JP2003009486A - Variable speed motor - Google Patents

Variable speed motor

Info

Publication number
JP2003009486A
JP2003009486A JP2001193514A JP2001193514A JP2003009486A JP 2003009486 A JP2003009486 A JP 2003009486A JP 2001193514 A JP2001193514 A JP 2001193514A JP 2001193514 A JP2001193514 A JP 2001193514A JP 2003009486 A JP2003009486 A JP 2003009486A
Authority
JP
Japan
Prior art keywords
armature
electrical angle
windings
phase
electric motor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001193514A
Other languages
Japanese (ja)
Inventor
Ryoichi Mizogami
良一 溝上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP2001193514A priority Critical patent/JP2003009486A/en
Publication of JP2003009486A publication Critical patent/JP2003009486A/en
Pending legal-status Critical Current

Links

Landscapes

  • Iron Core Of Rotating Electric Machines (AREA)
  • Permanent Magnet Type Synchronous Machine (AREA)
  • Permanent Field Magnets Of Synchronous Machinery (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain a field-weakening effect without a d-axis current by enabling a change in relative circumferential position on each of double-armature type armatures, and enhance design freedom by eliminating electrical constraints added by field weakening. SOLUTION: An each-phase winding of a group of windings, which are wound around the respective armatures, is connected in series between the armatures; and a circumferential electrical-angle position for generating a rotating magnetic field, on each of the armatures, of the each-phase winding connected in series is relatively displaced. By virtue of this, control is exercised so that composite values of magnetic fields interlinked on the respective armatures can weaken each other without reaching a maximum value.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、例えばダブルアー
マチャ方式の可変速永久磁石電動機に適用可能な、可変
速電動機に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a variable speed electric motor applicable to, for example, a double armature type variable speed permanent magnet electric motor.

【0002】[0002]

【従来の技術】永久磁石を用いた可変速電動機では、誘
起電圧は回転数に比例して高くなる。全回転領域で一定
トルクあるいは回転数が上がるとトルクが大きくなるよ
うな負荷の場合、全領域あるいは最高回転時に負荷電流
が最も大きくなるので、最高回転時の端子電圧が印加可
能な電圧を超えないように設計することによって、最高
回転時に最大出力、最大電圧、最大電流となるような機
器構成にすることができる。つまり、必要となる電源容
量は電動機の最大容量とほぼ同程度にすることが可能で
ある。
2. Description of the Related Art In a variable speed electric motor using a permanent magnet, the induced voltage increases in proportion to the rotation speed. In the case of a constant torque in the entire rotation range or a torque that increases as the number of rotations increases, the load current becomes maximum at all ranges or at maximum rotation, so the terminal voltage at maximum rotation does not exceed the voltage that can be applied. By designing as described above, it is possible to have a device configuration in which the maximum output, the maximum voltage, and the maximum current are obtained at the maximum rotation. In other words, the required power supply capacity can be made approximately the same as the maximum capacity of the electric motor.

【0003】[0003]

【発明が解決しようとする課題】しかし、回転が上がる
につれトルクが小さくなるような負荷、例えば電気自動
車のように高速回転領域では一定出力のような場合、一
般的に端子電圧の最大値は最高回転時になるが、負荷電
流の最大値は最高回転値とはならない。つまり、最大電
圧×最大電流で決まる電源容量は、電動機の最大容量に
対して大きくなってしまい、電源部のコストが大きくな
る。
However, when the load is such that the torque becomes smaller as the rotation speed increases, for example, in the case of constant output in a high speed rotation region such as an electric vehicle, the maximum value of the terminal voltage is generally the highest. When rotating, the maximum load current does not reach the maximum rotation value. That is, the power supply capacity determined by the maximum voltage × the maximum current becomes larger than the maximum capacity of the electric motor, which increases the cost of the power supply unit.

【0004】このことを避けるため、電動機にd軸電流
を通電し端子電圧を下げる「弱め界磁制御」を行うこと
がある。突極性や逆突極性を持つ埋め込み磁石式のよう
な電動機の場合、d軸電流もある程度はトルクに関与す
るが、ほとんどの表面磁石式の電動機の場合、トルクに
関与するのは、q軸電流のみであり、d軸電流は「弱め
界磁」のためだけに用いられる。したがって、このd軸
電流は、電動機や電源部での損失を増加させ、効率を低
下せしめるものとなる。
In order to avoid this, "field weakening control" may be performed in which a d-axis current is passed through the motor to lower the terminal voltage. In the case of an electric motor such as an embedded magnet type having saliency or reverse saliency, the d-axis current also contributes to the torque to some extent, but in the case of most surface magnet type motors, it is the q-axis current that contributes to the torque. D-axis current is used only for "field weakening". Therefore, this d-axis current increases the loss in the electric motor and the power supply section and reduces the efficiency.

【0005】また、d軸電流による弱め界磁では、効率
よく端子電圧を下げるためには、d軸同期インダクタン
スに適切な範囲が存在するため、設計の制約になること
がある。
Further, in the field weakening due to the d-axis current, there is an appropriate range for the d-axis synchronous inductance in order to efficiently lower the terminal voltage, which may be a design constraint.

【0006】そこで、本発明の目的は、ダブルアーマチ
ャ方式の各電機子上での相対的周方向位置を可変にして
d軸電流無しの弱め界磁効果を得ると共に、弱め界磁に
よる電気的な制約を無くして設計の自由度を高めること
が可能な、可変速電動機を提供することにある。
Therefore, an object of the present invention is to obtain a field weakening effect without d-axis current by varying the relative circumferential position on each armature of the double armature system, and to electrically generate the field weakening. An object of the present invention is to provide a variable-speed electric motor that can eliminate restrictions and increase the degree of freedom in design.

【0007】[0007]

【課題を解決するための手段】本発明は、永久磁石を用
いた可変速電動機であって、前記永久磁石を有する回転
子と、前記回転子を回転させるための回転磁界を発生す
る複数相の巻線からなる巻線群を有する複数の電機子と
を具え、前記各電機子に巻回された巻線群のうち各相毎
の巻線を該電機子間で直列接続し、かつ、該直列接続さ
れた各相毎の巻線の各電機子上での回転磁界を発生する
ための周方向電気角位置を相対的に移動して配置するこ
とによって、各電機子上で鎖交する磁界の合成値が、最
大値とならず互いに弱め合うように制御することによっ
て、可変速電動機を構成する。
SUMMARY OF THE INVENTION The present invention is a variable speed electric motor using a permanent magnet, the rotor having the permanent magnet, and a plurality of phases for generating a rotating magnetic field for rotating the rotor. A plurality of armatures having a winding group composed of windings, the windings for each phase of the winding group wound on each armature are connected in series between the armatures, and Magnetic fields interlinking on each armature by relatively moving and arranging the circumferential electrical angle position for generating the rotating magnetic field on each armature of the windings for each phase connected in series. The variable speed electric motor is configured by controlling so that the combined value of the two does not become the maximum value and weakens each other.

【0008】ここで、前記磁界の合成値が最大値となら
ず互いに弱め合うように制御することによって、d軸電
流無しの弱め界磁を行うことができる。
Here, the field weakening without the d-axis current can be performed by controlling so that the combined value of the magnetic fields does not reach the maximum value and weakens each other.

【0009】直列接続された各相毎の巻線の一方又は両
方の電機子上での周方向電気角位置を、電気角δ=0°
〜180°の範囲内で相対的に移動して配置してもよ
い。
The circumferential electrical angle position on one or both armatures of the windings for each phase connected in series is represented by the electrical angle δ = 0 °.
You may arrange | position and move relatively within the range of -180 degrees.

【0010】直列接続された各相毎の巻線の電機子上で
の周方向電気角位置が電気角δだけ移動したときの合成
電圧の大きさVoは、該電機子上での周方向電気角位置
が電気角δ=0の重なっているときの合成電圧をVとし
たとき、Vo=2×cos(δ/2)×Vとしてあらわ
してもよい。
The magnitude Vo of the combined voltage when the circumferential electrical angle position on the armature of the windings for each phase connected in series moves by the electrical angle δ is the circumferential electrical potential on the armature. When the composite voltage when the angular positions overlap with the electrical angle δ = 0 is V, it may be expressed as Vo = 2 × cos (δ / 2) × V.

【0011】回転子の回転数に応じて、前記直列接続さ
れた各相毎の巻線の電機子上での周方向電気角位置を相
対的に移動して配置してもよい。
Depending on the rotation speed of the rotor, the circumferential electrical angle positions of the windings for each phase connected in series on the armature may be relatively moved and arranged.

【0012】低速回転時では、前記直列接続された各相
毎の巻線の電機子上での周方向電気角位置を一致させて
相対的なずれを無くした状態で運転し、高速回転時で
は、各相毎の巻線の合成電圧が印加可能な電圧を越える
場合は、各相毎の巻線の電機子上での周方向電気角位置
を相対的に移動して合成電圧を下げ、印加可能な電圧値
を越えないような状態で運転してもよい。
During low-speed rotation, the windings for each phase connected in series are operated in a state in which the circumferential electrical angle positions on the armature are made to coincide with each other so as to eliminate relative deviation, and during high-speed rotation. , If the combined voltage of the windings for each phase exceeds the applicable voltage, lower the combined voltage by moving the circumferential electrical angle position of the windings for each phase on the armature. It is also possible to operate in a state where the possible voltage value is not exceeded.

【0013】[0013]

【発明の実施の形態】以下、図面を参照して、本発明の
実施の形態を詳細に説明する。
BEST MODE FOR CARRYING OUT THE INVENTION Embodiments of the present invention will be described in detail below with reference to the drawings.

【0014】[第1の例]本発明の第1の実施の形態
を、図1〜図7に基づいて説明する。
[First Example] A first embodiment of the present invention will be described with reference to FIGS.

【0015】(可変速電動機の構成)まず、本発明に適
用可能な可変速電動機の構成例について説明する。
(Structure of Variable Speed Motor) First, a structural example of a variable speed motor applicable to the present invention will be described.

【0016】図5および図6は、可変速電動機として、
ダブルアーマチャ方式の永久磁石電動機の構成例を示
す。
5 and 6 show a variable speed electric motor,
The structural example of a double armature type permanent magnet motor is shown.

【0017】図5は、ラジアルギャップ機1であり、表
面磁石型となっている。
FIG. 5 shows a radial gap machine 1, which is of a surface magnet type.

【0018】11は、外周側に配置される固定子鉄心
(以下、電機子という)である。12は、内周側に配置
される固定子鉄心(以下、電機子という)である。13
は、電機子11,12間に配置された回転子鉄心(以
下、回転子という)である。回転子13の両面には、永
久磁石15(N極、S極)が複数対取付けられている。
Reference numeral 11 denotes a stator core (hereinafter referred to as an armature) arranged on the outer peripheral side. Reference numeral 12 denotes a stator iron core (hereinafter referred to as an armature) arranged on the inner peripheral side. Thirteen
Is a rotor core (hereinafter referred to as a rotor) arranged between the armatures 11 and 12. Plural pairs of permanent magnets 15 (N pole, S pole) are attached to both surfaces of the rotor 13.

【0019】電機子11,12の溝11a,12aに
は、後述する図1に示すように、各相(U相,V相,W
相)毎の巻線20が巻回されている。この場合、各電機
子11,12に巻回された巻線群のうち、各相毎の巻線
20は、電機子11,12間で直列に接続され、かつ、
この直列に接続された各相毎の巻線20の電機子11,
12上での周方向電気角位置は相対的に電気角δ(後述
する図1参照)だけずらして配置されている。
In the grooves 11a and 12a of the armatures 11 and 12, as shown in FIG. 1 which will be described later, each phase (U phase, V phase, W phase).
The winding 20 for each phase is wound. In this case, among the winding groups wound around the armatures 11 and 12, the windings 20 for each phase are connected in series between the armatures 11 and 12, and
The armature 11 of the winding 20 for each phase connected in series,
The circumferential electrical angle positions on 12 are displaced relative to each other by an electrical angle δ (see FIG. 1 described later).

【0020】図6は、軸方向に空隙面を持つアキシャル
ギャップ機2であり、表面磁石型となっている。この場
合にも、各U相,V相,W相毎の巻線20は電機子1
1,12間で直列に接続され、かつ、電機子11,12
上での周方向電気角位置は相対的に電気角δ(後述する
図1参照)だけずらして配置されている。なお、基本的
な構成要素は、図5と同様であり、同一部分について
は、同一図番を使用し、その説明は省略する。
FIG. 6 shows an axial gap machine 2 having a void surface in the axial direction, which is of a surface magnet type. Also in this case, the winding 20 for each U-phase, V-phase and W-phase has the armature 1
1 and 12 are connected in series, and the armatures 11 and 12 are connected.
The circumferential electrical angle positions above are relatively displaced by an electrical angle δ (see FIG. 1, which will be described later). Note that the basic components are the same as those in FIG. 5, and the same parts are denoted by the same drawing numbers and the description thereof is omitted.

【0021】(軸電流)図7は、本電動機と軸電流(d
軸,q軸)との関係を示す。図7(a)に示すように、
d軸電流とは、永久磁石15の中心軸上に磁束を発生さ
せる電流をいう。図7(b)に示すように、q軸電流と
は、永久磁石15の間の軸上に磁束を発生させる電流を
いう。これらd軸電流、q軸電流を、図5および図6中
に対応させて示しておく。
(Shaft current) FIG. 7 shows this motor and shaft current (d
Axis, q-axis). As shown in FIG. 7 (a),
The d-axis current is a current that generates a magnetic flux on the central axis of the permanent magnet 15. As shown in FIG. 7B, the q-axis current means a current that generates a magnetic flux on the axis between the permanent magnets 15. The d-axis current and the q-axis current are shown in correspondence with each other in FIGS. 5 and 6.

【0022】(電機子巻線の配置)次に、上記ダブルア
ーマチャ方式の永久磁石電動機を用いて、本発明に係る
電機子巻線の配置について説明する。
(Arrangement of Armature Windings) Next, the arrangement of the armature windings according to the present invention will be described using the double armature type permanent magnet motor.

【0023】図1は、本発明に係る電機子巻線の周方向
電気角位置を相対的に電気角δだけずらした場合の配置
関係を示す。図2は、図1に対応した各相の電機子巻線
に誘起される電圧波形、および、合成電圧波形を示す。
また、本例では、説明を容易化するために、比較例とし
て図3および図4を用いる。図3は、周方向電気角位置
をずらさない一般的な電機子巻線の配置関係を示す。図
4は、図3に対応した各相の電機子巻線に誘起される電
圧波形、および、合成電圧波形を示す。
FIG. 1 shows the arrangement relationship when the circumferential electrical angle position of the armature winding according to the present invention is relatively shifted by the electrical angle δ. FIG. 2 shows a voltage waveform induced in the armature winding of each phase corresponding to FIG. 1 and a composite voltage waveform.
Further, in this example, FIGS. 3 and 4 are used as comparative examples in order to facilitate the description. FIG. 3 shows an arrangement relationship of general armature windings whose circumferential electrical angle positions are not displaced. FIG. 4 shows a voltage waveform induced in the armature winding of each phase and a combined voltage waveform corresponding to FIG.

【0024】以下、一般的な例である図3、図4につい
て説明し、その後、本発明に係る図1、図2について説
明する。
3 and 4, which are general examples, will be described below, and then FIGS. 1 and 2 according to the present invention will be described.

【0025】図3は、2層巻きの場合の一般的な3相巻
線(U相,V相,W相)の配置例である。
FIG. 3 shows an arrangement example of general three-phase windings (U-phase, V-phase, W-phase) in the case of two-layer winding.

【0026】ダブルアーマチャ方式の場合、それぞれの
電機子11(A側)、電機子12(B側)の巻線群は、
巻線効率を大きくするために、周方向Xで揃った位置に
配置するのが一般的である。例えば、U相巻線におい
て、A側電機子11の+U巻線の配置位置と、B側電機
子12の+U巻線の配置位置とは、周方向電気角位置の
基準位置X1で一致している。
In the case of the double armature system, the winding group of each armature 11 (A side) and armature 12 (B side) is
In order to increase the winding efficiency, it is common to arrange them in positions aligned in the circumferential direction X. For example, in the U-phase winding, the + U winding arrangement position of the A-side armature 11 and the + U winding arrangement position of the B-side armature 12 match at the reference position X1 of the circumferential electrical angle position. There is.

【0027】図4(a)は、図3のA側電機子11のU
相巻線の誘起電圧Uの波形を示す。図4(b)は、図
3のB側電機子12のU相巻線の誘起電圧Uの波形を
示す。これにより、誘起電圧U,Uのそれぞれの電
圧波形は、大きさ、位相ともに揃ったものとなる。
FIG. 4A shows U of the A-side armature 11 of FIG.
Shows the waveform of the induced voltage U A of the phase windings. FIG. 4B shows the waveform of the induced voltage U B of the U-phase winding of the B-side armature 12 of FIG. As a result, the voltage waveforms of the induced voltages U A and U B are uniform in magnitude and phase.

【0028】このように電機子上での周方向電気角位置
(X方向)が一致し、かつ、A側電機子11のU相巻線
とB側電機子12のU相巻線とが直列に接続された場合
における合成電圧Voは、図4(c)のように、誘起電
圧(U又はU)の2倍の大きさの電圧となる。
As described above, the circumferential electrical angle position (X direction) on the armature is the same, and the U-phase winding of the A-side armature 11 and the U-phase winding of the B-side armature 12 are in series. The combined voltage Vo in the case of being connected to is a voltage that is twice as large as the induced voltage (U A or U B ) as shown in FIG.

【0029】また、この誘起電圧は回転数に比例した大
きさとなるため、回転数が高く誘起電圧が大きくなり過
ぎた際には、端子電圧を低くする「弱め界磁制御」をす
ることになるが、この制御の場合、永久磁石の磁束を打
ち消す向きにd軸電流を流す必要がある。
Since the induced voltage has a magnitude proportional to the rotational speed, when the rotational speed is high and the induced voltage is too large, "field weakening control" for lowering the terminal voltage is performed. In the case of this control, it is necessary to flow the d-axis current in the direction of canceling the magnetic flux of the permanent magnet.

【0030】図1は、A側電機子11,B側電機子12
の巻線群を、電気角でδだけずらして配置した場合の構
成を示す。例えば、U相巻線において、A側電機子11
の+U巻線の配置位置での基準位置X2と、B側電機子
12の+U巻線の配置位置での基準位置X3とは、周方
向電気角位置で電気角δだけずれている。
FIG. 1 shows an A side armature 11 and a B side armature 12.
2 shows a configuration in which the winding group of is arranged by being shifted by δ in electrical angle. For example, in the U-phase winding, the A-side armature 11
The reference position X2 at the position where the + U winding is arranged and the reference position X3 at the position where the + U winding is arranged on the B-side armature 12 are deviated by the electrical angle δ in the circumferential electrical angle position.

【0031】図2(a)は、U相巻線の誘起電圧U
示す。図2(b)は、U相巻線の誘起電圧Uを示す。
このように電気角δだけずらしたことにより、誘起電圧
,誘起電圧Uは、大きさは同じであるが、位相が
δだけずれた波形となる。
FIG. 2A shows the induced voltage U A of the U-phase winding. FIG. 2B shows the induced voltage U B of the U-phase winding.
By thus shifting by the electrical angle δ, the induced voltage U A and the induced voltage U B have the same magnitude, but the phases are shifted by δ.

【0032】このように電機子上での周方向電気角位置
(X方向)が電気角δだけずれ、かつ、A側電機子11
のU相巻線とB側電機子12のU相巻線とが直列接続さ
れた場合の合成電圧(端子電圧)Voは、図2(c)に
示すように、Vo=2×cos(δ/2)×Vuの電圧
となる。ただし、電圧Vuは、周方向電気角位置をずら
す前の一致した状態でのU相巻線の合成電圧(図4
(c)参照)である。
Thus, the circumferential electrical angle position (X direction) on the armature is displaced by the electrical angle δ, and the A-side armature 11
When the U-phase winding of No. 2 and the U-phase winding of the B-side armature 12 are connected in series, the combined voltage Vo is, as shown in FIG. 2C, Vo = 2 × cos (δ The voltage becomes / 2) × Vu. However, the voltage Vu is the combined voltage of the U-phase windings in the matched state before the circumferential electrical angle position is shifted (see FIG.
(See (c)).

【0033】従って、直列接続された各相毎の巻線の一
方又は両方の電機子上での周方向電気角位置を、電気角
δ=0〜180°の範囲内で移動できるような構造とす
ることによって、誘起電圧を片側の電機子巻線に誘起す
る電圧の0〜2倍の範囲で自由に調整することが可能と
なる。つまり、このことは、d軸電流無しで、任意に
「弱め界磁制御」が可能であることを意味する。
Therefore, a structure in which one or both of the windings for each phase connected in series on the armature in the circumferential direction can be moved within the range of the electrical angle δ = 0 to 180 °. By doing so, the induced voltage can be freely adjusted within the range of 0 to 2 times the voltage induced in the armature winding on one side. That is, this means that "field weakening control" can be arbitrarily performed without the d-axis current.

【0034】[第2の例]本発明の第2の実施の形態
を、図8に基づいて説明する。なお、前述した第1の例
と同一部分についてはその説明を省略し、同一符号を付
す。本例では、電機子11,12上での周方向電気角位
置における電気角δを、運転状態に応じて自由に可変す
る制御例である。
[Second Example] A second embodiment of the present invention will be described with reference to FIG. The description of the same parts as those in the first example will be omitted, and the same reference numerals will be given. The present example is a control example in which the electrical angle δ at the circumferential electrical angle position on the armatures 11 and 12 is freely variable according to the operating state.

【0035】図8は、一般的な電気自動車の負荷トルク
パターンを示す。低速領域では一定トルク運転となり、
高速領域では一定出力運転となる。
FIG. 8 shows a load torque pattern of a general electric vehicle. Constant torque operation in the low speed range,
Constant output operation is performed in the high speed range.

【0036】従って、このような低速・高速の運転状態
を周知の検出装置を用いて検出し、この検出結果に基づ
いて、低速の一定トルク領域30では、各相毎に各巻線
位置を揃えて巻線効率を大きくした状態で運転し、一
方、高速の一定出力領域31では、巻線の端子電圧が印
加可能な電圧を越える場合は、各相毎に各巻線位置を電
気角δだけずらして端子電圧を下げ、印加可能な電圧値
を越えないように制御する。
Therefore, such a low-speed / high-speed operating state is detected by using a well-known detecting device, and based on the detection result, the winding positions are aligned for each phase in the low-speed constant torque region 30. In the high-speed constant output region 31, when the winding terminal voltage exceeds the voltage that can be applied, the winding position is shifted by the electrical angle δ for each phase. Control the terminal voltage so that it does not exceed the applicable voltage value.

【0037】このような制御によって、d軸電流を流さ
ずに弱め界磁効果を得ることができるので、電源の容量
を小さく抑え、d軸電流による損失の増加も無くすこと
ができ、さらには、設計時の弱め界磁での同期インダク
タンスの制約も無い電動機を構成することが可能とな
る。
By such control, the field-weakening effect can be obtained without flowing the d-axis current, so that the capacity of the power supply can be suppressed to be small and the increase in loss due to the d-axis current can be eliminated. It is possible to construct an electric motor that does not have the restriction of the synchronous inductance in the field weakening at the time of design.

【0038】また、変形例として、1つの直列回路の中
に、少なくとも1組以上のA側電機子11とB側電機子
12との間で巻線の直列接続を行うことにより、各相毎
に巻線の並列化接続を行うことが可能となる。
As a modified example, by connecting windings in series between at least one set of A-side armatures 11 and B-side armatures 12 in one series circuit, each phase is It is possible to connect the windings in parallel.

【0039】[0039]

【発明の効果】以上説明したように、本発明によれば、
永久磁石を有する回転子と、回転子を回転させるための
回転磁界を発生する複数相の巻線からなる巻線群を有す
る複数の電機子とを備えたような例えばダブルアーマチ
ャ方式の可変速電動機において、各電機子に巻回された
巻線群のうち各相毎の巻線を該電機子間で直列接続し、
かつ、該直列接続された各相毎の巻線の各電機子上での
回転磁界を発生するための周方向電気角位置を相対的に
移動して配置することによって、各電機子上で鎖交する
磁界の合成値が、最大値とならず互いに弱め合うように
制御したので、d軸電流を流さずに弱め界磁運転を行う
ことが可能となり、これにより、電源の容量を小さく抑
え、d軸電流による損失を無くすと共に、弱め界磁によ
る同期インダクタンスの電気的制約を無くして設計の自
由度を高めることが可能となる。
As described above, according to the present invention,
For example, a double armature type variable speed motor including a rotor having a permanent magnet and a plurality of armatures having a winding group including windings of a plurality of phases that generate a rotating magnetic field for rotating the rotor. In, in the winding group wound around each armature, the windings for each phase are connected in series between the armatures,
Moreover, the circumferential electrical angle position for generating the rotating magnetic field on each armature of the windings for each phase connected in series is relatively moved and arranged, so that the chain is formed on each armature. Since the combined value of the intersecting magnetic fields is controlled so as not to be the maximum value but to weaken each other, it is possible to perform the field weakening operation without passing the d-axis current, thereby suppressing the capacity of the power supply to be small, It is possible to eliminate the loss due to the d-axis current and to eliminate the electrical restrictions on the synchronous inductance due to the field weakening, thereby increasing the degree of freedom in design.

【0040】また、本発明によれば、低速回転時では、
直列接続された各相毎の巻線の電機子上での周方向電気
角位置を一致させて相対的なずれを無くした状態で運転
し、高速回転時では、各相毎の巻線の合成電圧が印加可
能な電圧を越える場合は、各相毎の巻線の電機子上での
周方向電気角位置を相対的に移動して合成電圧を下げ、
印加可能な電圧値を越えないような状態で運転するよう
にしたので、負荷の状態に応じて最適な運転制御を行う
ことができ、電力の利用効率を向上させることができ
る。
According to the present invention, during low speed rotation,
Operates in a state where the circumferential electrical angle positions of the windings for each phase connected in series are matched on the armature to eliminate the relative deviation, and at high speed rotation, the windings for each phase are combined. When the voltage exceeds the voltage that can be applied, the circumferential electrical angle position on the armature of the winding for each phase is moved relatively to lower the combined voltage,
Since the operation is performed in a state where the voltage value that can be applied is not exceeded, it is possible to perform optimal operation control according to the state of the load and improve the power utilization efficiency.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の第1の実施の形態である、電機子巻線
の周方向電気角位置を相対的にずらした場合の配置関係
を示す断面図である。
FIG. 1 is a cross-sectional view showing an arrangement relationship when a circumferential electrical angle position of an armature winding is relatively displaced, which is a first embodiment of the present invention.

【図2】図1に対応した各相の電機子巻線に誘起される
電圧波形、および合成電圧波形を示す波形図である。
FIG. 2 is a waveform diagram showing a voltage waveform induced in an armature winding of each phase and a combined voltage waveform corresponding to FIG.

【図3】周方向位置をずらさない一般的な電機子巻線の
配置関係を示す断面図である。
FIG. 3 is a cross-sectional view showing an arrangement relationship of general armature windings whose circumferential positions are not displaced.

【図4】図3に対応した各相の電機子巻線に誘起される
電圧波形、および合成電圧波形を示す波形図である。
FIG. 4 is a waveform diagram showing a voltage waveform induced in the armature winding of each phase and a combined voltage waveform corresponding to FIG.

【図5】ダブルアーマチャ方式の永久磁石電動機として
のラジアルギャップ機を示す斜視図である。
FIG. 5 is a perspective view showing a radial gap machine as a double armature type permanent magnet electric motor.

【図6】ダブルアーマチャ方式の永久磁石電動機として
のアキシャルギャップ機を示す斜視図である。
FIG. 6 is a perspective view showing an axial gap machine as a double armature type permanent magnet electric motor.

【図7】軸電流を示す説明図である。FIG. 7 is an explanatory diagram showing an axial current.

【図8】本発明の第2の実施の形態である、一般的な電
気自動車の負荷トルクパターンを示す説明図である。
FIG. 8 is an explanatory diagram showing a load torque pattern of a general electric vehicle that is the second embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1 ラジアルギャップ機 2 アキシャルギャップ機 11 固定子鉄心A(電機子) 11a 溝 12 固定子鉄心B(電機子) 12a 溝 13 回転子鉄心 14 永久磁石 20 巻線 30 定トルク領域 31 定出力領域 1 radial gap machine 2 Axial gap machine 11 Stator core A (armature) 11a groove 12 Stator core B (armature) 12a groove 13 rotor core 14 permanent magnet 20 windings 30 constant torque range 31 Constant output area

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 永久磁石を用いた可変速電動機であっ
て、 前記永久磁石を有する回転子と、 前記回転子を回転させるための回転磁界を発生する複数
相の巻線からなる巻線群を有する複数の電機子とを具
え、 前記各電機子に巻回された巻線群のうち各相毎の巻線を
該電機子間で直列接続し、かつ、該直列接続された各相
毎の巻線の各電機子上での回転磁界を発生するための周
方向電気角位置を相対的に移動して配置することによっ
て、 各電機子上で鎖交する磁界の合成値が、最大値とならず
互いに弱め合うように制御したことを特徴とする可変速
電動機。
1. A variable speed electric motor using a permanent magnet, comprising: a rotor having the permanent magnet; and a winding group including windings of a plurality of phases for generating a rotating magnetic field for rotating the rotor. A plurality of armatures having, wherein a winding for each phase of the winding group wound around each armature is connected in series between the armatures, and for each phase connected in series By arranging by moving the circumferential electrical angle position for generating the rotating magnetic field on each armature of the winding relatively, the combined value of the magnetic fields interlinking on each armature becomes the maximum value. A variable speed electric motor characterized by being controlled so that they do not weaken each other.
【請求項2】 前記磁界の合成値が最大値とならず互い
に弱め合うように制御して、d軸電流無しの弱め界磁を
行うことを特徴とする請求項1記載の可変速電動機。
2. The variable speed electric motor according to claim 1, wherein field weakening without d-axis current is performed by controlling so that the combined value of the magnetic fields does not reach the maximum value and weakens each other.
【請求項3】 前記直列接続された各相毎の巻線の一方
又は両方の電機子上での周方向電気角位置を、電気角δ
=0°〜180°の範囲内で相対的に移動して配置した
ことを特徴とする請求項1又は2記載の可変速電動機。
3. The circumferential electrical angle position on one or both armatures of each of the serially connected windings is defined as an electrical angle δ.
3. The variable speed electric motor according to claim 1, wherein the variable speed electric motor is arranged so as to be relatively moved within a range of = 0 ° to 180 °.
【請求項4】 前記直列接続された各相毎の巻線の電機
子上での周方向電気角位置が電気角δだけ移動したとき
の合成電圧の大きさVoは、該電機子上での周方向電気
角位置が電気角δ=0の重なっているときの合成電圧を
Vとしたとき、 Vo=2×cos(δ/2)×V として表されることを特徴とする請求項1ないし3のい
ずれかに記載の可変速電動機。
4. The magnitude Vo of the combined voltage when the circumferential electrical angle position on the armature of the windings for each phase connected in series moves by the electrical angle δ is The composite voltage when the electrical angle position in the circumferential direction overlaps with the electrical angle δ = 0 is defined as V, and Vo is expressed as Vo = 2 × cos (δ / 2) × V. The variable speed electric motor according to any one of 3 above.
【請求項5】 前記回転子の回転数に応じて、前記直列
接続された各相毎の巻線の電機子上での周方向電気角位
置を相対的に移動して配置したことを特徴とする請求項
1ないし4のいずれかに記載の可変速電動機。
5. The circumferential electrical angle position on the armature of the windings for each phase connected in series is relatively moved and arranged in accordance with the number of rotations of the rotor. The variable speed electric motor according to any one of claims 1 to 4.
【請求項6】 低速回転時では、前記直列接続された各
相毎の巻線の電機子上での周方向電気角位置を一致させ
て相対的なずれを無くした状態で運転し、 高速回転時では、各相毎の巻線の合成電圧が印加可能な
電圧を越える場合は、各相毎の巻線の電機子上での周方
向電気角位置を相対的に移動して合成電圧を下げ、印加
可能な電圧値を越えないような状態で運転したことを特
徴とする請求項5記載の可変速電動機。
6. When rotating at a low speed, the windings for each phase connected in series are operated in a state in which the circumferential electrical angle positions on the armature are made coincident with each other to eliminate a relative deviation, and a high speed rotation is performed. At times, if the combined voltage of the windings for each phase exceeds the applicable voltage, lower the combined voltage by relatively moving the circumferential electrical angle position of the windings for each phase on the armature. 6. The variable speed electric motor according to claim 5, wherein the variable speed electric motor is operated in a state in which an applicable voltage value is not exceeded.
JP2001193514A 2001-06-26 2001-06-26 Variable speed motor Pending JP2003009486A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001193514A JP2003009486A (en) 2001-06-26 2001-06-26 Variable speed motor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001193514A JP2003009486A (en) 2001-06-26 2001-06-26 Variable speed motor

Publications (1)

Publication Number Publication Date
JP2003009486A true JP2003009486A (en) 2003-01-10

Family

ID=19031788

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001193514A Pending JP2003009486A (en) 2001-06-26 2001-06-26 Variable speed motor

Country Status (1)

Country Link
JP (1) JP2003009486A (en)

Cited By (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005124967A1 (en) * 2004-06-17 2005-12-29 Sähkö-Rantek Oy Electric machine of the axial flux type
JP2006050844A (en) * 2004-08-06 2006-02-16 Nissan Motor Co Ltd Structure of axial gap motor
JP2006333544A (en) * 2005-05-23 2006-12-07 Daikin Ind Ltd Rotor, motor, compressor, blower, and air conditioner
JP2006352953A (en) * 2005-06-13 2006-12-28 Daikin Ind Ltd Motor and its control method, compressor, blower, air conditioner and vehicle-mounted air conditioner
JP2007166796A (en) * 2005-12-14 2007-06-28 Daikin Ind Ltd Dynamo-electric machine and its control method, and compressor, blower, and air conditioner
JP2007166797A (en) * 2005-12-14 2007-06-28 Daikin Ind Ltd Dynamo-electric machine and its control method, and compressor, blower, and air conditioner
JP2007166798A (en) * 2005-12-14 2007-06-28 Daikin Ind Ltd Dynamo-electric machine, compressor, blower, and air conditioner
JP2007519387A (en) * 2003-10-06 2007-07-12 ライト・エンジニアリング・インコーポレーテッド Efficient axial air gap electronic machine with front iron
JP2007244118A (en) * 2006-03-09 2007-09-20 Mitsubishi Electric Corp Rotating electric machine
JP2008092658A (en) * 2006-10-02 2008-04-17 Toyota Auto Body Co Ltd Double stator motor
US7382071B2 (en) 2005-03-23 2008-06-03 Mitsubishi Denki Kabushiki Kaisha Rotating electric machine
JP2009033921A (en) * 2007-07-30 2009-02-12 Honda Motor Co Ltd Controller of motor
US7501733B2 (en) 2004-05-18 2009-03-10 Seiko Epson Corporation Electric machine
JP2009095086A (en) * 2007-10-04 2009-04-30 Honda Motor Co Ltd Axial gap motor
US7852039B2 (en) 2006-06-21 2010-12-14 Mitsubishi Electric Corporation Control apparatus for AC rotary machine
JP2011019336A (en) * 2009-07-08 2011-01-27 Toshiba Corp Electric motor control device
JP2011193676A (en) * 2010-03-16 2011-09-29 Daihatsu Motor Co Ltd Axial gap motor
JP2012005218A (en) * 2010-06-16 2012-01-05 Meidensha Corp Brushless motor
JP5265799B1 (en) * 2012-08-03 2013-08-14 有限会社クラ技術研究所 Magnet excitation rotating electrical machine system
JP2014155373A (en) * 2013-02-12 2014-08-25 Denso Corp Multi-gap rotary electric machine
WO2015022733A1 (en) * 2013-08-13 2015-02-19 i-Motor株式会社 Magnetic excitation rotating electric machine system
JP2015039251A (en) * 2011-06-29 2015-02-26 有限会社クラ技術研究所 Magnet excitation rotary electric machine system
CN104779759A (en) * 2015-04-27 2015-07-15 华中科技大学 Variable magnetic flux and magnetic resistance motor winding structure
CN105680656A (en) * 2015-12-31 2016-06-15 安泰科技股份有限公司 Axial structured permanent-magnet motor
CN106440544A (en) * 2015-08-05 2017-02-22 江苏金源锻造股份有限公司 Wind-driven air conditioner applicable to various wind speeds
CN113098219A (en) * 2021-04-11 2021-07-09 郑州大学 Hybrid winding doubly-salient rare-earth-free motor for new energy automobile and control strategy thereof

Cited By (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007519387A (en) * 2003-10-06 2007-07-12 ライト・エンジニアリング・インコーポレーテッド Efficient axial air gap electronic machine with front iron
US7501733B2 (en) 2004-05-18 2009-03-10 Seiko Epson Corporation Electric machine
US7884517B2 (en) 2004-05-18 2011-02-08 Seiko Epson Corporation Electric machine
WO2005124967A1 (en) * 2004-06-17 2005-12-29 Sähkö-Rantek Oy Electric machine of the axial flux type
JP2006050844A (en) * 2004-08-06 2006-02-16 Nissan Motor Co Ltd Structure of axial gap motor
US7382071B2 (en) 2005-03-23 2008-06-03 Mitsubishi Denki Kabushiki Kaisha Rotating electric machine
JP2006333544A (en) * 2005-05-23 2006-12-07 Daikin Ind Ltd Rotor, motor, compressor, blower, and air conditioner
JP2006352953A (en) * 2005-06-13 2006-12-28 Daikin Ind Ltd Motor and its control method, compressor, blower, air conditioner and vehicle-mounted air conditioner
JP2007166796A (en) * 2005-12-14 2007-06-28 Daikin Ind Ltd Dynamo-electric machine and its control method, and compressor, blower, and air conditioner
JP2007166797A (en) * 2005-12-14 2007-06-28 Daikin Ind Ltd Dynamo-electric machine and its control method, and compressor, blower, and air conditioner
JP2007166798A (en) * 2005-12-14 2007-06-28 Daikin Ind Ltd Dynamo-electric machine, compressor, blower, and air conditioner
JP4575891B2 (en) * 2006-03-09 2010-11-04 三菱電機株式会社 Rotating electric machine
JP2007244118A (en) * 2006-03-09 2007-09-20 Mitsubishi Electric Corp Rotating electric machine
US7990008B2 (en) 2006-03-09 2011-08-02 Mitsubishi Electric Corporation Electric rotating machine having detachable moving stator drive unit
US7852039B2 (en) 2006-06-21 2010-12-14 Mitsubishi Electric Corporation Control apparatus for AC rotary machine
JP2008092658A (en) * 2006-10-02 2008-04-17 Toyota Auto Body Co Ltd Double stator motor
JP2009033921A (en) * 2007-07-30 2009-02-12 Honda Motor Co Ltd Controller of motor
JP4688172B2 (en) * 2007-07-30 2011-05-25 本田技研工業株式会社 Electric motor control device
JP2009095086A (en) * 2007-10-04 2009-04-30 Honda Motor Co Ltd Axial gap motor
JP2011019336A (en) * 2009-07-08 2011-01-27 Toshiba Corp Electric motor control device
JP2011193676A (en) * 2010-03-16 2011-09-29 Daihatsu Motor Co Ltd Axial gap motor
JP2012005218A (en) * 2010-06-16 2012-01-05 Meidensha Corp Brushless motor
JP2015039251A (en) * 2011-06-29 2015-02-26 有限会社クラ技術研究所 Magnet excitation rotary electric machine system
JP5265799B1 (en) * 2012-08-03 2013-08-14 有限会社クラ技術研究所 Magnet excitation rotating electrical machine system
JP2014155373A (en) * 2013-02-12 2014-08-25 Denso Corp Multi-gap rotary electric machine
WO2015022733A1 (en) * 2013-08-13 2015-02-19 i-Motor株式会社 Magnetic excitation rotating electric machine system
CN104779759A (en) * 2015-04-27 2015-07-15 华中科技大学 Variable magnetic flux and magnetic resistance motor winding structure
CN106440544A (en) * 2015-08-05 2017-02-22 江苏金源锻造股份有限公司 Wind-driven air conditioner applicable to various wind speeds
CN105680656A (en) * 2015-12-31 2016-06-15 安泰科技股份有限公司 Axial structured permanent-magnet motor
CN113098219A (en) * 2021-04-11 2021-07-09 郑州大学 Hybrid winding doubly-salient rare-earth-free motor for new energy automobile and control strategy thereof

Similar Documents

Publication Publication Date Title
JP2003009486A (en) Variable speed motor
US9231513B2 (en) Electric motor system
US8487499B2 (en) Electric rotating machine drivable with a single three-phase inverter
JP5827026B2 (en) Rotating electric machine and rotating electric machine drive system
US11223311B2 (en) Rotary electric machine and rotary electric machine system
US7969057B2 (en) Synchronous motor with rotor having suitably-arranged field coil, permanent magnets, and salient-pole structure
JP5542849B2 (en) Switched reluctance motor
JP5789145B2 (en) Synchronous motor
JP2017093097A (en) Rotary electric machine
JP2012222941A (en) Rotating electric machine
JP2003088078A (en) Brushless dc motor
JP5885423B2 (en) Permanent magnet rotating electric machine
JP5301905B2 (en) Multi-phase rotating electrical machine drive device, multi-phase generator converter, multi-phase rotating electrical machine, and rotating electrical machine drive system
JP2008160920A (en) Wire connection pattern switching unit
JP2014039446A (en) Pole change motor device
JP6451990B2 (en) Rotating electric machine
Noguchi et al. Combined winding structure of a consequent-pole bearingless motor with parallel motor winding topology
JP4476585B2 (en) 2Y motor stator structure
JP2004289919A (en) Permanent magnet motor
JP2007189818A (en) Current control method of synchronous motor
JPH08182280A (en) Generator
JP3837954B2 (en) Connection pattern switching device
JP2007151236A (en) Synchronous motor
CN108712045B (en) Synchronous switch reluctance motor
US20230096216A1 (en) Motor