JP2003007343A - Manufacturing method and manufacturing system for secondary lithium battery - Google Patents

Manufacturing method and manufacturing system for secondary lithium battery

Info

Publication number
JP2003007343A
JP2003007343A JP2001190599A JP2001190599A JP2003007343A JP 2003007343 A JP2003007343 A JP 2003007343A JP 2001190599 A JP2001190599 A JP 2001190599A JP 2001190599 A JP2001190599 A JP 2001190599A JP 2003007343 A JP2003007343 A JP 2003007343A
Authority
JP
Japan
Prior art keywords
active material
material layer
current collector
manufacturing
secondary battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001190599A
Other languages
Japanese (ja)
Inventor
Daizo Chito
大造 地藤
Hisaki Tarui
久樹 樽井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP2001190599A priority Critical patent/JP2003007343A/en
Priority to US10/177,215 priority patent/US7105253B2/en
Publication of JP2003007343A publication Critical patent/JP2003007343A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0402Methods of deposition of the material
    • H01M4/0421Methods of deposition of the material involving vapour deposition
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/56Apparatus specially adapted for continuous coating; Arrangements for maintaining the vacuum, e.g. vacuum locks
    • C23C14/564Means for minimising impurities in the coating chamber such as dust, moisture, residual gases
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/04Construction or manufacture in general
    • H01M10/0436Small-sized flat cells or batteries for portable equipment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0402Methods of deposition of the material
    • H01M4/0404Methods of deposition of the material by coating on electrode collectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0402Methods of deposition of the material
    • H01M4/0421Methods of deposition of the material involving vapour deposition
    • H01M4/0423Physical vapour deposition
    • H01M4/0426Sputtering
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M6/00Primary cells; Manufacture thereof
    • H01M6/04Cells with aqueous electrolyte
    • H01M6/06Dry cells, i.e. cells wherein the electrolyte is rendered non-fluid
    • H01M6/10Dry cells, i.e. cells wherein the electrolyte is rendered non-fluid with wound or folded electrodes
    • H01M2006/106Elliptic wound cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/04Construction or manufacture in general
    • H01M2010/0495Nanobatteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49002Electrical device making
    • Y10T29/49108Electric battery cell making
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49002Electrical device making
    • Y10T29/49108Electric battery cell making
    • Y10T29/4911Electric battery cell making including sealing
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49002Electrical device making
    • Y10T29/49108Electric battery cell making
    • Y10T29/49112Electric battery cell making including laminating of indefinite length material
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49002Electrical device making
    • Y10T29/49108Electric battery cell making
    • Y10T29/49114Electric battery cell making including adhesively bonding
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49002Electrical device making
    • Y10T29/49108Electric battery cell making
    • Y10T29/49115Electric battery cell making including coating or impregnating
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/53Means to assemble or disassemble
    • Y10T29/5313Means to assemble electrical device
    • Y10T29/53135Storage cell or battery

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Manufacturing & Machinery (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a manufacturing method of a secondary lithium battery, by which the oxidation and moisture absorption of an activator layer can be prevented. SOLUTION: The manufacturing method of the secondary lithium battery comprises a process of forming the activator layer on a current collector 42a, using a sputtering method, and a process of keeping an electrode (negative electrode) 42, which comprises the current collector having the activator layer formed thereon, at least either in an inactive atmosphere or in a vacuum atmosphere until the battery is manufactured.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】この発明は、リチウム二次電
池の製造方法および製造装置に関し、より特定的には、
原料を気相中に放出して供給する方法を用いて集電体上
に活物質層を形成することによって電極を形成するリチ
ウム二次電池の製造方法および製造装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method and an apparatus for manufacturing a lithium secondary battery, and more specifically,
The present invention relates to a method and an apparatus for manufacturing a lithium secondary battery in which an electrode is formed by forming an active material layer on a current collector by using a method of releasing a raw material into a gas phase and supplying the raw material.

【0002】[0002]

【従来の技術】近年、研究開発が盛んに行われているリ
チウム二次電池は、用いる電極によって、充放電電圧、
充放電サイクル寿命特性および保存特性などの電池特性
が大きく左右される。このため、電極に用いる活物質を
改善することにより、電池特性の改善および向上が図ら
れている。
2. Description of the Related Art Lithium secondary batteries, which have been actively researched and developed in recent years, have different charge and discharge voltages depending on the electrodes used.
Battery characteristics such as charge / discharge cycle life characteristics and storage characteristics are greatly influenced. Therefore, the battery characteristics have been improved and improved by improving the active material used for the electrode.

【0003】負極活物質としてリチウム金属を用いて電
池を作製する場合、重量当たりおよび体積当たりのエネ
ルギー密度の高い電池が得られることが知られている。
この場合、負極上では、充電によってリチウムが析出す
るとともに、放電によってリチウムが溶解する。この電
池の充放電を繰り返し行うことによって、負極上でのリ
チウムの析出と溶解とが繰り返し行われる。これによ
り、負極上にリチウムがデンドライト状(樹枝状)に析
出するという不都合が生じる。その結果、内部短絡が発
生するという問題点があった。
It is known that when a battery is manufactured using lithium metal as a negative electrode active material, a battery having a high energy density per weight and volume can be obtained.
In this case, on the negative electrode, lithium is deposited by charging and lithium is dissolved by discharging. By repeatedly charging and discharging this battery, precipitation and dissolution of lithium on the negative electrode are repeated. This causes a disadvantage that lithium is deposited in the form of dendrite (dendritic) on the negative electrode. As a result, there is a problem that an internal short circuit occurs.

【0004】そこで、従来、充電時に電気化学的にリチ
ウムと合金化するアルミニウム、シリコンおよび錫など
を負極活物質として用いることによって、上記のような
リチウムのデンドライト状の析出を抑制したリチウム二
次電池が提案されている。これらは、たとえば、Sol
id State Ionics,113−115,p
57(1998)などに報告されている。これらのアル
ミニウム、シリコンおよび錫などのうち、特に、シリコ
ンは理論容量が大きいので、高い容量を示す電池の負極
活物質として有望な材料である。
Therefore, conventionally, by using aluminum, silicon, tin or the like which is electrochemically alloyed with lithium during charging as a negative electrode active material, a lithium secondary battery in which the above dendrite-like deposition of lithium is suppressed. Is proposed. These are, for example, Sol
id State Ionics, 113-115, p
57 (1998). Among these aluminum, silicon, tin, etc., since silicon has a particularly large theoretical capacity, it is a promising material as a negative electrode active material of a battery showing a high capacity.

【0005】本出願人は、シリコンを負極活物質とし、
良好な充放電サイクル特性を示すリチウム二次電池用電
極として、CVD法やスパッタ法などの原料を気相中に
放出して供給する方法を用いて、集電体上に微結晶シリ
コン層または非晶質シリコン層を形成したリチウム二次
電池用電極を、国際公開WO01/29912号公報な
どにおいて提案している。
The Applicant has used silicon as a negative electrode active material,
As a lithium secondary battery electrode showing good charge / discharge cycle characteristics, a method such as CVD or sputtering in which a raw material is released into the gas phase and supplied, is used to form a microcrystalline silicon layer or a non-crystalline silicon layer on the current collector. An electrode for a lithium secondary battery having a crystalline silicon layer is proposed in International Publication WO01 / 29912 and the like.

【0006】[0006]

【発明が解決しようとする課題】上記した原料を気相中
に放出して供給する方法を用いて集電体上に活物質層を
形成する際には、通常真空下におかれている。
When forming the active material layer on the current collector by using the above-mentioned method of releasing the raw material into the gas phase and supplying it, it is usually under vacuum.

【0007】しかし、集電体上に活物質層を形成する電
極作製装置と、その活物質層が形成された集電体(電
極)を用いて最終的に電池を作製する電池作製装置と
は、従来、別々の場所に設置されている。このため、集
電体上に活物質層を形成した後に、その活物質層が形成
された集電体(電極)を電極作製装置から一旦大気中に
搬出した後、電池作製装置に移動して電池作製を行う必
要があった。このように電極作製から電池作製に移る際
に大気に晒されると、活物質層表面が酸化するとともに
水分の吸湿が発生するという不都合が生じる。
However, an electrode producing apparatus for forming an active material layer on a current collector and a battery producing apparatus for finally producing a battery using the current collector (electrode) on which the active material layer is formed , Traditionally, they are installed in different places. Therefore, after forming the active material layer on the current collector, the current collector (electrode) on which the active material layer is formed is once carried out of the electrode manufacturing apparatus into the atmosphere and then moved to the battery manufacturing apparatus. It was necessary to make a battery. When exposed to the air during the process of manufacturing electrodes from manufacturing batteries, the surface of the active material layer is oxidized and moisture is absorbed.

【0008】ここで、リチウム二次電池は非水二次電池
であるので、活物質中に水分が存在していると、その水
分が電解液に使われているリチウム塩であるLiPF6
などと反応して電解液中にフッ酸が発生し、その結果、
電池特性が低下するという問題点がある。また、負極活
物質の表面が酸化されていると、その活物質の還元のた
めにリチウムが不可逆的に使われるため、正極の容量が
減少し、その結果、電池容量の低下を引き起こすという
問題点があった。
Here, since the lithium secondary battery is a non-aqueous secondary battery, if water is present in the active material, the lithium salt is LiPF 6 which is a lithium salt used in the electrolytic solution.
Hydrofluoric acid is generated in the electrolytic solution by reacting with
There is a problem that the battery characteristics deteriorate. In addition, when the surface of the negative electrode active material is oxidized, lithium is irreversibly used for the reduction of the active material, so that the capacity of the positive electrode decreases, resulting in a decrease in battery capacity. was there.

【0009】この発明は上記のような課題を解決するた
めになされたものであり、この発明の1つの目的は、電
極作製から電池作製に移る際の活物質層の酸化および吸
湿を防止することが可能なリチウム二次電池の製造方法
を提供することである。
The present invention has been made to solve the above problems, and one object of the present invention is to prevent oxidation and moisture absorption of an active material layer during the transition from electrode production to battery production. It is to provide a method of manufacturing a lithium secondary battery capable of achieving the above.

【0010】この発明のもう1つの目的は、上記のリチ
ウム二次電池の製造方法において、電極作製から電池作
製に移る際に、活物質層が形成された集電体が大気に晒
されるのを防止することである。
Another object of the present invention is to prevent the current collector having the active material layer formed thereon from being exposed to the atmosphere during the transition from electrode production to battery production in the above method for producing a lithium secondary battery. It is to prevent.

【0011】この発明のさらにもう1つの目的は、活物
質層の酸化および吸湿を防止することによって特性の優
れたリチウム二次電池を得ることが可能なリチウム二次
電池の製造装置を提供することである。
Still another object of the present invention is to provide a lithium secondary battery manufacturing apparatus capable of obtaining a lithium secondary battery having excellent characteristics by preventing oxidation and moisture absorption of the active material layer. Is.

【0012】[0012]

【課題を解決するための手段】上記目的を達成するため
に、この発明の一の局面によるリチウム二次電池の製造
方法は、原料を気相中に放出して供給する方法を用い
て、集電体上に活物質層を形成する工程と、活物質層が
形成された集電体を、電池を作製するまでの間、不活性
雰囲気下および真空雰囲気下の少なくともいずれかで保
持する工程とを備えている。なお、本発明における「原
料を気相中に放出して供給する方法」とは、たとえば、
スパッタ法や蒸着法などのPVD(Physical
VaporDeposition)法、および、プラズ
マCVD法などのCVD(Chemical Vapo
r Deposition)法を含む広い概念である。
In order to achieve the above object, a method of manufacturing a lithium secondary battery according to an aspect of the present invention uses a method of releasing raw materials into a gas phase and supplying the raw materials. A step of forming an active material layer on the current collector, and a step of holding the current collector on which the active material layer is formed in at least one of an inert atmosphere and a vacuum atmosphere until a battery is manufactured. Is equipped with. The “method of releasing and supplying the raw material into the gas phase” in the present invention means, for example,
PVD (Physical) such as sputtering and vapor deposition
Vapor Deposition method and CVD (Chemical Vapo) such as plasma CVD method.
r Deposition) method.

【0013】この一の局面によるリチウム二次電池の製
造方法では、活物質層が形成された集電体を、電池を作
製するまでの間、不活性雰囲気下および真空雰囲気下の
少なくともいずれかで保持することによって、活物質層
が形成された集電体が大気に晒されるのを防止すること
ができるので、活物質層の酸化および吸湿を防止するこ
とができる。その結果、特性の優れたリチウム二次電池
を作製することができる。
In the method for manufacturing a lithium secondary battery according to this aspect, the current collector on which the active material layer is formed is kept in an inert atmosphere and / or a vacuum atmosphere until the battery is manufactured. By holding, it is possible to prevent the current collector on which the active material layer is formed from being exposed to the air, so that it is possible to prevent the active material layer from being oxidized and absorbing moisture. As a result, a lithium secondary battery having excellent characteristics can be manufactured.

【0014】上記一の局面によるリチウム二次電池の製
造方法において、好ましくは、活物質層を形成する工程
は、第1予備室を有する第1装置内で、集電体上に、原
料を気相中に放出して供給する方法を用いて活物質層を
形成する工程を含み、不活性雰囲気下および真空雰囲気
下のいずれかで保持する工程は、第1装置に設けられた
第1予備室と、第1予備室に配置された外部に搬出可能
な密閉容器とを不活性雰囲気にする工程と、第1予備室
において、活物質層が形成された集電体を、密閉容器内
に移動させる工程とを含む。このように構成すれば、そ
の活物質層が形成された集電体が不活性雰囲気下で密閉
容器内に保持される。これにより、その活物質層が形成
された集電体を含む密閉容器を第1予備室から外部に搬
出したとしても、活物質層が形成された集電体が大気に
晒されるのを有効に防止することができる。この場合、
活物質層が形成された集電体を、密閉容器内に移す工程
の後、密閉容器を大気中に搬出するとともに、電池を作
製するまでの間、大気中に保存する工程をさらに備える
ようにしてもよい。
In the method for manufacturing a lithium secondary battery according to the above aspect, preferably, in the step of forming the active material layer, the raw material is vaporized on the current collector in the first device having the first preliminary chamber. The step of forming the active material layer by using a method of releasing and supplying the active material into the phase, and the step of holding the active material layer in either of the inert atmosphere and the vacuum atmosphere is performed in the first preliminary chamber provided in the first device. And a step of bringing an airtight container that can be carried out to the outside arranged in the first preliminary chamber into an inert atmosphere, and moving the current collector having the active material layer formed therein into the closed container. And a step of According to this structure, the current collector having the active material layer formed thereon is held in the closed container under an inert atmosphere. As a result, even if the closed container including the current collector on which the active material layer is formed is carried out from the first preliminary chamber to the outside, the current collector on which the active material layer is formed is effectively exposed to the atmosphere. Can be prevented. in this case,
After the step of moving the current collector in which the active material layer is formed into the closed container, the closed container is carried out into the air, and a step of storing it in the air until the battery is manufactured is further provided. May be.

【0015】また、上記の場合、好ましくは、活物質層
が形成された集電体を、密閉容器内に移す工程の後、密
閉容器を真空状態にする工程をさらに備える。このよう
に構成すれば、第1予備室に活物質層の形成用のガスが
残っている場合にも、密閉容器内を容易に真空状態にす
ることができる。これにより、活物質層が形成された集
電体を含む密閉容器を第1予備室から外部に搬出したと
しても、活物質層が形成された集電体が大気に晒される
のを有効に防止することができる。
In the above case, preferably, the method further comprises the step of bringing the closed container into a vacuum state after the step of moving the current collector having the active material layer formed therein into the closed container. According to this structure, even when the gas for forming the active material layer remains in the first preliminary chamber, the inside of the closed container can be easily evacuated. This effectively prevents the current collector having the active material layer from being exposed to the atmosphere even if the closed container including the current collector having the active material layer is carried out from the first preliminary chamber. can do.

【0016】また、上記の場合、活物質層が形成された
集電体を、密閉容器内に移す工程の後、密閉容器を大気
中に保存することなく、電池を作製する第2装置内に直
ちに移動させる工程をさらに備えるようにしてもよい。
このように構成すれば、活物質層が形成された集電体が
大気に晒されることなく第1装置から第2装置に移動さ
れるので、活物質層の酸化および吸湿を防止することが
できる。その結果、特性の優れたリチウム二次電池を作
製することができる。
Further, in the above case, after the step of moving the current collector having the active material layer formed therein into the closed container, the second container for producing a battery is stored in the closed container without storing the closed container in the atmosphere. You may further provide the process of moving immediately.
According to this structure, the current collector having the active material layer formed thereon is moved from the first device to the second device without being exposed to the atmosphere, so that the oxidation and moisture absorption of the active material layer can be prevented. . As a result, a lithium secondary battery having excellent characteristics can be manufactured.

【0017】上記一の局面によるリチウム二次電池の製
造方法において、好ましくは、集電体上に原料を気相中
に放出して供給する方法を用いて活物質層を形成する第
1装置と、活物質層が形成された集電体を用いて電池を
作製する第2装置とが一体化された装置を用いることに
よって、活物質層が形成された集電体を、大気に晒すこ
となく、第1装置から第2装置に移動させる工程をさら
に備える。このように構成すれば、外部に搬出するため
の密閉容器などを設けることなく、活物質層が形成され
た集電体が大気に晒されるのを有効に防止することがで
きる。その結果、簡単な装置構成で、活物質層の酸化お
よび吸湿を防止することができる。
In the method for manufacturing a lithium secondary battery according to the above aspect, preferably, a first device for forming an active material layer by using a method in which a raw material is discharged into a gas phase and supplied onto a current collector. By using a device integrated with a second device for producing a battery using a current collector having an active material layer formed thereon, the current collector having an active material layer formed thereon can be exposed without being exposed to the atmosphere. , And further comprising the step of moving from the first device to the second device. According to this structure, it is possible to effectively prevent the current collector on which the active material layer is formed from being exposed to the atmosphere without providing a closed container or the like for carrying it out to the outside. As a result, oxidation and moisture absorption of the active material layer can be prevented with a simple device configuration.

【0018】この発明の他の局面によるリチウム二次電
池の製造装置は、原料を気相中に放出して供給する方法
を用いて、集電体上に活物質層を形成するための第1装
置と、第1装置に設けられた第1予備室と、第1予備室
内に配置され、外部に搬出可能な密閉容器と、活物質層
が形成された集電体を用いて電池を作製する第2装置
と、第2装置に設けられ、密閉容器が搬入可能な第2予
備室とを備えている。
In a lithium secondary battery manufacturing apparatus according to another aspect of the present invention, a first method for forming an active material layer on a current collector by using a method of releasing and supplying a raw material into a gas phase. A battery is manufactured using the device, a first preliminary chamber provided in the first device, a closed container that is arranged in the first preliminary chamber and can be carried out to the outside, and a current collector on which an active material layer is formed. It is provided with a second device and a second preliminary chamber provided in the second device and into which a closed container can be carried.

【0019】この他の局面によるリチウム二次電池の製
造装置では、上記のように構成することによって、密閉
容器を不活性雰囲気および真空雰囲気の少なくともいず
れかにした状態で、活物質層が形成された集電体を密閉
容器内に配置すれば、密閉容器を外部に搬出したとして
も、活物質層が形成された集電体が大気に晒されるのを
防止することができる。これにより、活物質層の酸化お
よび吸湿を防止することができる。その結果、特性の優
れたリチウム二次電池を作製することができる。
In the lithium secondary battery manufacturing apparatus according to another aspect of the present invention, the active material layer is formed in the closed container in at least one of the inert atmosphere and the vacuum atmosphere by configuring as described above. By disposing the current collector in the closed container, it is possible to prevent the current collector on which the active material layer is formed from being exposed to the atmosphere even when the closed container is carried out to the outside. This can prevent oxidation and moisture absorption of the active material layer. As a result, a lithium secondary battery having excellent characteristics can be manufactured.

【0020】上記他の局面によるリチウム二次電池の製
造装置において、好ましくは、密閉容器は、真空状態に
することが可能な真空容器を含む。このように構成すれ
ば、第1予備室に活物質層の形成用のガスが残っている
場合にも、密閉容器を容易に真空状態にすることができ
る。これにより、活物質層が形成された集電体を含む密
閉容器を第1予備室から外部に搬出したとしても、活物
質層が形成された集電体が大気に晒されるのを有効に防
止することができる。
In the apparatus for manufacturing a lithium secondary battery according to the other aspect described above, preferably, the closed container includes a vacuum container capable of being in a vacuum state. According to this structure, even when the gas for forming the active material layer remains in the first preliminary chamber, the closed container can be easily put into the vacuum state. This effectively prevents the current collector having the active material layer from being exposed to the atmosphere even if the closed container including the current collector having the active material layer is carried out from the first preliminary chamber. can do.

【0021】この発明のさらに他の局面によるリチウム
二次電池の製造装置は、原料を気相中に放出して供給す
る方法を用いて、集電体上に活物質層を形成するための
第1装置と、活物質層が形成された集電体を用いて電池
を作製する第2装置とを備え、第1装置と第2装置とが
一体化されている。
In a lithium secondary battery manufacturing apparatus according to still another aspect of the present invention, a method for forming an active material layer on a current collector by using a method in which a raw material is released into a gas phase and supplied. One device and a second device for manufacturing a battery using a current collector having an active material layer are provided, and the first device and the second device are integrated.

【0022】このさらに他の局面によるリチウム二次電
池の製造装置では、上記のように構成することによっ
て、外部に搬出するための密閉容器などを設けることな
く、活物質層が形成された集電体が大気に晒されるのを
有効に防止することができる。その結果、簡単な装置構
成で、活物質層の酸化および吸湿を防止することができ
る。
In the lithium secondary battery manufacturing apparatus according to this still another aspect, by having the above-described configuration, the current collector having the active material layer is formed without providing a hermetically sealed container for carrying the battery to the outside. It can effectively prevent the body from being exposed to the atmosphere. As a result, oxidation and moisture absorption of the active material layer can be prevented with a simple device configuration.

【0023】このさらに他の局面によるリチウム二次電
池の製造装置において、好ましくは、第1装置と第2装
置との間に設置された予備室をさらに備える。このよう
に構成すれば、第1装置によって集電体上に活物質層を
形成した後、予備室に一旦保存することができる。これ
により、集電体上に活物質層を形成する工程と、活物質
層が形成された集電体を用いて電池を作製する工程とを
連続して行わない場合にも、容易に対応可能である。
The apparatus for manufacturing a lithium secondary battery according to the still another aspect preferably further includes a preliminary chamber installed between the first device and the second device. According to this structure, after the active material layer is formed on the current collector by the first device, it can be temporarily stored in the preliminary chamber. This makes it possible to easily cope with the case where the step of forming the active material layer on the current collector and the step of manufacturing a battery using the current collector on which the active material layer is formed are not consecutively performed. Is.

【0024】[0024]

【実施例】以下、本発明の実施例を具体的に説明する。EXAMPLES Examples of the present invention will be specifically described below.

【0025】ここでは、まず、本発明の実施例を説明す
る前に、本発明の実施例で用いるリチウム二次電池の製
造装置について説明する。図1は、本発明の実施例で用
いたリチウム二次電池の製造装置の全体構成を示した概
略図である。
Here, before describing the embodiments of the present invention, a manufacturing apparatus for a lithium secondary battery used in the embodiments of the present invention will be described. FIG. 1 is a schematic diagram showing the overall configuration of a lithium secondary battery manufacturing apparatus used in an example of the present invention.

【0026】このリチウム二次電池の製造装置は、電極
(負極)の作製を行うためのスパッタ装置10と、スパ
ッタ装置10によって形成された電極を用いて最終的に
電池を作製する電池作製装置20とを備えている。スパ
ッタ装置10には、予備室11が設けられており、電池
作製装置20には、予備室21が設けられている。ま
た、予備室11内には、外部に搬出可能なデシケータ3
0が配置されている。予備室11内に配置されたデシケ
ータ30には、コック12aを介してロータリーポンプ
12が接続されている。
This lithium secondary battery manufacturing apparatus includes a sputtering apparatus 10 for manufacturing an electrode (negative electrode), and a battery manufacturing apparatus 20 for finally manufacturing a battery using the electrodes formed by the sputtering apparatus 10. It has and. The sputtering apparatus 10 is provided with a preliminary chamber 11, and the battery manufacturing apparatus 20 is provided with a preliminary chamber 21. In addition, the desiccator 3 that can be carried out to the outside is provided in the preliminary chamber 11.
0 is placed. The rotary pump 12 is connected to the desiccator 30 arranged in the preliminary chamber 11 via the cock 12a.

【0027】なお、スパッタ装置10は、本発明の「第
1装置」の一例であり、電池作製装置20は、本発明の
「第2装置」の一例である。また、デシケータ30は、
本発明の「密閉容器」および「真空容器」の一例であ
る。また、予備室11は、本発明の「第1予備室」の一
例であり、予備室21は、本発明の「第2予備室」の一
例である。
The sputtering apparatus 10 is an example of the "first apparatus" of the present invention, and the battery manufacturing apparatus 20 is an example of the "second apparatus" of the present invention. In addition, the desiccator 30 is
It is an example of a "sealed container" and a "vacuum container" of the present invention. The reserve chamber 11 is an example of the "first reserve chamber" in the present invention, and the reserve chamber 21 is an example of the "second reserve chamber" in the present invention.

【0028】また、予備室11には、外部から手を挿入
可能なグローブ11aが設けられており、予備室21に
も、同様のグローブ21aが設けられている。スパッタ
装置10は、真空チャンバ10aと、真空チャンバ10
a内に配置されたスパッタ源10bとを含んでいる。
The preliminary chamber 11 is provided with a glove 11a into which a hand can be inserted from the outside, and the preliminary chamber 21 is also provided with a similar glove 21a. The sputtering apparatus 10 includes a vacuum chamber 10a and a vacuum chamber 10
and a sputter source 10b disposed inside a.

【0029】また、電池作製装置20は、露点−40℃
以下に設定され、Ar雰囲気などの不活性雰囲気にされ
たドライボックス20aと、ドライボックス20a内に
配置された巻き取り装置20bとを含んでいる。
The battery manufacturing apparatus 20 has a dew point of -40 ° C.
It includes a dry box 20a which is set below and is made to be an inert atmosphere such as an Ar atmosphere, and a winding device 20b which is arranged in the dry box 20a.

【0030】真空チャンバ10aと予備室11との間に
は開閉可能な扉10cが設けられており、予備室11の
外部と接する側には開閉可能な扉11bが設けられてい
る。また、予備室21と電池作製装置20との間には開
閉可能な扉20cが設けられており、予備室21の外部
と接触する部分には扉21bが設けられている。
An openable / closable door 10c is provided between the vacuum chamber 10a and the auxiliary chamber 11, and an openable / closable door 11b is provided on the side in contact with the outside of the auxiliary chamber 11. Further, a door 20c that can be opened and closed is provided between the preliminary chamber 21 and the battery manufacturing apparatus 20, and a door 21b is provided at a portion that contacts the outside of the preliminary chamber 21.

【0031】上記のような構成を有するリチウム二次電
池の製造装置を用いて、以下のような実施例を行った。
The following examples were carried out using the lithium secondary battery manufacturing apparatus having the above structure.

【0032】(実施例1) [負極の作製]図2は、実施例1の負極の作製手順を概
略的に説明するためのフローチャートである。まず、上
記実施例1の電極(負極)の作製方法を、図2のフロー
チャートを用いて概略的に説明する。ステップS1にお
いて、真空チャンバ10a内で電極42を形成した後、
ステップS2により予備室11内でデシケータ30内に
電極42を移動する。そして、ステップS3において、
デシケータ30内をロータリーポンプ12を用いて排気
することによって10Paに減圧する。その後、ステッ
プS4において、デシケータ30を大気中に搬出する。
そして、ステップS5において、デシケータ30をドラ
イボックス20aの予備室21に移動する。この後、ド
ライボックス20a内で電極(負極)42を用いて電池
を作製する。
Example 1 [Production of Negative Electrode] FIG. 2 is a flow chart for schematically explaining the procedure for producing the negative electrode of Example 1. First, a method for manufacturing the electrode (negative electrode) of Example 1 will be schematically described with reference to the flowchart of FIG. In step S1, after forming the electrode 42 in the vacuum chamber 10a,
In step S2, the electrode 42 is moved into the desiccator 30 in the preliminary chamber 11. Then, in step S3,
The inside of the desiccator 30 is evacuated by using the rotary pump 12 to reduce the pressure to 10 Pa. Then, in step S4, the desiccator 30 is carried out into the atmosphere.
Then, in step S5, the desiccator 30 is moved to the preliminary chamber 21 of the dry box 20a. After that, a battery is manufactured using the electrode (negative electrode) 42 in the dry box 20a.

【0033】次に、実施例1の負極の作製方法を詳細に
説明する。まず、20μmの厚みを有する電解銅箔から
なる集電体42a上に、以下の表1に示すような条件下
で、スパッタ装置10を用いてスパッタ源10bからア
モルファスシリコン層を堆積することによって、ロール
状の電極(負極)42を作製した。
Next, the method for producing the negative electrode of Example 1 will be described in detail. First, by depositing an amorphous silicon layer from a sputtering source 10b using a sputtering apparatus 10 on a current collector 42a made of an electrolytic copper foil having a thickness of 20 μm under the conditions shown in Table 1 below, A roll-shaped electrode (negative electrode) 42 was produced.

【0034】[0034]

【表1】 そして、そのロール状の電極(負極)42の温度が十分
に低下した後、真空チャンバ10a内をAr雰囲気下で
大気圧まで戻した。そして、予備室11内をAr雰囲気
にした後、グローブ11aを用いて、作製した電極42
を真空チャンバ10aから予備室11内のデシケータ3
0内に移動した。
[Table 1] Then, after the temperature of the roll-shaped electrode (negative electrode) 42 was sufficiently lowered, the inside of the vacuum chamber 10a was returned to atmospheric pressure in an Ar atmosphere. Then, after making the inside of the preliminary chamber 11 into an Ar atmosphere, the electrode 42 produced using the globe 11a
From the vacuum chamber 10a to the desiccator 3 in the auxiliary chamber 11.
Moved to 0.

【0035】そして、デシケータ30の蓋を閉じた後、
コック12aを開くことによりロータリーポンプ12を
用いてデシケータ30内を10Paに減圧した。これに
より、デシケータ30内を、真空雰囲気下にした。そし
て、扉11bを介して上記のように減圧されたデシケー
タ30を予備室11から外部に搬出した。そして、デシ
ケータ30を予備室21の扉21bを介して予備室21
内に搬入した。さらに、グローブ21aを用いて、予備
室21内でデシケータ30から電極(負極)42を取り
出して、扉20cを介してドライボックス20a内に移
動した。そして、ドライボックス20a内で、その電極
(負極)42と、他の工程で形成した正極41およびセ
パレータ43とを巻き取り装置20bによって巻き取る
ことによって、電池を作製した。
Then, after closing the lid of the desiccator 30,
The inside of the desiccator 30 was depressurized to 10 Pa by using the rotary pump 12 by opening the cock 12a. As a result, the inside of the desiccator 30 was placed in a vacuum atmosphere. Then, the desiccator 30 decompressed as described above was carried out of the preliminary chamber 11 to the outside through the door 11b. Then, the desiccator 30 is placed through the door 21b of the spare room 21 and the spare room 21
I brought it in. Further, the electrode (negative electrode) 42 was taken out from the desiccator 30 in the preparatory chamber 21 using the globe 21a and moved into the dry box 20a via the door 20c. Then, in the dry box 20a, the electrode (negative electrode) 42 and the positive electrode 41 and the separator 43 formed in the other steps were wound by the winding device 20b to manufacture a battery.

【0036】なお、ドライボックス20a内は、露点−
40℃以下に設定されているとともに、Ar雰囲気など
の不活性雰囲気下に置かれているので、ドライボックス
20a内では電極(負極)42の酸化や吸湿は起こらな
い。
In the dry box 20a, the dew point-
Since the temperature is set to 40 ° C. or lower and the atmosphere is kept in an inert atmosphere such as an Ar atmosphere, the electrode (negative electrode) 42 does not oxidize or absorb moisture in the dry box 20a.

【0037】(実施例2)この実施例2では、上記実施
例1と同様の条件下で、電極(負極)42を作製すると
ともに、電極42をデシケータ30内に移動してデシケ
ータ30を外部に搬出した。この状態から、実施例2で
は、デシケータ30を大気中で1週間保存した後、デシ
ケータ30を扉21bを介して予備室21内に搬入し
た。そして、予備室21内でデシケータ30の蓋を開け
て電極42を取り出した後、その電極42をドライボッ
クス20a内に移動させた。そして、その電極(負極)
42と、他の工程で形成した正極41およびセパレータ
43とを巻き取り装置20bによって巻き取ることによ
って、電池を作製した。
(Embodiment 2) In this embodiment 2, an electrode (negative electrode) 42 is manufactured under the same conditions as in Embodiment 1 above, and the electrode 42 is moved into the desiccator 30 so that the desiccator 30 is exposed to the outside. Shipped out. From this state, in Example 2, the desiccator 30 was stored in the atmosphere for one week, and then the desiccator 30 was carried into the auxiliary chamber 21 through the door 21b. Then, after opening the lid of the desiccator 30 in the preliminary chamber 21 and taking out the electrode 42, the electrode 42 was moved into the dry box 20a. And that electrode (negative electrode)
A battery was produced by winding 42 and the positive electrode 41 and the separator 43 formed in other steps by the winding device 20b.

【0038】(比較例1)この比較例1では、上記した
実施例1と同様の条件で電極(負極)42を作製した
後、その電極42を一度大気下に搬出した。その後、そ
の電極42をデシケータ30内に移動させてそのデシケ
ータ30を10Pa以下に減圧した後、デシケータ30
を大気中で1週間保存した。その後、デシケータ30を
予備室21内に搬入して電極42を取り出した後、その
電極42をドライボックス20a内に移動した。そし
て、電池の作製を行った。
(Comparative Example 1) In Comparative Example 1, an electrode (negative electrode) 42 was produced under the same conditions as in Example 1 described above, and then the electrode 42 was once carried out to the atmosphere. After that, the electrode 42 is moved into the desiccator 30 to reduce the pressure of the desiccator 30 to 10 Pa or less, and then the desiccator 30
Was stored in the atmosphere for 1 week. After that, the desiccator 30 was carried into the preliminary chamber 21, the electrode 42 was taken out, and then the electrode 42 was moved into the dry box 20a. Then, a battery was manufactured.

【0039】(比較例2)この比較例2では、上記した
実施例1と同じ条件で電極42を作製した後、その電極
42を大気中に晒した状態で1週間保存した後、ドライ
ボックス20a内に移して電池を作製した。
(Comparative Example 2) In Comparative Example 2, after the electrode 42 was prepared under the same conditions as in Example 1 described above, the electrode 42 was stored in the atmosphere for 1 week, and then the dry box 20a. It was moved to the inside and a battery was produced.

【0040】なお、電池の作製は以下の手順で行った。The battery was manufactured in the following procedure.

【0041】[正極の作製]出発原料として、Li2
3およびCoCO3を用いてLi:Coの原子比が1:
1になるように秤量して乳鉢で混合した。この混合物を
直径17mmの金型プレスを用いて加圧成形した後、空
気中において800℃で24時間焼成することによっ
て、LiCoO2の焼成体を得た。この焼成体を乳鉢で
平均粒子径20μmとなるまで粉砕した。得られたLi
CoO2粉末90重量部および導電剤としての人工黒鉛
粉末5重量部を、結着剤としてのポリテトラフルオロエ
チレンを5重量部含む5重量%のN−メチルピロリドン
水溶液に混合し、正極合剤のスラリーとした。このスラ
リーをドクターブレード法によって、正極集電体である
20μmの厚みを有するアルミニウム箔上に塗布した後
乾燥することによって、正極を作製した。
[Production of Positive Electrode] As a starting material, Li 2 C was used.
The atomic ratio of Li: Co is 1: using O 3 and CoCO 3.
Weighed to 1 and mixed in a mortar. This mixture was pressure-molded using a die press having a diameter of 17 mm, and then fired in air at 800 ° C. for 24 hours to obtain a LiCoO 2 fired body. The fired body was crushed in a mortar until the average particle size became 20 μm. Obtained Li
90 parts by weight of CoO 2 powder and 5 parts by weight of artificial graphite powder as a conductive agent were mixed with a 5% by weight aqueous solution of N-methylpyrrolidone containing 5 parts by weight of polytetrafluoroethylene as a binder to prepare a positive electrode mixture. It was made into a slurry. This slurry was applied by a doctor blade method onto an aluminum foil having a thickness of 20 μm, which is a positive electrode current collector, and then dried to prepare a positive electrode.

【0042】[電解液の作製]エチレンカーボネートと
ジエチルカーボネートとの等体積混合溶媒に、LiPF
6を1モル/リットル溶解して電解液を作製した。
[Preparation of Electrolyte Solution] LiPF 6 was added to an equal volume mixed solvent of ethylene carbonate and diethyl carbonate.
6 was dissolved at 1 mol / liter to prepare an electrolytic solution.

【0043】[電池の作製]図1および図3に示すよう
に、正極41と負極42との間にセパレータ43を配置
し、さらに、正極41の上にセパレータ43を配置した
状態で、これを巻き付けて扁平状態にした後、外装体4
0に挿入した。次に、外装体40内に電解液を注した
後、外装体40の開口部40aを封口してリチウム二次
電池を完成した。
[Preparation of Battery] As shown in FIGS. 1 and 3, a separator 43 was placed between the positive electrode 41 and the negative electrode 42, and the separator 43 was placed on the positive electrode 41. After wrapping and flattening, the exterior body 4
Inserted at 0. Next, after pouring the electrolytic solution into the outer package 40, the opening 40a of the outer package 40 was sealed to complete the lithium secondary battery.

【0044】[充放電サイクル特性の評価]以上のよう
に作製した各リチウム二次電池について、充放電サイク
ル試験を行った。充放電の条件は、充電は電池電圧4.
2Vまで、放電は電池電圧2.75Vまでとし、充放電
電流は100mAで行った。その結果を以下の表2に示
した。
[Evaluation of Charging / Discharging Cycle Characteristics] A charging / discharging cycle test was conducted on each lithium secondary battery manufactured as described above. Charge / discharge conditions are as follows: battery voltage is 4.
The discharge was performed up to 2 V, the battery voltage up to 2.75 V, and the charge / discharge current was 100 mA. The results are shown in Table 2 below.

【0045】[0045]

【表2】 上記表2における1サイクル目の充放電効率および10
サイクル目の容量維持率は、以下の式によって示され
る。
[Table 2] Charge and discharge efficiency in the first cycle and 10 in Table 2 above
The capacity retention rate at the cycle is represented by the following formula.

【0046】1サイクル目の充放電効率(%)=(1サ
イクル目の放電容量)/(1サイクル目の充電容量)×
100 10サイクル目の容量維持率(%)=(10サイクル目
の放電容量)/(1サイクル目の放電容量)×100 上記表2から明らかなように、デシケータを用いて電極
が大気に晒されるのを防止した状態で電池を作製した実
施例1および2では、1サイクル目の放電容量、1サイ
クル目の充放電効率および10サイクル目の容量維持率
の全ての面において、比較例1および2に対して優れて
いることが分かる。また、大気に晒した状態が長かった
比較例2では、大気に晒した状態が短い比較例1に比べ
て、放電容量、充放電効率および容量維持率がより低い
ことが分かる。
1st cycle charge / discharge efficiency (%) = (1st cycle discharge capacity) / (1st cycle charge capacity) ×
100 Capacity retention rate at 10th cycle (%) = (Discharge capacity at 10th cycle) / (Discharge capacity at 1st cycle) × 100 As is clear from Table 2, the electrodes are exposed to the atmosphere using a desiccator. In Examples 1 and 2 in which the battery was manufactured in the state of preventing the above, Comparative Examples 1 and 2 were used in all aspects of the discharge capacity at the first cycle, the charge / discharge efficiency at the first cycle, and the capacity retention rate at the tenth cycle. It turns out to be excellent against. Further, it can be seen that in Comparative Example 2 in which the state exposed to the air was long, compared with Comparative Example 1 in which the state exposed to the air was short, the discharge capacity, the charge / discharge efficiency, and the capacity retention rate were lower.

【0047】上記のように、実施例1および2では、活
物質層が形成された集電体(電極42)を電池を作製す
るまでの間デシケータ30内で真空雰囲気下で保持する
ことによって、活物質層が形成された集電体が大気に晒
されるのを防止することができるので、活物質層の酸化
および吸湿を防止することができる。その結果、特性の
優れたリチウム二次電池を作製することができる。
As described above, in Examples 1 and 2, the current collector (electrode 42) on which the active material layer was formed was held in the desiccator 30 in a vacuum atmosphere until the battery was manufactured. Since it is possible to prevent the current collector having the active material layer formed thereon from being exposed to the atmosphere, it is possible to prevent oxidation and moisture absorption of the active material layer. As a result, a lithium secondary battery having excellent characteristics can be manufactured.

【0048】なお、今回開示された実施例は、すべての
点で例示であって制限的なものではないと考えられるべ
きである。本発明の範囲は、上記した実施例の説明では
なく特許請求の範囲によって示され、さらに特許請求の
範囲と均等の意味および範囲内でのすべての変更が含ま
れる。
It should be understood that the embodiments disclosed herein are illustrative in all respects and not restrictive. The scope of the present invention is shown not by the above description of the embodiments but by the scope of claims for patent, and includes meanings equivalent to the scope of claims for patent and all modifications within the scope.

【0049】たとえば、上記実施例1および2では、図
1に示したような電極作製部(スパッタ装置10)と電
池作製部(電池作製装置20)とが別々に設置されたリ
チウム二次電池の製造装置を用いる例を示したが、本発
明はこれに限らず、たとえば、図4に示すように、電極
作製部(スパッタ装置10)と電池作製部(電池作製装
置20)とが予備室31を介して一体化されたリチウム
二次電池の製造装置を用いてもよい。
For example, in the above-mentioned Examples 1 and 2, the lithium secondary battery in which the electrode producing section (sputtering apparatus 10) and the battery producing section (battery producing apparatus 20) as shown in FIG. Although the example using the manufacturing apparatus has been shown, the present invention is not limited to this, and for example, as shown in FIG. 4, the electrode manufacturing unit (sputtering device 10) and the battery manufacturing unit (battery manufacturing device 20) are provided in the preliminary chamber 31. You may use the manufacturing apparatus of the lithium secondary battery integrated via.

【0050】この図4に示したリチウム二次電池の製造
装置では、スパッタ装置10と電池作製装置20とが予
備室31を介して接続されている。そして、予備室31
に設けられた扉31aおよび31bを介して、グローブ
31cを用いて、スパッタ装置10で作製した電極(負
極)42を電池作製装置20内に移動させる。このよう
な装置を用いれば、スパッタ装置10で作製した電極4
2を外部に搬出する必要がないので、図1に示したデシ
ケータ30が不要になる。このため、簡単な装置構成で
活物質層の酸化および吸湿を防止することができる。ま
た、電極42を作製する工程と電極42を用いて電池を
作製する工程とを連続して行わない場合には、電極42
を一旦予備室31内に保持しておくことも可能である。
In the lithium secondary battery manufacturing apparatus shown in FIG. 4, the sputtering apparatus 10 and the battery manufacturing apparatus 20 are connected via the preliminary chamber 31. And the spare room 31
The electrode (negative electrode) 42 manufactured by the sputtering apparatus 10 is moved into the battery manufacturing apparatus 20 using the globe 31c through the doors 31a and 31b provided in the. If such an apparatus is used, the electrode 4 produced by the sputtering apparatus 10
The desiccator 30 shown in FIG. 1 is not necessary because it is not necessary to carry the 2 out. Therefore, oxidation and moisture absorption of the active material layer can be prevented with a simple device configuration. In addition, when the step of forming the electrode 42 and the step of forming a battery using the electrode 42 are not continuously performed, the electrode 42
It is also possible to once hold the inside of the preparatory chamber 31.

【0051】なお、図4示した装置において予備室31
を設けずに、スパッタ装置10と電池作製装置20とを
直接一体化するようにしてもよい。
In addition, in the apparatus shown in FIG.
The sputtering apparatus 10 and the battery manufacturing apparatus 20 may be directly integrated without providing the above.

【0052】また、上記実施例では、デシケータ30内
を減圧した状態(真空雰囲気下)で電極42をデシケー
タ30内に保存するようにしたが、本発明はこれに限ら
ず、デシケータ30内を真空にすることなく不活性ガス
を充填した状態でデシケータ30内に電極42を保存す
るようにしてもよい。
Further, in the above embodiment, the electrode 42 is stored in the desiccator 30 while the inside of the desiccator 30 is depressurized (in a vacuum atmosphere), but the present invention is not limited to this, and the inside of the desiccator 30 is vacuumed. Alternatively, the electrode 42 may be stored in the desiccator 30 while being filled with an inert gas.

【0053】また、上記実施例では、集電体上にスパッ
タ法を用いて活物質層を形成した例を示したが、本発明
はこれに限らず、原料を気相中に放出して供給する方法
であれば他の方法を用いてもよい。たとえば、真空蒸着
法やプラズマCVD法などによって集電体上に活物質層
を形成する場合にも本発明は適用可能である。
Further, in the above embodiment, an example in which the active material layer is formed on the current collector by the sputtering method is shown, but the present invention is not limited to this, and the raw material is discharged into the gas phase and supplied. Any other method may be used as long as it does. For example, the present invention can be applied to the case where the active material layer is formed on the current collector by a vacuum vapor deposition method, a plasma CVD method, or the like.

【0054】また、上記実施例では、電極42を保存す
るためにデシケータ30を用いたが、本発明はこれに限
らず、不活性雰囲気下および真空雰囲気下の少なくとも
いずれかで電極42を保存することが可能な密閉容器で
あれば他のものを用いてもよい。
Although the desiccator 30 is used to store the electrode 42 in the above embodiment, the present invention is not limited to this, and the electrode 42 is stored in at least one of an inert atmosphere and a vacuum atmosphere. Any other closed container may be used as long as it is possible.

【0055】[0055]

【発明の効果】以上のように、本発明によれば、活物質
層が形成された集電体(電極)を電池を作製するまでの
間不活性雰囲気下および真空雰囲気下の少なくともいず
れかで保持することによって、活物質層が形成された集
電体が大気に晒されるのを防止することができるので、
活物質層の酸化および吸湿を防止することができる。そ
の結果、特性の優れたリチウム二次電池を作製すること
ができる。
As described above, according to the present invention, the current collector (electrode) on which the active material layer is formed is kept in an inert atmosphere and / or a vacuum atmosphere until a battery is manufactured. By holding, it is possible to prevent the current collector on which the active material layer is formed from being exposed to the atmosphere,
Oxidation and moisture absorption of the active material layer can be prevented. As a result, a lithium secondary battery having excellent characteristics can be manufactured.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例で用いるリチウム二次電池の製
造装置の全体構成を示した概略図である。
FIG. 1 is a schematic diagram showing the overall configuration of a lithium secondary battery manufacturing apparatus used in an example of the present invention.

【図2】本発明の実施例1のリチウム二次電池の作製手
順を説明するためのフローチャートである。
FIG. 2 is a flow chart for explaining a procedure for manufacturing the lithium secondary battery of Example 1 of the present invention.

【図3】本発明のリチウム二次電池の作製方法を説明す
るための斜視図である。
FIG. 3 is a perspective view for explaining a method for manufacturing a lithium secondary battery of the present invention.

【図4】図1に示したリチウム二次電池の製造装置の変
形例を示した概略図である。
FIG. 4 is a schematic diagram showing a modification of the manufacturing apparatus for the lithium secondary battery shown in FIG.

【符号の説明】[Explanation of symbols]

10 スパッタ装置(第1装置) 10a 真空チャンバ 10b スパッタ源 11 予備室(第1予備室) 11a、21a、31c グローブ 20 電池作製装置(第2装置) 20a ドライボックス 20b 巻き取り装置 21 予備室(第2予備室) 30 デシケータ(密閉容器) 31 予備室 40 外装体 41 正極 42 負極(電極) 42a 集電体 43 セパレータ 10 Sputtering device (first device) 10a vacuum chamber 10b Sputter source 11 Spare room (first spare room) 11a, 21a, 31c gloves 20 Battery manufacturing device (second device) 20a dry box 20b winding device 21 spare room (second spare room) 30 desiccator (closed container) 31 spare room 40 exterior body 41 Positive electrode 42 Negative electrode (electrode) 42a Current collector 43 separator

フロントページの続き Fターム(参考) 5H029 AJ05 AK03 AL11 AM03 AM05 AM07 BJ02 BJ14 CJ24 CJ28 CJ30 HJ12 HJ15 5H050 AA07 BA17 CA08 CB11 FA05 GA24 GA27 GA29 HA12 HA15Continued front page    F-term (reference) 5H029 AJ05 AK03 AL11 AM03 AM05                       AM07 BJ02 BJ14 CJ24 CJ28                       CJ30 HJ12 HJ15                 5H050 AA07 BA17 CA08 CB11 FA05                       GA24 GA27 GA29 HA12 HA15

Claims (10)

【特許請求の範囲】[Claims] 【請求項1】原料を気相中に放出して供給する方法を用
いて、集電体上に活物質層を形成する工程と、 前記活物質層が形成された集電体を、電池を作製するま
での間、不活性雰囲気下および真空雰囲気下の少なくと
もいずれかで保持する工程とを備えた、リチウム二次電
池の製造方法。
1. A step of forming an active material layer on a current collector by using a method of releasing a raw material into a gas phase and supplying the raw material, and a current collector having the active material layer formed on a battery. A method for manufacturing a lithium secondary battery, comprising a step of holding the material in an inert atmosphere and / or a vacuum atmosphere until it is manufactured.
【請求項2】前記活物質層を形成する工程は、 第1予備室を有する第1装置内で、前記集電体上に、前
記原料を気相中に放出して供給する方法を用いて前記活
物質層を形成する工程を含み、 前記不活性雰囲気下および真空雰囲気下の少なくともい
ずれかで保持する工程は、 前記第1装置に設けられた第1予備室と、前記第1予備
室に配置された外部に搬出可能な密閉容器とを不活性雰
囲気にする工程と、 前記第1予備室において、前記活物質層が形成された集
電体を、前記密閉容器内に移動させる工程とを含む、請
求項1に記載のリチウム二次電池の製造方法。
2. The method of forming the active material layer uses a method of discharging the raw material into a gas phase and supplying the raw material onto the current collector in a first apparatus having a first preliminary chamber. The step of forming the active material layer, and the step of holding the active material layer in at least one of the inert atmosphere and the vacuum atmosphere include a first preliminary chamber provided in the first device and a first preliminary chamber. And a step of placing an airtight container that can be carried out to the outside in an inert atmosphere, and a step of moving the current collector having the active material layer formed therein into the airtight container in the first preliminary chamber. The method of manufacturing a lithium secondary battery according to claim 1, comprising:
【請求項3】前記活物質層が形成された集電体を、前記
密閉容器内に移す工程の後、前記密閉容器を大気中に搬
出するとともに、前記電池を作製するまでの間、前記大
気中に保存する工程をさらに備える、請求項2に記載の
リチウム二次電池の製造方法。
3. After the step of transferring the current collector on which the active material layer is formed into the airtight container, the airtight container is carried into the air and the air is kept until the battery is manufactured. The method for manufacturing a lithium secondary battery according to claim 2, further comprising a step of storing the inside.
【請求項4】前記活物質層が形成された集電体を、前記
密閉容器内に移す工程の後、前記密閉容器を真空状態に
する工程をさらに備える、請求項2または3に記載のリ
チウム二次電池の製造方法。
4. The lithium according to claim 2, further comprising a step of bringing the closed container into a vacuum state after the step of moving the current collector on which the active material layer is formed into the closed container. Manufacturing method of secondary battery.
【請求項5】前記活物質層が形成された集電体を、前記
密閉容器内に移す工程の後、前記密閉容器を大気中に保
存することなく、前記電池を作製する第2装置内に直ち
に移動させる工程をさらに備える、請求項2に記載のリ
チウム二次電池の製造方法。
5. After the step of transferring the current collector on which the active material layer is formed into the closed container, the second container for producing the battery is stored in the closed container without storing the closed container in the atmosphere. The method for manufacturing a lithium secondary battery according to claim 2, further comprising a step of immediately moving.
【請求項6】前記集電体上に原料を気相中に放出して供
給する方法を用いて活物質層を形成する第1装置と、前
記活物質層が形成された集電体を用いて電池を作製する
第2装置とが一体化された装置を用いることによって、
前記活物質層が形成された集電体を、大気に晒すことな
く、前記第1装置から前記第2装置に移動させる工程を
さらに備える、請求項1に記載のリチウム二次電池の製
造方法。
6. A first device for forming an active material layer on the current collector by using a method of releasing and supplying a raw material into a gas phase, and a current collector on which the active material layer is formed. By using a device that is integrated with a second device for producing a battery,
The method for manufacturing a lithium secondary battery according to claim 1, further comprising a step of moving the current collector on which the active material layer is formed from the first device to the second device without exposing the current collector to the atmosphere.
【請求項7】原料を気相中に放出して供給する方法を用
いて、集電体上に活物質層を形成するための第1装置
と、 前記第1装置に設けられた第1予備室と、 前記第1予備室内に配置され、外部に搬出可能な密閉容
器と、 前記活物質層が形成された集電体を用いて電池を作製す
る第2装置と、 前記第2装置に設けられ、前記密閉容器が搬入可能な第
2予備室とを備えた、リチウム二次電池の製造装置。
7. A first device for forming an active material layer on a current collector by using a method of releasing and supplying a raw material into a gas phase, and a first preliminary device provided in the first device. Chamber, a closed container that is disposed in the first preliminary chamber and can be carried out to the outside, a second device that manufactures a battery using the current collector on which the active material layer is formed, and a second device that is provided in the second device And a second auxiliary chamber into which the closed container can be carried in.
【請求項8】前記密閉容器は、真空状態にすることが可
能な真空容器を含む、請求項7に記載のリチウム二次電
池の製造装置。
8. The apparatus for manufacturing a lithium secondary battery according to claim 7, wherein the closed container includes a vacuum container that can be in a vacuum state.
【請求項9】原料を気相中に放出して供給する方法を用
いて、集電体上に活物質層を形成するための第1装置
と、 前記活物質層が形成された集電体を用いて電池を作製す
る第2装置とを備え、 前記第1装置と前記第2装置とが一体化されている、リ
チウム二次電池の製造装置。
9. A first device for forming an active material layer on a current collector by using a method of releasing and supplying a raw material into a gas phase, and a current collector having the active material layer formed thereon. A device for manufacturing a lithium secondary battery, comprising: a second device for manufacturing a battery by using the first device and the second device.
【請求項10】前記第1装置と前記第2装置との間に設
置された予備室をさらに備える、請求項9に記載のリチ
ウム二次電池の製造装置。
10. The apparatus for manufacturing a lithium secondary battery according to claim 9, further comprising a preparatory chamber installed between the first device and the second device.
JP2001190599A 2001-06-25 2001-06-25 Manufacturing method and manufacturing system for secondary lithium battery Pending JP2003007343A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2001190599A JP2003007343A (en) 2001-06-25 2001-06-25 Manufacturing method and manufacturing system for secondary lithium battery
US10/177,215 US7105253B2 (en) 2001-06-25 2002-06-24 Method of and apparatus for manufacturing lithium secondary cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001190599A JP2003007343A (en) 2001-06-25 2001-06-25 Manufacturing method and manufacturing system for secondary lithium battery

Publications (1)

Publication Number Publication Date
JP2003007343A true JP2003007343A (en) 2003-01-10

Family

ID=19029348

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001190599A Pending JP2003007343A (en) 2001-06-25 2001-06-25 Manufacturing method and manufacturing system for secondary lithium battery

Country Status (2)

Country Link
US (1) US7105253B2 (en)
JP (1) JP2003007343A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004265733A (en) * 2003-02-28 2004-09-24 Tdk Corp Manufacturing method of electrode and manufacturing method of battery
JP2005276684A (en) * 2004-03-25 2005-10-06 Mitsubishi Chemicals Corp Lithium transition metal composite oxide sealing body for nonaqueous electrolyte secondary battery active material
JP2007165293A (en) * 2005-11-16 2007-06-28 Jfe Chemical Corp Lithium-ion secondary battery anode, its manufacturing method, and lithium-ion secondary battery
JP2009123402A (en) * 2007-11-13 2009-06-04 Sanyo Electric Co Ltd Method of manufacturing negative electrode for lithium secondary battery
WO2012086512A1 (en) * 2010-12-24 2012-06-28 株式会社アルバック Thin film lithium secondary battery production device, and thin film lithium secondary battery production method
JP2013505556A (en) * 2009-09-22 2013-02-14 アプライド マテリアルズ インコーポレイテッド Thin film battery method for complexity reduction
JP2014516202A (en) * 2011-06-10 2014-07-07 アプライド マテリアルズ インコーポレイテッド Thin film battery manufacturing method and hybrid factory for thin film battery manufacturing
WO2015186367A1 (en) * 2014-06-05 2015-12-10 ユースエンジニアリング株式会社 Method for producing lithium ion cell and dry box for lithium ion cell production
CN113013383A (en) * 2021-04-07 2021-06-22 深圳市虎电固态新能源科技有限公司 Preparation method of lithium battery pole piece and solid-state lithium battery thereof

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7320840B2 (en) * 2003-07-17 2008-01-22 General Motors Corporation Combination of injector-ejector for fuel cell systems
US8851137B2 (en) 2010-02-26 2014-10-07 The Procter & Gamble Company Winding method and apparatus
CN102147185B (en) * 2010-12-10 2012-11-28 奇瑞汽车股份有限公司 Drying method of pole pieces of lithium-ion secondary battery
WO2012164760A1 (en) * 2011-06-01 2012-12-06 トヨタ自動車株式会社 Method for manufacturing electrode active material and electrode active material
JP6036162B2 (en) * 2011-12-28 2016-11-30 トヨタ自動車株式会社 Manufacturing method of composite active material, coating apparatus, composite active material, and all solid state battery
CN102914484A (en) * 2012-10-16 2013-02-06 绥中正国新能源科技有限公司 Testing method for dryness of pole piece or cell of lithium ion battery
CN103322776B (en) * 2013-06-05 2015-08-19 奇瑞新能源汽车技术有限公司 A kind of drying means of electrodes of lithium-ion batteries
US10033064B2 (en) 2014-06-24 2018-07-24 Duracell U.S. Operations, Inc. Method and apparatus for forming a wound structure
CN105091531A (en) * 2015-09-11 2015-11-25 合肥国轩高科动力能源股份公司 Oven for baking big lithium ion battery pole piece rolls
DE102021125523A1 (en) 2021-10-01 2023-04-06 Körber Technologies Gmbh Process and container for transporting and/or storing flat products

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07302588A (en) 1994-05-10 1995-11-14 Mitsubishi Cable Ind Ltd Negative electrode for lithium secondary battery and its manufacture
US5445906A (en) * 1994-08-03 1995-08-29 Martin Marietta Energy Systems, Inc. Method and system for constructing a rechargeable battery and battery structures formed with the method
JP3580101B2 (en) 1997-09-24 2004-10-20 スズキ株式会社 Method and apparatus for producing negative electrode material for lithium ion battery
JP4453111B2 (en) 1997-10-27 2010-04-21 三菱化学株式会社 Negative electrode material and method for producing the same, negative electrode active material, and non-aqueous secondary battery
WO2001029912A1 (en) 1999-10-22 2001-04-26 Sanyo Electric Co., Ltd. Electrode for lithium cell and lithium secondary cell
AU7951300A (en) * 1999-10-22 2001-04-30 Sanyo Electric Co., Ltd. Method for producing material for electrode for lithium cell
US6746494B2 (en) * 1999-12-14 2004-06-08 Matsushita Electric Industrial Co., Ltd. Battery manufacturing method and apparatus
US6962613B2 (en) * 2000-03-24 2005-11-08 Cymbet Corporation Low-temperature fabrication of thin-film energy-storage devices
JP3608507B2 (en) * 2000-07-19 2005-01-12 住友電気工業株式会社 Method for producing alkali metal thin film member
US6815003B2 (en) * 2000-12-01 2004-11-09 Sanyo Electric Co., Ltd. Method for fabricating electrode for lithium secondary battery
JP3913490B2 (en) * 2001-03-28 2007-05-09 三洋電機株式会社 Method for producing electrode for lithium secondary battery

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004265733A (en) * 2003-02-28 2004-09-24 Tdk Corp Manufacturing method of electrode and manufacturing method of battery
JP2005276684A (en) * 2004-03-25 2005-10-06 Mitsubishi Chemicals Corp Lithium transition metal composite oxide sealing body for nonaqueous electrolyte secondary battery active material
JP2007165293A (en) * 2005-11-16 2007-06-28 Jfe Chemical Corp Lithium-ion secondary battery anode, its manufacturing method, and lithium-ion secondary battery
JP2009123402A (en) * 2007-11-13 2009-06-04 Sanyo Electric Co Ltd Method of manufacturing negative electrode for lithium secondary battery
JP2013505556A (en) * 2009-09-22 2013-02-14 アプライド マテリアルズ インコーポレイテッド Thin film battery method for complexity reduction
WO2012086512A1 (en) * 2010-12-24 2012-06-28 株式会社アルバック Thin film lithium secondary battery production device, and thin film lithium secondary battery production method
JP5526240B2 (en) * 2010-12-24 2014-06-18 株式会社アルバック Thin film lithium secondary battery manufacturing apparatus and thin film lithium secondary battery manufacturing method
JP2014516202A (en) * 2011-06-10 2014-07-07 アプライド マテリアルズ インコーポレイテッド Thin film battery manufacturing method and hybrid factory for thin film battery manufacturing
WO2015186367A1 (en) * 2014-06-05 2015-12-10 ユースエンジニアリング株式会社 Method for producing lithium ion cell and dry box for lithium ion cell production
CN113013383A (en) * 2021-04-07 2021-06-22 深圳市虎电固态新能源科技有限公司 Preparation method of lithium battery pole piece and solid-state lithium battery thereof

Also Published As

Publication number Publication date
US7105253B2 (en) 2006-09-12
US20030005578A1 (en) 2003-01-09

Similar Documents

Publication Publication Date Title
JP2003007343A (en) Manufacturing method and manufacturing system for secondary lithium battery
EP2905832B1 (en) Negative electrode active material for lithium secondary battery and method for preparing same
US20220255069A1 (en) Negative electrode active material for lithium secondary battery and method of preparing the same
US20210313557A1 (en) Negative electrode active material for lithium secondary battery and method of preparing the same
US9196896B2 (en) Porous silicon-based electrode active material and secondary battery comprising the same
US6797435B2 (en) Positive active material for rechargeable lithium batteries and method of preparing the same
US9879344B2 (en) Electrode active material for secondary battery
TWI521773B (en) Porous silicon-based anode active material, method of preparing the same, and lithium secondary battery including the anode active material
JP4270814B2 (en) Negative electrode active material for lithium secondary battery and method for producing the same
JP2012523674A (en) Negative electrode active material for lithium secondary battery, method for producing the same, and lithium secondary battery including the same
KR20120010211A (en) Porous silicon based alloy, method of preparing the same, and negative active material for rechargeable lithium battery and rechargeable lithium battery including the same
JP2004335195A (en) Nonaqueous electrolyte secondary battery and method of manufacturing negative electrode therefor
KR102553835B1 (en) Anode Active Material for Non-Aqueous Lithium Secondary Battery and Manufacturing Method Thereof
JP5119584B2 (en) Nonaqueous electrolyte secondary battery and method for producing the negative electrode
US6291100B1 (en) Electrode composition comprising doped tungsten oxides and electrochemical cell comprising same
EP2693533B1 (en) Electrode active material for secondary battery
KR20220127633A (en) Manufacturing method of porous silicon based electrode active material, porous silicon based electrode active material by the method and rechargeable lithium battery
KR101106261B1 (en) Negative active material for rechargeable lithium battery, method of preparing same and rechargeable lithium battery comprising same
JP4841125B2 (en) Method for manufacturing lithium secondary battery
JP4798952B2 (en) Method for manufacturing lithium secondary battery
JP2024030378A (en) Particles convertible to lithium transition metal composite oxide and method for producing the same
CN116936763A (en) Lithium-rich positive electrode material, preparation method thereof, positive electrode plate and secondary battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050208

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070530

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080311

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080701