JP2003022035A - Organic el panel and its manufacturing method - Google Patents

Organic el panel and its manufacturing method

Info

Publication number
JP2003022035A
JP2003022035A JP2001209573A JP2001209573A JP2003022035A JP 2003022035 A JP2003022035 A JP 2003022035A JP 2001209573 A JP2001209573 A JP 2001209573A JP 2001209573 A JP2001209573 A JP 2001209573A JP 2003022035 A JP2003022035 A JP 2003022035A
Authority
JP
Japan
Prior art keywords
electrode
organic
switching element
hole
panel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001209573A
Other languages
Japanese (ja)
Inventor
Takashi Ogura
隆 小倉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP2001209573A priority Critical patent/JP2003022035A/en
Publication of JP2003022035A publication Critical patent/JP2003022035A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/805Electrodes

Landscapes

  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an organic EL panel provided with through-holes which make a good connection between elements. SOLUTION: The organic EL panel has an active matrix driving system. In the panel, a substrate, an organic layer which is made on the substrate and includes switching elements, an insulation film, a first electrode and a light emitting layer and a second electrode are successively formed. A through-hole is provided to connect the first electrode and the switching elements through the insulation film. The through-hole has a conic taper whose inner peripheral surface becomes smaller as it moves from the first electrode to the switching element. Light emission of the light emitting layer by the driving of the switching element is taken out from the second electrode side.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は有機ELパネルおよ
びその製造方法に関し、特にアクティブマトリクス駆動
方式の有機ELパネルおよびその製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an organic EL panel and a manufacturing method thereof, and more particularly to an active matrix driving type organic EL panel and a manufacturing method thereof.

【0002】[0002]

【従来の技術】有機ELパネルは、蛍光性の発光層を含
む有機物層を電極で挟持してなる有機EL素子(エレク
トロルミネッセンス)を画素としてディスプレイを構成
し、有機EL素子は低電圧駆動、高輝度、高速応答等の
特徴を有する。特に各画素にスイッチング素子を用いた
アクティブマトリクス駆動方式の有機ELパネルは、デ
ューティ駆動のパネルに比べて瞬間輝度を低く抑えるこ
とができるとともに、表示品位を向上させることができ
る。
2. Description of the Related Art An organic EL panel constitutes a display by using an organic EL element (electroluminescence) in which an organic material layer including a fluorescent light emitting layer is sandwiched by electrodes as a pixel, and the organic EL element is driven at a low voltage and has a high voltage. It has features such as brightness and high-speed response. In particular, an active matrix drive type organic EL panel using a switching element in each pixel can suppress the instantaneous luminance to be lower than that of a duty drive panel and can improve the display quality.

【0003】[0003]

【発明が解決しようとする課題】例えば、特開平11-231
805 号公報に開示されているように、従来のアクティブ
マトリクス駆動方式の有機ELパネルは、通常、基板側
から発光を取り出す構成となっている。しかし、基板上
のスイッチング素子やその配線部分などの光を通さない
材料で構成されている部分によって、1画素の面積に対
する実際の発光面積、いわゆる開口率が減少する。
DISCLOSURE OF THE INVENTION Problems to be Solved by the Invention
As disclosed in Japanese Patent No. 805, a conventional active matrix drive type organic EL panel usually has a structure in which light emission is taken out from the substrate side. However, the actual light emitting area with respect to the area of one pixel, that is, the so-called aperture ratio, is reduced by the portion made of a material that does not transmit light, such as the switching element on the substrate and the wiring portion thereof.

【0004】一方、従来のアクティブマトリクス駆動方
式の有機ELパネルは、図4に示すように、発光層を含
む有機物層105の電極104と、基板101上に形成
されたスイッチング素子2等は、通常、絶縁膜103を
貫通するスルーホール107を介して接続されている。
上記スルーホールは、通常、数ミクロンの深さで形成す
るため、スルーホール形成時の穿孔や形成されたスルー
ホールに対する電極材料の充填などが不十分な場合に
は、スイッチング素子と電極の接続不良が起こりやすい
という問題点があった。
On the other hand, in the conventional active matrix drive type organic EL panel, as shown in FIG. 4, the electrode 104 of the organic material layer 105 including the light emitting layer, the switching element 2 and the like formed on the substrate 101 are usually , Through a through hole 107 penetrating the insulating film 103.
Since the above-mentioned through holes are usually formed with a depth of several microns, if the holes are not formed at the time of forming the through holes or if the formed through holes are insufficiently filled with the electrode material, the connection between the switching element and the electrode will be defective. There is a problem that is likely to occur.

【0005】この発明は、これらの問題点に鑑みてなさ
れたものであり、素子間の良好な接続を可能にするスル
ーホールを備えた有機ELパネルを提供することを目的
とする。
The present invention has been made in view of these problems, and it is an object of the present invention to provide an organic EL panel having a through hole that enables good connection between elements.

【0006】[0006]

【課題を解決するための手段】この発明によれば、基板
と、基板上にスイッチング素子、絶縁膜、第1電極、発
光層を含む有機物層および第2電極が順に形成され、絶
縁膜を貫通して第1電極とスイッチング素子を接続する
スルーホールとを有し、スルーホールは、内周面が第1
電極からスイッチング素子に向かって小さくなる円錐テ
ーパーを有し、スイッチング素子の駆動による発光層の
発光を第2電極側から取り出すアクティブマトリクス駆
動方式の有機ELパネルが提供される。
According to the present invention, a substrate, a switching element, an insulating film, a first electrode, an organic layer including a light emitting layer, and a second electrode are sequentially formed on the substrate, and the insulating film penetrates the insulating film. And has a through hole for connecting the first electrode and the switching element, and the inner peripheral surface of the through hole is the first
There is provided an organic EL panel of an active matrix drive system, which has a conical taper that becomes smaller from an electrode toward a switching element and takes out light emission of a light emitting layer by driving the switching element from a second electrode side.

【0007】すなわち、内周面がスルーホールの軸心に
対して平行に形成された従来のスルーホールでは、開口
部がスイッチング素子まで到達していなかったり、電極
形成時にスルーホールが電極材料で十分に満たされない
場合に接続不良が発生したが、この発明では、スルーホ
ールが、内周面が第1電極からスイッチング素子に向か
って小さくなる円錐テーパーを有して形成されるので、
スイッチング素子に開口する穿孔を確実に確保できると
ともに、第1電極形成時にこのスルーホールを電極材料
で確実に埋めることが容易になり、前記素子間の良好な
接続を可能にする。
That is, in a conventional through hole whose inner peripheral surface is formed parallel to the axis of the through hole, the opening does not reach the switching element, or the through hole is made of an electrode material when the electrode is formed. If the connection is not satisfied, the connection failure occurs. However, in the present invention, the through hole is formed with the conical taper whose inner peripheral surface becomes smaller from the first electrode toward the switching element.
It is possible to surely secure the perforation that opens in the switching element, and it becomes easy to surely fill the through hole with the electrode material when the first electrode is formed, so that good connection between the elements is possible.

【0008】この発明の別の観点によれば、基板上にス
イッチング素子、絶縁膜、第1電極、発光層を含む有機
物層および第2電極が順に形成され、絶縁膜を貫通して
第1電極とスイッチング素子を接続するスルーホールを
有する有機ELパネルを製造するに際し、基板上に形成
された絶縁膜に軸線方向に同径の下孔を形成し、次い
で、この下孔を加熱して内周面が第1電極からスイッチ
ング素子に向かって小さくなる円錐テーパーを有するス
ルーホールを形成する有機ELパネルの製造方法が提供
される。
According to another aspect of the present invention, a switching element, an insulating film, a first electrode, an organic material layer including a light emitting layer, and a second electrode are sequentially formed on a substrate, and the first electrode penetrates through the insulating film. When manufacturing an organic EL panel having a through hole for connecting a switching element with a switching element, a pilot hole having the same diameter is formed in an insulating film formed on a substrate in the axial direction, and then the pilot hole is heated to form an inner circumference. Provided is a method for manufacturing an organic EL panel in which a through hole having a conical taper whose surface decreases from the first electrode toward the switching element is formed.

【0009】[0009]

【発明の実施の形態】以下、図面を参照しながら、この
発明の有機ELパネルの実施の形態を説明するが、この
発明はこれらによって限定されない。実施の形態1 図1は、この発明の実施の形態1による有機ELパネル
の構成を示す正面断面図である。図1において、有機E
Lパネル10は、基板1と、基板1上に順に形成された
スイッチング素子2、平坦化膜3(絶縁膜)、第1電極
4、発光層を含む有機物層5および第2電極6と、平坦
化膜3を貫通して第1電極4とスイッチング素子2を接
続するスルーホール7とを有する。スイッチング素子2
の近傍の基板1上には、データを保持するキャパシタ8
が形成されている。スイッチング素子2およびキャパシ
タ8は、図示しない電源回路部に接続されている。
BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, embodiments of the organic EL panel of the present invention will be described with reference to the drawings, but the present invention is not limited thereto. Embodiment 1 FIG. 1 is a front sectional view showing the structure of an organic EL panel according to Embodiment 1 of the present invention. In FIG. 1, organic E
The L panel 10 includes a substrate 1, a switching element 2, a flattening film 3 (insulating film), a first electrode 4, an organic material layer 5 including a light emitting layer, and a second electrode 6 which are sequentially formed on the substrate 1. It has a through hole 7 penetrating the oxide film 3 and connecting the first electrode 4 and the switching element 2. Switching element 2
A capacitor 8 for holding data is provided on the substrate 1 near the
Are formed. The switching element 2 and the capacitor 8 are connected to a power supply circuit section (not shown).

【0010】アクティブマトリクス駆動方式の有機EL
パネル10は、スイッチング素子2からの信号に基づい
て前記発光層の発光が駆動され、この発光を基板1と反
対側の第2電極6から取り出す構成を有する。有機EL
パネル10では、スルーホール7が、内周面が第1電極
4からスイッチング素子2に向かって小さくなる円錐テ
ーパーを有することを特徴とする。
Active matrix drive type organic EL
The panel 10 has a structure in which the light emission of the light emitting layer is driven based on a signal from the switching element 2 and this light emission is extracted from the second electrode 6 on the side opposite to the substrate 1. Organic EL
The panel 10 is characterized in that the through hole 7 has a conical taper whose inner peripheral surface becomes smaller from the first electrode 4 toward the switching element 2.

【0011】有機ELパネル10の製造手順を有機EL
パネル10の各部の構成とともに説明する。基板1は、
絶縁性のものであれば特に限定されず、透光性または非
透光性の基板も使用が可能であり、ガラス基板、セラミ
ック基板、ホーロー基板等が挙げられる。ホーロー基板
および液晶ディスプレイ用として量産されているガラス
基板は、コストが低減されるので好ましい。セラミック
基板は、耐熱温度が高く、スイッチング素子にポリシリ
コンTFTを利用する場合にガラスの軟化点以上に熱処
理温度を高めることができ、TFT素子の特性向上が図
れるので、好ましい。
The manufacturing procedure of the organic EL panel 10 is as follows.
The configuration of each part of the panel 10 will be described. Substrate 1 is
There is no particular limitation as long as it is an insulating material, and a light-transmitting or non-light-transmitting substrate can be used, and examples thereof include a glass substrate, a ceramic substrate, and a enamel substrate. Glass substrates that are mass-produced for enamel substrates and liquid crystal displays are preferable because they reduce costs. The ceramic substrate is preferable because it has a high heat resistance temperature, and when a polysilicon TFT is used for a switching element, the heat treatment temperature can be raised above the softening point of glass and the characteristics of the TFT element can be improved.

【0012】有機ELパネル10を製造するに際し、ま
ず、ガラス基板1上にスイッチング素子2およびキャパ
シタ8を公知の方法で形成する。スイッチング素子2と
しては、アクティブマトリックス駆動方式の有機ELパ
ネルに用いられるMIM素子(Metal Insulator Metal)
またはTFT素子(ThinFilm Transistor)が挙げられ
る。TFT素子は液晶ディスプレイ等で広く用いられ、
プロセスも確立しているので設計および製造における扱
いが容易である。また、MIM素子はスイッチング素子
としての構造が簡単であり、使用するマスクの枚数も少
なく、プロセス数が減らせるので、有機ELパネルの作
製コストの低減が図れる。
In manufacturing the organic EL panel 10, first, the switching element 2 and the capacitor 8 are formed on the glass substrate 1 by a known method. The switching element 2 is a MIM element (Metal Insulator Metal) used in an active matrix drive type organic EL panel.
Alternatively, a TFT element (Thin Film Transistor) can be used. TFT elements are widely used in liquid crystal displays, etc.
Since the process is well established, it is easy to handle in design and manufacturing. Further, since the MIM element has a simple structure as a switching element, the number of masks used is small, and the number of processes can be reduced, the manufacturing cost of the organic EL panel can be reduced.

【0013】次いで、スイッチング素子2およびキャパ
シタ8を覆って基板1上に平坦化膜3を形成する。平坦
化膜3は、スイッチング素子2およびキャパシタ8の形
成による表面の凹凸をなくしてその上に平坦な積層を行
わせるための下地となる層であり、スピンコート等の塗
布法で数ミクロンの膜厚が形成できる性質を有するアク
リル系の感光性樹脂等が、安価な設備が利用でき、プロ
セスの簡略化が図れるなどの点から好ましい。上記の樹
脂は、一般的に吸湿性があり、水分がスイッチング素子
2に悪影響を及ぼすおそれがある。このため、平坦化膜
3を形成する前にSiO、SiN等の無機絶縁膜を形成
するのが好ましい。
Next, a flattening film 3 is formed on the substrate 1 so as to cover the switching elements 2 and the capacitors 8. The flattening film 3 is a base layer for eliminating unevenness on the surface due to the formation of the switching element 2 and the capacitor 8 and performing a flat lamination thereon, and is a film of several microns by a coating method such as spin coating. An acrylic photosensitive resin or the like having a property capable of forming a thickness is preferable in that inexpensive equipment can be used and the process can be simplified. The above resins generally have hygroscopicity, and water may adversely affect the switching element 2. Therefore, it is preferable to form an inorganic insulating film such as SiO or SiN before forming the flattening film 3.

【0014】次いで、平坦化膜3の材料となる上記樹脂
をスピンコート法で基板1上に4〜5ミクロンの厚さに
なるように塗布し、70〜80℃でプリベークを10〜
30分行う。
Next, the above resin, which is a material for the flattening film 3, is applied onto the substrate 1 by a spin coating method so as to have a thickness of 4 to 5 μm, and prebaked at 70 to 80 ° C. for 10 to 10.
Do it for 30 minutes.

【0015】次いで、スルーホール7を形成する。この
発明では、図2に示すように、内周面がスルーホールの
軸心Zに対して傾斜角度θが30度以上で傾斜したスル
ーホール7を形成する。そのために、平坦化膜3を貫通
するスルーホール7の下孔7aを設ける。図2に示すよ
うに、下孔7aは、軸線方向に同径の孔として、すなわ
ち、内周面がスルーホール7の軸心Zと平行になるよう
に形成されるが、所望するスルーホール7の内周面の傾
斜角度θや接触抵抗に応じてその直径Dが決定される。
Next, the through hole 7 is formed. According to the present invention, as shown in FIG. 2, the through hole 7 whose inner peripheral surface is inclined at an inclination angle θ of 30 degrees or more with respect to the axis Z of the through hole is formed. Therefore, the lower hole 7a of the through hole 7 penetrating the flattening film 3 is provided. As shown in FIG. 2, the lower hole 7a is formed as a hole having the same diameter in the axial direction, that is, the inner peripheral surface is parallel to the axis Z of the through hole 7, but the desired through hole 7a is formed. The diameter D is determined according to the inclination angle θ of the inner peripheral surface and the contact resistance.

【0016】下孔7aの形成は、前記プリベークの後、
スルーホール7の形成が必要な部分に開口部を設けたフ
ォトマスクを使用して、基板1上に積層された前記樹脂
に対して紫外線露光を行い現像することにより形成され
る。次いで、下孔7aの内周面を所望する傾斜角度θで
傾斜させるために、前記樹脂の軟化点を超える温度(例
えば220〜250℃)でポストベークを30〜60分
行う。このポストベークは、使用する樹脂の種類、必要
な膜厚により条件が異なってくるが、傾斜角度を小さく
する場合には低い温度で短時間(例えば220℃、30
分)行い、傾斜角度を大きくする場合には高い温度で長
時間(例えば250℃、60分)行う。
The formation of the pilot hole 7a is performed after the prebaking as described above.
The through-hole 7 is formed by exposing the resin laminated on the substrate 1 to ultraviolet rays and developing it using a photomask provided with an opening at a portion where the through-hole 7 needs to be formed. Then, post-baking is performed for 30 to 60 minutes at a temperature (for example, 220 to 250 ° C.) exceeding the softening point of the resin in order to incline the inner peripheral surface of the prepared hole 7a at a desired inclination angle θ. The conditions of this post-baking differ depending on the type of resin used and the required film thickness, but when reducing the tilt angle, a low temperature is used for a short time (eg 220 ° C., 30 ° C.).
When the inclination angle is increased, the temperature is increased at a high temperature for a long time (for example, 250 ° C., 60 minutes).

【0017】これにより、平坦化膜3を貫通して内周面
が傾斜角度θを有するスルーホール7が形成される。な
お、傾斜角度θは大きい程よく、好ましくは30度以
上、より好ましくは45度以上が適当である。傾斜角度
θが10度以下であれば、スイッチング素子と第1電極
との接続不良が起こりやすくなる。
As a result, a through hole 7 is formed which penetrates the flattening film 3 and the inner peripheral surface of which has an inclination angle θ. The larger the inclination angle θ is, the better, preferably 30 degrees or more, and more preferably 45 degrees or more. If the inclination angle θ is 10 degrees or less, poor connection between the switching element and the first electrode is likely to occur.

【0018】次いで、スルーホール7が形成された平坦
化膜3の全面に電極材料からなる層を形成し、フォトリ
ソグラフィにより平坦化膜3上の所定部分に第1電極4
を形成する。第1電極4を構成する電極材料としては、
光を反射する材料からなる。すなわち、発光層は上方向
にも下方向にも等量ずつ発光する等方向性を有するた
め、図中上方、つまり、第2電極6側から発光を取り出
す場合に第1電極14が透明電極であれば、発光層から
下側へ発光した光は取り出すことが出来ないため発光効
率が低下する。この発明では、基板に形成する電極材料
として光を反射する材料を用いることにより、発光層か
ら下方へ発光した光を第1電極14で反射させて上方か
ら取り出すことができ、発光効率の低下を防ぐことがで
きる。
Next, a layer made of an electrode material is formed on the entire surface of the flattening film 3 having the through holes 7, and the first electrode 4 is formed on a predetermined portion of the flattening film 3 by photolithography.
To form. As the electrode material forming the first electrode 4,
It is made of a material that reflects light. That is, since the light emitting layer has an isotropic property of emitting equal amounts of light both upward and downward, the first electrode 14 is a transparent electrode in the upper part of the drawing, that is, when light emission is taken out from the second electrode 6 side. If so, the light emitted from the light emitting layer to the lower side cannot be extracted, and the light emitting efficiency is reduced. In the present invention, by using a material that reflects light as the electrode material formed on the substrate, the light emitted downward from the light emitting layer can be reflected by the first electrode 14 and taken out from above, thus reducing the luminous efficiency. Can be prevented.

【0019】このような光反射材料としては、金属電極
に通常用いられる金属材料が使用可能であり、50%以
上の反射率をもつ材料が好ましい。特に、AlまたはA
lを主成分とする金属は、一般に反射率が80%以上あ
るので好ましい。前記の金属材料としては、Al:L
i、Mg:Ag、Al:In、Al:Ca、Al:B
a、Al:Cs、Ca、B a、Cs、Li、Mg、In
等が挙げられる。
As such a light reflecting material, a metal material usually used for metal electrodes can be used, and a material having a reflectance of 50% or more is preferable. In particular, Al or A
A metal containing 1 as a main component is preferable because it generally has a reflectance of 80% or more. As the metal material, Al: L
i, Mg: Ag, Al: In, Al: Ca, Al: B
a, Al: Cs, Ca, Ba, Cs, Li, Mg, In
Etc.

【0020】一方、第1電極4は有機物層5へ電子を注
入する役割もあるため、仕事関数が小さいことが好まし
く、4.5 eV以下であることが望ましい。仕事関数が4.
5 eV以上の電極材料を用いると、電極と有機層界面の
障壁電位が大きくなるので、駆動電圧が上昇し発光効率
が低下する。
On the other hand, since the first electrode 4 also has a role of injecting electrons into the organic layer 5, it is preferable that the work function is small, and 4.5 eV or less is desirable. Work function is 4.
When an electrode material of 5 eV or more is used, the barrier potential at the interface between the electrode and the organic layer increases, so that the driving voltage increases and the light emission efficiency decreases.

【0021】仕事関数の低い金属としては、Li、M
g、Ca、Ba、Cs、In等が挙げられる。一般に仕
事関数の低い金属は空気中で不安定である場合が多いの
で、これらの金属とAl、Ag等の安定な金属との合金
を使用しても、発光効率の高い有機ELパネルが得られ
る。第1電極14から有機物層5への電子の注入効率を
上げるには、金属電極と有機物層5の間に、アルカリ金
属またはアルカリ土類金属のハロゲン化物の層を挟み、
前記ハロゲン化物の層と金属電極からなる二層構造の電
極とすることが好ましい。この場合には、金属電極の仕
事関数が低くなくても、AlやAl:Si、Al:Ti
等の反射率が大きい金属が使用可能である。上記の金属
電極としては、Al、Al:Li、Mg:Ag、Al:
Si、Al:Ti、Al:Ca、Al:Ba、Al:C
s、Al:Inが挙げられる。アルカリ金属、アルカリ
土類金属のハロゲン化物としては、空気中でも比較的安
定であり、蒸着も容易なLiFが適している。
Examples of metals having a low work function include Li and M
Examples include g, Ca, Ba, Cs, In and the like. In general, a metal having a low work function is often unstable in air, so an organic EL panel having a high luminous efficiency can be obtained even if an alloy of these metals and a stable metal such as Al or Ag is used. . In order to increase the efficiency of electron injection from the first electrode 14 to the organic material layer 5, a layer of an alkali metal or alkaline earth metal halide is sandwiched between the metal electrode and the organic material layer 5,
It is preferable that the electrode has a two-layer structure including the halide layer and a metal electrode. In this case, even if the work function of the metal electrode is not low, Al, Al: Si, Al: Ti
It is possible to use a metal having a high reflectance such as. As the above-mentioned metal electrode, Al, Al: Li, Mg: Ag, Al:
Si, Al: Ti, Al: Ca, Al: Ba, Al: C
s and Al: In. LiF, which is relatively stable in the air and easy to deposit, is suitable as a halide of an alkali metal or an alkaline earth metal.

【0022】なお、図1において、スイッチング素子2
と第1電極4の接続部は、前記発光層によって形成され
る画素平面の中心にはなく、その中心から離れた位置に
ある。
In FIG. 1, the switching element 2
The connection portion between the first electrode 4 and the first electrode 4 is not at the center of the pixel plane formed by the light emitting layer, but at a position away from the center.

【0023】次に、第1電極4上に発光層を含む有機物
層5を形成する。有機物層5は、公知の方法、例えば蒸
着法、スピンコート法、印刷法、インクジェット法、転
写法等により形成することができる。有機物層5は、発
光層以外にも、例えばホール輸送層、ホール注入層、電
子輸送層、電子注入層等の電荷輸送層を積層して構成し
たものであってもよい。発光層を構成する材料として
は、有機EL素子に用いられてきた低分子系材料や高分
子系材料を使用することが可能であり、例えば、トリス
(8−ヒドロキシナト)アルミニウム(Alq3)、ビス
(2−メチル−8−ヒドロキシナト)(p−フェニルフ
ェノラート)アルミニウム(BAlq3)、チアゾール誘
導体、ベンゾオキサゾール誘導体、ベンゾチアゾール誘
導体、キナクリドン誘導体、トリフェニルアミン誘導
体、蛍光性金属錯体等が挙げられる。
Next, an organic material layer 5 including a light emitting layer is formed on the first electrode 4. The organic material layer 5 can be formed by a known method such as a vapor deposition method, a spin coating method, a printing method, an inkjet method, a transfer method, or the like. The organic material layer 5 may be configured by stacking charge transport layers such as a hole transport layer, a hole injection layer, an electron transport layer, and an electron injection layer in addition to the light emitting layer. As a material for forming the light emitting layer, it is possible to use a low molecular weight material or a high molecular weight material that has been used for an organic EL element, and for example, tris (8-hydroxynato) aluminum (Alq 3 ), Examples include bis (2-methyl-8-hydroxynato) (p-phenylphenolato) aluminum (BAlq 3 ), thiazole derivative, benzoxazole derivative, benzothiazole derivative, quinacridone derivative, triphenylamine derivative, and fluorescent metal complex. To be

【0024】熱転写フィルム方式(転写法)を用いて有
機物層5を形成する場合について説明する。熱転写フィ
ルム方式は、PET(ポリエチレンテレフタレート)フ
ィルム等から構成されるドナー基板上に、転写すべき薄
膜層、例えば、電極や有機物層を蒸着法、スピンコート
法、スパッタ法等で形成し、次に薄膜層が基板に接する
ようにドナー基板を基板に貼り付けて、ドナー基板側か
らレーザー光や熱等のエネルギーを加えることにより、
薄膜層を基板側に転写する方法である。
A case where the organic material layer 5 is formed by using the thermal transfer film method (transfer method) will be described. In the thermal transfer film method, a thin film layer to be transferred, for example, an electrode or an organic material layer is formed by a vapor deposition method, a spin coating method, a sputtering method or the like on a donor substrate composed of a PET (polyethylene terephthalate) film or the like. By attaching the donor substrate to the substrate so that the thin film layer is in contact with the substrate and applying energy such as laser light or heat from the donor substrate side,
This is a method of transferring the thin film layer to the substrate side.

【0025】熱転写フィルム方式を用いた有機物層5の
形成の実施例を以下に示す。まず、厚さ0.1 mm厚のP
ETフィルムに、光―熱変換層としてカーボン粒子を混
合したエポキシ樹脂を5ミクロン厚に形成し、さらに剥
離層としてポリαメチルスチレンを1ミクロン厚に形成
した。このように形成されたフィルムを熱転写用フィル
ムとして用いた。次いで、この熱転写用フィルムにホー
ル輸送層としてジアミン誘導体(α―NPD )を、発光層
としてAlq3 をそれぞれ500Åの厚さで蒸着した。
蒸着は通常のボートによる抵抗加熱法を用い、真空度は
約1×10-4Pa、蒸着速度は約2〜3Å/secとした。
An example of forming the organic material layer 5 using the thermal transfer film method is shown below. First, P with a thickness of 0.1 mm
On the ET film, an epoxy resin mixed with carbon particles was formed to a thickness of 5 μm as a light-heat conversion layer, and poly α-methylstyrene was formed to a thickness of 1 μm as a release layer. The film thus formed was used as a thermal transfer film. Then, a diamine derivative (α-NPD) was vapor-deposited as a hole transport layer and Alq 3 was vapor-deposited at a thickness of 500 Å as a light emitting layer on the thermal transfer film.
The vapor deposition was carried out by using an ordinary boat resistance heating method, the degree of vacuum was approximately 1 × 10 −4 Pa, and the vapor deposition rate was approximately 2 to 3 Å / sec.

【0026】次いで、前記のホール輸送層および発光層
からなる有機物層が蒸着された熱転写フィルムを第1電
極4に密着させて熱転写フィルム側からレーザ光を照射
することにより、熱転写フィルム上の上記有機物層を第
1電極4上に転写して有機物層5を形成した。レーザは
波長1068nmのYAG レーザを用い、エネルギーは0.1か
ら10J/cm2 の範囲で行った。
Next, the thermal transfer film on which the organic material layer consisting of the hole transport layer and the light emitting layer is deposited is brought into close contact with the first electrode 4 and irradiated with laser light from the thermal transfer film side, whereby the organic material on the thermal transfer film is irradiated. The layer was transferred onto the first electrode 4 to form the organic material layer 5. The laser used was a YAG laser having a wavelength of 1068 nm, and the energy was 0.1 to 10 J / cm 2 .

【0027】熱転写フィルムをはがした後、対向する第
2電極6として、ZnOを10%ドープしたIn2 3
(IDIXO)からなる透明電極を150nmの厚さで形成し
て有機ELパネル10を作製した。このような熱転写方
式を用いると、レーザービームのビーム径を絞ることに
より、高精細なパターニングが可能であるため、従来の
メタルマスクを用いた蒸着では不可能であった高精細の
有機ELパネルが作製可能となる。作製された有機EL
パネル10は、第1電極4が、前記接続部から画素平面
の端部にかけて傾斜した凹状に形成され、スイッチング
素子2と第1電極4の接続部は、有機物層5によって形
成される画素平面の中心から少し離れた位置にある。
After peeling off the thermal transfer film, In 2 O 3 doped with ZnO at 10% was formed as the second electrode 6 facing the thermal transfer film.
A transparent electrode made of (IDIXO) was formed to a thickness of 150 nm to produce an organic EL panel 10. When such a thermal transfer method is used, high-definition patterning is possible by narrowing the beam diameter of the laser beam. Therefore, a high-definition organic EL panel, which was not possible by conventional vapor deposition using a metal mask, is used. Can be manufactured. Made organic EL
In the panel 10, the first electrode 4 is formed in a concave shape inclined from the connection portion to the end of the pixel plane, and the connection portion between the switching element 2 and the first electrode 4 is formed in the pixel plane formed by the organic layer 5. It is located a little far from the center.

【0028】実施の形態2 前記の実施の形態1では、熱転写フィルム上にホール輸
送層および発光層を蒸着し、次いで熱転写フィルム上の
これらの有機物層5を第1電極4上に転写したが、この
実施の形態2では、転写フィルム上に、まずIDIXO から
なる第2電極6を形成し、次いで実施の形態1と同様
に、ホール輸送層および発光層を形成した。次いで、熱
転写フィルム上の上記有機物層5および第2電極6を第
1電極4上に転写した。上記以外は実施の形態1と同様
の条件で有機ELパネル10を作製した。このように、
有機物層5および第2電極6を同時に転写することによ
り、転写用フィルムの枚数削減およびプロセスの簡略化
が図れ、有機ELパネルの作製コストを下げることが可
能となる。
Embodiment 2 In Embodiment 1 described above, the hole transport layer and the light emitting layer were vapor-deposited on the thermal transfer film, and then these organic material layers 5 on the thermal transfer film were transferred onto the first electrode 4. In the second embodiment, the second electrode 6 made of IDIXO is first formed on the transfer film, and then the hole transport layer and the light emitting layer are formed as in the first embodiment. Then, the organic layer 5 and the second electrode 6 on the thermal transfer film were transferred onto the first electrode 4. Except for the above, the organic EL panel 10 was manufactured under the same conditions as in the first embodiment. in this way,
By transferring the organic material layer 5 and the second electrode 6 at the same time, the number of transfer films can be reduced and the process can be simplified, and the manufacturing cost of the organic EL panel can be reduced.

【0029】実施の形態3 前記の実施の形態1では、第1電極4が、スイッチング
素子2と第1電極4の接続部から画素平面の端部にかけ
て傾斜した凹状に形成され、スイッチング素子2と第1
電極4の接続部は、有機物層5によって形成される画素
平面の中心から離れた位置にある構成としたが、この実
施の形態2では、有機ELパネル20において、図3に
示すように、スイッチング素子2と第1電極14の接続
部は、有機物層15によって形成される画素平面の中心
近傍に位置する構成とした。上記の接続部の位置の設定
以外については、実施の形態1と同様の構成とした。有
機ELパネル20では、スルーホール17の内周面の傾
斜が緩くなり(傾斜角度は画素サイズにより異なってく
るが、θ=50〜80度程度となる)、第1電極14、
有機物層15および第2電極16の各層は、スルーホー
ル17の内周面の傾斜に従って緩い傾斜を有する凹状に
形成される。このように、スイッチング素子2と第1電
極14の接続部を画素平面の中心近傍に配設することに
より、スルーホール17の内周面の傾斜をもっとも緩や
かにすることができる。したがって、第1電極14を形
成する電極材料の充填が確実に行われるので、接続不良
を最小限に抑えることができる。
Third Embodiment In the first embodiment, the first electrode 4 is formed in a concave shape that is inclined from the connection portion between the switching element 2 and the first electrode 4 to the end portion of the pixel plane, and First
Although the connection portion of the electrode 4 is located away from the center of the pixel plane formed by the organic material layer 5, in the second embodiment, the switching is performed in the organic EL panel 20 as shown in FIG. The connection portion between the element 2 and the first electrode 14 is located near the center of the pixel plane formed by the organic layer 15. The configuration is the same as that of the first embodiment except for the setting of the position of the connecting portion. In the organic EL panel 20, the inclination of the inner peripheral surface of the through hole 17 becomes gentle (the inclination angle is about θ = 50 to 80 degrees although it varies depending on the pixel size), and the first electrode 14,
Each layer of the organic material layer 15 and the second electrode 16 is formed in a concave shape having a gentle slope according to the slope of the inner peripheral surface of the through hole 17. By disposing the connecting portion between the switching element 2 and the first electrode 14 in the vicinity of the center of the pixel plane as described above, the inclination of the inner peripheral surface of the through hole 17 can be made most gentle. Therefore, the electrode material for forming the first electrode 14 is reliably filled, so that the connection failure can be minimized.

【0030】上記の実施の形態1〜3では、内周面が第
1電極4、14からスイッチング素子2に向かって小さ
くなる円錐テーパーからなるスルーホール7を介して第
1電極4、14とスイッチング素子2が接続される。こ
のような構成では、スルーホール7に沿って形成される
第1電極4、14を、スルーホール7の内周面にしっか
りと付着させることができるので、従来のように電極形
成時にスルーホールの内周面に電極材料との親和性を高
めるための処理を行わなくても、このスルーホール7を
電極材料で埋めることが容易になり、スイッチング素子
2と第1電極4の接続を確実に行うことができる。ま
た、発光を基板1とは反対側の面から取り出すため、非
透光性の基板も使用できるので、基板1の材料の選択肢
が広がるとともに、開口率を70%以上にまで上げるこ
とが可能になる。
In the first to third embodiments described above, switching is performed with the first electrodes 4 and 14 through the through hole 7 having a conical taper whose inner peripheral surface decreases from the first electrodes 4 and 14 toward the switching element 2. The element 2 is connected. In such a configuration, the first electrodes 4 and 14 formed along the through hole 7 can be firmly attached to the inner peripheral surface of the through hole 7, so that the through holes are not formed when the electrodes are formed as in the conventional case. The through hole 7 can be easily filled with the electrode material even if the inner peripheral surface is not treated to increase the affinity with the electrode material, and the switching element 2 and the first electrode 4 are reliably connected. be able to. Further, since the light emission is taken out from the surface opposite to the substrate 1, a non-translucent substrate can be used, so that the choice of materials for the substrate 1 is expanded and the aperture ratio can be increased to 70% or more. Become.

【0031】なお、上記の実施の形態では、感光性を有
する樹脂を用いて平坦化膜3を形成したが、感光性のな
い樹脂を用いて平坦化膜3を形成する場合は、例えば基
板1の全面に平坦化膜3を前記樹脂で形成しておき、ド
ライエッチング等の方法でスルーホール7の下孔7aを
形成した後、前記樹脂の軟化点を超える温度で熱処理を
行うことにより、内周面に傾斜を有するスルーホール7
を上記同様に作製可能である。
Although the flattening film 3 is formed by using a resin having photosensitivity in the above embodiment, when the flattening film 3 is formed by using a resin having no photosensitivity, for example, the substrate 1 is used. The planarization film 3 is formed on the entire surface of the resin by the resin, the lower hole 7a of the through hole 7 is formed by a method such as dry etching, and then heat treatment is performed at a temperature exceeding the softening point of the resin. Through hole 7 with an inclined peripheral surface
Can be produced in the same manner as described above.

【0032】[0032]

【発明の効果】この発明では、スルーホールが、内周面
が第1電極からスイッチング素子に向かって小さくなる
円錐テーパーを有して形成されるので、スイッチング素
子に開口する穿孔を確実に確保できるとともに、第1電
極形成時にこのスルーホールを電極材料で確実に埋める
ことが容易になり、前記素子間の良好な接続を可能にす
る。また、発光を基板とは反対側の面から取り出すた
め、非透光性の基板も使用できるので、基板の材料の選
択肢が広がるとともに、開口率が向上する。
According to the present invention, since the through hole is formed so that the inner peripheral surface has a conical taper that becomes smaller from the first electrode toward the switching element, it is possible to surely secure the perforation opening to the switching element. At the same time, it becomes easy to surely fill the through hole with the electrode material when the first electrode is formed, and good connection between the elements is possible. Further, since the light emission is extracted from the surface opposite to the substrate, a non-translucent substrate can be used, so that the choice of materials for the substrate is expanded and the aperture ratio is improved.

【図面の簡単な説明】[Brief description of drawings]

【図1】この発明の実施の形態1による有機ELパネル
の構成の一例を示す断面図である。
FIG. 1 is a sectional view showing an example of a configuration of an organic EL panel according to Embodiment 1 of the present invention.

【図2】図1のスルーホールを作製する際に形成される
前記スルーホールの下孔を示す断面図である。
FIG. 2 is a cross-sectional view showing a through hole of the through hole formed when the through hole of FIG. 1 is manufactured.

【図3】この発明の実施の形態3による有機ELパネル
の構成の一例を示す断面図である。
FIG. 3 is a sectional view showing an example of the configuration of an organic EL panel according to Embodiment 3 of the present invention.

【図4】従来のスルーホールが形成された有機ELパネ
ルの構成の一例を示す断面図である。
FIG. 4 is a cross-sectional view showing an example of the configuration of a conventional organic EL panel having through holes formed therein.

【符号の説明】[Explanation of symbols]

1 基板 2 スイッチング素子 3 平坦化膜(絶縁膜) 4 第1電極 5 有機物層 6 第2電極 7 スルーホール 7a 下孔 10 有機ELパネル 20 有機ELパネル 1 substrate 2 switching elements 3 Flattening film (insulating film) 4 First electrode 5 Organic matter layer 6 Second electrode 7 through holes 7a pilot hole 10 Organic EL panel 20 Organic EL panel

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) H05B 33/06 H05B 33/06 33/10 33/10 33/14 33/14 A Fターム(参考) 3K007 AB02 AB11 AB15 AB18 BA06 BB07 CA01 CA02 CB01 DA01 DB03 EB00 FA01 5C094 AA05 AA10 AA32 AA43 BA03 BA04 BA27 CA19 DA09 DA13 DB01 DB04 EA04 EA05 EA06 EB02 EB10 FA04 FB01 FB12 FB14 FB15 FB20 GB10 JA09 JA12 JA20 5G435 AA03 AA16 AA17 BB05 CC09 HH12 HH14 HH18 KK05 ─────────────────────────────────────────────────── ─── Continuation of front page (51) Int.Cl. 7 Identification code FI theme code (reference) H05B 33/06 H05B 33/06 33/10 33/10 33/14 33/14 AF term (reference) 3K007 AB02 AB11 AB15 AB18 BA06 BB07 CA01 CA02 CB01 DA01 DB03 EB00 FA01 5C094 AA05 AA10 AA32 AA43 BA03 BA04 BA27 CA19 DA09 DA13 DB01 DB04 EA04 EA05 EA06 EB02 EB10 FA04 HA12 A17 H12A12 HA17 A12 A17 H12A12 A12 A17 A12 A17 H12A12 A17 H12A12 A17 A12 A17 H12A15 A12 A12 A17 A12 A15 A12 H12A12 KK05

Claims (14)

【特許請求の範囲】[Claims] 【請求項1】 基板と、基板上にスイッチング素子、絶
縁膜、第1電極、発光層を含む有機物層および第2電極
が順に形成され、絶縁膜を貫通して第1電極とスイッチ
ング素子を接続するスルーホールとを有し、 スルーホールは、内周面が第1電極からスイッチング素
子に向かって小さくなる円錐テーパーを有し、スイッチ
ング素子の駆動による発光層の発光を第2電極側から取
り出すアクティブマトリクス駆動方式の有機ELパネ
ル。
1. A substrate, a switching element, an insulating film, a first electrode, an organic layer including a light emitting layer, and a second electrode are sequentially formed on the substrate, and the first electrode and the switching element are connected through the insulating film. The through hole has a conical taper whose inner peripheral surface becomes smaller from the first electrode toward the switching element, and the active of extracting light emitted from the light emitting layer by driving the switching element from the second electrode side. Matrix drive type organic EL panel.
【請求項2】 絶縁膜が、感光性樹脂からなる平坦化膜
である請求項1に記載の有機ELパネル。
2. The organic EL panel according to claim 1, wherein the insulating film is a flattening film made of a photosensitive resin.
【請求項3】 スルーホールの内周面が、スルーホール
の軸心に対して30〜80度傾斜してなる請求項1また
は2に記載の有機ELパネル。
3. The organic EL panel according to claim 1, wherein the inner peripheral surface of the through hole is inclined by 30 to 80 degrees with respect to the axis of the through hole.
【請求項4】 スイッチング素子と第1電極の接続部
が、発光層によって形成される画素平面の略中心にあ
り、第1電極が、前記接続部から画素平面の端部にかけ
て傾斜した凹状に形成されてなる請求項1から3のいず
れか1つに記載の有機ELパネル。
4. The connection portion between the switching element and the first electrode is substantially at the center of the pixel plane formed by the light emitting layer, and the first electrode is formed in a concave shape inclined from the connection portion to the end portion of the pixel plane. The organic EL panel according to claim 1, wherein the organic EL panel is formed of:
【請求項5】第1電極が、50%以上の光反射率を有す
る請求項1から4のいずれか1つに記載の有機ELパネ
ル。
5. The organic EL panel according to claim 1, wherein the first electrode has a light reflectance of 50% or more.
【請求項6】第1電極が、4.5eV以下の仕事関数を
有する材料からなる請求項1から5のいずれか1つに記
載の有機ELパネル。
6. The organic EL panel according to claim 1, wherein the first electrode is made of a material having a work function of 4.5 eV or less.
【請求項7】第1電極が、Al:Li、Mg:Ag、A
l:In、Al:Ca、Al:Ba、Al:Csからな
る合金、Ca、B a、Cs、Li、Mg、Inの中から
選ばれた材料からなる請求項1から6のいずれか1つに
記載の有機ELパネル。
7. The first electrode comprises Al: Li, Mg: Ag, A
7. An alloy comprising l: In, Al: Ca, Al: Ba, and Al: Cs, and a material selected from Ca, Ba, Cs, Li, Mg, and In. The organic EL panel described in 1.
【請求項8】第1電極が、アルカリ金属またはアルカリ
土類金属のハロゲン化物と、金属電極との二層構造であ
る請求項1から7のいずれか1つに記載の有機ELパネ
ル。
8. The organic EL panel according to claim 1, wherein the first electrode has a two-layer structure of a halide of an alkali metal or an alkaline earth metal and a metal electrode.
【請求項9】金属電極が、Al、Al:Li、Mg:A
g、Al:Si、Al:Ti、Al:Ca、Al:B
a、Al:Cs、Al:Inの中から選ばれた材料であ
る請求項8に記載の有機ELパネル。
9. A metal electrode comprising Al, Al: Li, Mg: A
g, Al: Si, Al: Ti, Al: Ca, Al: B
The organic EL panel according to claim 8, which is a material selected from a, Al: Cs, and Al: In.
【請求項10】 アルカリ金属のハロゲン化物がLiF
である請求項8に記載の有機ELパネル。
10. The alkali metal halide is LiF.
The organic EL panel according to claim 8, which is
【請求項11】 基板が、ガラス、セラミックまたはホ
ーローからなる請求項1から10のいずれか1つに記載
の有機ELパネル。
11. The organic EL panel according to claim 1, wherein the substrate is made of glass, ceramic or enamel.
【請求項12】 スイッチング素子が、MIM素子また
はTFT素子である請求項1から11のいずれか1つに
記載の有機ELパネル。
12. The organic EL panel according to claim 1, wherein the switching element is an MIM element or a TFT element.
【請求項13】 基板上にスイッチング素子、絶縁膜、
第1電極、発光層を含む有機物層および第2電極が順に
形成され、絶縁膜を貫通して第1電極とスイッチング素
子を接続するスルーホールを有する有機ELパネルを製
造するに際し、基板上に形成された絶縁膜に軸線方向に
同径の下孔を形成し、次いで、この下孔を加熱して内周
面が第1電極からスイッチング素子に向かって小さくな
る円錐テーパーを有するスルーホールを形成する有機E
Lパネルの製造方法。
13. A switching element, an insulating film, and
Formed on a substrate when manufacturing an organic EL panel having a first electrode, an organic layer including a light emitting layer, and a second electrode formed in order, and having a through hole penetrating an insulating film to connect the first electrode and a switching element. A through hole having the same diameter is formed in the formed insulating film in the axial direction, and then the through hole is heated to form a through hole having a conical taper whose inner peripheral surface decreases from the first electrode toward the switching element. Organic E
L panel manufacturing method.
【請求項14】 予め第2電極および/または有機物層
を形成したドナー基板を、有機物層または第2電極が接
するように基板に貼り合わせ、ドナー基板側から熱を照
射して、有機物層および/または第2電極を基板側に転
写する請求項13に記載の有機ELパネルの製造方法。
14. A donor substrate on which a second electrode and / or an organic material layer is formed in advance is attached to the substrate so that the organic material layer or the second electrode is in contact, and heat is applied from the donor substrate side to form the organic material layer and / or the organic material layer. Alternatively, the method of manufacturing an organic EL panel according to claim 13, wherein the second electrode is transferred to the substrate side.
JP2001209573A 2001-07-10 2001-07-10 Organic el panel and its manufacturing method Pending JP2003022035A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001209573A JP2003022035A (en) 2001-07-10 2001-07-10 Organic el panel and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001209573A JP2003022035A (en) 2001-07-10 2001-07-10 Organic el panel and its manufacturing method

Publications (1)

Publication Number Publication Date
JP2003022035A true JP2003022035A (en) 2003-01-24

Family

ID=19045205

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001209573A Pending JP2003022035A (en) 2001-07-10 2001-07-10 Organic el panel and its manufacturing method

Country Status (1)

Country Link
JP (1) JP2003022035A (en)

Cited By (43)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004281380A (en) * 2003-02-24 2004-10-07 Sony Corp Display device and manufacturing method thereof
EP1536473A1 (en) * 2003-11-29 2005-06-01 Samsung SDI Co., Ltd. Organic electroluminescent display device and method for manufacturing the same
EP1566839A1 (en) * 2004-01-27 2005-08-24 Samsung SDI Co., Ltd. Organic light emitting display and method of fabricating the same
JP2006518864A (en) * 2003-02-24 2006-08-17 イグニス イノベーション インコーポレーテッド Pixel with organic light emitting diode and method for making the pixel
US7122956B2 (en) 2003-08-28 2006-10-17 Chi Mei Optoelectronics Corp. OLED display and method of manufacturing such display
JP2007094389A (en) * 2005-09-27 2007-04-12 Samsung Electronics Co Ltd Method of manufacturing display substrate and manufacturing equipment for manufacturing display substrate
JP2007280964A (en) * 2003-02-24 2007-10-25 Sony Corp Organic light-emitting display device and its manufacturing method
JP2009059503A (en) * 2007-08-30 2009-03-19 Canon Inc Organic el display device
WO2012004823A1 (en) * 2010-07-05 2012-01-12 パナソニック株式会社 Organic el display panel and method for manufacturing same
WO2012017500A1 (en) * 2010-08-06 2012-02-09 パナソニック株式会社 Organic el display panel, display device, and method for manufacturing organic el display panel
WO2012017494A1 (en) * 2010-08-06 2012-02-09 パナソニック株式会社 Organic el display panel, display device, and method for manufacturing organic el display panel
JP2013012492A (en) * 2012-09-10 2013-01-17 Sony Corp Display device
JP2013137993A (en) * 2011-11-30 2013-07-11 Canon Inc Display device
US8659518B2 (en) 2005-01-28 2014-02-25 Ignis Innovation Inc. Voltage programmed pixel circuit, display system and driving method thereof
US8664644B2 (en) 2001-02-16 2014-03-04 Ignis Innovation Inc. Pixel driver circuit and pixel circuit having the pixel driver circuit
US8743096B2 (en) 2006-04-19 2014-06-03 Ignis Innovation, Inc. Stable driving scheme for active matrix displays
US8901579B2 (en) 2011-08-03 2014-12-02 Ignis Innovation Inc. Organic light emitting diode and method of manufacturing
USRE45291E1 (en) 2004-06-29 2014-12-16 Ignis Innovation Inc. Voltage-programming scheme for current-driven AMOLED displays
US9070775B2 (en) 2011-08-03 2015-06-30 Ignis Innovations Inc. Thin film transistor
WO2015111119A1 (en) * 2014-01-23 2015-07-30 株式会社Joled Display apparatus manufacturing method and display apparatus
US9134825B2 (en) 2011-05-17 2015-09-15 Ignis Innovation Inc. Systems and methods for display systems with dynamic power control
US9153172B2 (en) 2004-12-07 2015-10-06 Ignis Innovation Inc. Method and system for programming and driving active matrix light emitting device pixel having a controllable supply voltage
US9385169B2 (en) 2011-11-29 2016-07-05 Ignis Innovation Inc. Multi-functional active matrix organic light-emitting diode display
US9472138B2 (en) 2003-09-23 2016-10-18 Ignis Innovation Inc. Pixel driver circuit with load-balance in current mirror circuit
US9502653B2 (en) 2013-12-25 2016-11-22 Ignis Innovation Inc. Electrode contacts
US9606607B2 (en) 2011-05-17 2017-03-28 Ignis Innovation Inc. Systems and methods for display systems with dynamic power control
US9818376B2 (en) 2009-11-12 2017-11-14 Ignis Innovation Inc. Stable fast programming scheme for displays
CN107452775A (en) * 2016-06-01 2017-12-08 三星显示有限公司 The method of display panel and manufacture display panel
US9842889B2 (en) 2014-11-28 2017-12-12 Ignis Innovation Inc. High pixel density array architecture
US9934725B2 (en) 2013-03-08 2018-04-03 Ignis Innovation Inc. Pixel circuits for AMOLED displays
US9952698B2 (en) 2013-03-15 2018-04-24 Ignis Innovation Inc. Dynamic adjustment of touch resolutions on an AMOLED display
US10089924B2 (en) 2011-11-29 2018-10-02 Ignis Innovation Inc. Structural and low-frequency non-uniformity compensation
US10176752B2 (en) 2014-03-24 2019-01-08 Ignis Innovation Inc. Integrated gate driver
US10204540B2 (en) 2015-10-26 2019-02-12 Ignis Innovation Inc. High density pixel pattern
US10373554B2 (en) 2015-07-24 2019-08-06 Ignis Innovation Inc. Pixels and reference circuits and timing techniques
US10410579B2 (en) 2015-07-24 2019-09-10 Ignis Innovation Inc. Systems and methods of hybrid calibration of bias current
US10586491B2 (en) 2016-12-06 2020-03-10 Ignis Innovation Inc. Pixel circuits for mitigation of hysteresis
US10657895B2 (en) 2015-07-24 2020-05-19 Ignis Innovation Inc. Pixels and reference circuits and timing techniques
US10714018B2 (en) 2017-05-17 2020-07-14 Ignis Innovation Inc. System and method for loading image correction data for displays
US10971078B2 (en) 2018-02-12 2021-04-06 Ignis Innovation Inc. Pixel measurement through data line
US10997901B2 (en) 2014-02-28 2021-05-04 Ignis Innovation Inc. Display system
US11025899B2 (en) 2017-08-11 2021-06-01 Ignis Innovation Inc. Optical correction systems and methods for correcting non-uniformity of emissive display devices
WO2022176736A1 (en) * 2021-02-18 2022-08-25 株式会社ジャパンディスプレイ Display device

Cited By (76)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8664644B2 (en) 2001-02-16 2014-03-04 Ignis Innovation Inc. Pixel driver circuit and pixel circuit having the pixel driver circuit
US8890220B2 (en) 2001-02-16 2014-11-18 Ignis Innovation, Inc. Pixel driver circuit and pixel circuit having control circuit coupled to supply voltage
US10163996B2 (en) 2003-02-24 2018-12-25 Ignis Innovation Inc. Pixel having an organic light emitting diode and method of fabricating the pixel
JP2006518864A (en) * 2003-02-24 2006-08-17 イグニス イノベーション インコーポレーテッド Pixel with organic light emitting diode and method for making the pixel
US7169003B2 (en) 2003-02-24 2007-01-30 Sony Corporation Method of manufacturing a display unit
JP2004281380A (en) * 2003-02-24 2004-10-07 Sony Corp Display device and manufacturing method thereof
JP2007280964A (en) * 2003-02-24 2007-10-25 Sony Corp Organic light-emitting display device and its manufacturing method
US7948170B2 (en) 2003-02-24 2011-05-24 Ignis Innovation Inc. Pixel having an organic light emitting diode and method of fabricating the pixel
US7122956B2 (en) 2003-08-28 2006-10-17 Chi Mei Optoelectronics Corp. OLED display and method of manufacturing such display
US10089929B2 (en) 2003-09-23 2018-10-02 Ignis Innovation Inc. Pixel driver circuit with load-balance in current mirror circuit
US9472138B2 (en) 2003-09-23 2016-10-18 Ignis Innovation Inc. Pixel driver circuit with load-balance in current mirror circuit
US7294962B2 (en) 2003-11-29 2007-11-13 Samsung Sdi Co., Ltd. Organic electroluminescent display device and method for manufacturing the same
EP1536473A1 (en) * 2003-11-29 2005-06-01 Samsung SDI Co., Ltd. Organic electroluminescent display device and method for manufacturing the same
EP1566839A1 (en) * 2004-01-27 2005-08-24 Samsung SDI Co., Ltd. Organic light emitting display and method of fabricating the same
USRE47257E1 (en) 2004-06-29 2019-02-26 Ignis Innovation Inc. Voltage-programming scheme for current-driven AMOLED displays
USRE45291E1 (en) 2004-06-29 2014-12-16 Ignis Innovation Inc. Voltage-programming scheme for current-driven AMOLED displays
US9153172B2 (en) 2004-12-07 2015-10-06 Ignis Innovation Inc. Method and system for programming and driving active matrix light emitting device pixel having a controllable supply voltage
US8659518B2 (en) 2005-01-28 2014-02-25 Ignis Innovation Inc. Voltage programmed pixel circuit, display system and driving method thereof
US9728135B2 (en) 2005-01-28 2017-08-08 Ignis Innovation Inc. Voltage programmed pixel circuit, display system and driving method thereof
US9373645B2 (en) 2005-01-28 2016-06-21 Ignis Innovation Inc. Voltage programmed pixel circuit, display system and driving method thereof
JP2007094389A (en) * 2005-09-27 2007-04-12 Samsung Electronics Co Ltd Method of manufacturing display substrate and manufacturing equipment for manufacturing display substrate
US10453397B2 (en) 2006-04-19 2019-10-22 Ignis Innovation Inc. Stable driving scheme for active matrix displays
US9633597B2 (en) 2006-04-19 2017-04-25 Ignis Innovation Inc. Stable driving scheme for active matrix displays
US8743096B2 (en) 2006-04-19 2014-06-03 Ignis Innovation, Inc. Stable driving scheme for active matrix displays
US10127860B2 (en) 2006-04-19 2018-11-13 Ignis Innovation Inc. Stable driving scheme for active matrix displays
JP2009059503A (en) * 2007-08-30 2009-03-19 Canon Inc Organic el display device
US20100253607A1 (en) * 2007-08-30 2010-10-07 Canon Kabushiki Kaisha Organic electroluminescence display apparatus
US10685627B2 (en) 2009-11-12 2020-06-16 Ignis Innovation Inc. Stable fast programming scheme for displays
US9818376B2 (en) 2009-11-12 2017-11-14 Ignis Innovation Inc. Stable fast programming scheme for displays
US8466468B2 (en) 2010-07-05 2013-06-18 Panasonic Corporation Organic el display panel and method of manufacturing the same
WO2012004823A1 (en) * 2010-07-05 2012-01-12 パナソニック株式会社 Organic el display panel and method for manufacturing same
US8492754B2 (en) 2010-08-06 2013-07-23 Panasonic Corporation Organic light-emitting display panel, display device, and method of manufacturing organic light-emitting display panel
JPWO2012017494A1 (en) * 2010-08-06 2013-09-19 パナソニック株式会社 Organic EL display panel, display device, and manufacturing method of organic EL display panel
US8492184B2 (en) 2010-08-06 2013-07-23 Panasonic Corporation Organic EL display panel, display device, and method of manufacturing organic EL display panel
JP5462251B2 (en) * 2010-08-06 2014-04-02 パナソニック株式会社 Organic EL display panel, display device, and manufacturing method of organic EL display panel
JP5462257B2 (en) * 2010-08-06 2014-04-02 パナソニック株式会社 Organic EL display panel, display device, and manufacturing method of organic EL display panel
WO2012017494A1 (en) * 2010-08-06 2012-02-09 パナソニック株式会社 Organic el display panel, display device, and method for manufacturing organic el display panel
WO2012017500A1 (en) * 2010-08-06 2012-02-09 パナソニック株式会社 Organic el display panel, display device, and method for manufacturing organic el display panel
JPWO2012017500A1 (en) * 2010-08-06 2013-09-19 パナソニック株式会社 Organic EL display panel, display device, and manufacturing method of organic EL display panel
US9134825B2 (en) 2011-05-17 2015-09-15 Ignis Innovation Inc. Systems and methods for display systems with dynamic power control
US10249237B2 (en) 2011-05-17 2019-04-02 Ignis Innovation Inc. Systems and methods for display systems with dynamic power control
US9606607B2 (en) 2011-05-17 2017-03-28 Ignis Innovation Inc. Systems and methods for display systems with dynamic power control
US9070775B2 (en) 2011-08-03 2015-06-30 Ignis Innovations Inc. Thin film transistor
US9224954B2 (en) 2011-08-03 2015-12-29 Ignis Innovation Inc. Organic light emitting diode and method of manufacturing
US8901579B2 (en) 2011-08-03 2014-12-02 Ignis Innovation Inc. Organic light emitting diode and method of manufacturing
US9818806B2 (en) 2011-11-29 2017-11-14 Ignis Innovation Inc. Multi-functional active matrix organic light-emitting diode display
US10453904B2 (en) 2011-11-29 2019-10-22 Ignis Innovation Inc. Multi-functional active matrix organic light-emitting diode display
US10380944B2 (en) 2011-11-29 2019-08-13 Ignis Innovation Inc. Structural and low-frequency non-uniformity compensation
US9385169B2 (en) 2011-11-29 2016-07-05 Ignis Innovation Inc. Multi-functional active matrix organic light-emitting diode display
US10079269B2 (en) 2011-11-29 2018-09-18 Ignis Innovation Inc. Multi-functional active matrix organic light-emitting diode display
US10089924B2 (en) 2011-11-29 2018-10-02 Ignis Innovation Inc. Structural and low-frequency non-uniformity compensation
JP2013137993A (en) * 2011-11-30 2013-07-11 Canon Inc Display device
JP2013012492A (en) * 2012-09-10 2013-01-17 Sony Corp Display device
US9934725B2 (en) 2013-03-08 2018-04-03 Ignis Innovation Inc. Pixel circuits for AMOLED displays
US9952698B2 (en) 2013-03-15 2018-04-24 Ignis Innovation Inc. Dynamic adjustment of touch resolutions on an AMOLED display
US9502653B2 (en) 2013-12-25 2016-11-22 Ignis Innovation Inc. Electrode contacts
US9831462B2 (en) 2013-12-25 2017-11-28 Ignis Innovation Inc. Electrode contacts
WO2015111119A1 (en) * 2014-01-23 2015-07-30 株式会社Joled Display apparatus manufacturing method and display apparatus
JPWO2015111119A1 (en) * 2014-01-23 2017-03-23 株式会社Joled Display device manufacturing method and display device
US10997901B2 (en) 2014-02-28 2021-05-04 Ignis Innovation Inc. Display system
US10176752B2 (en) 2014-03-24 2019-01-08 Ignis Innovation Inc. Integrated gate driver
US10170522B2 (en) 2014-11-28 2019-01-01 Ignis Innovations Inc. High pixel density array architecture
US9842889B2 (en) 2014-11-28 2017-12-12 Ignis Innovation Inc. High pixel density array architecture
US10373554B2 (en) 2015-07-24 2019-08-06 Ignis Innovation Inc. Pixels and reference circuits and timing techniques
US10410579B2 (en) 2015-07-24 2019-09-10 Ignis Innovation Inc. Systems and methods of hybrid calibration of bias current
US10657895B2 (en) 2015-07-24 2020-05-19 Ignis Innovation Inc. Pixels and reference circuits and timing techniques
US10204540B2 (en) 2015-10-26 2019-02-12 Ignis Innovation Inc. High density pixel pattern
CN107452775A (en) * 2016-06-01 2017-12-08 三星显示有限公司 The method of display panel and manufacture display panel
CN107452775B (en) * 2016-06-01 2023-08-01 三星显示有限公司 Display panel and method of manufacturing the same
US10586491B2 (en) 2016-12-06 2020-03-10 Ignis Innovation Inc. Pixel circuits for mitigation of hysteresis
US10714018B2 (en) 2017-05-17 2020-07-14 Ignis Innovation Inc. System and method for loading image correction data for displays
US11025899B2 (en) 2017-08-11 2021-06-01 Ignis Innovation Inc. Optical correction systems and methods for correcting non-uniformity of emissive display devices
US11792387B2 (en) 2017-08-11 2023-10-17 Ignis Innovation Inc. Optical correction systems and methods for correcting non-uniformity of emissive display devices
US10971078B2 (en) 2018-02-12 2021-04-06 Ignis Innovation Inc. Pixel measurement through data line
US11847976B2 (en) 2018-02-12 2023-12-19 Ignis Innovation Inc. Pixel measurement through data line
WO2022176736A1 (en) * 2021-02-18 2022-08-25 株式会社ジャパンディスプレイ Display device

Similar Documents

Publication Publication Date Title
JP2003022035A (en) Organic el panel and its manufacturing method
JP4608170B2 (en) Active drive type organic EL display device and manufacturing method thereof
JP4542659B2 (en) Active drive type organic EL display device and manufacturing method thereof
KR100656490B1 (en) Full Color OLED and Method for fabricating the Same
KR100552872B1 (en) Organic electroluminescence panel
TWI280815B (en) Organic EL display and its production method
US7190112B2 (en) Photoresist mask/smoothing layer ensuring the field homogeneity and better step-coverage in OLED displays
EP1536494A2 (en) Organic light emitting display
JP2008537631A (en) Display manufacturing method
WO2004036960A1 (en) Organic electroluminescent display and method for manufacturing same
JP2004252406A (en) Display panel, electronic equipment having the panel and method of manufacturing the panel
TW200541399A (en) Organic electroluminescence display device
US7259513B2 (en) Electroluminescent display device having surface treated organic layer and method of fabricating the same
JP2007026951A (en) Manufacturing method of self-light emitting panel, and self-light emitting panel
JPH11273870A (en) Organic el element
JP2000048964A (en) Organic el display
JPH09320760A (en) Patterning method of organic thin-film electroluminescence element
JP2001195012A (en) Organic electroluminescence display device and method for manufacturing the same
JP4748147B2 (en) Organic EL device
WO2012017486A1 (en) Method for producing light-emitting elements
JP4788677B2 (en) Organic EL device and manufacturing method thereof
JP2007095379A (en) Organic el display device and its manufacturing method
US8153184B2 (en) Organic EL display device and method of manufacturing the same
TW444235B (en) Method of fabricating and patterning oleds
KR100574089B1 (en) Full Color OLED and Method for fabricating the Same