JP2002367797A - X-ray tube device - Google Patents

X-ray tube device

Info

Publication number
JP2002367797A
JP2002367797A JP2001172541A JP2001172541A JP2002367797A JP 2002367797 A JP2002367797 A JP 2002367797A JP 2001172541 A JP2001172541 A JP 2001172541A JP 2001172541 A JP2001172541 A JP 2001172541A JP 2002367797 A JP2002367797 A JP 2002367797A
Authority
JP
Japan
Prior art keywords
insulating oil
ray tube
cooling
storage material
heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001172541A
Other languages
Japanese (ja)
Inventor
Hidefumi Okamura
秀文 岡村
Akiyoshi Ohira
昭義 大平
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Healthcare Manufacturing Ltd
Original Assignee
Hitachi Medical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Medical Corp filed Critical Hitachi Medical Corp
Priority to JP2001172541A priority Critical patent/JP2002367797A/en
Publication of JP2002367797A publication Critical patent/JP2002367797A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide an X-ray tube device having higher efficiency of cooling and a downsized cooling device. SOLUTION: The X-ray tube device consists of an X-ray tube device body 10 containing an X-ray tube in a tube container and an insulation oil cooler 11 cooling insulation oil, of which, the insulation oil cooler 11 is equipped with an insulation oil cooling part 14, an insulation oil pump 12 and an insulation oil piping 16. The insulation oil cooling part 14 contains an insulation oil path 20 having a rectangular tubular body, to one of the outside faces of which, a thermoelectric element 21 is joined, and a thermal storage material container 23 filled with a thermal storage material 22 is joined the other, and a thermoelectric element 24 is joined on a surface of the thermal storage material container 23. Insulation oil of the insulation oil path 20 is cooled by the thermoelectric element 21 and the thermal storage material 22.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は回転陽極X線管を内
挿したX線管装置に係り、特に絶縁油の冷却装置を小
形、高効率化したX線管装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an X-ray tube apparatus in which a rotating anode X-ray tube is inserted, and more particularly to an X-ray tube apparatus in which a cooling device for insulating oil has a small size and high efficiency.

【0002】[0002]

【従来の技術】従来のX線管装置の絶縁油の冷却装置の
構成例の概念図を図9〜図11に示す。図9は、絶縁油−空
気熱交換器を使用した冷却装置の例である。図9におい
て、第1の絶縁油の冷却装置(以下、空冷式冷却装置と
いう)51は、絶縁油ポンプ52と、絶縁油−空気熱交換器
53と、送風機54と、絶縁油配管55とから構成される。こ
の空冷式冷却装置51では、X線管装置本体50から絶縁油
配管55を通して外部に導き出された絶縁油は、油搬送装
置としての絶縁油ポンプ52によって絶縁油−空気熱交換
器53に送られ、絶縁油−空気熱交換器53内部にて送風機
54によって冷却された後、絶縁油配管55を通ってX線管
装置本体50に戻される。
2. Description of the Related Art FIGS. 9 to 11 show conceptual diagrams of a configuration example of a conventional cooling device for insulating oil of an X-ray tube device. FIG. 9 is an example of a cooling device using an insulating oil-air heat exchanger. In FIG. 9, a first insulating oil cooling device (hereinafter, referred to as an air cooling type cooling device) 51 includes an insulating oil pump 52 and an insulating oil-air heat exchanger.
53, a blower 54, and an insulating oil pipe 55. In the air-cooled cooling device 51, the insulating oil led out from the X-ray tube device main body 50 through the insulating oil pipe 55 is sent to the insulating oil-air heat exchanger 53 by the insulating oil pump 52 as an oil transfer device. , Insulating oil-air heat exchanger 53, blower inside
After being cooled by 54, it is returned to the X-ray tube apparatus main body 50 through the insulating oil pipe 55.

【0003】この空冷式冷却装置51は、主に1〜4kW程度
の発熱をするX線管装置の冷却に使用されているが、そ
の冷却能力は周囲の気温によリ著しく変化する。例え
ば、絶縁油温度75℃、周囲の気温25℃の条件で1kWの冷
却能力を持つ空冷式冷却装置51では、周囲の気温が65℃
まで上昇すると、その冷却能力は約300W程度まで低下す
る。現状のX線診断装置では、X線管装置はその表面の
温度上昇による火傷を防止するため、及び手術中の血液
の飛散からX線管装置の清潔性を保つためなどの理由
で、専用のカバーの内部に設置されている。しかし、X
線管装置がカバーの内部に設置されていると、熱放散が
悪いため、X線管装置の周囲の気温が上昇し、50℃以上
まで上昇することがある。このため、対策として、空冷
式冷却装置51の高性能化が必要であるが、この空冷式冷
却装置51を高性能化しようとすると装置外形の大型化を
招くことになる。
[0003] The air-cooled cooling device 51 is mainly used for cooling an X-ray tube device which generates heat of about 1 to 4 kW, but its cooling capacity varies significantly depending on the ambient temperature. For example, in an air-cooled cooling device 51 having a cooling capacity of 1 kW under conditions of an insulating oil temperature of 75 ° C. and an ambient temperature of 25 ° C., the ambient temperature is 65 ° C.
When it rises, its cooling capacity drops to about 300W. In the current X-ray diagnostic apparatus, the X-ray tube apparatus is dedicated to preventing burns due to a rise in temperature of its surface, and for keeping the X-ray tube apparatus clean from scattering of blood during surgery. Installed inside the cover. But X
If the X-ray tube device is installed inside the cover, heat dissipation is poor, so that the temperature around the X-ray tube device may rise to 50 ° C. or more. Therefore, as a countermeasure, it is necessary to improve the performance of the air-cooled cooling device 51. However, if the performance of the air-cooled cooling device 51 is to be improved, the outer shape of the device will be increased.

【0004】図12には、従来のX線診断装置の一例の外
観図を示す。このX線診断装置70はC型アーム71を備え
た装置で、C型アーム71の両端にはX線管装置を内蔵す
るX線発生部72とX線受光部73が取り付けられている。
このようなX線診断装置70において、X線管装置が大型
化すると、これを内蔵するX線発生部72が大型化するこ
とになり、この大型のX線発生部72を先端に取り付けた
C型アーム71も堅牢な構造にする必要性が生じ、またC型
アーム71を取り扱う医師や放射線技師(以下、両者を纏
めて術者という)にとっても取り扱いにくくなるという
問題がある。
FIG. 12 shows an external view of an example of a conventional X-ray diagnostic apparatus. The X-ray diagnostic apparatus 70 includes a C-arm 71. At both ends of the C-arm 71, an X-ray generating unit 72 and an X-ray receiving unit 73 each having a built-in X-ray tube device are attached.
In such an X-ray diagnostic apparatus 70, when the size of the X-ray tube device is increased, the size of the X-ray generator 72 containing the X-ray tube device is increased, and the large-sized X-ray generator 72 is attached to the tip.
There is a need for the C-arm 71 to have a robust structure, and it becomes difficult for a doctor or a radiological technologist who handles the C-arm 71 (hereinafter, both are collectively referred to as an operator) to be difficult to handle.

【0005】図10は、絶縁油−冷却水熱交換器を使用し
た冷却装置の例である。図10において、第2の絶縁油の
冷却装置(以下、水冷式冷却装置という)58は、絶縁油
ポンプ52と、絶縁油−冷却水熱交換器59と、冷却水ポン
プ60と、冷却水−空気熱交換器62と、絶縁油配管55と、
冷却水配管61とから構成される。この水冷式冷却装置58
では、X線管装置本体50から絶縁油ポンプ52によって搬
出された絶縁油は絶縁油−冷却水熱交換器59で冷却水に
よって冷却された後、絶縁油配管55を通してX線管装置
本体50に戻される。一方、絶縁油−冷却水熱交換器59に
て絶縁油との熱交換を行った冷却水は冷却水ポンプ60に
よって冷却水配管61を通して冷却水−空気熱交換器62に
搬送され、送風機53によって冷却される。
FIG. 10 shows an example of a cooling device using an insulating oil-cooling water heat exchanger. In FIG. 10, a second insulating oil cooling device (hereinafter, referred to as a water-cooled cooling device) 58 includes an insulating oil pump 52, an insulating oil-cooling water heat exchanger 59, a cooling water pump 60, and a cooling water pump. Air heat exchanger 62, insulating oil pipe 55,
And a cooling water pipe 61. This water-cooled cooling device 58
Then, the insulating oil carried out by the insulating oil pump 52 from the X-ray tube device main body 50 is cooled by the cooling water in the insulating oil-cooling water heat exchanger 59, and then is passed through the insulating oil pipe 55 to the X-ray tube device main body 50. Will be returned. On the other hand, the cooling water that has exchanged heat with the insulating oil in the insulating oil-cooling water heat exchanger 59 is conveyed to the cooling water-air heat exchanger 62 through the cooling water pipe 61 by the cooling water pump 60, and is blown by the blower 53. Cooled.

【0006】この水冷式冷却装置58は、主に2kW程度以
上の発熱をするX線管装置の冷却に使用されており、冷
却水を用いて絶縁油を冷却しているため、高冷却能力が
得られるとともに、冷却能力の変動も小さい。しかし、
冷却水−空気熱交換器62を使用するため、冷却装置全体
が大型となり、X線診断装置の外部に冷却水−空気熱交
換器62を別ユニットとして設置する必要があり、小型の
X線診断装置に搭載するのは困難である。
The water-cooled cooling device 58 is mainly used for cooling an X-ray tube device that generates heat of about 2 kW or more. Since cooling oil is used to cool insulating oil, high cooling capacity is required. As well as the fluctuation of the cooling capacity is small. But,
Since the cooling water-air heat exchanger 62 is used, the entire cooling device becomes large, and the cooling water-air heat exchanger 62 needs to be installed as a separate unit outside the X-ray diagnostic device. It is difficult to mount on a device.

【0007】図11は、冷凍機を熱交換器として使用した
冷却装置の一例である。図11において、第3の絶縁油の
冷却装置(以下、冷凍機使用冷却装置という)65は、絶
縁油ポンプ52と、絶縁油−冷却水熱交換器59と、冷却水
ポンプ60と、冷凍機66と、絶縁油配管55と、冷却水配管
61とから構成される。この冷凍機使用冷却装置65では、
図10の水冷式冷却装置58の冷却水−空気熱交換器59の代
わりに冷凍機66を使用したもので、冷却水を冷凍機66に
よって冷却する。冷凍機使用冷却装置65では、冷凍機66
の使用により冷却水を生成する部分(以下、チラーユニ
ットという)の小型化が可能であり、更に水冷式冷却装
置58に比べて低温の冷却水を生成することができるた
め、絶縁油−冷却水熱交換器59を小型化することもでき
る。このため、冷凍機使用冷却装置65全体を図12に示す
X線診断装置70のC型アーム71先端に取り付けるX線発
生部72内への設置も可能と考えられていた。
FIG. 11 shows an example of a cooling device using a refrigerator as a heat exchanger. In FIG. 11, a third insulating oil cooling device (hereinafter referred to as a cooling device using a refrigerator) 65 includes an insulating oil pump 52, an insulating oil-cooling water heat exchanger 59, a cooling water pump 60, and a refrigerator. 66, insulating oil piping 55, and cooling water piping
It consists of 61. In this refrigerator using cooling device 65,
A refrigerator 66 is used in place of the cooling water-air heat exchanger 59 of the water-cooled cooling device 58 in FIG. 10, and the cooling water is cooled by the refrigerator 66. In the cooling device 65 using a refrigerator, the refrigerator 66
The cooling water generation unit (hereinafter, referred to as a chiller unit) can be reduced in size by using the cooling water, and the cooling water can be generated at a lower temperature than the water-cooled cooling device 58. The heat exchanger 59 can be downsized. For this reason, it has been considered that the entire cooling device 65 using the refrigerator can be installed in the X-ray generating unit 72 attached to the tip of the C-arm 71 of the X-ray diagnostic device 70 shown in FIG.

【0008】[0008]

【発明が解決しようとする課題】しかし、C型アーム71
はX線診断時に任意の方向に移動されるため、このとき
に冷凍機66に含まれる圧縮機の姿勢が傾く可能性があ
る。圧縮機の姿勢が傾いた状態で冷凍機66を使用する
と、圧縮機内部の潤滑油が冷媒中に混入し、冷凍機66の
性能低下や寿命短縮を引き起こすおそれがある。これを
解決するためには圧縮機の姿勢を制御する機構を別に設
けるか、又はチラーユニットをX線診断装置70の外部に
外部ユニットとして設置する必要があり、冷却装置全体
としての大型化を招いてしまう問題がある。
However, the C-arm 71
Is moved in an arbitrary direction at the time of X-ray diagnosis, and at this time, the attitude of the compressor included in the refrigerator 66 may be inclined. If the refrigerator 66 is used in a state where the attitude of the compressor is inclined, lubricating oil inside the compressor may be mixed into the refrigerant, which may cause a decrease in the performance of the refrigerator 66 and a shortened life. In order to solve this, it is necessary to separately provide a mechanism for controlling the attitude of the compressor, or to install the chiller unit as an external unit outside the X-ray diagnostic apparatus 70, which leads to an increase in the size of the entire cooling device. There is a problem.

【0009】以上説明した如く、従来のX線管装置の冷
却装置では、大容量X線管装置の発熱に対し充分な冷却
を行うためには、冷却装置の大型化が避けられなかっ
た。このため、本発明では、X線管装置の使用中の発熱
量が経時的に一定ではなく、大幅に変動することを利用
して、X線管装置の発熱量の変化にレスポンス良く対応
してX線管装置を冷却することにより、X線管装置の冷
却の高効率化と、冷却装置の小型化を図ることを目的と
する。
As described above, in the conventional cooling apparatus for the X-ray tube apparatus, in order to sufficiently cool the heat generated by the large-capacity X-ray tube apparatus, it is inevitable that the cooling apparatus is enlarged. For this reason, the present invention utilizes the fact that the calorific value during use of the X-ray tube device is not constant over time but fluctuates greatly, and responds to the change in the calorific value of the X-ray tube device with good response. An object of the present invention is to increase the efficiency of cooling the X-ray tube device and to reduce the size of the cooling device by cooling the X-ray tube device.

【0010】[0010]

【課題を解決するための手段】上記目的を達成するた
め、本発明のX線管装置は、X線管と、X線管を内包す
るX線管容器(以下、管容器という)と、X線管を管容
器の内壁に絶縁支持する支持部材と、X線管の陽極を回
転させるためのステータコイルと、X線管を絶縁し冷却
する絶縁油から構成されるX線管装置本体と、管容器内
部の絶縁油を外部に導き出し、管容器外部にて冷却した
後に管容器内部に戻す絶縁油冷却器を備えたX線管装置
において、前記絶縁油冷却器が絶縁油を絶縁油配管を通
して管容器外部に導き出すための絶縁油搬送手段と、絶
縁油を冷却するための絶縁油冷却部を備え、該絶縁油冷
却部に含まれる絶縁油流路を流れる絶縁油を冷却するた
めに、該絶縁油流路の外表面及びその周辺部の少なくと
も一方の部分に熱電素子が設置されている(請求項
1)。
To achieve the above object, an X-ray tube apparatus according to the present invention comprises an X-ray tube, an X-ray tube container containing the X-ray tube (hereinafter referred to as a tube container), and an X-ray tube. A support member for insulatingly supporting the X-ray tube on the inner wall of the tube container, a stator coil for rotating an anode of the X-ray tube, an X-ray tube device main body including insulating oil for insulating and cooling the X-ray tube; In an X-ray tube apparatus provided with an insulating oil cooler that guides the insulating oil inside the tube container to the outside, cools the outside of the tube container, and then returns the oil to the inside of the tube container, the insulating oil cooler passes the insulating oil through the insulating oil pipe. Insulating oil conveying means for leading out to the outside of the tube container, and an insulating oil cooling unit for cooling the insulating oil, and for cooling the insulating oil flowing through the insulating oil flow path included in the insulating oil cooling unit, Thermoelectric power is applied to the outer surface of the insulating oil flow path and at least one of its peripheral parts. Child is placed (claim
1).

【0011】この構成では、絶縁油冷却器の絶縁油冷却
部を構成する絶縁油流路に熱電素子が設置されているの
で、この熱電素子を動作させることにより、効率的に絶
縁油の冷却を行うことができる。また、熱電素子は小型
軽量であるので、これを設置した絶縁油冷却部を小型化
することができる。また、熱電素子では音を発生する部
分がないので装置としての騒音を低減することができ
る。
In this configuration, since the thermoelectric element is provided in the insulating oil flow path constituting the insulating oil cooling section of the insulating oil cooler, the cooling of the insulating oil is efficiently performed by operating the thermoelectric element. It can be carried out. In addition, since the thermoelectric element is small and lightweight, the size of the insulating oil cooling unit provided with the thermoelectric element can be reduced. In addition, since the thermoelectric element has no portion that generates sound, the noise of the device can be reduced.

【0012】本発明のX線管装置では更に、前記絶縁油
流路内表面の一部又は全部に、絶縁油の流れに乱流を発
生させる乱流発生機構を設けている(請求項2)。ま
た、前記乱流発生機構は前記絶縁油流路の内表面に棒状
の突起物を複数個設けたものである。また、前記乱流発
生機構は前記絶縁油流路の内表面に複数個の邪魔板を設
けたものである。
In the X-ray tube apparatus according to the present invention, a turbulence generating mechanism for generating a turbulent flow in the flow of the insulating oil is provided on a part or all of the inner surface of the insulating oil flow path. . Further, the turbulence generating mechanism has a plurality of rod-shaped protrusions provided on the inner surface of the insulating oil flow path. Further, the turbulence generating mechanism has a plurality of baffle plates provided on an inner surface of the insulating oil flow path.

【0013】この構成では、絶縁油流路の内表面に乱流
発生機構として棒状の突起物や邪魔板などを複数個設け
ているので、絶縁油流路内で絶縁油の流れに乱流が発生
するため、絶縁油と絶縁油流路の内壁との間の熱交換率
が向上し、絶縁油の放熱効率が向上する。
In this configuration, since a plurality of rod-shaped projections and baffles are provided as a turbulent flow generation mechanism on the inner surface of the insulating oil flow path, the turbulent flow of the insulating oil flows in the insulating oil flow path. As a result, the heat exchange rate between the insulating oil and the inner wall of the insulating oil flow path is improved, and the heat radiation efficiency of the insulating oil is improved.

【0014】本発明のX線管装置では更に、前記絶縁油
流路が少なくとも1つの平板状部を有し、該平板状部は
高熱伝導率の材料で構成され、該平板状部の少なくとも
1つの外表面に前記熱電素子が設置されている(請求項
3)。
In the X-ray tube apparatus according to the present invention, the insulating oil flow path has at least one flat plate, the flat plate is made of a material having high thermal conductivity, and at least one of the flat plates is formed.
The thermoelectric element is installed on one outer surface.
3).

【0015】この構成では、絶縁油冷却部の絶縁油流路
の平板状部の外表面に熱電素子が設置され、平板状部が
高熱導率の材料で構成されているので、絶縁油流路内の
絶縁油から熱電素子の吸熱面に熱が効率良く伝達して吸
熱されるので、熱電素子によって絶縁油を効率良く冷却
することができる。
In this configuration, the thermoelectric element is installed on the outer surface of the flat portion of the insulating oil flow path of the insulating oil cooling section, and the flat plate portion is made of a material having a high thermal conductivity. Since heat is efficiently transmitted from the insulating oil inside to the heat-absorbing surface of the thermoelectric element and is absorbed, the insulating oil can be efficiently cooled by the thermoelectric element.

【0016】本発明のX線管装置では更に、前記絶縁油
流路が少なくとも1つの平板状部を有し、該平板状部は
高熱伝導率の材料で構成され、該平板状部の少なくとも
1つの外表面に融解潜熱を利用した蓄熱材を収容した蓄
熱材容器が接合され、該蓄熱材容器の少なくとも1つの
外表面に前記熱電素子が設置されている(請求項4)。
また、前記蓄熱材としては、ポリエチレングリコール、
塩化カルシウム水溶液、パラフィン、水などの0℃から3
0℃までの温度で融解し、融解潜熱の大きい材料のうち
の少なくとも1つが用いられる。また、前記蓄熱材容器
の少なくとも前記絶縁油流路との接合する面は高熱伝導
率の材料で構成されている。
In the X-ray tube apparatus according to the present invention, the insulating oil flow path has at least one flat plate, and the flat plate is made of a material having high thermal conductivity.
A heat storage material container containing a heat storage material utilizing latent heat of fusion is joined to one outer surface, and the thermoelectric element is provided on at least one outer surface of the heat storage material container (claim 4).
Further, as the heat storage material, polyethylene glycol,
Calcium chloride solution, paraffin, water, etc. from 0 ℃ to 3
At least one material that melts at temperatures up to 0 ° C. and has a high latent heat of fusion is used. Further, at least a surface of the heat storage material container to be joined to the insulating oil flow path is made of a material having high thermal conductivity.

【0017】この構成では、絶縁油冷却器の絶縁油流路
の外表面にポリエチレングリコールなどの融解潜熱の大
きい蓄熱材を収容した蓄熱材容器が接合されているの
で、蓄熱材の大きな融解潜熱によって高温に上昇した絶
縁油は効率良く冷却される。蓄熱材の融解潜熱による熱
容量が非常に大きいため、高温に温度上昇した絶縁油を
急速に冷却することができるので、X線管装置の撮影負
荷時の絶縁油の温度上昇に対し適切に対応できる。
In this configuration, since the heat storage material container containing the heat storage material having a large latent heat of fusion, such as polyethylene glycol, is joined to the outer surface of the insulating oil flow path of the insulating oil cooler, the heat generated by the large latent heat of the heat storage material is used. The insulating oil that has risen to a high temperature is cooled efficiently. Since the heat capacity due to the latent heat of fusion of the heat storage material is very large, the insulating oil whose temperature has risen to a high temperature can be rapidly cooled, so that it is possible to appropriately cope with the temperature rise of the insulating oil during the imaging load of the X-ray tube device .

【0018】本発明のX線管装置では更に、前記絶縁油
流路が少なくとも2つの平板状部を有し、該平板状部は
高熱伝導率の材料で構成され、前記平板状部の一方の外
表面には前記熱電素子が設置され、前記平板状部のもう
一方の外表面には融解潜熱を利用した蓄熱材を収容した
蓄熱材容器が接合され、該蓄熱材容器の少なくとも1つ
の外表面に前記熱電素子が設置されている。また、前記
蓄熱材容器の少なくとも前記絶縁油流路との接合面及び
前記熱電素子の設置面が高熱伝導率の材料で構成されて
いる。
In the X-ray tube apparatus according to the present invention, the insulating oil flow path has at least two flat portions, and the flat portions are made of a material having a high thermal conductivity. The thermoelectric element is installed on the outer surface, and a heat storage material container containing a heat storage material using latent heat of fusion is joined to the other outer surface of the flat plate portion, and at least one outer surface of the heat storage material container The said thermoelectric element is installed. Further, at least a joint surface of the heat storage material container with the insulating oil flow path and a mounting surface of the thermoelectric element are made of a material having high thermal conductivity.

【0019】この構成では、絶縁油冷却器の絶縁油流路
の外表面に、熱電素子と蓄熱材を収容した蓄熱材容器の
両方を接合することによって、熱電素子による冷却と蓄
熱材による冷却を併用しているので、X線管装置への種
々の熱負荷変動に対応した絶縁油の冷却が可能となる。
透視負荷に対しては熱電素子で対応し、撮影負荷に対し
ては蓄熱材で対応することができる。
In this configuration, by joining both the thermoelectric element and the heat storage material container containing the heat storage material to the outer surface of the insulating oil flow path of the insulating oil cooler, cooling by the thermoelectric element and cooling by the heat storage material are performed. Since they are used in combination, it is possible to cool the insulating oil corresponding to various heat load fluctuations on the X-ray tube device.
The see-through load can be handled by a thermoelectric element, and the imaging load can be handled by a heat storage material.

【0020】本発明のX線管装置では更に、前記蓄熱材
容器の内部に複数個のフィンが設置され、前記蓄熱材容
器と前記フィンが高熱伝導率の材料で構成されている。
また、前記フィンは板状体で、前記蓄熱材容器を複数個
の室に仕切るように設置されている。
In the X-ray tube apparatus according to the present invention, a plurality of fins are provided inside the heat storage material container, and the heat storage material container and the fins are made of a material having a high thermal conductivity.
Further, the fin is a plate-like body and is installed so as to partition the heat storage material container into a plurality of chambers.

【0021】この構成では、蓄熱材容器内部に複数個の
フィンが設置されているので、蓄熱材と絶縁油流路及び
熱電素子との熱交換が熱伝導性の良いフィンを介して行
われるため、蓄熱材の溶融時間及び凝固時間が短縮さ
れ、蓄熱材による冷却効率が向上する。
In this configuration, since a plurality of fins are provided inside the heat storage material container, heat exchange between the heat storage material, the insulating oil flow path, and the thermoelectric element is performed through the fins having good heat conductivity. In addition, the melting time and the solidification time of the heat storage material are reduced, and the cooling efficiency of the heat storage material is improved.

【0022】本発明のX線管装置では更に、前記熱電素
子の放熱面にヒートシンクなどの放熱部材を設置する。
また、前記放熱部材に放熱のための小型送風機を設置す
る。この構成では、熱電素子の放熱面にヒートシンクな
どの放熱部材が設置され、更に小型送風機で冷却される
ので、熱電素子の放熱効率が向上する。
In the X-ray tube apparatus according to the present invention, a heat radiating member such as a heat sink is further provided on the heat radiating surface of the thermoelectric element.
In addition, a small blower for heat dissipation is installed on the heat dissipation member. In this configuration, a heat radiating member such as a heat sink is provided on the heat radiating surface of the thermoelectric element, and is further cooled by a small blower, so that the heat radiating efficiency of the thermoelectric element is improved.

【0023】[0023]

【発明の実施の形態】以下、本発明の実施例を添付図面
を用いて説明する。図1に、本発明に係るX線管装置の
第1の実施例の構成の概念図を示す。図1の第1の実施例
は従来例と比べ絶縁油冷却器の構成が異なる。図1にお
いて、絶縁油冷却器11は、絶縁油ポンプ12と、絶縁油冷
却部14と、絶縁油配管16とから構成される。本実施例で
は、絶縁油冷却部14の構成に特徴があり、絶縁油ポンプ
12、絶縁油配管16は従来品とほぼ同様な構成である。
Embodiments of the present invention will be described below with reference to the accompanying drawings. FIG. 1 shows a conceptual diagram of the configuration of a first embodiment of the X-ray tube apparatus according to the present invention. The first embodiment shown in FIG. 1 differs from the conventional example in the configuration of the insulating oil cooler. In FIG. 1, an insulating oil cooler 11 includes an insulating oil pump 12, an insulating oil cooling unit 14, and an insulating oil pipe 16. This embodiment is characterized by the configuration of the insulating oil cooling unit 14,
12, the insulating oil pipe 16 has substantially the same configuration as the conventional product.

【0024】図1において、絶縁油冷却部14は、絶縁油
配管16よりも流路を広げた絶縁油流路20と、絶縁油流路
20の一つの外表面に貼り付けられた第1の熱電素子21
と、絶縁油流路20の他の外表面に結合された蓄熱材容器
23に収容された蓄熱材22と、蓄熱材容器23の外表面に貼
り付けられた第2の熱電素子24とから構成される。
In FIG. 1, the insulating oil cooling section 14 includes an insulating oil flow path 20 having a flow path wider than the insulating oil pipe 16 and an insulating oil flow path.
First thermoelectric element 21 attached to one outer surface of 20
And a heat storage material container coupled to the other outer surface of the insulating oil flow path 20
The heat storage material 22 accommodated in the heat storage material container 23 and a second thermoelectric element 24 attached to the outer surface of the heat storage material container 23.

【0025】第1の実施例の絶縁油冷却部14の構造の一
例を図2に示す。図2において、絶縁油流路20はその大部
分が長方形管状体20aから成り、その両端に絶縁油配管1
6が接続され、その内部をX線管装置本体10から絶縁油
ポンプ12によって搬出された絶縁油26が流れる。絶縁油
流路20は熱伝導性の良い金属から成り、その長方形管状
体20aの幅の広い外表面の一方には第1の熱電素子21が直
接貼り付けられ、他方には、蓄熱材22を充填した蓄熱材
容器23が結合されている。蓄熱材容器23の長方形管状体
20aと結合された面と対向する面の外表面には第2の熱電
素子24が貼り付けられている。
FIG. 2 shows an example of the structure of the insulating oil cooling section 14 of the first embodiment. In FIG. 2, the insulating oil flow path 20 is mostly composed of a rectangular tubular body 20a, and an insulating oil pipe 1 is provided at both ends thereof.
6, the insulating oil 26 carried out by the insulating oil pump 12 from the X-ray tube apparatus main body 10 flows therein. The insulating oil flow path 20 is made of a metal having good heat conductivity, the first thermoelectric element 21 is directly attached to one of the wide outer surfaces of the rectangular tubular body 20a, and the heat storage material 22 is attached to the other. The filled heat storage material container 23 is connected. Rectangular body of heat storage material container 23
A second thermoelectric element 24 is attached to the outer surface of the surface facing the surface coupled to 20a.

【0026】上記において、第1の熱電素子21及び第2の
熱電素子24は、冷却を行うために必要な低熱源を確保す
るために使用される。利用可能な熱電素子としては、例
えば冷却能力が60W程度のペルチェ素子が複数個使用さ
れる。図示の例では、第1の熱電素子21として5組、第2
の熱電素子24として5組、合計10組のペルチェ素子を使
用している。冷却能力が60W級のペルチェ素子は市場で
一般的に使用されているもので、板状体としての寸法は
約40mm×40mm程度にすることができる。また、ペルチェ
素子の冷却面(吸熱面)は周囲温度に対して、約30℃低
い温度を作り出すことができる。
In the above description, the first thermoelectric element 21 and the second thermoelectric element 24 are used to secure a low heat source necessary for performing cooling. As usable thermoelectric elements, for example, a plurality of Peltier elements having a cooling capacity of about 60 W are used. In the illustrated example, five pairs of the first thermoelectric elements 21 and the second
As a thermoelectric element 24, a total of 10 sets of Peltier elements are used. Peltier elements having a cooling capacity of 60 W class are generally used in the market, and the dimensions as a plate-like body can be about 40 mm × 40 mm. Further, the cooling surface (heat absorbing surface) of the Peltier element can create a temperature lower by about 30 ° C. than the ambient temperature.

【0027】本実施例においては、第1の熱電素子21の
冷却能力を補うものとして蓄熱材22が使用されている。
この蓄熱材22は絶縁油流路20の一面に結合された蓄熱材
容器23に収容されており、蓄熱材容器23の壁面を通して
絶縁油26を冷却している。蓄熱材22としては、例えば分
子量が600のポリエチレングリコール(以下、PEGと略称
する)が用いられる。このPEGの融点は20.3℃であり、
融解潜熱は162.95kJ/l(lはリットル)である。蓄熱材
容器23の絶縁油流路20と対向する面の外側には上記の如
く、ペルチェ素子5組から成る第2の熱電子24が貼り付け
されている。
In this embodiment, a heat storage material 22 is used to supplement the cooling capacity of the first thermoelectric element 21.
The heat storage material 22 is accommodated in a heat storage material container 23 connected to one surface of the insulating oil flow path 20, and cools the insulating oil 26 through the wall surface of the heat storage material container 23. As the heat storage material 22, for example, polyethylene glycol having a molecular weight of 600 (hereinafter abbreviated as PEG) is used. The melting point of this PEG is 20.3 ° C,
The latent heat of fusion is 162.95 kJ / l (1 is liter). As described above, the second thermoelectrons 24 composed of five sets of Peltier elements are attached to the outside of the surface of the heat storage material container 23 facing the insulating oil flow path 20.

【0028】X線管装置の絶縁油26をこれらのペルチェ
素子から成る熱電素子21、24及びPEGから成る蓄熱材22
を用いて冷却するに際して、冷却しやすい構造とするた
めに、絶縁油流路20の大部分を例えば幅50mm、高さ5m
m、長さ200mmの長方形管状体20aとし、この長方形管状
体20aの幅50mm×長さ200mmの外側の片面に上記のペルチ
ェ素子5組から成る第1の熱電素子21を貼り付けし、長方
形管状体20aの幅50mm×長さ200mmの外側の対向面に蓄熱
材容器23が結合されている。蓄熱材容器23は、内部寸法
が例えば幅50mm、高さ50mm、長さ200mmの金属製の密閉
容器で、内部に蓄熱材22としてのPEGが充填される。蓄
熱材容器23の絶縁油流路20と対向する外表面には上記の
如くペルチェ素子5組から成る第2の熱電素子24が貼り付
けされる。
The insulating oil 26 of the X-ray tube device is filled with the thermoelectric elements 21 and 24 composed of Peltier elements and the heat storage material 22 composed of PEG.
When cooling using, to make the structure easy to cool, most of the insulating oil flow path 20 is, for example, 50 mm in width and 5 m in height
m, a rectangular tubular body 20a having a length of 200 mm, and a first thermoelectric element 21 composed of the above-mentioned five sets of Peltier elements is attached to one outer side of the rectangular tubular body 20a having a width of 50 mm x a length of 200 mm, and the rectangular tubular body 20a is formed. A heat storage material container 23 is connected to the outer facing surface of the body 20a having a width of 50 mm and a length of 200 mm. The heat storage material container 23 is a metal hermetic container having an inner dimension of, for example, 50 mm in width, 50 mm in height, and 200 mm in length, and is filled with PEG as the heat storage material 22. As described above, the second thermoelectric element 24 including the five sets of Peltier elements is attached to the outer surface of the heat storage material container 23 facing the insulating oil flow path 20.

【0029】上記実施例において、蓄熱材22としてはポ
リエチレングリコール(PEG)を例に上げて説明した
が、他に塩化カルシウム水溶液、パラフイン、水などが
蓄熱材22として用いることができる。蓄熱材22として
は、例えば融点が0℃から30℃までの間にあり、融解潜
熱の大きい材料が望ましい。
In the above embodiment, polyethylene glycol (PEG) has been described as an example of the heat storage material 22, but an aqueous solution of calcium chloride, paraffin, water, or the like may be used as the heat storage material 22. As the heat storage material 22, for example, a material having a melting point between 0 ° C. and 30 ° C. and a large latent heat of fusion is desirable.

【0030】また、絶縁油流路20の長方形管状体20a及
び蓄熱材容器23の構成材料に関しては、熱電素子による
冷却効果を上げるため、及びPEGなどの蓄熱材22の熱放
出、熱吸収の速度を高めるために、少なくとも両者の接
合面及び熱電素子の設置面については、銅やアルミニウ
ムなどの熱伝導率の高い金属材料で形成するのが望まし
い。
The materials constituting the rectangular tubular body 20a of the insulating oil flow path 20 and the heat storage material container 23 are used to enhance the cooling effect of the thermoelectric element, and the speed of heat release and heat absorption of the heat storage material 22 such as PEG. In order to increase the temperature, it is desirable that at least the joining surface of both of them and the installation surface of the thermoelectric element are formed of a metal material having high thermal conductivity such as copper or aluminum.

【0031】また、絶縁油流路20や蓄熱材容器23の形状
に関しては、上記例では長方形としたが、これに限定さ
れず他の形状でもよい。両者の接合面及び熱電素子との
接合面については接合作業上平板状であることが望まし
いので、これらの接合面については平板状であるのが好
都合であるが、他の面については平板状でなくてもよ
い。これらの他の面については放熱を考慮した場合、凹
凸を設けたほうがよい。
The shape of the insulating oil flow path 20 and the shape of the heat storage material container 23 are rectangular in the above example, but are not limited thereto, and may be other shapes. It is desirable that the joining surface of both of them and the joining surface with the thermoelectric element are flat for the joining operation, so it is convenient that these joining surfaces are flat, but the other surfaces are flat. It is not necessary. In consideration of heat radiation, it is better to provide unevenness on these other surfaces.

【0032】また、蓄熱材容器23の内部には、後で詳細
に説明するように、蓄熱材22と絶縁油流路20又は熱電素
子との熱交換の効率を良くするために、金属製のフィン
を設けるのが有効である。
As will be described later in detail, a metal-made material is provided inside the heat storage material container 23 in order to improve the efficiency of heat exchange between the heat storage material 22 and the insulating oil passage 20 or the thermoelectric element. It is effective to provide fins.

【0033】図1及び図2において、熱電素子21としての
ペルチェ素子を冷却のために使用する場合には、ペルチ
ェ素子に直流電圧を印加する必要がある。図3にペルチ
ェ素子に直流電圧を印加する回路の一例を示す。図3に
おいて、熱電素子として使用される複数個(ここではn
個)のペルチェ素子38は並列に接続されて直流電源39か
ら直流電圧が印加される。各ペルチェ素子には直流電圧
を印加する端子42が設けられている。
1 and 2, when a Peltier element as the thermoelectric element 21 is used for cooling, it is necessary to apply a DC voltage to the Peltier element. FIG. 3 shows an example of a circuit for applying a DC voltage to a Peltier device. In FIG. 3, a plurality (here, n
Peltier elements 38 are connected in parallel, and a DC voltage is applied from a DC power supply 39. Each Peltier element is provided with a terminal 42 for applying a DC voltage.

【0034】冷却能力が60W程度のペルチェ素子では、
約20V程度の直流電圧が印加される。直流電源39の電流
容量としては、ペルチェ素子1個当り約4A必要となるの
で、n個のペルチェ素子を使用する場合には4nA必要とな
る。
In a Peltier element having a cooling capacity of about 60 W,
A DC voltage of about 20 V is applied. Since the current capacity of the DC power supply 39 requires about 4 A per Peltier element, 4 nA is required when n Peltier elements are used.

【0035】ペルチェ素子38では、その吸熱面は被冷却
体である絶縁油流路20及び蓄熱材容器23の外表面に結合
されているが、その放熱面は通常周囲の外気と接融して
いる。しかし、放熱面を自然冷却するだけでは冷却効率
が悪いので、冷却能力を高めるためには、図4に示す如
く、通風冷却を行う。
In the Peltier element 38, the heat absorbing surface is connected to the outer surfaces of the insulating oil flow path 20 and the heat storage material container 23, which are the objects to be cooled. I have. However, the cooling efficiency is poor only by naturally cooling the heat radiation surface, so that the ventilation cooling is performed as shown in FIG. 4 to increase the cooling capacity.

【0036】図4はペルチェ素子の通風冷却方法の一例
を示したものである。図4には、ペルチェ素子1個の場合
について示してある。図4において、ペルチェ素子38の
吸熱面38aには、絶縁油流路20や蓄熱材容器23などの被
冷却体(図示せず)が結合され、放熱面38bには放熱部
材としてヒートシンク40が結合されている。また、ペル
チェ素子38の一方の端面38cには直流電源のリード42が
接続されており、このリード42を介して、ペルチェ素子
38に直流電圧が印加される。
FIG. 4 shows an example of a ventilation cooling method for a Peltier element. FIG. 4 shows the case of one Peltier element. In FIG. 4, a heat-receiving surface 38a of the Peltier element 38 is coupled to a cooled object (not shown) such as the insulating oil flow path 20 and the heat storage material container 23, and a heat sink 40 is coupled to a heat radiation surface 38b as a heat radiation member. Have been. A lead 42 of a DC power supply is connected to one end surface 38c of the Peltier element 38.
DC voltage is applied to 38.

【0037】ヒートシンク40はアルミニウムや銅などの
熱伝導性の良い金属材料から成り、空気と接触する表面
には放熱面積を大きくするために波形面40aが設けられ
ている。ヒートシンク40の波形面40a側には小型送風機4
1が取り付けられ、ヒートシンク40を送風冷却する。小
型送風機41は直径が30〜50mm程度のもので、送風音も小
さい。
The heat sink 40 is made of a metal material having good heat conductivity, such as aluminum or copper, and has a corrugated surface 40a on the surface that comes into contact with air in order to increase the heat radiation area. On the corrugated surface 40a side of the heat sink 40, a small blower 4
1 is attached, and the heat sink 40 is blown and cooled. The small blower 41 has a diameter of about 30 to 50 mm, and the blow sound is small.

【0038】ペルチェ素子の冷却方法の他の例としては
空冷ヒートパイプを使用する方法もある。この冷却方法
では、ペルチェ素子の放熱面に空冷ヒートパイプを配設
し、この空冷ヒートパイプの放熱部を小型送風機にて通
風冷却する。
As another example of the cooling method of the Peltier element, there is a method using an air-cooled heat pipe. In this cooling method, an air-cooled heat pipe is provided on the heat-dissipating surface of the Peltier element, and the heat-dissipating portion of the air-cooled heat pipe is subjected to ventilation cooling by a small blower.

【0039】このように構成した絶縁油冷却部14では、
絶縁油流路20に流入した高温の絶縁油26は、絶縁油流路
20の外表面に直接貼付けした第1の熱電素子21及び蓄熱
材容器23に充填された蓄熱材22によって冷却された後、
低温の絶縁油27として絶縁油配管16を通してX線管装置
本体10に戻される。高温の絶縁油26を冷却したことによ
り温度が上昇した蓄熱材22は蓄熱材容器23の外表面に貼
付けされた第2の熱電素子24によって冷却される。
In the insulating oil cooling section 14 configured as described above,
The high-temperature insulating oil 26 flowing into the insulating oil flow path 20
After being cooled by the heat storage material 22 filled in the first thermoelectric element 21 and the heat storage material container 23 directly attached to the outer surface of 20,
The low-temperature insulating oil 27 is returned to the X-ray tube apparatus main body 10 through the insulating oil pipe 16. The heat storage material 22 whose temperature has increased by cooling the high-temperature insulating oil 26 is cooled by the second thermoelectric element 24 attached to the outer surface of the heat storage material container 23.

【0040】図1に示した実施例では、絶縁油冷却器11
の絶縁油冷却部14として絶縁油流路20の外表面に第1の
熱電素子21と蓄熱材容器23の両者を取り付けた場合につ
いて説明したが、絶縁油冷却部14としてはこれに限定さ
れず、それぞれ単独での絶縁油26の冷却も可能であり、
それぞれ単独で絶縁油冷却部14としての機能を発揮する
ことができる。すなわち、絶縁油流路20の1つの外表面
に第1の熱電素子21を取り付けたものも、絶縁油流路20
の1つの外表面に蓄熱材22を充填した蓄熱材容器23を取
り付け、この蓄熱材容器23の外表面に第2の熱電素子24
を取り付けたものも、絶縁油冷却部14として使用するこ
とができる。前者はX線透視負荷などの変動の少ない熱
負荷時の冷却に適し、後者はX線撮影負荷などの変動の
大きい熱負荷時の冷却に適している。
In the embodiment shown in FIG. 1, the insulating oil cooler 11
Although the case where both the first thermoelectric element 21 and the heat storage material container 23 are attached to the outer surface of the insulating oil flow path 20 as the insulating oil cooling section 14 has been described, the insulating oil cooling section 14 is not limited thereto. , It is also possible to independently cool the insulating oil 26,
The function as the insulating oil cooling unit 14 can be exhibited independently. That is, one in which the first thermoelectric element 21 is attached to one outer surface of the insulating oil flow path 20 is also used.
A heat storage material container 23 filled with a heat storage material 22 is attached to one outer surface of the heat storage material container 23, and a second thermoelectric element 24
Can be used as the insulating oil cooling unit 14. The former is suitable for cooling under a thermal load with little fluctuation such as an X-ray fluoroscopic load, and the latter is suitable for cooling under a large thermal load such as an X-ray imaging load.

【0041】次に、本発明に係るX線管装置の第2の実
施例の要部構造図を図5に示す。図5は、第2の実施例の
絶縁油冷却部を構成する絶縁油流路の構造を示したもの
である。図5において、絶縁油流路30の破線で示した外
形及び材料などは第1の実施例とほぼ同様である。本実
施例では、絶縁油流路30の長方形管状体30aの内部での
幅方向の絶縁油26の通過口が交互に変化するようにし
て、乱流の発生しやすい構造としたものである。このよ
うに長方形管状体30aの内部に乱流発生構造を設置した
ことにより、絶縁油26の流れに乱流が発生しやすくな
り、絶縁油26と長方形管状体30aの壁面との熱交換効率
を向上させることができる。
Next, FIG. 5 shows a structural diagram of a main part of a second embodiment of the X-ray tube apparatus according to the present invention. FIG. 5 shows the structure of the insulating oil flow path constituting the insulating oil cooling section of the second embodiment. In FIG. 5, the outer shape, material, and the like of the insulating oil flow path 30 indicated by broken lines are substantially the same as those in the first embodiment. In the present embodiment, the structure is such that turbulent flow is likely to occur by changing the width of the insulating oil 26 in the width direction inside the rectangular tubular body 30a of the insulating oil flow path 30 alternately. By installing the turbulence generation structure inside the rectangular tubular body 30a in this manner, turbulence is easily generated in the flow of the insulating oil 26, and the heat exchange efficiency between the insulating oil 26 and the wall surface of the rectangular tubular body 30a is improved. Can be improved.

【0042】次に、本発明に係るX線管装置の第3の実
施例の要部構造を図6に示す。図6は、第3の実施例の絶
縁油冷却部を構成する絶縁油流路の構造を示したもので
ある。本実施例も、第2の実施例と同様に、絶縁油流路
の内部構造を変えたものである。図6において、破線で
示した絶縁油流路32の長方形管状体32aの内部に複数の
トリッピングワイヤ33を配置して、絶縁油26の流れに乱
流が発生しやすい構造としたものである。本実施例にお
いても、第2の実施例と同様な効果が得られる。
Next, FIG. 6 shows the main structure of an X-ray tube apparatus according to a third embodiment of the present invention. FIG. 6 shows the structure of the insulating oil flow path that constitutes the insulating oil cooling section of the third embodiment. In this embodiment, as in the second embodiment, the internal structure of the insulating oil flow path is changed. In FIG. 6, a plurality of tripping wires 33 are arranged inside a rectangular tubular body 32a of an insulating oil flow path 32 indicated by a broken line, so that a turbulent flow is easily generated in the flow of the insulating oil. In this embodiment, the same effects as in the second embodiment can be obtained.

【0043】次に、本発明に係るX線管装置の第1の実
施例の絶縁油冷却器の作用について説明する。本実施例
のX線管装置には通常X線透視(以下、透視という)の
負荷とX線撮影(以下、撮影という)の負荷が繰り返し
印加される。図7には、X線管装置に印加される熱負荷
の一例を示す。図7の横軸は時間経過、縦軸は熱負荷で
ある。図7において、撮影時には平均5kW、15秒間程度の
撮影熱負荷36が印加され、撮影の合間に、平均200W、2
分間程度の透視熱負荷35が印加される。X線管装置には
上記の熱負荷の他に、ステータコイルの発熱も付加され
る。これらの一連の熱負荷によるX線管装置への平均熱
負荷量は約800W程度となる。
Next, the operation of the insulating oil cooler of the first embodiment of the X-ray tube device according to the present invention will be described. A load for normal X-ray fluoroscopy (hereinafter referred to as fluoroscopy) and a load for X-ray imaging (hereinafter referred to as radiography) are repeatedly applied to the X-ray tube apparatus of this embodiment. FIG. 7 shows an example of a thermal load applied to the X-ray tube device. In FIG. 7, the horizontal axis represents the passage of time, and the vertical axis represents the heat load. In FIG. 7, a photographing heat load of about 5 kW for about 15 seconds is applied during photographing, and an average of 200 W, 2
A see-through heat load 35 for about a minute is applied. In addition to the above-mentioned heat load, heat generation of the stator coil is added to the X-ray tube device. The average heat load on the X-ray tube device due to these series of heat loads is about 800 W.

【0044】本実施例の絶縁油冷却部14においては、絶
縁油流路20の外表面に直接設置された5組のペルチェ素
子から成る第1の熱電素子によって常に300Wの冷却が行
われている。このことから、平均200W程度の透視熱負荷
35とステータコイルの発熱によってX線管装置内の絶縁
油に放熱された熱量については第1の熱電素子21の5組の
ペルチェ素子のみで、絶縁油26の冷却を行うことができ
る。
In the insulating oil cooling section 14 of the present embodiment, 300 W of cooling is always performed by the first thermoelectric element composed of five sets of Peltier elements installed directly on the outer surface of the insulating oil flow path 20. . From this, the see-through heat load of about 200 W on average
With respect to the amount of heat radiated to the insulating oil in the X-ray tube device by the heat generated by the stator coil 35 and the stator coil, the insulating oil 26 can be cooled only by the five Peltier elements of the first thermoelectric element 21.

【0045】一方、この透視の間に、PEGから成る蓄熱
材22は、蓄熱材容器23の外壁面に設置した第2の熱電素
子24の5組のペルチェ素子によって冷却される。透視後
に、撮影が行われて、平均5kW、15秒(75kJ)の撮影熱
負荷36が入力される場合には、この75kJの撮影熱負荷36
は透視の間に冷却された0.5lのPEGから成る蓄熱材22の
81.4kJの融解潜熱によって吸収することができる。
On the other hand, during this see-through, the heat storage material 22 made of PEG is cooled by five sets of Peltier elements of the second thermoelectric element 24 installed on the outer wall surface of the heat storage material container 23. When the photographing is performed after the fluoroscopy and the photographing heat load 36 of 5 kW and 15 seconds (75 kJ) is input on average, the photographing heat load 36 of 75 kJ is input.
Is a heat storage material 22 consisting of 0.5 l of PEG cooled during fluoroscopy.
It can be absorbed by the latent heat of fusion of 81.4 kJ.

【0046】上記の撮影熱負荷36の吸収により液化した
蓄熱材22は、透視が行われている間に、蓄熱材容器23の
外壁面に設置されている5組のペルチェ素子から成る第2
の熱電素子24によって冷却され、固化される。
The heat storage material 22 liquefied by the absorption of the photographing heat load 36 is made up of a second set of five Peltier elements installed on the outer wall surface of the heat storage material container 23 during the see-through operation.
Is cooled and solidified by the thermoelectric element 24.

【0047】次に、蓄熱材22の固化時間について説明す
る。PEGから成る蓄熱材22を固化する場合に重要な事項
はPEGの固化時間である。上記の金属製の蓄熱材容器23
内にPEGから成る蓄熱材22を充填し、蓄熱材容器23の一
面を5組のペルチェ素子から成る第2の熱電素子24にて0
℃になるように冷却した場合(室温を30℃と仮定)を例
にとってPEGの固化時間を考えてみる。
Next, the solidification time of the heat storage material 22 will be described. An important matter when solidifying the heat storage material 22 made of PEG is the solidification time of the PEG. Metal heat storage material container 23 described above
Is filled with a heat storage material 22 made of PEG, and one surface of the heat storage material container 23 is covered with a second thermoelectric element 24 composed of five sets of Peltier elements.
Let us consider the solidification time of PEG taking as an example the case of cooling to ℃ (assuming room temperature is 30 ℃).

【0048】PEGは撮影熱負荷によって加熱された絶縁
油26を冷却することによって溶融し、その後平均温度40
℃程度まで上昇する。撮影熱負荷後の透視熱負荷時に
は、PEGは主として第2の熱電素子24によって冷却され、
溶融状態から固化される。本実施例の設計では、平均温
度40℃の溶融状態にあるPEG0.5lについて、蓄熱材容器2
3の冷却面(ペルチェ素子によって0℃で冷却される面)
から最も遠い位置、すなわち蓄熱材容器23の絶縁油流路
20と接触している面に近い位置にあるPEGが約20分程度
以下の時間で凝固点の20.3℃以下に冷却されるように設
定した。PEGの固化に約20分程度の時間がかかっても、X
線撮影装置の一般的な使用条件では、X線管装置の発熱
量の変化に対応した冷却を行うことが可能である。
The PEG is melted by cooling the insulating oil 26 heated by the photographic heat load, and then melts at an average temperature of 40.
Rise to about ° C. During the see-through heat load after the photographing heat load, PEG is mainly cooled by the second thermoelectric element 24,
It is solidified from a molten state. In the design of the present example, for PEG 0.5 l in a molten state at an average temperature of 40 ° C., the heat storage material container 2
3 cooling surface (surface cooled at 0 ° C by Peltier element)
, The insulating oil flow path of the heat storage material container 23
It was set so that the PEG in the position close to the surface in contact with 20 was cooled to the freezing point of 20.3 ° C. or less in about 20 minutes or less. Even if it takes about 20 minutes to solidify PEG, X
Under general use conditions of a radiographic apparatus, it is possible to perform cooling corresponding to a change in the amount of heat generated by the X-ray tube apparatus.

【0049】PEGの固化時間を早めるための改良実施例
を図8に示す。図8は蓄熱材容器の改良構造の一例を示し
たものである。図8において、蓄熱材容器44の内部に平
行に複数個のフィン45を配設したものである。フィン45
は熱伝導性の良い金属材料で構成されている。複数個の
フィン45を配設したことにより、蓄熱材容器44内は複数
個の室46に区分され、各々の室46にPEGから成る蓄熱材2
2が分かれて収容されることになる。このため、蓄熱材
容器44内での見掛けの熱拡散率が格段に向上する。
FIG. 8 shows an improved embodiment for shortening the setting time of PEG. FIG. 8 shows an example of an improved structure of the heat storage material container. In FIG. 8, a plurality of fins 45 are arranged inside a heat storage material container 44 in parallel. Fins 45
Is made of a metal material having good heat conductivity. By disposing the plurality of fins 45, the inside of the heat storage material container 44 is divided into a plurality of chambers 46, and each of the chambers 46 has a heat storage material 2 made of PEG.
2 will be housed separately. For this reason, the apparent thermal diffusivity in the heat storage material container 44 is significantly improved.

【0050】具体的なフィン構造例として、図2に示し
た構造の蓄熱材容器23(44)の内部に10mm間隔で0.3mm
厚さの銅板から成るフィン45を配置した場合、蓄熱材容
器44の内部の熱拡散率が2桁程度向上し、初期状態が平
均温度約40℃の溶融しているPEGを固化するために必要
な時間は約2分にまで短縮することができる。
As a specific example of the fin structure, 0.3 mm is inserted into the heat storage material container 23 (44) having the structure shown in FIG.
When the fins 45 made of a copper plate with a thickness are arranged, the thermal diffusivity inside the heat storage material container 44 is improved by about two orders, and the initial state is necessary to solidify the molten PEG with an average temperature of about 40 ° C. Time can be reduced to about 2 minutes.

【0051】また、従来の一般的な空冷式冷却装置では
1kWの冷却能力を有する場合、幅250mm、奥行100mm、高
さ350mm程度の寸法のものとなっていた。これに対し、
本発明に係る絶縁油冷却器では、平均800Wの冷却能力を
有する場合、熱交換器部分と標準的な絶縁油ポンプとを
合わせて、大略幅200mm、奥行100mm、高さ150mm程度の
寸法に纏めることが可能であり、絶縁油冷却器を小型化
することができる。
In a conventional general air-cooled cooling device,
When it had a cooling capacity of 1 kW, it had dimensions of about 250 mm in width, 100 mm in depth and 350 mm in height. In contrast,
In the insulating oil cooler according to the present invention, when having an average cooling capacity of 800 W, the heat exchanger part and the standard insulating oil pump are combined into a size of approximately 200 mm in width, 100 mm in depth and 150 mm in height. It is possible to reduce the size of the insulating oil cooler.

【0052】以上説明した如く、本発明に係るX線管装
置では、絶縁油冷却器が小型コンパクトであるが、絶縁
油を直接熱電素子で冷却しているため、効率が良く、X
線管装置の発熱量の変化にレスポンス良く対応して冷却
することができる。また、熱電素子の冷却を送風冷却す
る場合でも、送風機が小型であるので、騒音も非常に小
さくすることができる。
As described above, in the X-ray tube apparatus according to the present invention, although the insulating oil cooler is small and compact, since the insulating oil is directly cooled by the thermoelectric element, the efficiency is high, and
Cooling can be performed in response to a change in the calorific value of the tube device with good response. Further, even in the case where the thermoelectric element is cooled by blowing air, noise can be extremely reduced because the blower is small.

【0053】また、本発明に係るX線管装置の絶縁油冷
却器では、絶縁油冷却器の周囲の気温が低い方が冷却能
力が増加するので望ましい。C型アームを有するX線診
断装置などでは、上記の絶縁油冷却器はX線管装置本体
と共に、C型アームの先端のX線発生部にカバーで覆わ
れた状態で設置される。このため、X線発生部のカバー
内に小型の送風機を設け、カバー内部にある温度の上昇
した空気をカバー外部に放出して換気する必要がある。
Further, in the insulating oil cooler of the X-ray tube device according to the present invention, it is desirable that the temperature around the insulating oil cooler be lower because the cooling capacity increases. In an X-ray diagnostic apparatus or the like having a C-shaped arm, the above-described insulating oil cooler is installed together with the X-ray tube apparatus main body in a state where the X-ray generating section at the tip of the C-shaped arm is covered with a cover. For this reason, it is necessary to provide a small blower in the cover of the X-ray generation unit and to ventilate the interior of the cover by discharging the heated air inside the cover to the outside of the cover.

【0054】しかし、X線発生部のカバー外部に温風を
直接排出すると、術者や被検体に不快感を与えることに
なる。このため、本実施例では、C型アーム内にX線発
生部と通じる通風路を設け、X線発生部のカバー内部の
温風をC型アーム内に排出できるようにしたものであ
る。C型アームの排気口としては、術者や被検体に温風
がかからないような位置に設ければよい。この結果、X
線発生部のカバー内では温風の換気が行われることにな
るので、カバー内の気温の上昇を防止することができ、
絶縁油冷却器の高い冷却能力を維持することができる。
However, if warm air is directly discharged to the outside of the cover of the X-ray generation unit, the operator or the subject will be uncomfortable. For this reason, in the present embodiment, a ventilation path communicating with the X-ray generation unit is provided in the C-arm so that warm air inside the cover of the X-ray generation unit can be discharged into the C-arm. The exhaust port of the C-arm may be provided at a position where warm air is not applied to the operator or the subject. As a result, X
Since warm air is ventilated inside the cover of the line generating part, it is possible to prevent the temperature inside the cover from rising,
The high cooling capacity of the insulating oil cooler can be maintained.

【0055】[0055]

【発明の効果】以上説明した如く、本発明に係るX線管
装置では、絶縁油冷却器の絶縁油冷却部に含まれる絶縁
油流路の外表面やその周辺部に熱電素子を設置して絶縁
油を冷却しているので、この熱電素子を動作させ、制御
することにより、絶縁油流路にて効率的に絶縁油の冷却
を行うことができる。また、熱電素子は小型軽量である
ので、これを設置した絶縁油冷却器を小型化することが
できる。また、熱電素子では音を発生する部分がないの
で、装置としての騒音を低減することができる。
As described above, in the X-ray tube apparatus according to the present invention, the thermoelectric element is installed on the outer surface of the insulating oil flow path included in the insulating oil cooling section of the insulating oil cooler and on the periphery thereof. Since the insulating oil is cooled, by operating and controlling the thermoelectric element, the insulating oil can be efficiently cooled in the insulating oil flow path. Further, since the thermoelectric element is small and lightweight, the size of the insulating oil cooler in which the thermoelectric element is installed can be reduced. In addition, since the thermoelectric element has no portion that generates sound, the noise of the device can be reduced.

【0056】また、本発明に係るX線管装置では、絶縁
油冷却器の絶縁油流路内表面に乱流発生機構を設けてい
るので、絶縁油流路内で絶縁油の流れに乱流が発生する
ため、絶縁油と絶縁油流路内壁との間の熱交換率が向上
し、絶縁油の放熱効率を向上することができる。
In the X-ray tube apparatus according to the present invention, the turbulence generating mechanism is provided on the inner surface of the insulating oil flow path of the insulating oil cooler. Is generated, the heat exchange rate between the insulating oil and the inner wall of the insulating oil passage is improved, and the heat radiation efficiency of the insulating oil can be improved.

【0057】また、本発明に係るX線管装置では、絶縁
油流路の熱電素子設置面を平板状とするとともに、高熱
伝導率の材料で構成しているので、絶縁油流路内の絶縁
油から熱電素子の吸熱面に熱が効率良く伝達して吸熱さ
れるので、熱電素子によって絶縁油を効率良く冷却する
ことができる。
Further, in the X-ray tube apparatus according to the present invention, since the surface of the insulating oil flow path on which the thermoelectric elements are installed is made flat and made of a material having a high thermal conductivity, the insulating oil flow path in the insulating oil flow path is insulated. Since heat is efficiently transmitted from the oil to the heat absorbing surface of the thermoelectric element and absorbed, the insulating oil can be efficiently cooled by the thermoelectric element.

【0058】また、本発明に係るX線管装置では、絶縁
油流路に蓄熱材を充填した蓄熱材容器が接合され、蓄熱
材容器の表面に熱電素子が設置されているので、蓄熱材
の大きな融解潜熱によって高温に上昇した絶縁油を急速
に冷却することができ、X線管装置の撮影負荷時の絶縁
油の温度上昇に適切に対応できる。
In the X-ray tube apparatus according to the present invention, the heat storage material container filled with the heat storage material is joined to the insulating oil flow path, and the thermoelectric element is installed on the surface of the heat storage material container. The insulating oil that has been raised to a high temperature by the large latent heat of fusion can be rapidly cooled, and can appropriately cope with the rise in the temperature of the insulating oil when the imaging load of the X-ray tube apparatus is increased.

【0059】また、本発明に係るX線管装置では、絶縁
油流路の外表面に熱電素子と、蓄熱材を充填した蓄熱材
容器を接合することによって、熱電素子による冷却と、
蓄熱材による冷却を併用しているので、透視負荷に対し
ては熱電素子で対応し、撮影負荷に対しては蓄熱材で対
応することができ、X線管装置への種々の熱負荷変動に
対応した絶縁油の冷却が可能となる。
Further, in the X-ray tube device according to the present invention, by joining the thermoelectric element and the heat storage material container filled with the heat storage material to the outer surface of the insulating oil flow path, cooling by the thermoelectric element can be achieved.
Since the cooling with the heat storage material is also used, it is possible to cope with the see-through load with the thermoelectric element and to cope with the imaging load with the heat storage material, and to cope with various heat load fluctuations to the X-ray tube device. The corresponding insulating oil can be cooled.

【0060】また、本発明に係るX線管装置では、蓄熱
材容器の内部にフィンを設置し、蓄熱材容器内を複数個
の室に仕切るようにしているので、蓄熱材と絶縁油流路
及び熱電素子との熱交換がフィンを介して行われるた
め、蓄熱材の溶融時間及び凝固時間が短縮され、蓄熱材
による冷却効率が向上する。
Further, in the X-ray tube apparatus according to the present invention, fins are provided inside the heat storage material container to partition the heat storage material container into a plurality of chambers. Since the heat exchange with the thermoelectric element is performed via the fins, the melting time and the solidification time of the heat storage material are reduced, and the cooling efficiency by the heat storage material is improved.

【0061】また、本発明に係るX線管装置では、熱電
素子の放熱面にヒートシンクなどの放熱部材を設置し、
その放熱部材に小型送風機で冷却しているので、熱電素
子の放熱効果が向上し、その冷却率を上昇させることが
できる。
In the X-ray tube device according to the present invention, a heat radiating member such as a heat sink is provided on the heat radiating surface of the thermoelectric element.
Since the heat radiating member is cooled by the small blower, the heat radiating effect of the thermoelectric element is improved, and the cooling rate can be increased.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に係るX線管装置の第1の実施例の構成
の概念図。
FIG. 1 is a conceptual diagram of the configuration of a first embodiment of an X-ray tube apparatus according to the present invention.

【図2】第1の実施例の絶縁油冷却部の構造の一例。FIG. 2 illustrates an example of a structure of an insulating oil cooling unit according to the first embodiment.

【図3】ペルチェ素子に直流電圧を印加する回路の一
例。
FIG. 3 is an example of a circuit for applying a DC voltage to a Peltier device.

【図4】ペルチェ素子の通風冷却方法の一例。FIG. 4 shows an example of a ventilation cooling method for a Peltier element.

【図5】本発明に係るX線管装置の第2の実施例の絶縁油
冷却部を構成する絶縁油流路の構造。
FIG. 5 is a diagram illustrating a structure of an insulating oil flow path included in an insulating oil cooling unit of a second embodiment of the X-ray tube device according to the present invention.

【図6】本発明に係るX線管装置の第3の実施例の絶縁
油冷却部を構成する絶縁油流路の構造。
FIG. 6 shows a structure of an insulating oil flow path constituting an insulating oil cooling unit of a third embodiment of the X-ray tube device according to the present invention.

【図7】X線管装置に印加される熱負荷の一例。FIG. 7 shows an example of a thermal load applied to the X-ray tube device.

【図8】蓄熱材容器の改良構造の一例。FIG. 8 shows an example of an improved structure of a heat storage material container.

【図9】絶縁油−空気熱交換器を使用した冷却装置の一
例。
FIG. 9 is an example of a cooling device using an insulating oil-air heat exchanger.

【図10】絶縁油−冷却水熱交換器を使用した冷却装置の
一例。
FIG. 10 shows an example of a cooling device using an insulating oil-cooling water heat exchanger.

【図11】冷凍機を熱交換器として使用した冷却装置の一
例。
FIG. 11 is an example of a cooling device using a refrigerator as a heat exchanger.

【図12】従来のX線診断装置の一例の外観図。FIG. 12 is an external view of an example of a conventional X-ray diagnostic apparatus.

【符号の説明】[Explanation of symbols]

10,50…X線管装置本体 11…絶縁油冷却器 12,52…絶縁油ポンプ 14…絶縁油冷却部 16,55…絶縁油配管 20,30,32…絶縁油流路 20a,30a,32a…長方形管状体 21…第1の熱電素子 22…蓄熱材 23,44…蓄熱材容器 24…第2の熱電素子 26…高温の絶縁油 27…低温の絶縁油 31…邪魔板 33…トリッピングワイヤ 35…透視熱負荷 36…撮影熱負荷 38…ペルチェ素子 38a…吸熱面 38b…放熱面 38c…端面 39…直流電源 40…ヒートシンク 40a…波形面 41…小型送風機 42…リード(端子) 45…フィン 46…室 70…X線診断装置 71…C型アーム 72…X線発生部 10, 50: X-ray tube device body 11: Insulating oil cooler 12, 52: Insulating oil pump 14: Insulating oil cooling unit 16, 55: Insulating oil pipe 20, 30, 32 ... Insulating oil flow path 20a, 30a, 32a ... Rectangular tubular body 21 ... First thermoelectric element 22 ... Heat storage material 23,44 ... Heat storage material container 24 ... Second thermoelectric element 26 ... High temperature insulating oil 27 ... Low temperature insulating oil 31 ... Baffle plate 33 ... Tripping wire 35 ... see-through heat load 36 ... photographing heat load 38 ... Peltier element 38a ... heat-absorbing surface 38b ... heat-dissipating surface 38c ... end surface 39 ... DC power supply 40 ... heat sink 40a ... corrugated surface 41 ... small blower 42 ... lead (terminal) 45 ... fin 46 ... Room 70 X-ray diagnostic apparatus 71 C-arm 72 X-ray generator

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 X線管と、X線管を内包するX線管容器
(以下、管容器という)と、X線管を管容器の内壁に絶
縁支持する支持部材と、X線管の陽極を回転させるため
のステータコイルと、X線管を絶縁し冷却する絶縁油か
ら構成されるX線管装置本体と、管容器内部の絶縁油を
外部に導き出し、管容器外部にて冷却した後に管容器内
部に戻す絶縁油冷却器を備えたX線管装置において、前
記絶縁油冷却器が絶縁油を絶縁油配管を通して管容器外
部に導き出すための絶縁油搬送手段と、絶縁油を冷却す
るための絶縁油冷却部を備え、該絶縁油冷却部に含まれ
る絶縁油流路を流れる絶縁油を冷却するために、該絶縁
油流路の外表面及びその周辺部の少なくとも一方の部分
に熱電素子が設置されていることを特徴とするX線管装
置。
An X-ray tube, an X-ray tube container enclosing the X-ray tube (hereinafter referred to as a tube container), a support member for insulatingly supporting the X-ray tube on an inner wall of the tube container, and an anode of the X-ray tube X-ray tube device body composed of a stator coil for rotating the X-ray tube, insulating oil for insulating and cooling the X-ray tube, and guiding the insulating oil inside the tube container to the outside, cooling the tube outside the tube container, In an X-ray tube apparatus provided with an insulating oil cooler returned to the inside of the container, the insulating oil cooler is provided with an insulating oil conveying means for leading the insulating oil to the outside of the tube container through the insulating oil pipe, and for cooling the insulating oil. An insulating oil cooling section is provided, and a thermoelectric element is provided on at least one of the outer surface of the insulating oil flow path and its peripheral portion to cool the insulating oil flowing through the insulating oil flow path included in the insulating oil cooling section. An X-ray tube device which is installed.
【請求項2】請求項1記載のX線管装置において、前記
絶縁油流路内表面の一部又は全部に、絶縁油の流れに乱
流を発生させる乱流発生機構を設けたことを特徴とする
X線管装置。
2. The X-ray tube apparatus according to claim 1, wherein a turbulence generating mechanism for generating a turbulent flow in the flow of the insulating oil is provided on a part or all of the inner surface of the insulating oil flow path. X-ray tube device.
【請求項3】請求項1及び2記載のX線管装置において、
前記絶縁油流路が少なくとも1つの平板状部を有し、該
平板状部は高熱伝導率の材料で構成され、該平板状部の
少なくとも1つの外表面に前記熱電素子が設置されてい
ることを特徴とするX線管装置。
3. The X-ray tube device according to claim 1, wherein
The insulating oil flow path has at least one flat portion, the flat portion is made of a material having high thermal conductivity, and the thermoelectric element is installed on at least one outer surface of the flat portion. An X-ray tube device characterized by the above-mentioned.
【請求項4】請求項1乃至3記載のX線管装置において、
前記絶縁油流路が少なくとも1つの平板状部を有し、該
平板状部は高熱伝導率の材料で構成され、該平板状部の
少なくとも1つの外表面に融解潜熱を利用した蓄熱材を
収容した蓄熱材容器が接合され、該蓄熱材容器の少なく
とも1つの外表面に前記熱電素子が設置されていること
を特徴とするX線管装置。
4. The X-ray tube device according to claim 1, wherein
The insulating oil flow path has at least one flat portion, and the flat portion is made of a material having high thermal conductivity, and at least one outer surface of the flat portion contains a heat storage material using latent heat of fusion. An X-ray tube apparatus, wherein the heat storage material container described above is joined, and the thermoelectric element is installed on at least one outer surface of the heat storage material container.
JP2001172541A 2001-06-07 2001-06-07 X-ray tube device Pending JP2002367797A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001172541A JP2002367797A (en) 2001-06-07 2001-06-07 X-ray tube device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001172541A JP2002367797A (en) 2001-06-07 2001-06-07 X-ray tube device

Publications (1)

Publication Number Publication Date
JP2002367797A true JP2002367797A (en) 2002-12-20

Family

ID=19014147

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001172541A Pending JP2002367797A (en) 2001-06-07 2001-06-07 X-ray tube device

Country Status (1)

Country Link
JP (1) JP2002367797A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007149521A (en) * 2005-11-29 2007-06-14 Hitachi Medical Corp X-ray producing device
JP2010162127A (en) * 2009-01-14 2010-07-29 Toshiba Corp X-ray ct apparatus
JP2011040239A (en) * 2009-08-10 2011-02-24 Hitachi Medical Corp X-ray tube device
CN103398612A (en) * 2013-08-23 2013-11-20 苏州明威医疗科技有限公司 Heat pipe type cooling system for X-ray pipe
JP2017537295A (en) * 2014-12-05 2017-12-14 フォノニック デバイセズ、インク Hybrid heat transfer system
KR20190117666A (en) * 2017-03-08 2019-10-16 호이프트 시스템테크니크 게엠베하 Cooling device for X-ray generator
CN110996486A (en) * 2019-12-11 2020-04-10 新鸿电子有限公司 Liquid cooling circulation cooling system and X ray source system
CN111008476A (en) * 2019-12-04 2020-04-14 深圳市安健科技股份有限公司 Method and device for calculating bulb tube cooling rate, electronic equipment and storage medium
CN117015221A (en) * 2023-10-07 2023-11-07 苏州益腾电子科技有限公司 X-ray tube and X-ray tube system

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007149521A (en) * 2005-11-29 2007-06-14 Hitachi Medical Corp X-ray producing device
JP2010162127A (en) * 2009-01-14 2010-07-29 Toshiba Corp X-ray ct apparatus
US8721177B2 (en) 2009-01-14 2014-05-13 Kabushiki Kaisha Toshiba X-ray CT scanner
JP2011040239A (en) * 2009-08-10 2011-02-24 Hitachi Medical Corp X-ray tube device
CN103398612A (en) * 2013-08-23 2013-11-20 苏州明威医疗科技有限公司 Heat pipe type cooling system for X-ray pipe
CN103398612B (en) * 2013-08-23 2015-11-18 苏州明威医疗科技有限公司 A kind of X-ray tube heat pipe type cooling system
JP2017537295A (en) * 2014-12-05 2017-12-14 フォノニック デバイセズ、インク Hybrid heat transfer system
KR20190117666A (en) * 2017-03-08 2019-10-16 호이프트 시스템테크니크 게엠베하 Cooling device for X-ray generator
KR102335270B1 (en) 2017-03-08 2021-12-03 호이프트 시스템테크니크 게엠베하 Cooling device for X-ray generator
CN111008476A (en) * 2019-12-04 2020-04-14 深圳市安健科技股份有限公司 Method and device for calculating bulb tube cooling rate, electronic equipment and storage medium
CN111008476B (en) * 2019-12-04 2023-07-14 安健科技(重庆)有限公司 Method and device for calculating bulb cooling rate, electronic equipment and storage medium
CN110996486A (en) * 2019-12-11 2020-04-10 新鸿电子有限公司 Liquid cooling circulation cooling system and X ray source system
CN117015221A (en) * 2023-10-07 2023-11-07 苏州益腾电子科技有限公司 X-ray tube and X-ray tube system
CN117015221B (en) * 2023-10-07 2024-01-30 苏州益腾电子科技有限公司 X-ray tube and X-ray tube system

Similar Documents

Publication Publication Date Title
JP3347977B2 (en) Liquid circulation type thermoelectric cooling / heating device
US20080170368A1 (en) Apparatuses for Dissipating Heat from Semiconductor Devices
JP2009147156A (en) Cooling device, and electronic apparatus using the same
JP5353577B2 (en) heatsink
JP2016225621A (en) Closed cabinet for power electronic device having heat pipe
JP4258018B2 (en) X-ray diagnostic equipment
JP2002367797A (en) X-ray tube device
JP3979531B2 (en) Electronic cooling device
JP2007010211A (en) Cooling device of electronics device
JP2010186821A (en) Liquid-circulating cooling module with cooling material
JP2006050742A (en) Forced air-cooling power converter and electric motor car
JP3539274B2 (en) Cooling structure of antenna device
JPH0821679A (en) Electronic refrigeration type drinking water cooler
JP2004340404A (en) Heat radiator for electronic refrigerator
JPH08114362A (en) Electronic cold heat type water temperature keeping device
KR20040061286A (en) Hybrid heat exchanger having tec and heat pipe
JP2002184234A (en) Lamp cooling structure
JP2018059678A (en) Heat exchanger
JP2000286483A (en) Laser light generator
JP2003046828A (en) Electronic camera
JP6787604B1 (en) Cooling system
JPH09273877A (en) Heat pipe type air cooler
KR100912195B1 (en) Cooling and warming apparatus
JPH07296986A (en) X-ray tube device
CN212618821U (en) Air conditioner outer unit controller cooling device, outdoor unit and air conditioner