JP2002369400A - Device and method for adjusting charged state of battery pack - Google Patents

Device and method for adjusting charged state of battery pack

Info

Publication number
JP2002369400A
JP2002369400A JP2001175545A JP2001175545A JP2002369400A JP 2002369400 A JP2002369400 A JP 2002369400A JP 2001175545 A JP2001175545 A JP 2001175545A JP 2001175545 A JP2001175545 A JP 2001175545A JP 2002369400 A JP2002369400 A JP 2002369400A
Authority
JP
Japan
Prior art keywords
voltage
state
charge
capacitor
unit cells
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001175545A
Other languages
Japanese (ja)
Other versions
JP3803042B2 (en
Inventor
Tsutomu Saigo
勉 西郷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yazaki Corp
Original Assignee
Yazaki Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yazaki Corp filed Critical Yazaki Corp
Priority to JP2001175545A priority Critical patent/JP3803042B2/en
Publication of JP2002369400A publication Critical patent/JP2002369400A/en
Application granted granted Critical
Publication of JP3803042B2 publication Critical patent/JP3803042B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Landscapes

  • Electric Propulsion And Braking For Vehicles (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Secondary Cells (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a charged-state adjuster for a battery pack for equalizing the terminal voltages of individual unit cells in a short time by suppressing electric energy losses. SOLUTION: While it is determined by a determination means 2d-13 that the degrees of the variations of the terminal voltages of individual unit cells BS1 -BSn are large, individual unit cells BS1 -BSn are connected to a capacitor CB by a capacitor connecting means 2d-11, and the terminal voltages of the unit cells BS1 -BSn are equalized, in a first charged-state adjusting means. While it is determined that the degrees of the variations are not large to the contrary, the unit cells BS1 -BSn are connected to a discharging resistor RB by a resistor connecting means 2d-12, and the terminal voltages of the unit cells BS1 -BSn are equalized, in a second charged-state adjusting means.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この発明は、二次電池からな
る単位セルを複数個直列に接続して構成され、負荷や充
電器が両端に接続された閉回路状態において充放電を行
う組電池の充電状態を調整する装置及びその方法に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an assembled battery which is constituted by connecting a plurality of unit cells each composed of a secondary battery in series and performs charging and discharging in a closed circuit state in which a load and a charger are connected to both ends. The present invention relates to an apparatus and a method for adjusting a state of charge.

【0002】[0002]

【従来の技術】例えば、電動モータを用いて走行する電
気自動車や、エンジンと電動モータとを併用して走行す
るハイブリッド電気自動車においては、ニッケル−水素
電池やリチウム電池といった二次電池を単位セルとして
これらを複数個直列接続した組電池が、電動モータの電
源として用いられている。
2. Description of the Related Art For example, in an electric vehicle that runs using an electric motor or a hybrid electric vehicle that runs using both an engine and an electric motor, a secondary battery such as a nickel-hydrogen battery or a lithium battery is used as a unit cell. An assembled battery in which a plurality of these are connected in series is used as a power source for an electric motor.

【0003】そして、上述した組電池には、充放電を繰
り返すうちに、各単位セルの充電状態(SOC)に基づ
く両端電圧にばらつきが生じ、これを放置したまま充電
や放電を行うと、一部の単位セルが過充電状態や過放電
状態になりかねない、という問題があることが知られて
いる。
[0005] In the above-described assembled battery, the voltage across the unit cell based on the state of charge (SOC) varies during repeated charging and discharging. It is known that there is a problem that some unit cells may be overcharged or overdischarged.

【0004】そこで、特開平6−319287号公報で
は、各単位セルの両端電圧の大小に応じて論理回路が出
力する信号により放電回路のスイッチを開閉させて、両
端電圧の高い単位セルの蓄積電荷を放電させることで、
全ての単位セルを両端電圧の最も低い単位セルと同じ両
端電圧にすることで、各単位セルの両端電圧のばらつき
を解消することが提案されている。
In Japanese Patent Application Laid-Open No. Hei 6-319287, a switch of a discharge circuit is opened and closed by a signal output from a logic circuit in accordance with the magnitude of the voltage between both ends of each unit cell, so that the accumulated charge of the unit cell having a high voltage across both ends is obtained. By discharging
It has been proposed that all the unit cells have the same terminal voltage as the unit cell having the lowest terminal voltage to eliminate the variation in the terminal voltage of each unit cell.

【0005】また、特開平8−182216号公報で
は、各単位セルを、所定のキャパシタ電圧を有するキャ
パシタに接続するものが提案されている。これにより、
キャパシタ電圧より高い両端電圧を持つ単位セルの電荷
が、キャパシタに移動され、逆に、キャパシタ電圧より
低い両端電圧を持つ単位セルに、キャパシタの電荷が移
動される。即ち、キャパシタを介して、両端電圧の高い
方から低い方への蓄積電荷の移動が行われるため、各単
位セルの両端電圧のばらつきを解消することができる。
Japanese Patent Application Laid-Open No. Hei 8-182216 proposes connecting each unit cell to a capacitor having a predetermined capacitor voltage. This allows
The charge of the unit cell having a voltage higher than the capacitor voltage is transferred to the capacitor, and conversely, the charge of the capacitor is transferred to the unit cell having a voltage lower than the capacitor voltage. That is, since the accumulated charge is transferred from the higher voltage to the lower voltage via the capacitor, the variation in the voltage across the unit cells can be eliminated.

【0006】[0006]

【発明が解決しようとする課題】しかしながら、上述し
た特開平6−319287号公報により提案された従来
の解消法では、両端電圧の高い単位セルを放電させるた
め、電気エネルギーが無駄に消費されてしまうという問
題がある。
However, in the conventional solution proposed in the above-mentioned Japanese Patent Application Laid-Open No. 6-319287, since a unit cell having a high voltage at both ends is discharged, electric energy is wasted. There is a problem.

【0007】その点、両端電圧の高い方の単位セルによ
りキャパシタに蓄積した電荷で両端電圧の低い方の単位
セルを充電するという、特開平8−182216号公報
により提案された従来の解消法は、電気エネルギーが無
駄に消費されることがない分、有利であるといえる。
In this regard, the conventional solution proposed in Japanese Patent Application Laid-Open No. 8-182216, in which a unit cell having a low voltage at both ends is charged with a charge stored in a capacitor by a unit cell having a high voltage at both ends, is disclosed. This is advantageous because electric energy is not wasted.

【0008】しかし、特開平8−182216号公報に
より提案された従来の解消法では、各単位セルの両端電
圧の均等化がすすみ各単位セルの両端電圧のばらつきが
小さくなると、キャパシタ電圧と各単位セルの両端電圧
との電圧差の減少に伴い電荷の移動量が減少するため、
完全に均一になるまで時間がかかるという問題があっ
た。
However, in the conventional solution proposed in Japanese Patent Application Laid-Open No. 8-182216, the voltage across the unit cells is equalized, and if the variation in the voltage across the unit cells is reduced, the capacitor voltage and the unit voltage are reduced. Since the amount of charge transfer decreases as the voltage difference from the voltage across the cell decreases,
There has been a problem that it takes time to complete the uniformity.

【0009】そこで、本発明は、上記のような問題点に
着目し、短時間に、かつ電気エネルギーのロスを抑え
て、各単位セルの両端電圧の均等化を行う組電池の充電
状態調整装置及びその方法を提供することを課題とす
る。
Therefore, the present invention focuses on the above-mentioned problems, and, in a short time, suppresses the loss of electric energy and equalizes the voltage between both ends of each unit cell. And a method thereof.

【0010】[0010]

【課題を解決するための手段】上記課題を解決するため
になされた請求項1記載の発明は、図1の基本構成図に
よれば、二次電池からなる単位セルBS1〜BSnを複数個
直列に接続して構成され、負荷や充電器が両端に接続さ
れた閉回路状態において充放電を行う組電池Bの充電状
態を調整する組電池の充電状態調整装置であって、前記
負荷や前記充電器とは絶縁して設けられたキャパシタC
B及び前記組電池の開回路状態において、前記各単位セ
ルを前記キャパシタに接続して、前記各単位セルの両端
電圧を均等化するキャパシタ接続手段2d−11を有す
る第1の充電状態調整手段と、前記単位セルを放電させ
るための放電抵抗RB及び前記組電池の開回路状態にお
いて、前記各単位セルを前記放電抵抗に接続して、前記
各単位セルの両端電圧を均等化する抵抗接続手段2d−
12とを有する第2の充電状態調整手段と、前記各単位
セルの両端電圧のばらつき度合が大きいか否かを判断す
る判断手段2d−13とを備え、前記判断手段により、
ばらつき度合が大きいと判断されている間は、前記キャ
パシタ接続手段による均等化が行われ、否と判断されて
いる間は、前記抵抗接続手段による均等化が行われるこ
とを特徴とする組電池の充電状態調整装置に存する。
According to the first aspect of the present invention, there is provided a power supply apparatus comprising: a plurality of unit cells B S1 to B Sn comprising a secondary battery, according to the basic configuration shown in FIG. A battery pack state-of-charge adjusting device configured to adjust the state of charge of a battery pack B that performs charging and discharging in a closed circuit state in which a load and a charger are connected to both ends. A capacitor C provided insulated from the charger
B and a first state-of-charge adjusting means having capacitor connecting means 2d-11 for connecting each unit cell to the capacitor in the open circuit state of the battery pack and equalizing the voltage between both ends of each unit cell; , in the open circuit state of the discharge resistor R B and the battery pack for discharging the unit cell, by connecting the unit cells to the discharge resistor, the resistor connecting means for equalizing the voltage across each of the unit cells 2d-
12; a second charge state adjusting means having: 12; and a judging means 2d-13 for judging whether or not the degree of variation in the voltage across the unit cells is large.
While it is determined that the degree of variation is large, equalization is performed by the capacitor connection means, and while it is determined to be no, equalization is performed by the resistance connection means. It exists in the charge state adjustment device.

【0011】請求項1記載の発明によれば、判断手段に
より、各単位セルの両端電圧のばらつき度合が大きいと
判断されている間は、第1の充電状態調整手段におい
て、キャパシタ接続手段が、各単位セルをキャパシタに
接続して、各単位セルの両端電圧を均等化する。逆に、
ばらつき度合が大きくなく、否と判断されている間は、
第2の充電状態調整手段において、抵抗接続手段が、各
単位セルを放電抵抗に接続して、各単位セルの両端電圧
を均等化する。
According to the first aspect of the present invention, while the judging means judges that the degree of variation in the voltage across the unit cells is large, the first charge state adjusting means sets the capacitor connecting means to: Each unit cell is connected to a capacitor to equalize the voltage across each unit cell. vice versa,
While the degree of variation is not large and it is determined to be no,
In the second state-of-charge adjusting means, the resistance connection means connects each unit cell to the discharge resistor to equalize the voltage across each unit cell.

【0012】従って、各単位セルのばらつき度合が大き
い間は、キャパシタ接続手段による均等化が行われるた
め、電気エネルギーが放電抵抗によって無駄に消費され
ることがない。また、各単位セルのばらつき度合が大き
くない間は、キャパシタ接続手段による均等化では、電
荷の移動量が少なくなるため、均等化に時間がかかる
が、本発明では、各単位セルのばらつき度合が大きくな
い間は、抵抗接続手段による均等化が行われるため、短
時間に各単位セルの両端電圧の均等化を図ることができ
る。また、ばらつき度合が小さいため、放電抵抗によっ
て消費される電気エネルギーも少なくてすむ。
Therefore, while the degree of variation of each unit cell is large, equalization is performed by the capacitor connecting means, so that electric energy is not wasted by the discharge resistor. Also, while the degree of variation of each unit cell is not large, the equalization by the capacitor connecting means takes a long time for equalization because the amount of movement of electric charge is small, but in the present invention, the degree of variation of each unit cell is small. Unless the voltage is not large, the equalization is performed by the resistance connection means, so that the voltages at both ends of each unit cell can be equalized in a short time. Further, since the degree of variation is small, the electric energy consumed by the discharge resistor is small.

【0013】請求項2記載の発明は、図1の基本構成図
によれば、請求項1記載の組電池の充電状態調整装置で
あって、前記キャパシタ及び前記放電抵抗は、第1の接
続点c1及び第2の接続点c2間に並列に設けられ、前
記各単位セルのプラス端子を前記第1の接続点に、マイ
ナス端子を前記第2の接続点に接続するスイッチ手段2
bと、前記第1及び前記第2の接続点間に、前記キャパ
シタと直列に設けられた第1のスイッチ素子SC1と、前
記第1及び第2の接続点間に、前記放電抵抗と直列に設
けられた第2のスイッチ素子SC2とをさらに備え、前記
キャパシタ接続手段は、前記第1のスイッチ素子をオン
制御した状態で、前記スイッチ手段のオンオフ制御を行
って、前記各単位セルを前記キャパシタに接続し、前記
抵抗接続手段は、前記第2のスイッチ素子をオン制御し
た状態で、前記スイッチ手段のオンオフ制御を行って、
前記各単位セルを前記放電抵抗に接続することを特徴と
する組電池の充電状態調整装置に存する。
According to a second aspect of the present invention, according to the basic configuration diagram of FIG. 1, the charge state adjusting device for an assembled battery according to the first aspect, wherein the capacitor and the discharge resistor are connected to a first connection point. a switch means 2 provided in parallel between c1 and a second connection point c2 for connecting a plus terminal of each unit cell to the first connection point and a minus terminal to the second connection point.
b, a first switch element S C1 provided in series with the capacitor between the first and second connection points, and a series connection with the discharge resistor between the first and second connection points. And a second switch element S C2 provided on the first side, and the capacitor connection unit performs on / off control of the switch unit in a state where the first switch element is on, so that each of the unit cells is connected. Connected to the capacitor, the resistance connection means performs on-off control of the switch means in a state where the second switch element is on-controlled,
The present invention resides in an apparatus for adjusting the state of charge of a battery pack, wherein each of the unit cells is connected to the discharge resistor.

【0014】請求項2記載の発明によれば、キャパシタ
及び放電抵抗が、第1の接続点及び第2の接続点間に、
並列に、設けられている。スイッチ手段が、各単位セル
のプラス端子を第1の接続点に、マイナス端子を第2の
接続点に接続する。第1のスイッチ素子が、第1及び第
2の接続点間に、キャパシタと直列に設けられている。
第2のスイッチ素子が、第1及び第2の接続点間に、放
電抵抗と直列に設けられている。以上の構成において、
キャパシタ接続手段が、第1のスイッチ素子をオン制御
した状態で、スイッチ手段のオンオフ制御を行えば、各
単位セルをキャパシタに接続することができる。また、
抵抗接続手段が、第2のスイッチ素子をオン制御した状
態で、スイッチ手段のオンオフ制御を行えば、各単位セ
ルを放電抵抗に接続することができる。
According to the second aspect of the present invention, the capacitor and the discharge resistor are connected between the first connection point and the second connection point.
It is provided in parallel. A switch connects the plus terminal of each unit cell to the first connection point and connects the minus terminal to the second connection point. A first switch element is provided between the first and second connection points in series with the capacitor.
A second switch element is provided between the first and second connection points in series with the discharge resistor. In the above configuration,
Each unit cell can be connected to a capacitor by performing on / off control of the switch unit in a state where the capacitor connection unit controls the first switch element. Also,
If the resistance connection means performs on / off control of the switch means in a state where the second switch element is on-controlled, each unit cell can be connected to the discharge resistor.

【0015】従って、キャパシタ接続手段と抵抗接続手
段とで、スイッチ手段を兼用することができ、各々別途
に、各単位セルと、キャパシタ又は放電抵抗とを接続す
るスイッチ手段を設ける必要がない。
Therefore, the capacitor connection means and the resistance connection means can also serve as the switch means, and there is no need to separately provide a switch means for connecting each unit cell to a capacitor or a discharge resistor.

【0016】請求項3記載の発明は、図1の基本構成図
によれば、請求項1又は2記載の組電池の充電状態調整
装置であって、前記各単位セルの両端電圧を各々検出す
る電圧検出手段2d−14をさらに備え、前記判断手段
は、前記電圧検出手段により検出された両端電圧のうち
の最大両端電圧と、最小両端電圧との差が、所定値以上
の間は、ばらつき度合が大きいと判断し、前記最大両端
電圧と、前記最小両端電圧との差が、前記所定値より小
さい間は、否と判断することを特徴とする組電池の充電
状態調整装置に存する。
According to a third aspect of the present invention, there is provided the charge state adjusting device for an assembled battery according to the first or second aspect according to the basic configuration diagram of FIG. 1, wherein each of the unit cell voltages is detected. Voltage detecting means 2d-14, wherein the determining means determines a degree of variation when a difference between a maximum terminal voltage and a minimum terminal voltage among the terminal voltages detected by the voltage detecting means is a predetermined value or more. Is determined to be large, and while the difference between the maximum terminal voltage and the minimum terminal voltage is smaller than the predetermined value, it is determined not to be present.

【0017】請求項3記載の発明によれば、電圧検出手
段が、各単位セルの両端電圧を各々検出する。判断手段
が、電圧検出手段により検出された各両端電圧のうちの
最大両端電圧と、最小両端電圧との差が、所定値以上の
間は、ばらつき度合が大きいと判断し、最大両端電圧
と、最小両端電圧との差が、所定値より小さい間は、否
と判断する。
According to the third aspect of the invention, the voltage detecting means detects the voltage across each unit cell. The determining means determines that the degree of variation is large while the difference between the maximum terminal voltage of each of the terminal voltages detected by the voltage detecting means and the minimum terminal voltage is a predetermined value or more, and determines that the maximum terminal voltage is If the difference from the minimum terminal voltage is smaller than a predetermined value, it is determined to be no.

【0018】従って、各単位セルの最大両端電圧と最小
両端電圧との差が、所定値以上の間は、第1の充電状態
調整手段による均等化が行われるため、大きな電気エネ
ルギーが無駄に消費されることがない。また、各単位セ
ルの最大両端電圧と最小両端電圧との差が、所定値より
小さい間は、第2の充電状態調整手段による均等化が行
われるため、短時間に各単位セルの両端電圧の均等化を
図ることができる。
Accordingly, while the difference between the maximum terminal voltage and the minimum terminal voltage of each unit cell is equal to or greater than a predetermined value, equalization is performed by the first state-of-charge adjusting means, so that large electric energy is wastefully consumed. Never be. Further, while the difference between the maximum terminal voltage and the minimum terminal voltage of each unit cell is smaller than a predetermined value, equalization is performed by the second state-of-charge adjusting means. Equalization can be achieved.

【0019】請求項4記載の発明は、図1の基本構成図
に示すように、請求項2記載の組電池の充電状態調整装
置であって、前記第1及び前記第2の接続点間に設けら
れ、当該両端に接続された前記単位セルの両端電圧に応
じた電圧信号を出力する信号出力手段2cと、前記スイ
ッチ手段のオンオフ制御を行って、前記各単位セルの1
つを前記信号出力手段に接続して、前記各単位セルの両
端電圧を検出する電圧検出手段2d−14とを備え、前
記判断手段は、前記電圧検出手段により検出された両端
電圧のうちの最大両端電圧と、最小両端電圧との差が、
所定値以上の間は、ばらつき度合が大きいと判断し、前
記最大両端電圧と、前記最小両端電圧との差が、前記所
定値より小さい間は、否と判断することを特徴とする組
電池の充電状態調整装置に存する。
According to a fourth aspect of the present invention, as shown in the basic configuration diagram of FIG. 1, there is provided the charge state adjusting device for an assembled battery according to the second aspect, wherein the first and second connection points are provided between the first and second connection points. A signal output unit 2c provided to output a voltage signal according to a voltage between both ends of the unit cell connected to the both ends thereof; and performing on / off control of the switch unit to obtain one of the unit cells.
And a voltage detecting means 2d-14 for detecting the voltage between both ends of each of the unit cells, wherein the judging means comprises a maximum of the voltage between both ends detected by the voltage detecting means. The difference between the terminal voltage and the minimum terminal voltage is
The difference between the maximum terminal voltage and the minimum terminal voltage is determined to be large during the predetermined value or more, and the difference is determined to be negative while the difference between the maximum terminal voltage and the minimum terminal voltage is smaller than the predetermined value. It exists in the charge state adjustment device.

【0020】請求項4記載の発明によれば、信号出力手
段が、第1及び第2の接続点間に設けられ、その両端に
接続された単位セルの両端電圧に応じた電圧信号を出力
する。電圧検出手段が、スイッチ手段のオンオフ制御を
行って、各単位セルの1つを信号出力手段に接続して、
各単位セルの両端電圧を検出する。判断手段が、電圧検
出手段により検出された両端電圧のうちの最大両端電圧
と、最小両端電圧との差が、所定値以上の間は、ばらつ
き度合が大きいと判断し、最大両端電圧と、最小両端電
圧との差が、所定値より小さい間は、否と判断する。
According to the fourth aspect of the present invention, the signal output means is provided between the first and second connection points and outputs a voltage signal corresponding to a voltage between both ends of the unit cell connected to both ends thereof. . Voltage detecting means for performing on / off control of the switch means, connecting one of the unit cells to the signal output means,
The voltage between both ends of each unit cell is detected. The determining means determines that the degree of variation is large when the difference between the maximum terminal voltage of the terminal voltages detected by the voltage detecting means and the minimum terminal voltage is a predetermined value or more, and determines that the maximum terminal voltage and the minimum While the difference from the voltage between both ends is smaller than the predetermined value, it is determined to be no.

【0021】従って、判断手段による判断を行うための
電圧検出手段が、各単位セルをキャパシタ又は放電抵抗
と接続するためのスイッチ手段を流用して、各単位セル
の両端電圧を検出することができ、各々別途に、スイッ
チ手段を設ける必要がない。
Therefore, the voltage detecting means for making the judgment by the judging means can detect the voltage between both ends of each unit cell by diverting the switch means for connecting each unit cell to a capacitor or a discharge resistor. It is not necessary to separately provide a switch means.

【0022】請求項5記載の発明は、二次電池からなる
単位セルを複数個直列に接続して構成され、負荷や充電
器が両端に接続された閉回路状態において充放電を行う
組電池の充電状態を調整するに当たり、前記各単位セル
の両端電圧のばらつき度合が大きいとき、前記負荷や前
記充電器とは絶縁されたキャパシタに前記各単位セル
を、前記組電池の開回路状態において接続し、前記各単
位セルの両端電圧のばらつき度合が大きくないとき、放
電抵抗に前記各単位セルを、前記組電池の開回路状態に
おいて接続することを特徴とする組電池の充電状態調整
方法に存する。
According to a fifth aspect of the present invention, there is provided an assembled battery which is constituted by connecting a plurality of unit cells each composed of a secondary battery in series, and performs charging and discharging in a closed circuit state in which a load and a charger are connected to both ends. In adjusting the state of charge, when the degree of variation in the voltage across the unit cells is large, the unit cells are connected to a capacitor insulated from the load and the charger in an open circuit state of the battery pack. When the degree of variation in the voltage between both ends of each unit cell is not large, each unit cell is connected to a discharge resistor in an open circuit state of the assembled battery.

【0023】請求項5記載の発明によれば、各単位セル
の両端電圧のばらつき度合が大きいと判断されている
間、各単位セルがキャパシタに接続されて、各単位セル
の両端電圧が均等化されるため、電気エネルギーが放電
抵抗によって無駄に消費されることがない。また、ばら
つき度合が大きくないと判断されている間、キャパシタ
による均等化では、電荷の移動量が少なくなるため、均
等化に時間がかかるが、本発明では、各単位セルのばら
つき度合が大きくない間は、放電抵抗による均等化が行
われるため、短時間に各単位セルの両端電圧の均等化を
図ることができる。また、ばらつき度合が小さいため、
放電抵抗によって消費される電気エネルギーも小さくて
すむ。
According to the fifth aspect of the present invention, while it is determined that the degree of variation in the voltage between both ends of each unit cell is large, each unit cell is connected to the capacitor, and the voltage between both ends of each unit cell is equalized. Therefore, electric energy is not wasted by the discharge resistor. In addition, while it is determined that the degree of variation is not large, in the equalization by the capacitor, the amount of movement of the charge is small, so that it takes time to equalize. However, in the present invention, the degree of variation of each unit cell is not large. During the period, the equalization is performed by the discharge resistance, so that the voltages at both ends of each unit cell can be equalized in a short time. Also, since the degree of variation is small,
The electric energy consumed by the discharge resistor is also small.

【0024】[0024]

【発明の実施の形態】以下、本発明の一実施の形態を、
図面を参照して説明する。図2は、本発明の組電池の充
電状態調整方法を実施した組電池の充電状態調整装置
(以下、調整装置)の一実施の形態を示す回路図であ
る。図2中引用符号1で示す本実施形態の調整装置は、
エンジンと電動モータ(いずれも図示せず。)を走行駆
動源として併用するハイブリッド電気自動車(以下、車
両)において、前記電動モータの電源として用いられる
メインバッテリB(請求項中の組電池に相当)に接続し
て使用されるものである。
BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, an embodiment of the present invention will be described.
This will be described with reference to the drawings. FIG. 2 is a circuit diagram showing an embodiment of a battery pack state-of-charge adjusting device (hereinafter referred to as an adjusting device) that implements the battery pack state-of-charge adjusting method of the present invention. The adjustment device of the present embodiment, which is denoted by reference numeral 1 in FIG.
In a hybrid electric vehicle (hereinafter referred to as "vehicle") in which an engine and an electric motor (both not shown) are used together as a driving source for driving, a main battery B (corresponding to an assembled battery in the claims) used as a power source for the electric motor. It is used by connecting to.

【0025】前記メインバッテリBは、二次電池からな
る単位セルBS1、BS2、…、BSnをn個直列に接続して
構成されており、メインバッテリBの両端には、電動モ
ータ等が必要に応じて負荷として接続される他、オルタ
ネータ等(図示せず)が必要に応じて充電器として接続
される。
The main battery B is constituted by connecting n unit cells B S1 , B S2 ,..., B Sn consisting of secondary batteries in series. Is connected as a load as needed, and an alternator or the like (not shown) is connected as a charger as needed.

【0026】そして、本実施形態の調整装置1は、さら
に均等化部2を備えている。均等化部2は、接続点c1
(請求項中の第1の接続点に相当。)−接続点c2(請
求項中の第2の接続点に相当)間に設けられた均等充電
用コンデンサCB(請求項中のキャパシタに相当。)
と、接続点c1−接続点c2間に、上記均等充電用コン
デンサCBと直列に設けられたスイッチSC1を有してい
る。なお、上記均等充電用コンデンサCBは、前記不図
示の負荷やオルタネータとは絶縁して設けられている。
The adjusting device 1 according to the present embodiment further includes an equalizing unit 2. The equalizing unit 2 includes a connection point c1
(Corresponding to a first connection point in the claims.)-Equal charging capacitor C B (corresponding to a capacitor in the claims) provided between a connection point c2 (corresponding to a second connection point in the claims). .)
If, between the connection point c1- connection point c2, and a switch S C1 provided in the capacitor C B series for the equalizing charge. Note that the uniform charging capacitor C B, the the load and the alternator (not shown) are provided in the insulating.

【0027】均等化部2はまた、均等充電用コンデンサ
Bと並列に設けられた放電抵抗RBと、接続点c1−接
続点c2間に上記放電抵抗RBと直列に設けられたスイ
ッチSC2とを有している。そして、上記スイッチS
C1(請求項中の第1のスイッチ素子に相当。)及びSC2
(請求項中の第2のスイッチ素子に相当。)が、均等化
切替部2aを構成している。
The equalization unit 2 also provided in parallel with the capacitor C B for equalizing charge discharge resistor R B and the switch S provided in the discharge resistor R B in series between the connection point c1- connection point c2 C2 . Then, the switch S
C1 (corresponding to the first switch element in the claims) and S C2
(Corresponding to a second switch element in the claims) constitutes the equalization switching unit 2a.

【0028】また、均等化部2は、各単位セルBS1〜B
Snのプラス端子を接続点c1に、マイナス端子を接続点
c2に各々接続するためのスイッチ部2b(請求項中の
スイッチ手段に相当。)を有している。スイッチ部2b
は、単位セルBS1のプラス端子、各単位セルBS1〜BSn
の接続点及び単位セルBSnのマイナス端子に、一端が各
々接続されているスイッチSR1、SR2、…、SRn+1から
構成されるセル切替部2b−1を有している。そして、
スイッチSR1の他端は、接続点c3に、スイッチSR2
他端は、接続点c4に、スイッチSR3の他端は、接続点
c3に、…といったように、これらスイッチSR1〜S
Rn+1の他端は、接続点c3及びc4に、交互に接続され
ている。
Further, the equalizing unit 2 includes the unit cells B S1 -B S
A switch section 2b (corresponding to a switch means in the claims) for connecting the positive terminal of Sn to the connection point c1 and the negative terminal to the connection point c2 is provided. Switch part 2b
The positive terminal of the unit cell B S1, the respective unit cells B S1 .about.B Sn
Of the negative terminal of the connection points and the unit cell B Sn, switch S R1, S R2 whose one end is respectively connected, ..., and a cell switch unit 2b-1 consists of S Rn + 1. And
The other end of the switch S R1 is the connection point c3, the other end of the switch S R2 is a connection point c4, the other end of the switch S R3 is the connection point c3, as ... such, these switches S R1 to S
The other end of Rn + 1 is alternately connected to connection points c3 and c4.

【0029】スイッチ部2bはまた、一端が接続点c3
に接続され、他端が接続点c1に接続されるスイッチS
A1、一端が接続点c4に接続され、他端が接続点c2に
接続されるスイッチSA2、一端が接続点c3に接続さ
れ、他端が接続点c2に接続されるスイッチSB1及び一
端が接続点c4に接続され、他端が接続点c1に接続さ
れるスイッチSB2を有する極性反転部2b−2を有して
いる。
The switch 2b has one end connected to a connection point c3.
And the other end is connected to the connection point c1.
A1 , a switch S A2 having one end connected to the connection point c4 and the other end connected to the connection point c2, a switch S B1 having one end connected to the connection point c3, and a switch S B1 having the other end connected to the connection point c2, and one end. It has a polarity reversing unit 2b-2 having a switch S B2 connected to the connection point c4 and the other end connected to the connection point c1.

【0030】従って、スイッチ部2bにおいて、セル切
替部2b−1内のスイッチSR1及びSR2のみをオン制御
するとともに、極性反転部2b−2内のスイッチSA1
びS A2のみをオン制御すれば、単位セルBS1のプラス端
子を接続点c1に、マイナス端子を接続点c2に各々接
続することができる。
Therefore, in the switch section 2b, the cell is cut off.
Switch S in spare unit 2b-1R1And SR2ON control only
And the switch S in the polarity reversal unit 2b-2.A1Passing
And S A2If only ON control is performed, the unit cell BS1Plus end of
And the negative terminal to the connection point c2.
You can continue.

【0031】また、セル切替部2b−1内のスイッチS
R2及びSR3のみをオン制御するとともに、極性反転部2
b−2内のスイッチSB1及びSB2のみをオン制御すれ
ば、単位セルBS2のプラス端子を接続点c1に、マイナ
ス端子を接続点c2に各々接続することができる。従っ
て、スイッチ部2b内のスイッチをオンオフ制御すれ
ば、各単位セルBS1〜BSnのプラス端子を接続点c1
に、マイナス端子を接続点c2に各々接続することがで
きる。
The switch S in the cell switching unit 2b-1
Only the R2 and SR3 are turned on, and the polarity reversal unit 2
If only the switches S B1 and S B2 in b-2 are on-controlled, the plus terminal of the unit cell B S2 can be connected to the connection point c1, and the minus terminal can be connected to the connection point c2. Accordingly, if the switches in the switch section 2b are controlled to be turned on and off, the plus terminals of the unit cells B S1 to B Sn are connected to the connection point c1.
In addition, a negative terminal can be connected to each connection point c2.

【0032】また、スイッチ部2bによって、各単位セ
ルBS1〜BSnのプラス端子を接続点c1に、マイナス端
子を接続点c2に各々接続した状態で、スイッチSc1
オン制御すれば、各単位セルBS1〜BSnの両端に均等充
電用コンデンサCBを接続することができる。一方、ス
イッチSc2をオン制御すれば、各単位セルBS1〜BSn
両端に放電抵抗RBを接続することができる。
Further, by the switch unit 2b, and the positive terminal of the respective unit cells B S1 .about.B Sn to the connection point c1, while each connecting the negative terminal to the connection point c2, if ON control switch S c1, each it can be connected to evenly charging capacitor C B across the unit cell B S1 .about.B Sn. On the other hand, it can be on-controlled switch S c2, connecting a discharge resistor R B to both ends of the unit cells B S1 .about.B Sn.

【0033】さらに、均等化部2は、接続点c1−接続
点c2間に設けられた電圧検出部2c(請求項中の信号
出力手段に相当。)を有している。この電圧検出部2c
は、その両端、即ち、接続点c1−接続点c2間に接続
された各単位セルBS1〜BSnの両端電圧に応じた電圧信
号を出力する。さらに、均等化部2は、均等化切替部2
a及びスイッチ部2b内のスイッチの制御端子が、接続
されるマイクロコンピュータ(以下、μCOM)2dを
有している。このμCOM2dには、さらに、上記電圧
検出部2cから出力された電圧信号が供給されている。
Further, the equalizing section 2 has a voltage detecting section 2c (corresponding to a signal output means in the claims) provided between the connection point c1 and the connection point c2. This voltage detector 2c
Outputs a voltage signal corresponding to the voltage between both ends of the unit cells B S1 to B Sn connected between both ends, that is, between the connection point c1 and the connection point c2. Further, the equalization unit 2 includes an equalization switching unit 2
a and a control terminal of a switch in the switch section 2b have a microcomputer (hereinafter referred to as μCOM) 2d to be connected. The voltage signal output from the voltage detector 2c is further supplied to the μCOM 2d.

【0034】上記μCOM2dは、処理プログラムに従
って各種の処理を行う中央演算処理ユニット(以下、C
PU)2d−1、CPU2d−1が行う処理のプログラ
ムなどを格納した読出専用のメモリであるROM2d−
2、CPU2d−1での各種の処理過程で利用するワー
クエリア、各種データを格納するデータ記憶エリアなど
を有する読出書き込み自在のメモリであるRAM2d−
3を有し、これらがバスラインによって接続されてい
る。
The μCOM 2d is a central processing unit (hereinafter referred to as C) for performing various processes according to a processing program.
PU) 2d-1, ROM 2d- which is a read-only memory storing a program for processing performed by the CPU 2d-1 and the like.
2. RAM 2d- which is a readable and writable memory having a work area used in various processing steps in the CPU 2d-1 and a data storage area for storing various data.
3 which are connected by a bus line.

【0035】上述した構成の調整装置1の動作を、図3
のCPU2d−1の処理手順を参照して以下説明する。
CPU2d−1は、例えば、車両が走行している可能性
のないイグニッションスイッチのオフによって動作を開
始し、図示しない初期ステップにおいて、μCOM2d
内のRAM2d−3に形成した各種のエリアの初期設定
を行ってからその最初のステップS1に進む。
The operation of the adjusting device 1 having the above-described configuration will be described with reference to FIG.
This will be described below with reference to the processing procedure of the CPU 2d-1.
The CPU 2d-1 starts the operation by turning off an ignition switch that does not have a possibility that the vehicle is running, for example.
After initializing various areas formed in the RAM 2d-3, the process proceeds to the first step S1.

【0036】上記ステップS1において、CPU2d−
1は、電圧検出手段として働き、各単位セルBS1〜BSn
の両端電圧を各々検出する電圧検出処理を行う。次に、
CPU2d−1は、上記電圧検出処理で検出した単位セ
ルBS1〜BSnの両端電圧のうちの最大両端電圧V
maxと、最小両端電圧Vminとの差が所定電圧VAより小
さいか否かを判断する(ステップS2)。
In step S1, the CPU 2d-
1 functions as voltage detecting means, and each of the unit cells B S1 to B Sn
Voltage detection processing for detecting the voltage between both ends. next,
The CPU 2d-1 calculates the maximum terminal voltage V among the terminal voltages of the unit cells B S1 to B Sn detected in the voltage detection processing.
and max, the difference between the minimum voltage across V min is determined whether or not a predetermined voltage V A is smaller than (Step S2).

【0037】このとき、最大両端電圧Vmax−最小両端
電圧Vmin<所定電圧VAであれば(ステップS2で
Y)、CPU2d−1は、各単位セルBS1〜BSnの両端
電圧がほぼ均一であり、均等化処理を行う必要がないと
判断して、直ちに処理を終了する。これに対して、最大
両端電圧Vmax−最小両端電圧Vmin≧所定電圧VAであ
れば(ステップS2でN)、CPU2d−1は、各単位
セルBS1〜BSnの両端電圧にばらつきが生じていると判
断して、次のステップS3に進む。
At this time, if the maximum voltage V max -the minimum voltage V min <the predetermined voltage V A (Y in step S2), the CPU 2d-1 determines that the voltage across each of the unit cells B S1 to B Sn is substantially equal. It is determined that it is uniform and it is not necessary to perform the equalization process, and the process ends immediately. On the other hand, if the maximum voltage V max −the minimum voltage V min ≧ the predetermined voltage V A (N in step S2), the CPU 2d-1 causes the voltage across the unit cells B S1 to B Sn to vary. It is determined that it has occurred, and the process proceeds to the next step S3.

【0038】ステップS3において、CPU2d−1
は、判断手段として働き、上記電圧検出処理で検出した
単位セルBS1〜BSnの両端電圧のうちの最大両端電圧V
maxと、最小両端電圧Vminとの差が上記所定電圧VA
り大きい値に設定された所定電圧VB(請求項中の所定
値に相当)より小さいか否かを判断する。このとき、最
大両端電圧Vmax−最小両端電圧Vmin<所定電圧VB
あれば(ステップS3でY)、CPU2d−1は、各単
位セルBS1〜BSnの両端電圧のばらつきは小さいものと
判断して、ステップS5の放電抵抗RBによる均等化処
理を行う。
In step S3, the CPU 2d-1
Works as a judgment means, and determines the maximum terminal voltage V among the terminal voltages of the unit cells B S1 to B Sn detected in the voltage detection processing.
and max, the difference between the minimum voltage across V min is determined whether the predetermined voltage (corresponding to the predetermined value in claims) set predetermined voltage V B to V A value greater than or less than. At this time, if the maximum voltage V max −the minimum voltage V min <the predetermined voltage V B (Y in step S3), the CPU 2d-1 determines that the variation in the voltage across the unit cells B S1 to B Sn is small. it is determined that performs equalization processing by the discharge resistance R B of the step S5.

【0039】放電抵抗RBによる均等化処理において、
CPU2d−1は、抵抗接続手段として働き、全ての単
位セルBS1〜BSnの両端電圧が、最小両端電圧Vmin
同じになるように、各単位セルBS1〜BSnの両端を、放
電抵抗RBに接続することにより、両端電圧の均等化を
図る。
In the equalization process using the discharge resistor R B ,
The CPU 2d-1 functions as a resistance connecting means, and discharges both ends of each unit cell B S1 -B Sn so that the voltage across all the unit cells B S1 -B Sn becomes the same as the minimum end voltage V min. by connecting the resistor R B, achieving equalization of the voltage across.

【0040】これに対して、最大両端電圧Vmax−最小
両端電圧Vmin≧所定電圧VBであれば(ステップS3で
N)、CPU2d−1は、各単位セルBS1〜BSnの両端
電圧のばらつきが大きいものであると判断して、ステッ
プS4の均等充電用コンデンサCBによる均等化処理を
行う。均等充電用コンデンサCBによる均等化処理にお
いて、CPU2d−1は、キャパシタ接続手段として働
き、各単位セルBS1〜B Snの両端をサイクリックに均等
充電用コンデンサCBに接続し、均等充電用コンデンサ
Bを介して、両端電圧の高い方から低い方へ電荷を移
動させることにより、両端電圧の均等化を図る。
On the other hand, the maximum voltage Vmax−minimum
Voltage Vmin≧ predetermined voltage VBIf (in step S3
N), the CPU 2d-1 executesS1~ BSnBoth ends of
Judge that the voltage variation is large, and
Capacitor S for uniform chargingBEqualization processing by
Do. Capacitor C for uniform chargingBIn the equalization process
CPU 2d-1 operates as a capacitor connecting means.
Each unit cell BS1~ B SnEqually at both ends
Charging capacitor CBConnected to the capacitor for equal charging
CBTransfer charge from higher voltage to lower voltage
In this way, the voltages at both ends are equalized.

【0041】次に、上述した電圧検出処理の詳細な動作
について、図4のCPU2d−1の処理手順を示すフロ
ーチャートを参照して以下説明する。電圧検出処理にお
いて、CPU2d−1は、まず、RAM2d−3内に格
納されているセルカウント値jに応じたスイッチSRj
びSRj+1のみをオン制御する(ステップS100)。次
に、CPU2d−1は、RAM2d−3内に格納されて
いるフラグF1が1に設定されているか否かを判断する
(ステップS101)。
Next, the detailed operation of the above-described voltage detection processing will be described with reference to the flowchart of FIG. 4 showing the processing procedure of the CPU 2d-1. In the voltage detection process, first, the CPU 2d- 1 turns on only the switches S Rj and S Rj + 1 corresponding to the cell count value j stored in the RAM 2d-3 (step S100). Next, the CPU 2d-1 determines whether or not the flag F1 stored in the RAM 2d-3 is set to 1 (Step S101).

【0042】なお、イグニッションスイッチオフに応じ
て、電圧検出処理に進んだ時点では、セルカウント値j
及びフラグF1は、1に初期設定されているため、上記
ステップS100において、CPU2d−1は、スイッ
チSR1及びSR2をオン制御する。また、ステップS10
1において、CPU2d−1は、フラグF1が1に設定
されていると判断し(ステップS101でY)、極性反
転部2b−2内のスイッチSA1及びSA2をオン制御する
(ステップS102)。従って、単位セルBS1のマイナ
ス端子が、接続点c2に、プラス端子が接続点c1に接
続され、電圧検出部2cからは、単位セルBS1の両端電
圧に応じた電圧信号が出力される。
Incidentally, at the time when the process proceeds to the voltage detection process in response to the ignition switch being turned off, the cell count value j
Since the flag F1 and the flag F1 are initially set to 1, in step S100, the CPU 2d-1 controls the switches S R1 and S R2 to be on. Step S10
In 1, the CPU 2d-1 determines that the flag F1 is set to 1 (Y in step S101), and turns on the switches S A1 and S A2 in the polarity reversing unit 2b-2 (step S102). Therefore, the minus terminal of the unit cell B S1 is connected to the connection point c2, and the plus terminal is connected to the connection point c1, and the voltage detector 2c outputs a voltage signal corresponding to the voltage across the unit cell B S1 .

【0043】次に、CPU2d−1は、フラグF1を0
に、セルカウント値jをインクリメントして、2に設定
した後(ステップS103、S106)、電圧検出部2
cから検出された電圧信号を取り込み、単位セルBS1
両端電圧として、RAM2d−3内に格納する電圧取込
処理を行う(ステップS107)。
Next, the CPU 2d-1 sets the flag F1 to 0.
After the cell count value j is incremented and set to 2 (steps S103 and S106), the voltage detection unit 2
captures the voltage signal detected from c, as a voltage across the unit cell B S1, performs voltage acquisition processing to be stored in the RAM 2d-3 (step S107).

【0044】その後、CPU2d−1は、上記セルカウ
ント値jが単位セルBS1〜BSnの個数nより大きいか否
かを判断する(ステップS108)。上述したように、
セルカウント値jが2(<n)に設定されていれば、C
PU2d−1は、nより大きくないと判断して(ステッ
プS108でN)、再びステップS100に戻る。
Thereafter, the CPU 2d-1 determines whether or not the cell count value j is larger than the number n of the unit cells B S1 to B Sn (step S108). As mentioned above,
If the cell count value j is set to 2 (<n), C
PU2d-1 judges that it is not larger than n (N in step S108), and returns to step S100 again.

【0045】再びステップS100に戻ると、ステップ
S106によりセルカウント値jが2に、ステップS1
03によりフラグF1が0に各々設定されているため、
CPU2d−1は、ステップSR2及びSR3をオン制御す
るとともに(ステップS100)、スイッチSB1及びS
B2をオン制御する(ステップS101でN→ステップS
104)。従って、単位セルBS2のマイナス端子が接続
点c2に、プラス端子が接続点c1に接続され、電圧検
出部2cからは単位セルBS2の両端電圧に応じた電圧信
号が出力される。
When the process returns to step S100, the cell count value j is set to 2 in step S106, and the process proceeds to step S1.
03, the flag F1 is set to 0,
The CPU 2d-1 controls the steps S R2 and S R3 to be on (step S100) and switches S B1 and S B
B2 is turned on (N in step S101 → step S
104). Therefore, the negative terminal is the connection point c2 of the unit cell B S2, the positive terminal is connected to the connection point c1, the voltage signal corresponding to the voltage across the unit cell B S2 from the voltage detecting unit 2c outputs.

【0046】次に、CPU2d−1は、フラグF1を1
に、セルカウント値をインクリメントして、3に設定し
た後(ステップS105、ステップS106)、電圧検
出部2cから検出された電圧信号を取り込み、単位セル
S2の両端電圧として、RAM2d−3内に格納する電
圧取込処理を行う(ステップS107)。
Next, the CPU 2d-1 sets the flag F1 to 1
In increments cell count, was set to 3 (step S105, step S106), takes in the voltage signal detected by the voltage detection unit 2c, as a voltage across the unit cell B S2, in RAM 2d-3 The stored voltage is taken in (step S107).

【0047】上記ステップS100〜S108を繰り返
した結果、セルカウント値jがnを越えれば(ステップ
S108でY)、CPU2d−1は、全ての単位セルB
S1〜BSnの両端電圧がRAM2d−3内に格納されたと
判断して、セルカウント値j及びフラグF1を1に設定
するとともに、スイッチ部2b内のスイッチを全てオフ
にしてリターンする(ステップS109)。以上の電圧
検出処理によって、CPU2d−1は、各単位セルBS1
〜BSnの両端を、順次、電圧検出部2cに接続して、各
単位セルBS1〜BSnの両端電圧を検出することができ
る。
As a result of repeating the above steps S100 to S108, if the cell count value j exceeds n (Y in step S108), the CPU 2d-1 sets all the unit cells B
It is determined that the voltages at both ends of S1 to B Sn have been stored in the RAM 2d-3, the cell count value j and the flag F1 are set to 1, and all the switches in the switch section 2b are turned off (step S109). ). By the above voltage detection processing, the CPU 2d-1 makes each unit cell B S1
.. B Sn can be sequentially connected to the voltage detector 2c to detect the voltage across the unit cells B S1 to B Sn .

【0048】次に、上述した均等充電用コンデンサCB
による均等化処理の詳細な動作について、図5のCPU
2d−1の処理手順を示すフローチャートを参照して以
下説明する。均等充電用コンデンサCBによる均等化処
理において、CPU2d−1は、まず、均等化切替部2
a内のスイッチSC1をオン制御する(ステップS40
0)。このスイッチSC1のオン制御により、接続点c1
−接続点c2間に接続されている単位セルBS1〜BSn
両端を、均等充電用コンデンサCBに接続することがで
きる。
Next, the above-mentioned capacitor for uniform charging C B
About the detailed operation of the equalization processing by the CPU shown in FIG.
This will be described below with reference to a flowchart showing the processing procedure of 2d-1. In the equalization process by uniformly charging capacitor C B, CPU2d-1, first equalization switching section 2
The switch S C1 in a is turned on (step S40).
0). The on-control of the switches S C1, connection points c1
- the ends of the unit cell B S1 .about.B Sn which is connected between the connection point c2, can be connected to the equalizing charge capacitor C B.

【0049】次に、CPU2d−1は、上述した電圧検
出処理ですでに説明したステップS100〜ステップS
109の動作を行う。このステップS100〜S109
の動作を行うことにより、各単位セルBS1〜BSnのプラ
ス端子が接続点c1に、マイナス端子が接続点c2に、
順次、接続される。従って、スイッチSC1を介して、単
位セルBS1〜BSnの両端は、順次、均等充電用コンデン
サCBに接続されることになる。
Next, the CPU 2d-1 executes steps S100 to S100 already described in the above-described voltage detection processing.
Operation 109 is performed. Steps S100 to S109
By performing the above operation, the plus terminal of each unit cell B S1 to B Sn becomes the connection point c1, the minus terminal becomes the connection point c2,
They are connected sequentially. Thus, through the switch S C1, both ends of the unit cell B S1 .about.B Sn sequentially, to be connected to the equalizing charge capacitor C B.

【0050】さらに、ステップS103又はS105の
後に、所定時間T1の経過を待って、次のステップS1
06に進む、ステップS401及び402の動作を行う
ことにより、単位セルBS1〜BSnの両端が、所定時間T
1毎に、順次、均等充電用コンデンサCBに接続され
る。また、ステップS107では、所定時間T1、均等
充電用コンデンサCBに接続した後の、単位セルBS1
Snの両端電圧を、検出することができる。
Further, after step S103 or S105, the elapse of a predetermined time T1 is followed by the next step S1.
06, the operations of steps S401 and S402 are performed, so that both ends of the unit cells B S1 to B Sn reach the predetermined time T
Every 1, and are sequentially connected to the equalizing charge capacitor C B. In step S107, the predetermined time T1, after connecting to the capacitor C B for uniformly charging unit cells B S1 ~
The voltage across B Sn can be detected.

【0051】ここで、単位セルBSjが均等充電用コンデ
ンサCBに接続された場合の電荷の移動について説明す
る。この時点での均等充電用コンデンサCBの両端電圧
が単位セルBSjの両端電圧よりも高ければ、均等充電用
コンデンサCBに蓄積された電荷の単位セルBSjへの移
動が起こり、反対に、均等充電用コンデンサCBの両端
電圧が単位セルBSjの両端電圧よりも低ければ、単位セ
ルBSjに蓄積された電荷の均等充電用コンデンサCB
の移動が起こる。
[0051] Here, the unit cell B Sj will be described movement of charges when it is connected to the equalizing charge capacitor C B. Is higher than the voltage across the voltage across the unit cell B Sj evenly charging capacitor C B at this point, it occurs to move in the unit cell B Sj of the electric charge stored in the charge equalizing capacitor C B, in the opposite , it is lower than the voltage across the voltage across the unit cell B Sj evenly charging capacitor C B, moved to the unit cell B Sj accumulated in the equalizing charge capacitor C B charge occurs.

【0052】そして、均等充電用コンデンサCBに蓄積
された電荷の単位セルBSjへの移動が起こった場合は、
均等充電用コンデンサCBによって単位セルBSjが充電
されて単位セルBSjの両端電圧が上がるのに対して、蓄
積電荷を単位セルBSjに放出した均等充電用コンデンサ
Bの両端電圧が放電により下がって、単位セルBSj
両端電圧と、均等充電用コンデンサCBの両端電圧との
差が小さくなる。
[0052] Then, when the movement of the unit cell B Sj of the electric charge stored in the charge equalizing capacitor C B occurs,
To the unit cell B Sj that the voltage across be charged unit cells B Sj increases by the capacitor C B for equalizing charge, the voltage across the equivalent charging capacitor C B that has released the accumulated charge in the unit cell B Sj discharge down, the difference between the voltage across the unit cell B Sj, the voltage across the equivalent charging capacitor C B is reduced.

【0053】これに対し、単位セルBSjに蓄積された電
荷の均等充電用コンデンサCBへの移動が起こった場合
は、単位セルBSjによって均等充電用コンデンサCB
充電されて均等充電用コンデンサCBの両端電圧BSj
上がるのに対して、蓄積電荷を均等充電用コンデンサC
Bに放出した単位セルBSjの両端電圧Vnが放電により
下がって、単位セルBSjの両端電圧と、均等充電用コン
デンサCBの両端電圧との差が小さくなる。
[0053] In contrast, when the movement to the unit cell B Sj on accumulated uniformly charging capacitor C B charge occurs, for equalizing charge is charged capacitor C B for uniformly charging the unit cell B Sj whereas the voltage across B Sj of the capacitor C B is increased, the capacitor C for uniformly charging the storage charge
Down across voltage Vn of the unit cell B Sj that has released the B is the discharge, the difference between the voltage across the unit cell B Sj, the voltage across the equivalent charging capacitor C B is reduced.

【0054】従って、単位セルBS1〜BSnを所定時間T
1毎に、順次、均等充電用コンデンサCBに接続する
と、均等充電用コンデンサCBを介して、両端電圧の高
い方から低い方への蓄積電荷の移動が行われるため、各
単位セルBS1〜BSnの両端電圧の差が縮小する。
Therefore, the unit cells B S1 to B Sn are kept for a predetermined time T.
Every 1, sequentially, to connect to uniformly charging capacitor C B, via the equalizing charge capacitor C B, the movement of the accumulated charge from high to low both-end voltage is performed, the unit cells B S1 The difference between the voltages across B Sn is reduced.

【0055】この結果、ステップS107で検出した単
位セルBS1〜BSnの両端電圧のうちの最大両端電圧V
maxと、最小両端電圧Vminとの差が所定電圧VBより小
さくなれば(ステップS403でY)、CPU2d−1
は、各単位セルBS1〜BSnの両端電圧のばらつきが小さ
くなったと判断して、スイッチSC1をオフ制御した後
(ステップS404)、リターンする。一方、最大両端
電圧Vmaxと、最小両端電圧Vminとの差が所定電圧VB
以上であれば(ステップS403でN)、CPU2d−
1は、各単位セルBS1〜BSnの両端電圧のばらつきが大
きいままであるとして、再びステップS100に戻る。
As a result, of the voltages across the unit cells B S1 to B Sn detected in step S107, the maximum terminal voltage V
and max, if the difference between the minimum voltage across V min is the smaller than the predetermined voltage V B (Y in step S403), CPU2d-1
Determines that the variation in the voltage across the unit cells B S1 to B Sn has become small and turns off the switch S C1 (step S404), and then returns. On the other hand, the maximum voltage across V max and the minimum voltage across the difference is a predetermined voltage V B and V min
If so (N in step S403), the CPU 2d-
No. 1 returns to step S100 again, assuming that the variation in the voltage across the unit cells B S1 to B Sn remains large.

【0056】以上の均等充電用コンデンサCBによる均
等化処理により、単位セルBS1〜BS nの最大両端電圧V
maxと、最小両端電圧Vminとの差が所定電圧VBより小
さくなって、単位セルBS1〜BSnの両端電圧のばらつき
が小さくなる。
The capacitor C for uniform charging described aboveBBy average
By the equalization process, the unit cell BS1~ BS nVoltage V
maxAnd the minimum voltage VminIs a predetermined voltage VBLess than
Now, unit cell BS1~ BSnOf the voltage across
Becomes smaller.

【0057】次に、上述した放電抵抗RBによる均等化
処理の詳細な動作について、図6のCPU2d−1の処
理手順を示すフローチャートを参照して以下説明する。
放電抵抗RBによる均等化処理において、CPU2d−
1は、まず、電圧検出処理を行い、各単位セルBS1〜B
Snの両端電圧を検出する(ステップS1)。その後、C
PU2d−1は、スイッチSC2をオン制御する(ステッ
プS500)。このスイッチSC2のオン制御により、接
続点c1−接続点c2間に接続された単位セルBS1〜B
Snの両端を、放電抵抗RBに接続することができる。
Next, detailed operation of the equalization processing by the discharge resistance R B described above will be described below with reference to a flow chart illustrating a CPU2d-1 of the procedure of FIG. 6.
In the equalization process by the discharge resistor R B, CPU2d-
1, first, a voltage detection process is performed, and the unit cells B S1 to B S1 to B
The voltage across Sn is detected (step S1). Then, C
The PU 2d-1 turns on the switch S C2 (step S500). By the ON control of the switch S C2 , the unit cells B S1 -B S connected between the connection point c 1 and the connection point c 2 are connected.
Sn both ends of, it can be connected to the discharge resistor R B.

【0058】次に、CPU2d−1は、上述した電圧検
出処理ですでに説明したステップS100〜ステップS
109の動作を行う。このステップS100〜S109
の動作を行うことにより、各単位セルBS1〜BSnのプラ
ス端子が接続点c1に、マイナス端子が接続点c2に、
順次、接続される。従って、スイッチSC2を介して、単
位セルBS1〜BSnの両端は、順次、放電抵抗RBに接続
されることになる。
Next, the CPU 2d-1 executes steps S100 to S100 already described in the above-described voltage detection processing.
Operation 109 is performed. Steps S100 to S109
By performing the above operation, the plus terminal of each unit cell B S1 to B Sn becomes the connection point c1, the minus terminal becomes the connection point c2,
They are connected sequentially. Thus, through the switch S C2, both ends of the unit cell B S1 .about.B Sn sequentially, to be connected to a discharge resistor R B.

【0059】さらに、ステップS107とステップS1
08との間に、ステップS107で検出した、放電抵抗
Bに接続されている単位セルBS1〜BSnの両端電圧
が、上記ステップS1で検出された両端電圧のうちの最
小両端電圧Vmin以下になるのを待って次のステップS
108に進む、ステップS501が挿入されている。
Further, step S107 and step S1
Between 08, detected in step S107, the voltage across the unit cell B S1 .about.B Sn connected to the discharge resistor R B is, the minimum voltage across V min of the detected voltage across at step S1 Wait until it becomes the next step S
Going to step 108, step S501 is inserted.

【0060】従って、単位セルBS1〜BSnの両端は、そ
の蓄積電荷が放電抵抗RBにより消費されて、両端電圧
が最小電圧Vmin以下になる毎に、順次、放電抵抗RB
接続される。以上の放電抵抗RBによる均等化処理によ
り、単位セルBS1〜BSnの両端電圧は、最小両端電圧V
minと同じになり、各単位セルの両端電圧BS1〜BSn
ばらつきはほとんどなくなる。また、ステップS109
の後は、CPU2d−1は、スイッチSC2をオフ制御し
た後(ステップS502)、リターンする。
[0060] Thus, both ends of the unit cell B S1 .about.B Sn, the accumulated charge is consumed by the discharge resistance R B, each time the voltage across falls below the minimum voltage V min, successively connected to the discharge resistor R B Is done. The equalization process by the above-described discharge resistor R B, the voltage across the unit cell B S1 .about.B Sn, the minimum voltage V across
This is the same as min, and there is almost no variation in the voltage between both ends B S1 to B Sn of each unit cell. Step S109
Thereafter, the CPU 2d-1 controls the switch S C2 to be turned off (step S502), and then returns.

【0061】上述した調整装置1によれば、各単位セル
S1〜BSnの両端電圧のばらつき度合が大きいと判断さ
れている間は、各単位セルBS1〜BSnが均等充電用コン
デンサCBに順次、接続されて、各単位セルBS1〜BSn
の両端電圧が均等化される。このため、電気エネルギー
が放電抵抗RBによって無駄に消費されることがない。
According to the adjusting device 1 described above, while it is determined that the degree of variation in the voltage between both ends of each of the unit cells B S1 to B Sn is large, each of the unit cells B S1 to B Sn is connected to the equalizing capacitor C S. B sequentially connected to each of the unit cells B S1 to B Sn
Are equalized. Therefore, there is no the electric energy is wasted by the discharge resistor R B.

【0062】また、ばらつき度合が大きくないと判断さ
れている間は、均等充電用コンデンサCBによる均等化
では、電荷の移動量が少なくなるため、均等化に時間が
かかるが、本発明の調整装置1では、各単位セルBS1
Snのばらつき度合が大きくない間は、放電抵抗RB
よる均等化が行われる。このため、短時間に各単位セル
S1〜BSnの両端電圧の均等化を図ることができる。ま
た、ばらつき度合が小さいため、放電抵抗RBによって
消費される電気エネルギーも小さくてすみ、短時間に、
かつ電気エネルギーのロスを抑えて、各単位セルBS1
Snの両端電圧の均等化を行うことができる。
[0062] Also, while the degree of variation is not greater, the equalization by the equalizing charge capacitor C B, the amount of movement of the charge is reduced, it takes time to equalize, the adjustment of the present invention In the device 1, each unit cell B S1 .
During the variation degree of B Sn is not large, the equalization by the discharge resistance R B is performed. For this reason, it is possible to equalize the voltages across the unit cells B S1 to B Sn in a short time. Further, since the degree of variation is small, only a small the electrical energy consumed by the discharge resistor R B, a short period of time,
In addition, while suppressing the loss of electric energy, each unit cell B S1 ~
The voltage across B Sn can be equalized.

【0063】また、以上の構成の調整装置1において
は、スイッチSC1をオン制御した状態で、スイッチ部2
bのスイッチのオンオフ制御を行えば、各単位セルBS1
〜BSnを均等充電用コンデンサCBに接続することがで
きる。また、スイッチSC2をオン制御した状態で、スイ
ッチ部2b内のスイッチのオンオフ制御を行えば、各単
位セルBS1〜BSnを放電抵抗RBに接続することができ
る。従って、各単位セルBS1〜BSnを均等充電用コンデ
ンサCBに接続するためのスイッチ部2bと放電抵抗RB
に接続するためのスイッチ部2bとを別々に設ける必要
がなく、コストダウンを図ることができる。
Further, in the adjusting device 1 having the above configuration, the switch unit 2 is turned on while the switch S C1 is controlled to be on.
By performing on / off control of the switch b, each unit cell B S1
The .about.B Sn can be connected to the equalizing charge capacitor C B. Further, in a state where the ON control switch S C2, by performing the switch on-off control of the switch portion 2b, it is possible to connect the unit cells B S1 .about.B Sn the discharge resistor R B. Therefore, the discharge resistance R B and the switch portion 2b for connecting the respective unit cells B S1 .about.B Sn evenly charging capacitor C B
It is not necessary to separately provide the switch unit 2b for connection to the switch, and the cost can be reduced.

【0064】また、以上の構成の調整装置1において
は、スイッチ部2bのスイッチのオンオフ制御を行っ
て、各単位セルBS1〜BSnの両端電圧を検出している。
従って、各単位セルBS1〜BSnを均等充電用コンデンサ
B又は放電抵抗RBと接続するためのスイッチ部2bを
流用して、各単位セルBS1〜BSnの両端電圧を検出する
ことができ、各々別途に、スイッチ部2bを設ける必要
がなく、コストダウンを図ることができる。
Further, in the adjusting device 1 having the above configuration, the on / off control of the switch of the switch section 2b is performed to detect the voltage across the unit cells B S1 to B Sn .
Therefore, the respective unit cells B S1 .about.B Sn by diverting the switch portion 2b for connecting with uniform charging capacitor C B or discharge resistor R B, detects the voltage across each unit cell B S1 .about.B Sn It is not necessary to separately provide the switch unit 2b, and the cost can be reduced.

【0065】[0065]

【発明の効果】以上説明したように、請求項1記載の発
明によれば、各単位セルのばらつき度合が大きい間は、
キャパシタ接続手段による均等化が行われるため、電気
エネルギーが放電抵抗によって無駄に消費されることが
ない。また、各単位セルのばらつき度合が大きくない間
は、キャパシタ接続手段による均等化では、電荷の移動
量が少なくなるため、均等化に時間がかかるが、本発明
では、各単位セルのばらつき度合が大きくない間は、抵
抗接続手段による均等化が行われるため、短時間に各単
位セルの両端電圧の均等化を図ることができる。また、
ばらつき度合が小さいため、放電抵抗によって消費され
る電気エネルギーも少なくてすむので、短時間に、かつ
電気エネルギーのロスを抑えて、各単位セルの両端電圧
の均等化を行うことができる組電池の充電状態調整装置
を得ることができる。
As described above, according to the first aspect of the present invention, while the degree of variation of each unit cell is large,
Since the equalization is performed by the capacitor connecting means, the electric energy is not wasted by the discharge resistor. Also, while the degree of variation of each unit cell is not large, the equalization by the capacitor connecting means takes a long time for equalization because the amount of movement of electric charge is small, but in the present invention, the degree of variation of each unit cell is small. Unless the voltage is not large, the equalization is performed by the resistance connection means, so that the voltages at both ends of each unit cell can be equalized in a short time. Also,
Since the degree of variation is small, the amount of electric energy consumed by the discharge resistor is also small, so that the voltage between both ends of each unit cell can be equalized in a short time and with the electric energy loss suppressed. A charge state adjusting device can be obtained.

【0066】請求項2記載の発明によれば、キャパシタ
接続手段と抵抗接続手段とで、スイッチ手段を兼用する
ことができ、各々別途に、各単位セルと、キャパシタ又
は放電抵抗とを接続するスイッチ手段を設ける必要がな
いので、コストダウンを図った組電池の充電状態調整装
置を得ることができる。
According to the second aspect of the present invention, the capacitor connection means and the resistance connection means can also serve as the switch means, and the switch for separately connecting each unit cell to the capacitor or the discharge resistor is provided separately. Since it is not necessary to provide any means, it is possible to obtain a battery pack state-of-charge adjusting device that reduces costs.

【0067】請求項3記載の発明によれば、各単位セル
の最大両端電圧と最小両端電圧との差が、所定値以上の
間は、第1の充電状態調整手段による均等化が行われる
ため、大きな電気エネルギーが無駄に消費されることが
ない。また、各単位セルの最大両端電圧と最小両端電圧
との差が、所定値以下より小さい間は、第2の充電状態
調整手段による均等化が行われるため、短時間に各単位
セルの両端電圧の均等化を図ることができるので、短時
間に、かつ電気エネルギーのロスを抑えて、各単位セル
の両端電圧の均等化を行うことができる組電池の充電状
態調整装置を得ることができる。
According to the third aspect of the invention, while the difference between the maximum terminal voltage and the minimum terminal voltage of each unit cell is equal to or more than a predetermined value, equalization is performed by the first charge state adjusting means. Therefore, large electric energy is not wasted. In addition, while the difference between the maximum terminal voltage and the minimum terminal voltage of each unit cell is smaller than a predetermined value or less, equalization is performed by the second state-of-charge adjusting means. Therefore, it is possible to obtain a battery pack state-of-charge adjusting device that can equalize the voltage between both ends of each unit cell in a short time and with less loss of electric energy.

【0068】請求項4記載の発明によれば、判断手段に
よる判断を行うための電圧検出手段が、各単位セルをキ
ャパシタ又は放電抵抗と接続するためのスイッチ手段を
流用して、各単位セルの両端電圧を検出することがで
き、各々別途に、スイッチ手段を設ける必要がないの
で、コストダウンを図った組電池の充電状態調整装置を
得ることができる。
According to the fourth aspect of the present invention, the voltage detecting means for making the judgment by the judging means diverts the switching means for connecting each unit cell to a capacitor or a discharge resistor, and switches the voltage of each unit cell. Since the voltage between both ends can be detected, and it is not necessary to separately provide a switch unit, it is possible to obtain a battery pack state-of-charge adjusting apparatus with reduced cost.

【0069】請求項5記載の発明によれば、各単位セル
の両端電圧のばらつき度合が大きいと判断されている
間、各単位セルがキャパシタに接続されて、各単位セル
の両端電圧が均等化されるため、電気エネルギーが放電
抵抗によって無駄に消費されることがない。また、ばら
つき度合が大きくないと判断されている間、キャパシタ
による均等化では、電荷の移動量が少なくなるため、均
等化に時間がかかるが、本発明では、各単位セルのばら
つき度合が大きくない間は、放電抵抗による均等化が行
われるため、短時間に各単位セルの両端電圧の均等化を
図ることができる。また、ばらつき度合が小さいため、
放電抵抗によって消費される電気エネルギーも小さくて
すむので、短時間に、かつ電気エネルギーのロスを抑え
て、各単位セルの両端電圧の均等化を行うことができる
組電池の充電状態調整方法を得ることができる。
According to the fifth aspect of the invention, while it is determined that the degree of variation in the voltage between both ends of each unit cell is large, each unit cell is connected to the capacitor and the voltage between both ends of each unit cell is equalized. Therefore, electric energy is not wasted by the discharge resistor. In addition, while it is determined that the degree of variation is not large, in the equalization by the capacitor, the amount of movement of the charge is small, so that it takes time to equalize. However, in the present invention, the degree of variation of each unit cell is not large. During the period, the equalization is performed by the discharge resistance, so that the voltages at both ends of each unit cell can be equalized in a short time. Also, since the degree of variation is small,
Since the electric energy consumed by the discharge resistor can be small, a method for adjusting the state of charge of a battery pack that can equalize the voltage between both ends of each unit cell in a short time and with a reduced loss of electric energy can be obtained. be able to.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の組電池の充電状態調整装置の基本構成
図である。
FIG. 1 is a basic configuration diagram of an apparatus for adjusting a state of charge of a battery pack according to the present invention.

【図2】本発明の組電池の充電状態調整方法を実施した
組電池の充電状態調整装置の一実施の形態を示す回路図
である。
FIG. 2 is a circuit diagram showing an embodiment of a battery pack state-of-charge adjusting device that implements the battery pack state-of-charge adjusting method of the present invention.

【図3】図2の組電池の充電状態調整装置を構成するC
PU2d−1の処理手順を示すフローチャートである。
FIG. 3 is a diagram showing a configuration of a charge state adjusting device for a battery pack of FIG. 2;
It is a flowchart which shows the processing procedure of PU2d-1.

【図4】図3の電圧検出処理におけるCPU2d−1の
処理手順を示すフローチャートである。
FIG. 4 is a flowchart showing a processing procedure of a CPU 2d-1 in the voltage detection processing of FIG. 3;

【図5】図3の均等充電用コンデンサCBによる均等化
処理におけるCPU2d−1の処理手順を示すフローチ
ャートである。
5 is a flowchart showing a CPU2d-1 processing procedure in the equalization processing by uniformly charging capacitor C B of FIG.

【図6】図3の放電抵抗RBのよる均等化処理における
CPU2d−1の処理手順を示すフローチャートであ
る。
6 is a flowchart showing a CPU2d-1 processing procedure in the equalization processing by the discharge resistance R B of FIG.

【符号の説明】[Explanation of symbols]

1 組電池の充電状態調整装置 2c 電圧検出部(信号出力手段) 2b スイッチ手段(スイッチ部) 2d−11 キャパシタ接続手段(CPU) 2d−12 抵抗接続手段(CPU) 2d−13 判断手段(CPU) 2d−14 電圧検出手段(CPU) B 組電池(メインバッテリ) BS1〜BSn 単位セル CB キャパシタ(均等充電用コンデンサ) c1 第1の接続点(接続点) c2 第2の接続点(接続点) RB 放電抵抗 SC1 第1のスイッチ素子(スイッチ) SC2 第2のスイッチ素子(スイッチ)REFERENCE SIGNS LIST 1 Charged battery conditioner 2c Voltage detector (signal output unit) 2b Switch unit (switch unit) 2d-11 Capacitor connection unit (CPU) 2d-12 Resistance connection unit (CPU) 2d-13 Judgment unit (CPU) 2d-14 voltage detecting means (CPU) B battery pack (main battery) B S1 .about.B Sn unit cell C B capacitor (evenly charging capacitor) c1 first connection point (connection point) c2 second connection point (connection point) R B discharge resistor S C1 first switch element (switch) S C2 second switch element (switch)

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 5G003 AA07 BA03 CA15 CC04 DA04 DA12 FA06 GC05 5H030 AA01 AS08 BB01 FF43 5H115 PA15 PC06 PG04 PI16 PO01 PO10 PO13 PU01 SE06 TI05 TO13 TU05 TU16 TU17  ──────────────────────────────────────────────────続 き Continued on the front page F term (reference) 5G003 AA07 BA03 CA15 CC04 DA04 DA12 FA06 GC05 5H030 AA01 AS08 BB01 FF43 5H115 PA15 PC06 PG04 PI16 PO01 PO10 PO13 PU01 SE06 TI05 TO13 TU05 TU16 TU17

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 二次電池からなる単位セルを複数個直列
に接続して構成され、負荷や充電器が両端に接続された
閉回路状態において充放電を行う組電池の充電状態を調
整する組電池の充電状態調整装置であって、 前記負荷や前記充電器とは絶縁して設けられたキャパシ
タ及び前記組電池の開回路状態において、前記各単位セ
ルを前記キャパシタに接続して、前記各単位セルの両端
電圧を均等化するキャパシタ接続手段を有する第1の充
電状態調整手段と、 前記単位セルを放電させるための放電抵抗及び前記組電
池の開回路状態において、前記各単位セルを前記放電抵
抗に接続して、前記各単位セルの両端電圧を均等化する
抵抗接続手段とを有する第2の充電状態調整手段と、 前記各単位セルの両端電圧のばらつき度合が大きいか否
かを判断する判断手段とを備え、 前記判断手段により、ばらつき度合が大きいと判断され
ている間は、前記キャパシタ接続手段による均等化が行
われ、否と判断されている間は、前記抵抗接続手段によ
る均等化が行われることを特徴とする組電池の充電状態
調整装置。
An assembly for adjusting the charge state of a battery pack comprising a plurality of unit cells each comprising a secondary battery connected in series and performing charge and discharge in a closed circuit state in which a load and a charger are connected to both ends. A battery state-of-charge adjusting device, comprising: a capacitor provided insulated from the load and the charger; and an open circuit state of the battery pack, wherein each unit cell is connected to the capacitor, First charge state adjusting means having capacitor connection means for equalizing the voltage across the cell; a discharge resistor for discharging the unit cell; and an open circuit state of the battery pack, wherein each of the unit cells has the discharge resistance. A second state-of-charge adjusting means having resistance connecting means for equalizing the voltage across the unit cells, and determining whether the degree of variation in the voltage across the unit cells is large or not. The equalization by the capacitor connecting means is performed while the degree of variation is determined to be large by the determining means, and the equalization by the resistance connecting means is performed while the determination is negative. A charge state adjusting device for a battery pack, comprising:
【請求項2】 請求項1記載の組電池の充電状態調整装
置であって、 前記キャパシタ及び前記放電抵抗は、第1の接続点及び
第2の接続点間に並列に設けられ、 前記各単位セルのプラス端子を前記第1の接続点に、マ
イナス端子を前記第2の接続点に接続するスイッチ手段
と、 前記第1及び前記第2の接続点間に、前記キャパシタと
直列に設けられた第1のスイッチ素子と、 前記第1及び第2の接続点間に、前記放電抵抗と直列に
設けられた第2のスイッチ素子とをさらに備え、 前記キャパシタ接続手段は、前記第1のスイッチ素子を
オン制御した状態で、前記スイッチ手段のオンオフ制御
を行って、前記各単位セルを前記キャパシタに接続し、 前記抵抗接続手段は、前記第2のスイッチ素子をオン制
御した状態で、前記スイッチ手段のオンオフ制御を行っ
て、前記各単位セルを前記放電抵抗に接続することを特
徴とする組電池の充電状態調整装置。
2. The charge state adjusting device for an assembled battery according to claim 1, wherein the capacitor and the discharge resistor are provided in parallel between a first connection point and a second connection point, and each of the units Switch means for connecting a plus terminal of the cell to the first connection point and a minus terminal to the second connection point; and a switch provided in series with the capacitor between the first and second connection points. A first switch element; and a second switch element provided in series with the discharge resistor between the first and second connection points, wherein the capacitor connection means includes a first switch element. In the state where the on-state is controlled, the on / off control of the switch means is performed to connect each of the unit cells to the capacitor, and the resistance connection means controls the switch means in the state where the second switch element is on-controlled. No A charge state adjusting device for an assembled battery, wherein the unit cell is connected to the discharge resistor by performing on / off control.
【請求項3】 請求項1又は2記載の組電池の充電状態
調整装置であって、 前記各単位セルの両端電圧を各々検出する電圧検出手段
をさらに備え、 前記判断手段は、前記電圧検出手段により検出された両
端電圧のうちの最大両端電圧と、最小両端電圧との差
が、所定値以上の間は、ばらつき度合が大きいと判断
し、前記最大両端電圧と、前記最小両端電圧との差が、
前記所定値より小さい間は、否と判断することを特徴と
する組電池の充電状態調整装置。
3. The device for adjusting the state of charge of a battery pack according to claim 1, further comprising voltage detecting means for detecting a voltage between both ends of each of the unit cells, and wherein the judging means comprises the voltage detecting means. The difference between the maximum terminal voltage and the minimum terminal voltage among the terminal voltages detected by the method is determined to be large when the difference between the maximum terminal voltage and the minimum terminal voltage is equal to or greater than a predetermined value, and the difference between the maximum terminal voltage and the minimum terminal voltage is determined. But,
An apparatus for adjusting the state of charge of an assembled battery, wherein the apparatus determines that the state of the battery pack is smaller than the predetermined value.
【請求項4】 請求項2記載の組電池の充電状態調整装
置であって、 前記第1及び前記第2の接続点間に設けられ、当該両端
に接続された前記単位セルの両端電圧に応じた電圧信号
を出力する信号出力手段と、 前記スイッチ手段のオンオフ制御を行って、前記各単位
セルの1つを前記信号出力手段に接続して、前記各単位
セルの両端電圧を検出する電圧検出手段とを備え、 前記判断手段は、前記電圧検出手段により検出された両
端電圧のうちの最大両端電圧と、最小両端電圧との差
が、所定値以上の間は、ばらつき度合が大きいと判断
し、前記最大両端電圧と、前記最小両端電圧との差が、
前記所定値より小さい間は、否と判断することを特徴と
する組電池の充電状態調整装置。
4. The device for adjusting the state of charge of a battery pack according to claim 2, wherein the device is provided between the first and second connection points and responds to a voltage between both ends of the unit cell connected to the both ends. Signal output means for outputting a voltage signal, and voltage detection for performing on / off control of the switch means, connecting one of the unit cells to the signal output means, and detecting a voltage across the unit cells. Means, the determining means determines that the degree of variation is large when the difference between the maximum terminal voltage of the terminal voltages detected by the voltage detecting means and the minimum terminal voltage is a predetermined value or more. The difference between the maximum terminal voltage and the minimum terminal voltage is
An apparatus for adjusting the state of charge of an assembled battery, wherein the apparatus determines that the state is smaller than the predetermined value.
【請求項5】 二次電池からなる単位セルを複数個直列
に接続して構成され、負荷や充電器が両端に接続された
閉回路状態において充放電を行う組電池の充電状態を調
整するに当たり、 前記各単位セルの両端電圧のばらつき度合が大きいと
き、前記負荷や前記充電器とは絶縁されたキャパシタに
前記各単位セルを、前記組電池の開回路状態において接
続し、 前記各単位セルの両端電圧のばらつき度合が大きくない
とき、放電抵抗に前記各単位セルを、前記組電池の開回
路状態において接続することを特徴とする組電池の充電
状態調整方法。
5. A method for adjusting the charge state of a battery pack that is configured by connecting a plurality of unit cells each composed of a secondary battery in series and that performs charging and discharging in a closed circuit state in which a load and a charger are connected to both ends. When the degree of variation in the voltage across the unit cells is large, the unit cells are connected to the load and the capacitor insulated from the charger in an open circuit state of the battery pack, A method of adjusting the state of charge of a battery pack, comprising connecting each of the unit cells to a discharge resistor in an open circuit state of the battery pack when the degree of variation in the voltage across the terminals is not large.
JP2001175545A 2001-06-11 2001-06-11 Apparatus and method for adjusting state of charge of battery pack Expired - Fee Related JP3803042B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001175545A JP3803042B2 (en) 2001-06-11 2001-06-11 Apparatus and method for adjusting state of charge of battery pack

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001175545A JP3803042B2 (en) 2001-06-11 2001-06-11 Apparatus and method for adjusting state of charge of battery pack

Publications (2)

Publication Number Publication Date
JP2002369400A true JP2002369400A (en) 2002-12-20
JP3803042B2 JP3803042B2 (en) 2006-08-02

Family

ID=19016658

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001175545A Expired - Fee Related JP3803042B2 (en) 2001-06-11 2001-06-11 Apparatus and method for adjusting state of charge of battery pack

Country Status (1)

Country Link
JP (1) JP3803042B2 (en)

Cited By (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2408396A (en) * 2003-11-19 2005-05-25 Milwaukee Electric Tool Corp Battery pack and charge equaliser
GB2420031A (en) * 2003-11-19 2006-05-10 Milwaukee Electric Tool Corp Battery pack for a cordless power tool
WO2006110008A1 (en) 2005-04-15 2006-10-19 Lg Chem, Ltd. Switching circuit for balancing of battery cell
US7157882B2 (en) 2002-11-22 2007-01-02 Milwaukee Electric Tool Corporation Method and system for battery protection employing a selectively-actuated switch
US7176654B2 (en) 2002-11-22 2007-02-13 Milwaukee Electric Tool Corporation Method and system of charging multi-cell lithium-based batteries
US7253585B2 (en) 2002-11-22 2007-08-07 Milwaukee Electric Tool Corporation Battery pack
JP2007294322A (en) * 2006-04-26 2007-11-08 Matsushita Electric Ind Co Ltd Electric storage device, portable apparatus, and electric vehicle
JP2008048496A (en) * 2006-08-11 2008-02-28 Yazaki Corp State of charge adjusting apparatus
JP2008515364A (en) * 2004-09-24 2008-05-08 コンセプション エ デヴェロップマン ミシュラン ソシエテ アノニム Detachable charge control circuit for balancing the voltage of series connected supercapacitors
US7425816B2 (en) 2002-11-22 2008-09-16 Milwaukee Electric Tool Corporation Method and system for pulse charging of a lithium-based battery
JP2009517686A (en) * 2005-12-02 2009-04-30 エスケー エナジー 株式会社 Battery inspection apparatus and method
US7589500B2 (en) 2002-11-22 2009-09-15 Milwaukee Electric Tool Corporation Method and system for battery protection
US7714538B2 (en) 2002-11-22 2010-05-11 Milwaukee Electric Tool Corporation Battery pack
JP2010535010A (en) * 2007-07-26 2010-11-11 エルジー・ケム・リミテッド Battery cell charge amount balancing apparatus and method
JP2011501640A (en) * 2007-10-16 2011-01-06 エスケー エナジー カンパニー リミテッド Battery management combined with voltage sensor and equal charging device
KR101024138B1 (en) * 2006-08-04 2011-03-22 파나소닉 주식회사 Electricity storage device
WO2012146365A1 (en) * 2011-04-29 2012-11-01 Thyssenkrupp System Engineering Gmbh Method for balancing at least two electrical energy storage cells and balancing device
JP2013013291A (en) * 2011-06-30 2013-01-17 Hitachi Ltd Inter-battery voltage equalization circuit
US8471532B2 (en) 2002-11-22 2013-06-25 Milwaukee Electric Tool Corporation Battery pack
WO2013137229A1 (en) * 2012-03-16 2013-09-19 矢崎総業株式会社 Equalization device
WO2014087451A1 (en) * 2012-12-04 2014-06-12 日本電気株式会社 Cell controller, power storage device, and power storage method
JP2014528692A (en) * 2011-10-12 2014-10-27 日本テキサス・インスツルメンツ株式会社 Inductor-based active balancing for batteries and other power supplies
JP2015186331A (en) * 2014-03-24 2015-10-22 Fdkリチウムイオンキャパシタ株式会社 balance correction circuit, power storage module and balance correction method
KR101610927B1 (en) * 2014-12-15 2016-04-08 현대오트론 주식회사 Apparatus and method for battery cell balancing
CN106004493A (en) * 2016-06-07 2016-10-12 冯旋宇 Charging control method and system for electric vehicle
US9780577B2 (en) 2014-05-26 2017-10-03 Toyota Jidosha Kabushiki Kaisha Electric power supply control device and electric power supply control method
EP3107182A4 (en) * 2014-02-07 2018-01-24 Nec Corporation Voltage difference correction device, voltage difference correction method
CN113517736A (en) * 2021-05-31 2021-10-19 上海航天电源技术有限责任公司 Battery pack maintenance method

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04347543A (en) * 1991-05-23 1992-12-02 Nec Corp Battery reconditioning circuit
JPH1198698A (en) * 1997-09-19 1999-04-09 Toyota Central Res & Dev Lab Inc Charging/discharging device for battery assembly
JPH11299122A (en) * 1998-02-10 1999-10-29 Denso Corp Method and device for charging state control
JP2001136669A (en) * 1999-11-01 2001-05-18 Toyota Central Res & Dev Lab Inc Storage device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04347543A (en) * 1991-05-23 1992-12-02 Nec Corp Battery reconditioning circuit
JPH1198698A (en) * 1997-09-19 1999-04-09 Toyota Central Res & Dev Lab Inc Charging/discharging device for battery assembly
JPH11299122A (en) * 1998-02-10 1999-10-29 Denso Corp Method and device for charging state control
JP2001136669A (en) * 1999-11-01 2001-05-18 Toyota Central Res & Dev Lab Inc Storage device

Cited By (93)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8018198B2 (en) 2002-11-22 2011-09-13 Milwaukee Electric Tool Corporation Method and system for charging multi-cell lithium-based batteries
US9312721B2 (en) 2002-11-22 2016-04-12 Milwaukee Electric Tool Corporation Lithium-based battery pack for a hand held power tool
US11837694B2 (en) 2002-11-22 2023-12-05 Milwaukee Electric Tool Corporation Lithium-based battery pack
US7157882B2 (en) 2002-11-22 2007-01-02 Milwaukee Electric Tool Corporation Method and system for battery protection employing a selectively-actuated switch
US7157883B2 (en) 2002-11-22 2007-01-02 Milwaukee Electric Tool Corporation Method and system for battery protection employing averaging of measurements
US7164257B2 (en) 2002-11-22 2007-01-16 Milwaukee Electric Tool Corporation Method and system for protection of a lithium-based multicell battery pack including a heat sink
US7176654B2 (en) 2002-11-22 2007-02-13 Milwaukee Electric Tool Corporation Method and system of charging multi-cell lithium-based batteries
US7253585B2 (en) 2002-11-22 2007-08-07 Milwaukee Electric Tool Corporation Battery pack
US7262580B2 (en) 2002-11-22 2007-08-28 Milwaukee Electric Tool Corporation Method and system for charging multi-cell lithium-based batteries
US11682910B2 (en) 2002-11-22 2023-06-20 Milwaukee Electric Tool Corporation Method of operating a lithium-based battery pack for a hand held power tool
US9673648B2 (en) 2002-11-22 2017-06-06 Milwaukee Electric Tool Corporation Lithium-based battery pack for a hand held power tool
US7321219B2 (en) 2002-11-22 2008-01-22 Milwaukee Electric Tool Corporation Method and system for battery charging employing a semiconductor switch
US7323847B2 (en) 2002-11-22 2008-01-29 Milwaukee Electric Tool Corporation Method and system of charging multi-cell lithium-based batteries
US11196080B2 (en) 2002-11-22 2021-12-07 Milwaukee Electric Tool Corporation Method and system for battery protection
US9660293B2 (en) 2002-11-22 2017-05-23 Milwaukee Electric Tool Corporation Method and system for battery protection
US7425816B2 (en) 2002-11-22 2008-09-16 Milwaukee Electric Tool Corporation Method and system for pulse charging of a lithium-based battery
US7508167B2 (en) 2002-11-22 2009-03-24 Milwaukee Electric Tool Corporation Method and system for charging multi-cell lithium-based batteries
US11063446B2 (en) 2002-11-22 2021-07-13 Milwaukee Electric Tool Corporation Method and system for charging multi-cell lithium-based battery packs
US7554290B2 (en) 2002-11-22 2009-06-30 Milwaukee Electric Tool Corporation Lithium-based battery pack for a hand-held power tool
US7557535B2 (en) 2002-11-22 2009-07-07 Milwaukee Electric Tool Corporation Lithium-based battery for a hand held power tool
US7589500B2 (en) 2002-11-22 2009-09-15 Milwaukee Electric Tool Corporation Method and system for battery protection
US7667437B2 (en) 2002-11-22 2010-02-23 Milwaukee Electric Tool Corporation Method and system for protection of a lithium-based multicell battery pack including a heat sink
US7714538B2 (en) 2002-11-22 2010-05-11 Milwaukee Electric Tool Corporation Battery pack
US10998586B2 (en) 2002-11-22 2021-05-04 Milwaukee Electric Tool Corporation Lithium-based battery pack including a balancing circuit
US10886762B2 (en) 2002-11-22 2021-01-05 Milwaukee Electric Tool Corporation Lithium-based battery pack for a hand held power tool
US10862327B2 (en) 2002-11-22 2020-12-08 Milwaukee Electric Tool Corporation Lithium-based battery pack for a hand held power tool
US10714948B2 (en) 2002-11-22 2020-07-14 Milwaukee Electric Tool Corporation Method and system for charging multi-cell lithium-based battery packs
US10593991B2 (en) 2002-11-22 2020-03-17 Milwaukee Electric Tool Corporation Method and system for battery protection
US7944181B2 (en) 2002-11-22 2011-05-17 Milwaukee Electric Tool Corporation Battery pack
US7944173B2 (en) 2002-11-22 2011-05-17 Milwaukee Electric Tool Corporation Lithium-based battery pack for a high current draw, hand held power tool
US9379569B2 (en) 2002-11-22 2016-06-28 Milwaukee Electric Tool Corporation Lithium-battery pack for a hand held power tool
US9680325B2 (en) 2002-11-22 2017-06-13 Milwaukee Electric Tool Corporation Lithium-based battery pack for a hand held power tool
US11469608B2 (en) 2002-11-22 2022-10-11 Milwaukee Electric Tool Corporation Lithium-based battery pack for a hand held power tool
US10566810B2 (en) 2002-11-22 2020-02-18 Milwaukee Electric Tool Corporation Lithium-based battery pack for a hand held power tool
US8154249B2 (en) 2002-11-22 2012-04-10 Milwaukee Electric Tool Corporation Battery pack
US8207702B2 (en) 2002-11-22 2012-06-26 Milwaukee Electric Tool Corporation Lithium-based battery pack for a hand held power tool
US10536022B2 (en) 2002-11-22 2020-01-14 Milwaukee Electric Tool Corporation Lithium-based battery pack for a hand held power tool
US8269459B2 (en) 2002-11-22 2012-09-18 Milwaukee Electric Tool Corporation Lithium-based battery pack for a high current draw, hand held power tool
US10431857B2 (en) 2002-11-22 2019-10-01 Milwaukee Electric Tool Corporation Lithium-based battery pack
US10374443B2 (en) 2002-11-22 2019-08-06 Milwaukee Electric Tool Corporation Method and system for charging multi-cell lithium-based battery packs
US8450971B2 (en) 2002-11-22 2013-05-28 Milwaukee Electric Tool Corporation Lithium-based battery pack for a hand held power tool
US8471532B2 (en) 2002-11-22 2013-06-25 Milwaukee Electric Tool Corporation Battery pack
US8487585B2 (en) 2002-11-22 2013-07-16 Milwaukee Electric Tool Corporation Battery pack
US8525479B2 (en) 2002-11-22 2013-09-03 Milwaukee Electric Tool Corporation Method and system for charging multi-cell lithium-based batteries
US10224566B2 (en) 2002-11-22 2019-03-05 Milwaukee Electric Tool Corporation Method and system for battery protection
US10218194B2 (en) 2002-11-22 2019-02-26 Milwaukee Electric Tool Corporation Lithium-based battery pack for a hand held power tool
US8653790B2 (en) 2002-11-22 2014-02-18 Milwaukee Electric Tool Corporation Battery pack
US7952326B2 (en) 2002-11-22 2011-05-31 Milwaukee Electric Tool Corporation Method and system for battery protection employing over-discharge control
US10141614B2 (en) 2002-11-22 2018-11-27 Milwaukee Electric Tool Corporation Battery pack
US8822067B2 (en) 2002-11-22 2014-09-02 Milwaukee Electric Tool Corporation Battery Pack
US10097026B2 (en) 2002-11-22 2018-10-09 Milwaukee Electric Tool Corporation Lithium-based battery pack for a hand held power tool
US10008864B2 (en) 2002-11-22 2018-06-26 Milwaukee Electric Tool Corporation Method and system for charging multi-cell lithium-based battery packs
US9018903B2 (en) 2002-11-22 2015-04-28 Milwaukee Electric Tool Corporation Lithium-based battery pack for a hand held power tool
US9048515B2 (en) 2002-11-22 2015-06-02 Milwaukee Electric Tool Corporation Battery pack
US9112248B2 (en) 2002-11-22 2015-08-18 Milwaukee Electric Tool Corporation Method and system for battery protection
US9118189B2 (en) 2002-11-22 2015-08-25 Milwaukee Electric Tool Corporation Method and system for charging multi-cell lithium-based battery packs
US9941718B2 (en) 2002-11-22 2018-04-10 Milwaukee Electric Tool Corporation Lithium-based battery pack for a hand held power tool
US9819051B2 (en) 2002-11-22 2017-11-14 Milwaukee Electric Tool Corporation Method and system for battery protection
US9793583B2 (en) 2002-11-22 2017-10-17 Milwaukee Electric Tool Corporation Lithium-based battery pack
US7999510B2 (en) 2002-11-22 2011-08-16 Milwaukee Electric Tool Corporation Lithium-based battery pack for a high current draw, hand held power tool
US9368842B2 (en) 2002-11-22 2016-06-14 Milwaukee Electric Tool Corporation Battery pack
GB2408396A (en) * 2003-11-19 2005-05-25 Milwaukee Electric Tool Corp Battery pack and charge equaliser
GB2420031A (en) * 2003-11-19 2006-05-10 Milwaukee Electric Tool Corp Battery pack for a cordless power tool
JP2008515364A (en) * 2004-09-24 2008-05-08 コンセプション エ デヴェロップマン ミシュラン ソシエテ アノニム Detachable charge control circuit for balancing the voltage of series connected supercapacitors
EP1878084A4 (en) * 2005-04-15 2014-05-07 Lg Chemical Ltd Switching circuit for balancing of battery cell
WO2006110008A1 (en) 2005-04-15 2006-10-19 Lg Chem, Ltd. Switching circuit for balancing of battery cell
EP1878084A1 (en) * 2005-04-15 2008-01-16 LG Chem, Ltd. Switching circuit for balancing of battery cell
US8232767B2 (en) 2005-12-02 2012-07-31 Sk Innovation Co., Ltd. Apparatus and method of testing for battery
JP2009517686A (en) * 2005-12-02 2009-04-30 エスケー エナジー 株式会社 Battery inspection apparatus and method
JP2007294322A (en) * 2006-04-26 2007-11-08 Matsushita Electric Ind Co Ltd Electric storage device, portable apparatus, and electric vehicle
US8134337B2 (en) 2006-08-04 2012-03-13 Panasonic Corporation Electricity storage device having equalization voltage circuit
KR101024138B1 (en) * 2006-08-04 2011-03-22 파나소닉 주식회사 Electricity storage device
JP2008048496A (en) * 2006-08-11 2008-02-28 Yazaki Corp State of charge adjusting apparatus
JP4560501B2 (en) * 2006-08-11 2010-10-13 矢崎総業株式会社 Charge state adjustment device
DE102007036146B4 (en) * 2006-08-11 2021-01-28 Yazaki Corporation State of charge adjustment device
US7859227B2 (en) 2006-08-11 2010-12-28 Yazaki Corporation State-of-charge adjusting apparatus
JP2010535010A (en) * 2007-07-26 2010-11-11 エルジー・ケム・リミテッド Battery cell charge amount balancing apparatus and method
JP2011501640A (en) * 2007-10-16 2011-01-06 エスケー エナジー カンパニー リミテッド Battery management combined with voltage sensor and equal charging device
WO2012146365A1 (en) * 2011-04-29 2012-11-01 Thyssenkrupp System Engineering Gmbh Method for balancing at least two electrical energy storage cells and balancing device
JP2013013291A (en) * 2011-06-30 2013-01-17 Hitachi Ltd Inter-battery voltage equalization circuit
JP2014528692A (en) * 2011-10-12 2014-10-27 日本テキサス・インスツルメンツ株式会社 Inductor-based active balancing for batteries and other power supplies
EP2827468A4 (en) * 2012-03-16 2015-12-23 Yazaki Corp Equalization device
CN104303390A (en) * 2012-03-16 2015-01-21 矢崎总业株式会社 Equalization device
WO2013137229A1 (en) * 2012-03-16 2013-09-19 矢崎総業株式会社 Equalization device
JP2013220009A (en) * 2012-03-16 2013-10-24 Yazaki Corp Equalization device
WO2014087451A1 (en) * 2012-12-04 2014-06-12 日本電気株式会社 Cell controller, power storage device, and power storage method
EP3107182A4 (en) * 2014-02-07 2018-01-24 Nec Corporation Voltage difference correction device, voltage difference correction method
JP2015186331A (en) * 2014-03-24 2015-10-22 Fdkリチウムイオンキャパシタ株式会社 balance correction circuit, power storage module and balance correction method
US9780577B2 (en) 2014-05-26 2017-10-03 Toyota Jidosha Kabushiki Kaisha Electric power supply control device and electric power supply control method
KR101610927B1 (en) * 2014-12-15 2016-04-08 현대오트론 주식회사 Apparatus and method for battery cell balancing
CN106004493A (en) * 2016-06-07 2016-10-12 冯旋宇 Charging control method and system for electric vehicle
CN113517736A (en) * 2021-05-31 2021-10-19 上海航天电源技术有限责任公司 Battery pack maintenance method
CN113517736B (en) * 2021-05-31 2023-04-07 上海航天电源技术有限责任公司 Battery pack maintenance method

Also Published As

Publication number Publication date
JP3803042B2 (en) 2006-08-02

Similar Documents

Publication Publication Date Title
JP3803042B2 (en) Apparatus and method for adjusting state of charge of battery pack
US7443138B2 (en) Battery control device for equalization of cell voltages
US7714539B2 (en) Apparatus for regulating state of charge in battery assembly
KR101146369B1 (en) Balancing method of battery pack, balancing system of battery cells and battery pack
US8928174B2 (en) Battery control apparatus, battery control method, and vehicle
JP5313245B2 (en) Battery cell charge amount balancing apparatus and method
US8102153B2 (en) Battery voltage adjusting device
JP5104416B2 (en) Abnormality detection device for battery pack
US20060214636A1 (en) Method and apparatus for equalizing secondary cells
JP7100002B2 (en) Battery control unit and battery system
US11277012B2 (en) Battery control unit and battery system
US10320204B2 (en) Electric storage apparatus and electric-storage controlling method
JPH07255134A (en) Series connection circuit of secondary cells
JPH0819188A (en) Charging apparatus of combined battery
JP7096193B2 (en) Battery control unit and battery system
US20210399558A1 (en) Battery control unit and battery system
US11843267B2 (en) Battery control unit and battery system
JPH1198698A (en) Charging/discharging device for battery assembly
JP3458740B2 (en) Battery charging and discharging devices
JP3705274B2 (en) Abnormality detection device for battery pack
JP2000270483A (en) Charging condition controller of battery set
JP2002142375A (en) Power storage system and control method therefor
JP4196210B2 (en) Charge / discharge control device for battery pack
JP5601568B2 (en) Voltage regulation system
JPH03173323A (en) Secondary battery charger

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041026

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060322

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060425

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060501

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 3803042

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100512

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110512

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120512

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130512

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130512

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees