JP2003043533A - Automatic tracking device for keeping fixed direction of second higher harmonic of laser - Google Patents

Automatic tracking device for keeping fixed direction of second higher harmonic of laser

Info

Publication number
JP2003043533A
JP2003043533A JP2001235977A JP2001235977A JP2003043533A JP 2003043533 A JP2003043533 A JP 2003043533A JP 2001235977 A JP2001235977 A JP 2001235977A JP 2001235977 A JP2001235977 A JP 2001235977A JP 2003043533 A JP2003043533 A JP 2003043533A
Authority
JP
Japan
Prior art keywords
laser
harmonic
prism
light
wavelength
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2001235977A
Other languages
Japanese (ja)
Inventor
Fujitaro Imasaka
藤太郎 今坂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kitakyushu Foundation for Advancement of Industry Science and Technology
Original Assignee
Kitakyushu Foundation for Advancement of Industry Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kitakyushu Foundation for Advancement of Industry Science and Technology filed Critical Kitakyushu Foundation for Advancement of Industry Science and Technology
Priority to JP2001235977A priority Critical patent/JP2003043533A/en
Publication of JP2003043533A publication Critical patent/JP2003043533A/en
Withdrawn legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide an automatic tracking device for keeping fixed the traveling direction of the second harmonic light even in the case that the wavelength is changed like second harmonic laser generation using a wavelength tunable laser. SOLUTION: The automatic tracking device for keeping fixed the direction of the second harmonic of laser is provided with a prism which separates fundamental wave laser and the second harmonic laser and is placed and fixed on a turntable, a beam splitter which splits the separated fundamental light or second harmonic light, a position sensing detector which detects the position of split beams, and a controller which compares the traveling direction detected by the position sensing detector with a desired traveling direction and displaces the turntable, on which the prism is placed and fixed, in the peripheral direction so that the extent of variation may be zero.

Description

【発明の詳細な説明】 【0001】 【発明の属する技術分野】本発明は、たとえば非線形光
学結晶によって波長変換されたレーザー光の第二高調波
を、基本波レーザーと分離した後の第二高調波光の進行
方向を一定に保つための自動追尾装置に関する。 【0002】 【従来の技術】従来、微細加工機、精密読取り機、化学
装置等においては、レーザー光のもつ高いエネルギー密
度と指向性の良さを利用した高性能の機器が開発、利用
されている。これら機器の用途はレーザー光の波長に依
存し、短い波長であるほど応用範囲が広がるので、より
短波長のレーザー光に対する需要が高まっている。 【0003】レーザー光の周波数を2倍(波長を1/
2)にするために、第二高調波発生システムが用いられ
る。高調波発生のための位相整合条件を満足せしめるべ
く、入射光と高調波光の屈折率が等しいことが必要であ
り、この条件を満たすバリウム硼珪酸塩結晶(BBO)
やKDP(第一燐酸カリウム)結晶等の非線形光学結晶
にレーザー光を通過させて第二高調波を発生させる。 【0004】 【発明が解決しようとする課題】このようにして発生さ
れた第二高調波を、基本波光と分離するのにプリズムが
用いられることが多い。処で、色素レーザーのような波
長可変レーザーを用いる場合、波長の変化によってプリ
ズムからのレーザー光の進行方向が変化する。これは、
レーザー光を用いる機器にとって問題となる。 【0005】このような問題を解決する手段として、予
め測定した最適のプリズム角度に、コンピュータで制御
する方法が既知である。即ち、幾つかの波長について最
適のプリズム角度を求めておき、レーザー波長を掃引す
る際に、その角度となるようにコンピュータを用いて制
御する方法である。測定点の間は、補間法を用いて最適
値を計算する。しかしながら、この方法には、 多数の波長について最適値を求める必要があり、手続
きが煩雑である。 レーザービームの軸を変化させるとプリズムの角度が
変化するので、場合によっては上記手続きを毎日行う必
要がある。 精度が不十分なため、レーザー光の進行方向がかなり
ばらつき、利用に際して問題となることが少なくない。
といった問題がある。 【0006】また、目的とする、たとえば第二高調波光
のみを反射する鏡を用いて、基本波光と分離する方法も
知られている。この方法によれば、レーザービームの進
行方向が変化しないので好都合である。しかしながら、
この方法には、 2枚程度の鏡を用いた場合には、基本波光を完全に
除去できない。従って、基本波光を完全に除くには、特
殊で高価な鏡を多数用いる必要がある。 上記鏡は波長域毎に使い分ける必要があり、波長可変
レーザーの場合には、少なくとも数セットの鏡を準備し
これを自動的に切り替える機構を必要とする。という問
題がある。 【0007】本発明は、波長可変レーザーを用いる第二
高調波レーザー発生の場合のように、波長が変化して
も、第二高調波光或いは基本波光の進行方向を一定に保
つことができる自動追尾装置を提供することを目的とす
る。 【0008】 【課題を解決するための手段】上記課題を解決するため
の本発明は、基本波レーザー光と波長変換されたレーザ
ー光とを分離する、回転台に載置、固定されたプリズム
と、分離された基本波レーザー光と波長変換されたレー
ザー光の何れかのレーザー光を分割するビームスプリッ
ターと、該分割されたレーザービームの位置を検出する
位置敏感検出器と、該位置敏感検出器の検出結果と所望
のビーム進行方向とを比較して変異量が零となるよう
に、プリズムを載置している回転台を周方向に変位させ
るコントローラとを有してなるレーザーの第二高調波の
方向を一定に保つための自動追尾装置である。 【0009】 【発明の実施の形態】以下、本発明をその好ましい実施
形態に則して説明する。 【0010】本発明においては、基本波レーザーと、発
生したレーザーたとえば非線形光学結晶によって波長変
換した第二高調波レーザーとを分離するするのにプリズ
ムを用いている。これによって、波長が1:2と大きく
異なる第二高調波と基本波を完全に分離できる。 【0011】プリズムは回転台上に載置、固定され、周
方向に変位自在な回転台は、たとえばパルスモータによ
って周方向変位を与えられる。而して、この回転台を操
作端として、本発明のレーザーの第二高調波の方向を一
定に保つための自動追尾装置の制御系が構成される。 【0012】 【実施例】図1に、本発明のレーザーの第二高調波の方
向を一定に保つための自動追尾装置の構成を示す。たと
えば、非線形光学結晶によって波長変換された出力光
が、図1に示す分散プリズム2における入力光1として
入射される。分散プリズム2によって、基本波光と第二
高調波光とが分離され、目的とするレーザー光、この実
施例においては第二高調波光が取り出される。 【0013】この実施例においては、プリズムとして分
散プリズム2を用いているけれども、本発明はこれに限
るものではなく、たとえばペランブローカープリズムな
ど他のプリズムを用いてもよい。 【0014】分散プリズム2は、図1に示すように、回
転台3上に載置、固定されており、回転台3は周方向に
変位自在であって、図示しない、たとえばパルスモータ
によって周方向の変位を与えられる。回転台3の周方向
の変位によって分散プリズム2の角度が変化し、レーザ
ー光の波長の変化等に起因する第二高調波光の進行方向
の変異を修正する。 【0015】分散プリズム2からの目的の光たとえば第
二高調波光は、ビームスプリッター4によってその一部
が分割され、位置敏感検出器5に入射される。この位置
敏感検出器5によって、第二高調波光の進行方向の変異
量が検出される。第二高調波光進行方向の検出結果は、
コントローラ6に入力され、コントローラ6は、第二高
調波光進行方向に変異があるときは、その変異量を零に
するに必要な分散プリズム2の角度変化量を算出し、パ
ルスモータに駆動信号を入力し、回転台3を周方向に変
位させる。 【0016】一方、分散プリズム2から出力される目的
の光たとえば第二高調波光の進行方向の変化を観測する
目的で、イメージセンサ7を配置している。 【0017】図2に、本発明のレーザーの第二高調波の
方向を一定に保つための自動追尾装置における分散プリ
ズム2から1.4m離れた位置で、第二高調波レーザー
光の位置変化を測定した結果を示す。図2から明らかな
ように、第二高調波光の進行方向変異量は、そのレンジ
が1mm程度であり、これはレーザービーム(第二高調
波ビーム)の直径よりも十分に小さな値である。第二高
調波光の偏向角度に換算すると、数100μrad程度の
僅かな振れである。この程度の第二高調波ビーム進行方
向の揺らぎは、第二高調波レーザーを利用する機器にお
いて、完全に無視し得る小さな変異量範囲である。 【0018】発明者は、波長可変レーザーである色素レ
ーザーを非線形光学結晶によって波長変換を行ったレー
ザービームを分散プリズム2に入射して得られた第二高
調波波長を掃引してレーザービームの進行方向を調べた
結果、本発明のレーザーの第二高調波の方向を一定に保
つための自動追尾装置によれば、レーザービームの進行
方向は殆ど変化しないことを確認した。 【0019】 【発明の効果】本発明によれば、基本波レーザー光と第
二高調波レーザー光とをプリズムによって分離して得ら
れる第二高調波レーザー光進行方向の変動をほぼ完全に
除去できる。 【0020】本発明のレーザーの第二高調波の方向を一
定に保つための自動追尾装置は、色素レーザーといった
波長可変レーザーで得られるレーザー光を入力光として
非線形光学結晶によって波長変換する場合に、好適に用
いることができる。また、誘導ラマン散乱など、他の波
長変換手段を用いる場合においても、所定の波長のレー
ザー光を取り出す場合に利用することができる。
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a second harmonic of a laser beam whose wavelength has been converted by, for example, a nonlinear optical crystal, after being separated from a fundamental laser. The present invention relates to an automatic tracking device for keeping a traveling direction of wave light constant. 2. Description of the Related Art Hitherto, high-performance devices utilizing the high energy density and good directivity of laser light have been developed and used in fine processing machines, precision readers, chemical devices and the like. . The applications of these devices depend on the wavelength of the laser light, and the shorter the wavelength, the wider the range of application. Therefore, the demand for shorter wavelength laser light is increasing. The frequency of laser light is doubled (wavelength is 1 /
To do 2), a second harmonic generation system is used. In order to satisfy the phase matching condition for harmonic generation, it is necessary that the refractive index of incident light and that of harmonic light are equal, and barium borosilicate crystal (BBO) satisfying this condition is required.
A laser beam is passed through a nonlinear optical crystal such as a crystal or KDP (potassium phosphate) crystal to generate a second harmonic. [0004] A prism is often used to separate the second harmonic generated in this manner from the fundamental light. When a wavelength-variable laser such as a dye laser is used, the traveling direction of the laser light from the prism changes according to the change in wavelength. this is,
This is a problem for devices using laser light. As a means for solving such a problem, there is known a method of controlling a pre-measured optimum prism angle by a computer. That is, a method in which an optimum prism angle is obtained for several wavelengths, and when the laser wavelength is swept, control is performed using a computer so that the angle becomes the angle. Between the measurement points, an optimum value is calculated using an interpolation method. However, in this method, it is necessary to find optimum values for many wavelengths, and the procedure is complicated. If the axis of the laser beam is changed, the angle of the prism will change. Due to insufficient accuracy, the traveling direction of the laser light varies considerably, which often causes a problem in utilization.
There is a problem. There is also known a method of separating the light from the fundamental wave by using a mirror which reflects only the desired second harmonic light, for example. This method is advantageous because the traveling direction of the laser beam does not change. However,
In this method, when about two mirrors are used, the fundamental light cannot be completely removed. Therefore, it is necessary to use many special and expensive mirrors to completely eliminate the fundamental light. The above-mentioned mirrors need to be properly used for each wavelength range. In the case of a wavelength tunable laser, at least several sets of mirrors are prepared and a mechanism for automatically switching the mirrors is required. There is a problem. According to the present invention, as in the case of generating a second harmonic laser using a wavelength tunable laser, even if the wavelength changes, the traveling direction of the second harmonic light or the fundamental light can be kept constant. It is intended to provide a device. According to the present invention, there is provided a prism for separating a fundamental laser beam and a wavelength-converted laser beam, the prism being mounted on and fixed to a turntable. A beam splitter that splits any one of the separated fundamental laser light and the wavelength-converted laser light, a position-sensitive detector that detects the position of the split laser beam, and the position-sensitive detector A controller for displacing the turntable on which the prism is mounted in the circumferential direction so that the amount of displacement becomes zero by comparing the result of detection with the desired beam traveling direction. It is an automatic tracking device for keeping the direction of waves constant. DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described below based on preferred embodiments. In the present invention, a prism is used to separate a fundamental wave laser from a generated laser, for example, a second harmonic laser whose wavelength has been converted by a nonlinear optical crystal. This makes it possible to completely separate the second harmonic and the fundamental wave whose wavelengths differ greatly by 1: 2. The prism is mounted and fixed on a turntable, and the turntable which is displaceable in the circumferential direction is given a circumferential displacement by, for example, a pulse motor. Thus, the control system of the automatic tracking device for keeping the direction of the second harmonic of the laser of the present invention constant is constituted by using the turntable as an operation end. FIG. 1 shows the configuration of an automatic tracking device for keeping the direction of the second harmonic of a laser according to the present invention constant. For example, output light whose wavelength has been converted by the nonlinear optical crystal is incident as input light 1 in the dispersion prism 2 shown in FIG. The dispersing prism 2 separates the fundamental wave light and the second harmonic light, and extracts the target laser light, in this embodiment, the second harmonic light. In this embodiment, the dispersing prism 2 is used as the prism, but the present invention is not limited to this, and another prism such as a Perrin broker prism may be used. As shown in FIG. 1, the dispersion prism 2 is mounted and fixed on a turntable 3, and the turntable 3 can be displaced in the circumferential direction. Given the displacement of The angle of the dispersing prism 2 changes due to the circumferential displacement of the turntable 3, and the variation in the traveling direction of the second harmonic light caused by the change in the wavelength of the laser light or the like is corrected. Part of the target light, for example, the second harmonic light from the dispersion prism 2 is split by the beam splitter 4 and is incident on the position sensitive detector 5. The position-sensitive detector 5 detects the amount of variation in the traveling direction of the second harmonic light. The detection result of the second harmonic light traveling direction is:
When the variation is present in the traveling direction of the second harmonic light, the controller 6 calculates the amount of change in the angle of the dispersing prism 2 required to reduce the variation to zero, and sends a drive signal to the pulse motor. Then, the turntable 3 is displaced in the circumferential direction. On the other hand, an image sensor 7 is provided for the purpose of observing a change in the traveling direction of target light output from the dispersing prism 2, for example, the second harmonic light. FIG. 2 shows the change in the position of the second harmonic laser light at a position 1.4 m away from the dispersion prism 2 in the automatic tracking device for keeping the direction of the second harmonic of the laser of the present invention constant. The result of the measurement is shown. As is clear from FIG. 2, the variation in the traveling direction of the second harmonic light has a range of about 1 mm, which is sufficiently smaller than the diameter of the laser beam (second harmonic beam). When converted to the deflection angle of the second harmonic light, it is a slight deflection of about several 100 μrad. Such fluctuation in the direction of the second harmonic beam travel is a small variation range that can be completely ignored in an apparatus using the second harmonic laser. The inventor of the present invention swept a second harmonic wavelength obtained by applying a laser beam obtained by wavelength-converting a dye laser, which is a wavelength-variable laser, using a non-linear optical crystal, to a dispersion prism 2 to sweep the second harmonic wavelength. As a result of checking the direction, it was confirmed that the traveling direction of the laser beam hardly changed according to the automatic tracking device for keeping the direction of the second harmonic of the laser of the present invention constant. According to the present invention, the fluctuation of the traveling direction of the second harmonic laser beam obtained by separating the fundamental laser beam and the second harmonic laser beam by the prism can be almost completely eliminated. . The automatic tracking device for keeping the direction of the second harmonic of the laser of the present invention constant is provided when a laser light obtained by a wavelength tunable laser such as a dye laser is used as input light and wavelength conversion is performed by a nonlinear optical crystal. It can be suitably used. Further, even when other wavelength converting means such as stimulated Raman scattering is used, it can be used for extracting laser light of a predetermined wavelength.

【図面の簡単な説明】 【図1】本発明のレーザーの第二高調波の方向を一定に
保つための自動追尾装置の構成を示す模式図 【図2】本発明のレーザーの第二高調波の方向を一定に
保つための自動追尾装置を用いて、第二高調波ビームの
進行方向を制御した結果(ビーム位置変動量)を示すグ
ラフ 【符号の説明】 1 入力光 2 分散プリズム 3 回転台 4 ビームスプリッター 5 位置敏感検出器 6 コントローラ 7 イメージセンサー
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a schematic diagram showing the configuration of an automatic tracking device for keeping the direction of the second harmonic of the laser of the present invention constant. FIG. 2 is the second harmonic of the laser of the present invention. Graph showing the result (beam position variation) of controlling the traveling direction of the second harmonic beam by using an automatic tracking device for keeping the direction of light constant [Description of Signs] 1 Input light 2 Dispersion prism 3 Turntable 4 Beam splitter 5 Position sensitive detector 6 Controller 7 Image sensor

Claims (1)

【特許請求の範囲】 【請求項1】 基本波レーザー光と波長変換されたレー
ザー光とを分離する、回転台に載置、固定されたプリズ
ムと、分離された基本波レーザー光と波長変換されたレ
ーザー光の何れかのレーザー光を分割するビームスプリ
ッターと、該分割されたレーザービームの位置を検出す
る位置敏感検出器と、該位置敏感検出器の検出結果と所
望のビーム進行方向とを比較して変異量が零となるよう
に、プリズムを載置している回転台を周方向に変位させ
るコントローラとを有してなるレーザーの第二高調波の
方向を一定に保つための自動追尾装置。
Claims: 1. A prism mounted and fixed on a turntable for separating a fundamental laser beam and a wavelength-converted laser beam, and a wavelength-converted prism laser beam separated from the fundamental laser beam. A beam splitter for splitting any one of the split laser beams, a position-sensitive detector for detecting the position of the split laser beam, and comparing the detection result of the position-sensitive detector with a desired beam traveling direction. An automatic tracking device for keeping the direction of the second harmonic of the laser constant, the controller having a controller for circumferentially displacing the turntable on which the prism is mounted so that the displacement amount becomes zero. .
JP2001235977A 2001-08-03 2001-08-03 Automatic tracking device for keeping fixed direction of second higher harmonic of laser Withdrawn JP2003043533A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001235977A JP2003043533A (en) 2001-08-03 2001-08-03 Automatic tracking device for keeping fixed direction of second higher harmonic of laser

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001235977A JP2003043533A (en) 2001-08-03 2001-08-03 Automatic tracking device for keeping fixed direction of second higher harmonic of laser

Publications (1)

Publication Number Publication Date
JP2003043533A true JP2003043533A (en) 2003-02-13

Family

ID=19067330

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001235977A Withdrawn JP2003043533A (en) 2001-08-03 2001-08-03 Automatic tracking device for keeping fixed direction of second higher harmonic of laser

Country Status (1)

Country Link
JP (1) JP2003043533A (en)

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014523551A (en) * 2011-07-22 2014-09-11 ケーエルエー−テンカー コーポレイション Laser with high quality and stable output beam and long-lived, high conversion efficiency nonlinear crystal
US9410901B2 (en) 2014-03-17 2016-08-09 Kla-Tencor Corporation Image sensor, an inspection system and a method of inspecting an article
US9419407B2 (en) 2014-09-25 2016-08-16 Kla-Tencor Corporation Laser assembly and inspection system using monolithic bandwidth narrowing apparatus
US9426400B2 (en) 2012-12-10 2016-08-23 Kla-Tencor Corporation Method and apparatus for high speed acquisition of moving images using pulsed illumination
US9478402B2 (en) 2013-04-01 2016-10-25 Kla-Tencor Corporation Photomultiplier tube, image sensor, and an inspection system using a PMT or image sensor
US9496425B2 (en) 2012-04-10 2016-11-15 Kla-Tencor Corporation Back-illuminated sensor with boron layer
US9529182B2 (en) 2013-02-13 2016-12-27 KLA—Tencor Corporation 193nm laser and inspection system
US9601299B2 (en) 2012-08-03 2017-03-21 Kla-Tencor Corporation Photocathode including silicon substrate with boron layer
US9608399B2 (en) 2013-03-18 2017-03-28 Kla-Tencor Corporation 193 nm laser and an inspection system using a 193 nm laser
US9748294B2 (en) 2014-01-10 2017-08-29 Hamamatsu Photonics K.K. Anti-reflection layer for back-illuminated sensor
US9748729B2 (en) 2014-10-03 2017-08-29 Kla-Tencor Corporation 183NM laser and inspection system
US9767986B2 (en) 2014-08-29 2017-09-19 Kla-Tencor Corporation Scanning electron microscope and methods of inspecting and reviewing samples
US9768577B2 (en) 2012-12-05 2017-09-19 Kla-Tencor Corporation Semiconductor inspection and metrology system using laser pulse multiplier
US9793673B2 (en) 2011-06-13 2017-10-17 Kla-Tencor Corporation Semiconductor inspection and metrology system using laser pulse multiplier
US9804101B2 (en) 2014-03-20 2017-10-31 Kla-Tencor Corporation System and method for reducing the bandwidth of a laser and an inspection system and method using a laser
US10175555B2 (en) 2017-01-03 2019-01-08 KLA—Tencor Corporation 183 nm CW laser and inspection system
US10197501B2 (en) 2011-12-12 2019-02-05 Kla-Tencor Corporation Electron-bombarded charge-coupled device and inspection systems using EBCCD detectors
JP2019505018A (en) * 2016-02-12 2019-02-21 エム スクエアード レーザーズ リミテッドM Squared Lasers Limited Optical frequency mixing module
US10748730B2 (en) 2015-05-21 2020-08-18 Kla-Tencor Corporation Photocathode including field emitter array on a silicon substrate with boron layer
US10943760B2 (en) 2018-10-12 2021-03-09 Kla Corporation Electron gun and electron microscope
US11114491B2 (en) 2018-12-12 2021-09-07 Kla Corporation Back-illuminated sensor and a method of manufacturing a sensor

Cited By (36)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9793673B2 (en) 2011-06-13 2017-10-17 Kla-Tencor Corporation Semiconductor inspection and metrology system using laser pulse multiplier
US9972959B2 (en) 2011-06-13 2018-05-15 Kla-Tencor Corporation Semiconductor inspection and metrology system using laser pulse multiplier
US10193293B2 (en) 2011-06-13 2019-01-29 Kla-Tencor Corporation Semiconductor inspection and metrology system using laser pulse multiplier
JP2014523551A (en) * 2011-07-22 2014-09-11 ケーエルエー−テンカー コーポレイション Laser with high quality and stable output beam and long-lived, high conversion efficiency nonlinear crystal
US9413134B2 (en) 2011-07-22 2016-08-09 Kla-Tencor Corporation Multi-stage ramp-up annealing for frequency-conversion crystals
US10197501B2 (en) 2011-12-12 2019-02-05 Kla-Tencor Corporation Electron-bombarded charge-coupled device and inspection systems using EBCCD detectors
US9496425B2 (en) 2012-04-10 2016-11-15 Kla-Tencor Corporation Back-illuminated sensor with boron layer
US9601299B2 (en) 2012-08-03 2017-03-21 Kla-Tencor Corporation Photocathode including silicon substrate with boron layer
US10199197B2 (en) 2012-08-03 2019-02-05 Kla-Tencor Corporation Photocathode including silicon substrate with boron layer
US11081310B2 (en) 2012-08-03 2021-08-03 Kla-Tencor Corporation Photocathode including silicon substrate with boron layer
US9768577B2 (en) 2012-12-05 2017-09-19 Kla-Tencor Corporation Semiconductor inspection and metrology system using laser pulse multiplier
US9426400B2 (en) 2012-12-10 2016-08-23 Kla-Tencor Corporation Method and apparatus for high speed acquisition of moving images using pulsed illumination
US9529182B2 (en) 2013-02-13 2016-12-27 KLA—Tencor Corporation 193nm laser and inspection system
US10439355B2 (en) 2013-02-13 2019-10-08 Kla-Tencor Corporation 193nm laser and inspection system
US9935421B2 (en) 2013-02-13 2018-04-03 Kla-Tencor Corporation 193nm laser and inspection system
US9608399B2 (en) 2013-03-18 2017-03-28 Kla-Tencor Corporation 193 nm laser and an inspection system using a 193 nm laser
US9620341B2 (en) 2013-04-01 2017-04-11 Kla-Tencor Corporation Photomultiplier tube, image sensor, and an inspection system using a PMT or image sensor
US9478402B2 (en) 2013-04-01 2016-10-25 Kla-Tencor Corporation Photomultiplier tube, image sensor, and an inspection system using a PMT or image sensor
US10269842B2 (en) 2014-01-10 2019-04-23 Hamamatsu Photonics K.K. Anti-reflection layer for back-illuminated sensor
US9748294B2 (en) 2014-01-10 2017-08-29 Hamamatsu Photonics K.K. Anti-reflection layer for back-illuminated sensor
US9410901B2 (en) 2014-03-17 2016-08-09 Kla-Tencor Corporation Image sensor, an inspection system and a method of inspecting an article
US9620547B2 (en) 2014-03-17 2017-04-11 Kla-Tencor Corporation Image sensor, an inspection system and a method of inspecting an article
US9804101B2 (en) 2014-03-20 2017-10-31 Kla-Tencor Corporation System and method for reducing the bandwidth of a laser and an inspection system and method using a laser
US10495582B2 (en) 2014-03-20 2019-12-03 Kla-Tencor Corporation System and method for reducing the bandwidth of a laser and an inspection system and method using a laser
US10466212B2 (en) 2014-08-29 2019-11-05 KLA—Tencor Corporation Scanning electron microscope and methods of inspecting and reviewing samples
US9767986B2 (en) 2014-08-29 2017-09-19 Kla-Tencor Corporation Scanning electron microscope and methods of inspecting and reviewing samples
US9419407B2 (en) 2014-09-25 2016-08-16 Kla-Tencor Corporation Laser assembly and inspection system using monolithic bandwidth narrowing apparatus
US9748729B2 (en) 2014-10-03 2017-08-29 Kla-Tencor Corporation 183NM laser and inspection system
US10199149B2 (en) 2014-10-03 2019-02-05 Kla-Tencor Corporation 183NM laser and inspection system
US10748730B2 (en) 2015-05-21 2020-08-18 Kla-Tencor Corporation Photocathode including field emitter array on a silicon substrate with boron layer
JP2019505018A (en) * 2016-02-12 2019-02-21 エム スクエアード レーザーズ リミテッドM Squared Lasers Limited Optical frequency mixing module
JP7110103B2 (en) 2016-02-12 2022-08-01 エム スクエアード レーザーズ リミテッド optical frequency mixing module
US10429719B2 (en) 2017-01-03 2019-10-01 Kla-Tencor Corporation 183 nm CW laser and inspection system
US10175555B2 (en) 2017-01-03 2019-01-08 KLA—Tencor Corporation 183 nm CW laser and inspection system
US10943760B2 (en) 2018-10-12 2021-03-09 Kla Corporation Electron gun and electron microscope
US11114491B2 (en) 2018-12-12 2021-09-07 Kla Corporation Back-illuminated sensor and a method of manufacturing a sensor

Similar Documents

Publication Publication Date Title
JP2003043533A (en) Automatic tracking device for keeping fixed direction of second higher harmonic of laser
EP1826553B1 (en) Method of measuring using terahertz light
US3715165A (en) Investigating the topography of reflecting surfaces
JP2001066253A (en) System for optimizing pulse form in laser-scanning microscope
JP2002273583A (en) Machining device for transparent medium
Nyby et al. Mid-IR beam direction stabilization scheme for vibrational spectroscopy, including dual-frequency 2DIR
JP2006337833A (en) Wavelength variable optical frequency comb generator
CN102636337A (en) Method for measuring optical fiber dispersion
Mazur et al. Increase of an output optical signal of an acousto-optic monochromator upon frequency modulation of a control signal
US4708481A (en) Method of and apparatus for optically measuring displacement
JP5600374B2 (en) Terahertz spectrometer
US4187027A (en) Servo-control alignment of nonlinear crystals
JPH0460538B2 (en)
JPH06180463A (en) Automatic tracking type wavelength converter
JPH07140403A (en) Multi-dither system compensating optical device
JP6549448B2 (en) Auto correlation measurement device
KR101830633B1 (en) Feedback control apparatus of variable wavelength
Harder et al. High speed, high power 2D beam steering for mitigation of optomechanical parametric instability in gravitational wave detectors
Couillaud et al. Direct experimental evidence of the hyperfine predissociation of molecular iodine using a saturated absorption experiment
JP2898720B2 (en) Optical nonlinearity generator
JP2003043534A (en) Automatic tracking device for generating second harmonic of laser
JP2006039426A (en) Optical frequency comb generator controller
JPH0631470A (en) Method for controlling beam intensity distribution of laser beam and processing method and device using this method
JP3440273B2 (en) Nonlinear susceptibility spectrum measuring method and device
JPS61125097A (en) Wavelength converter of laser light

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20050803

A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20081007