137556B2 (en) 2009-06-22 2018-11-27 3M Innovative Properties Company Shaped abrasive particles with low roundness factor
US9150765B2 (en) 2009-12-22 2015-10-06 3M Innovative Properties Company Transfer assisted screen printing method of making shaped abrasive particles and the resulting shaped abrasive particles
US8758461B2 (en) 2010-12-31 2014-06-24 Saint-Gobain Ceramics & Plastics, Inc. Abrasive particles having particular shapes and methods of forming such particles
US9017439B2 (en) 2010-12-31 2015-04-28 Saint-Gobain Ceramics & Plastics, Inc. Abrasive particles having particular shapes and methods of forming such particles
US9303196B2 (en) 2011-06-30 2016-04-05 Saint-Gobain Ceramics & Plastics, Inc. Liquid phase sintered silicon carbide abrasive particles
US8986409B2 (en) 2011-06-30 2015-03-24 Saint-Gobain Ceramics & Plastics, Inc. Abrasive articles including abrasive particles of silicon nitride
US8840694B2 (en) 2011-06-30 2014-09-23 Saint-Gobain Ceramics & Plastics, Inc. Liquid phase sintered silicon carbide abrasive particles
US9598620B2 (en) 2011-06-30 2017-03-21 Saint-Gobain Ceramics & Plastics, Inc. Abrasive articles including abrasive particles of silicon nitride
US9517546B2 (en) 2011-09-26 2016-12-13 Saint-Gobain Ceramics & Plastics, Inc. Abrasive articles including abrasive particulate materials, coated abrasives using the abrasive particulate materials and methods of forming
US9765249B2 (en) 2011-12-30 2017-09-19 Saint-Gobain Ceramics & Plastics, Inc. Shaped abrasive particle and method of forming same
US11453811B2 (en) 2011-12-30 2022-09-27 Saint-Gobain Ceramics & Plastics, Inc. Shaped abrasive particle and method of forming same
US8753558B2 (en) 2011-12-30 2014-06-17 Saint-Gobain Ceramics & Plastics, Inc. Forming shaped abrasive particles
US8840695B2 (en) 2011-12-30 2014-09-23 Saint-Gobain Ceramics & Plastics, Inc. Shaped abrasive particle and method of forming same
US8764863B2 (en) 2011-12-30 2014-07-01 Saint-Gobain Ceramics & Plastics, Inc. Composite shaped abrasive particles and method of forming same
US10428255B2 (en) 2011-12-30 2019-10-01 Saint-Gobain Ceramics & Plastics, Inc. Shaped abrasive particle and method of forming same
US9676980B2 (en) 2012-01-10 2017-06-13 Saint-Gobain Ceramics & Plastics, Inc. Abrasive particles having particular shapes and methods of forming such particles
US8753742B2 (en) 2012-01-10 2014-06-17 Saint-Gobain Ceramics & Plastics, Inc. Abrasive particles having complex shapes and methods of forming same
US9567505B2 (en) 2012-01-10 2017-02-14 Saint-Gobain Ceramics & Plastics, Inc. Abrasive particles having complex shapes and methods of forming same
US11142673B2 (en) 2012-01-10 2021-10-12 Saint-Gobain Ceramics & Plastics, Inc. Abrasive particles having complex shapes and methods of forming same
US10106715B2 (en) 2012-01-10 2018-10-23 Saint-Gobain Ceramics & Plastics, Inc. Abrasive particles having complex shapes and methods of forming same
US8840696B2 (en) 2012-01-10 2014-09-23 Saint-Gobain Ceramics & Plastics, Inc. Abrasive particles having particular shapes and methods of forming such particles
US9238768B2 (en) 2012-01-10 2016-01-19 Saint-Gobain Ceramics & Plastics, Inc. Abrasive particles having complex shapes and methods of forming same
US11649388B2 (en) 2012-01-10 2023-05-16 Saint-Gobain Cermaics & Plastics, Inc. Abrasive particles having complex shapes and methods of forming same
US11859120B2 (en) 2012-01-10 2024-01-02 Saint-Gobain Ceramics & Plastics, Inc. Abrasive particles having an elongated body comprising a twist along an axis of the body
US10364383B2 (en) 2012-01-10 2019-07-30 Saint-Gobain Ceramics & Plastics, Inc. Abrasive particles having complex shapes and methods of forming same
US9771506B2 (en) 2012-01-10 2017-09-26 Saint-Gobain Ceramics & Plastics, Inc. Abrasive particles having complex shapes and methods of forming same
US9242346B2 (en) 2012-03-30 2016-01-26 Saint-Gobain Abrasives, Inc. Abrasive products having fibrillated fibers
US9688893B2 (en) 2012-05-23 2017-06-27 Saint-Gobain Ceramics & Plastics, Inc. Shaped abrasive particles and methods of forming same
US9428681B2 (en) 2012-05-23 2016-08-30 Saint-Gobain Ceramics & Plastics, Inc. Shaped abrasive particles and methods of forming same
US9200187B2 (en) 2012-05-23 2015-12-01 Saint-Gobain Ceramics & Plastics, Inc. Shaped abrasive particles and methods of forming same
US10000676B2 (en) 2012-05-23 2018-06-19 Saint-Gobain Ceramics & Plastics, Inc. Shaped abrasive particles and methods of forming same
US10106714B2 (en) 2012-06-29 2018-10-23 Saint-Gobain Ceramics & Plastics, Inc. Abrasive particles having particular shapes and methods of forming such particles
US9440332B2 (en) 2012-10-15 2016-09-13 Saint-Gobain Abrasives, Inc. Abrasive particles having particular shapes and methods of forming such particles
US10286523B2 (en) 2012-10-15 2019-05-14 Saint-Gobain Abrasives, Inc. Abrasive particles having particular shapes and methods of forming such particles
US11154964B2 (en) 2012-10-15 2021-10-26 Saint-Gobain Abrasives, Inc. Abrasive particles having particular shapes and methods of forming such particles
US11148254B2 (en) 2012-10-15 2021-10-19 Saint-Gobain Abrasives, Inc. Abrasive particles having particular shapes and methods of forming such particles
US9074119B2 (en) 2012-12-31 2015-07-07 Saint-Gobain Ceramics & Plastics, Inc. Particulate materials and methods of forming same
US9676982B2 (en) 2012-12-31 2017-06-13 Saint-Gobain Ceramics & Plastics, Inc. Particulate materials and methods of forming same
US9457453B2 (en) 2013-03-29 2016-10-04 Saint-Gobain Abrasives, Inc./Saint-Gobain Abrasifs Abrasive particles having particular shapes and methods of forming such particles
US11590632B2 (en) 2013-03-29 2023-02-28 Saint-Gobain Abrasives, Inc. Abrasive particles having particular shapes and methods of forming such particles
US10179391B2 (en) 2013-03-29 2019-01-15 Saint-Gobain Abrasives, Inc. Abrasive particles having particular shapes and methods of forming such particles
US10668598B2 (en) 2013-03-29 2020-06-02 Saint-Gobain Abrasives, Inc./Saint-Gobain Abrasifs Abrasive particles having particular shapes and methods of forming such particles
US9604346B2 (en) 2013-06-28 2017-03-28 Saint-Gobain Cermaics & Plastics, Inc. Abrasive article including shaped abrasive particles
US10563106B2 (en) 2013-09-30 2020-02-18 Saint-Gobain Ceramics & Plastics, Inc. Shaped abrasive particles and methods of forming same
US9783718B2 (en) 2013-09-30 2017-10-10 Saint-Gobain Ceramics & Plastics, Inc. Shaped abrasive particles and methods of forming same
US9566689B2 (en) 2013-12-31 2017-02-14 Saint-Gobain Abrasives, Inc. Abrasive article including shaped abrasive particles
US11091678B2 (en) 2013-12-31 2021-08-17 Saint-Gobain Abrasives, Inc. Abrasive article including shaped abrasive particles
US11926781B2 (en) 2014-01-31 2024-03-12 Saint-Gobain Ceramics & Plastics, Inc. Shaped abrasive particle including dopant material and method of forming same
US9771507B2 (en) 2014-01-31 2017-09-26 Saint-Gobain Ceramics & Plastics, Inc. Shaped abrasive particle including dopant material and method of forming same
US10597568B2 (en) 2014-01-31 2020-03-24 Saint-Gobain Ceramics & Plastics, Inc. Shaped abrasive particle including dopant material and method of forming same
US11891559B2 (en) 2014-04-14 2024-02-06 Saint-Gobain Ceramics & Plastics, Inc. Abrasive article including shaped abrasive particles
US9803119B2 (en) 2014-04-14 2017-10-31 Saint-Gobain Ceramics & Plastics, Inc. Abrasive article including shaped abrasive particles
US10557067B2 (en) 2014-04-14 2020-02-11 Saint-Gobain Ceramics & Plastics, Inc. Abrasive article including shaped abrasive particles
US9902045B2 (en) 2014-05-30 2018-02-27 Saint-Gobain Abrasives, Inc. Method of using an abrasive article including shaped abrasive particles
US11926780B2 (en) 2014-12-23 2024-03-12 Saint-Gobain Ceramics & Plastics, Inc. Shaped abrasive particles and method of forming same
US9707529B2 (en) 2014-12-23 2017-07-18 Saint-Gobain Ceramics & Plastics, Inc. Composite shaped abrasive particles and method of forming same
US9914864B2 (en) 2014-12-23 2018-03-13 Saint-Gobain Ceramics & Plastics, Inc. Shaped abrasive particles and method of forming same
US10351745B2 (en) 2014-12-23 2019-07-16 Saint-Gobain Ceramics & Plastics, Inc. Shaped abrasive particles and method of forming same
US11608459B2 (en) 2014-12-23 2023-03-21 Saint-Gobain Ceramics & Plastics, Inc. Shaped abrasive particles and method of forming same
US9676981B2 (en) 2014-12-24 2017-06-13 Saint-Gobain Ceramics & Plastics, Inc. Shaped abrasive particle fractions and method of forming same
US10196551B2 (en) 2015-03-31 2019-02-05 Saint-Gobain Abrasives, Inc. Fixed abrasive articles and methods of forming same
US10358589B2 (en) 2015-03-31 2019-07-23 Saint-Gobain Abrasives, Inc. Fixed abrasive articles and methods of forming same
US11472989B2 (en) 2015-03-31 2022-10-18 Saint-Gobain Abrasives, Inc. Fixed abrasive articles and methods of forming same
US9938440B2 (en) 2015-03-31 2018-04-10 Saint-Gobain Abrasives, Inc./Saint-Gobain Abrasifs Fixed abrasive articles and methods of forming same
US11643582B2 (en) 2015-03-31 2023-05-09 Saint-Gobain Abrasives, Inc. Fixed abrasive articles and methods of forming same
US11879087B2 (en) 2015-06-11 2024-01-23 Saint-Gobain Ceramics & Plastics, Inc. Abrasive article including shaped abrasive particles
US10711171B2 (en) 2015-06-11 2020-07-14 Saint-Gobain Ceramics & Plastics, Inc. Abrasive article including shaped abrasive particles
US11718774B2 (en) 2016-05-10 2023-08-08 Saint-Gobain Ceramics & Plastics, Inc. Abrasive particles and methods of forming same
US11959009B2 (en) 2016-05-10 2024-04-16 Saint-Gobain Ceramics & Plastics, Inc. Abrasive particles and methods of forming same
US11230653B2 (en) 2016-09-29 2022-01-25 Saint-Gobain Abrasives, Inc. Fixed abrasive articles and methods of forming same
US11427740B2 (en) 2017-01-31 2022-08-30 Saint-Gobain Ceramics & Plastics, Inc. Method of making shaped abrasive particles and articles comprising forming a flange from overfilling
US10563105B2 (en) 2017-01-31 2020-02-18 Saint-Gobain Ceramics & Plastics, Inc. Abrasive article including shaped abrasive particles
US11549040B2 (en) 2017-01-31 2023-01-10 Saint-Gobain Ceramics & Plastics, Inc. Abrasive article including shaped abrasive particles having a tooth portion on a surface
US10759024B2 (en) 2017-01-31 2020-09-01 Saint-Gobain Ceramics & Plastics, Inc. Abrasive article including shaped abrasive particles
US11932802B2 (en) 2017-01-31 2024-03-19 Saint-Gobain Ceramics & Plastics, Inc. Abrasive article including shaped abrasive particles comprising a particular toothed body
US10865148B2 (en) 2017-06-21 2020-12-15 Saint-Gobain Ceramics & Plastics, Inc. Particulate materials and methods of forming same
US11926019B2 (en) 2019-12-27 2024-03-12 Saint-Gobain Ceramics & Plastics, Inc. Abrasive articles and methods of forming same

Similar Documents

Publication Publication Date Title
JP2003049158A (en) Abrasive particle and abrasive body
US11100949B2 (en) Magnetic recording medium
US8535817B2 (en) Magnetic recording medium and method of manufacturing the same
JP2019003712A (en) Magnetic recording medium
JP3305557B2 (en) Polishing tape, method for producing the same, and coating agent for the polishing tape
JPH02192019A (en) Magnetic recording medium
US6103340A (en) Magnetic recording medium
KR100260600B1 (en) Magnetic recording medium
JPH05266459A (en) Magnetic recording carrier
JPH06195676A (en) Magnetic recording medium
JP2019172553A (en) PARTICLE OF β-IRON OXYHYDROXIDE COMPOUND AND MANUFACTURING METHOD THEREFOR, PARTICLE OF ε-IRON OXIDE COMPOUND AND MANUFACTURING METHOD THEREFOR, AND MANUFACTURING METHOD OF MAGNETIC RECORDING MEDIUM
JPH041917A (en) Magnetic recording medium and its production
JPH08267363A (en) Abrasive body
US5609657A (en) Composition for texturing magnetic disk
JPH0679370B2 (en) Magnetic recording medium
US5073439A (en) Magnetic recording medium comprising a vinyl chloride based resin group containing an epoxy group or a polar or both and further a polyurethane resin containing three hydroxyl groups and one polar group
JP2004249370A (en) Polishing element and method of manufacturing the same
JP2002254316A (en) Polishing sheet
JPH02110826A (en) Magnetic disk
JPH0393032A (en) Magnetic recording medium
JPH05293766A (en) Polishing body
JP2004322253A (en) Fixed abrasive grain polishing material
JP4155474B2 (en) Method for manufacturing magnetic paint and method for manufacturing magnetic recording medium
JP2002346938A (en) Grinder for grinding glass surface
JPH04501334A (en) magnetic recording medium

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20061103

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20070711

A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20081104