JP2002365817A - Method of measuring film thickness of surface layer of electrophotographic photoreceptor - Google Patents

Method of measuring film thickness of surface layer of electrophotographic photoreceptor

Info

Publication number
JP2002365817A
JP2002365817A JP2001169791A JP2001169791A JP2002365817A JP 2002365817 A JP2002365817 A JP 2002365817A JP 2001169791 A JP2001169791 A JP 2001169791A JP 2001169791 A JP2001169791 A JP 2001169791A JP 2002365817 A JP2002365817 A JP 2002365817A
Authority
JP
Japan
Prior art keywords
surface layer
thickness
measuring
dispersed
filler
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001169791A
Other languages
Japanese (ja)
Inventor
Mitsuhiro Tomota
光弘 友田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Co Ltd
Original Assignee
Ricoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Co Ltd filed Critical Ricoh Co Ltd
Priority to JP2001169791A priority Critical patent/JP2002365817A/en
Publication of JP2002365817A publication Critical patent/JP2002365817A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To obtain a method of measuring the film thickness of the surface layer of an electrophotographic photoreceptor which is unaffected by the light diffusion of fillers, suitable for measurement of a layer to be measured smaller in light absorption quantity and capable of measuring the film thickness of the surface layer even in a laminated state. SOLUTION: In measuring the film thickness of the surface layer dispersed with the fillers by using an opto-thermal conversion effect, the coefficient of absorption of the surface layer dispersed with the fillers is determined and the presence or absence of the film quality which is the target for the film thickness measurement is checked. The thermal exciting light intermittently modulated at the prescribed periods determined by the thermal property values of the surface layer in which the filler is dispersed is made incident and the measurement of the film thickness is made by detecting the amplitude value of the generated acoustic weaves.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、無機または有機フ
ィラーを分散した表面層を有する電子写真感光体の表面
層の膜厚測定方法、特に光熱変換(光音響)効果を用い
た測定方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for measuring the thickness of a surface layer of an electrophotographic photosensitive member having a surface layer in which an inorganic or organic filler is dispersed, and more particularly to a measurement method using a photothermal conversion (photoacoustic) effect.

【0002】[0002]

【従来の技術】機能分離型である積層型電子写真感光体
の表面層の膜厚測定は、以前から、重量測定法、渦電流
法、赤外線吸収法、赤外線反射率測定法、分光反射率測
定法などが検討されてきた。
2. Description of the Related Art The thickness measurement of the surface layer of a multi-layer electrophotographic photosensitive member of a function-separated type has been conventionally performed by a gravimetric method, an eddy current method, an infrared absorption method, an infrared reflectance measurement method, and a spectral reflectance measurement. The law has been studied.

【0003】この内、最も良く利用されている光の干渉
現象を利用する方法は、表面層に任意の入射角で白色平
行光を入射し、薄膜からの反射光もしくは透過光を受光
し、受光した干渉光を分光して得られる分光強度分布の
隣り合った極大値もしくは極小値を与える波長を求める
ことにより膜厚を算出するという原理に基づくものであ
る。
Of these methods, the most frequently used method utilizing the light interference phenomenon is to apply white parallel light to a surface layer at an arbitrary incident angle, receive reflected light or transmitted light from a thin film, and receive light. This is based on the principle that the film thickness is calculated by obtaining adjacent maximum or minimum wavelengths of the spectral intensity distribution obtained by dispersing the obtained interference light.

【0004】しかし、これらの手法においては、下層に
光散乱性物質を含む下引層や顔料層がある積層状態での
計測は技術的に容易では無く、また無機または有機フィ
ラーなど照射光を拡散する光散乱性物質が表面層に存在
した場合もフィラーに依って入射光が散乱され膜の透過
率が低下する為、光の干渉現象が使用出来なかったり、
また他の光学的手法においても光の散乱・隠蔽作用等に
より原理的に測定が困難であったり、感度が低下すると
いう問題があった。更に、下引層に導電性物質が含まれ
ている場合は渦電流方式での検出も困難であった。
However, in these techniques, it is not technically easy to measure a laminated state in which an undercoat layer containing a light-scattering substance or a pigment layer is provided in a lower layer, and it is difficult to diffuse irradiation light such as an inorganic or organic filler. Even if a light scattering substance is present in the surface layer, the incident light is scattered by the filler and the transmittance of the film is reduced, so that the light interference phenomenon cannot be used,
In addition, other optical methods have a problem in that measurement is fundamentally difficult due to light scattering / concealing effects and the like, and sensitivity is lowered. Furthermore, when a conductive material is contained in the undercoat layer, it has been difficult to detect by an eddy current method.

【0005】また重量測定法の様に手間と時間が掛かり
実時間計測にそぐわないものもあった。例えば、フィラ
ーを分散した表面層の厚みが5μm以下と薄い場合や曲
率を有した金属筐体上の塗膜となった場合、或いは反射
率が大きいフィラーを含む場合や膜の透明性が得られな
い場合には、赤外線吸収式の測定手段や前述の諸測定法
ではSN比が低下し、実用的な厚み精度が得られない。
[0005] In addition, there are some methods, such as the weight measurement method, which require time and labor and are not suitable for real-time measurement. For example, when the thickness of the surface layer in which the filler is dispersed is as thin as 5 μm or less, or when a coating film is formed on a metal housing having a curvature, or when a filler having a large reflectance is included, or the film has transparency. If not, the S / N ratio decreases with the infrared absorption type measuring means and the above-mentioned various measuring methods, and practical thickness accuracy cannot be obtained.

【0006】[0006]

【発明が解決しようとする課題】本発明は上記背景に鑑
みてなされたもので、フィラーの光拡散の影響を受け
ず、吸光量が少ない被測定層の測定にも適し、更に積層
状態でも表面層の膜測定が可能な電子写真感光体におけ
る表面層の膜厚測定方法を得ることを目的とする。本発
明における電子写真感光体の表面層とは、導電性支持体
上の感光層として少なくとも電荷発生層と電荷輸送層が
順次積層され、更に最上層にフィラーを分散した表面層
が設けられているもので、電荷発生層上に電荷輸送層を
設け、最上層に表面層がない構成では電荷輸送層が、ま
た感光層上に保護層を設けた感光体では保護層が相当す
る。
SUMMARY OF THE INVENTION The present invention has been made in view of the above background, and is suitable for measurement of a layer to be measured which is not affected by light diffusion of a filler and has a small absorption amount. It is an object of the present invention to provide a method for measuring the thickness of a surface layer of an electrophotographic photosensitive member capable of measuring the thickness of a layer. The surface layer of the electrophotographic photoreceptor in the present invention is such that at least a charge generation layer and a charge transport layer are sequentially laminated as a photosensitive layer on a conductive support, and a surface layer in which a filler is dispersed is provided on the uppermost layer. The charge transport layer is provided on the charge generation layer and the surface layer is not provided as the uppermost layer. The charge transport layer corresponds to the charge transfer layer, and the protective layer corresponds to the photosensitive member having the protective layer provided on the photosensitive layer.

【0007】[0007]

【課題を解決するための手段】本発明者は上記問題を解
決するために、特に表面層が吸光したエネルギーを光と
してでは無く、発生した熱に起因して生じる圧力波(音
響波)として測定できる光熱変換効果を用いる測定法を
検討した結果、フィラーを分散した表面層の膜厚測定に
おいて、表面層膜組成の違いを予め弁別し、表面層での
光の散乱・透過率低下といった影響を受けること無く、
膜物性値より決定される所定の周期で断続的に変調した
熱励起光を入射させ、発生する音響波を検出することに
より、フィラーを分散した表面層の膜厚を積層状態で精
度良く計測できることを知見し、本発明に至った。すな
わち、本発明によれば、第一に、請求項1では、フィラ
ーを分散した表面層の膜厚を光熱変換効果を用いて測定
するにあたり、フィラーを分散した表面層の吸収係数を
求め、膜厚測定の対象となる表面層膜質の有無を確認す
ることを特徴とする電子写真感光体表面層の膜厚測定方
法が提供される。
In order to solve the above-mentioned problems, the present inventor has specifically measured the energy absorbed by the surface layer not as light but as a pressure wave (acoustic wave) generated due to generated heat. As a result of examining the measurement method using the light-to-heat conversion effect that can be achieved, in measuring the film thickness of the surface layer in which the filler is dispersed, the difference in the film composition of the surface layer is discriminated in advance, and the effects such as light scattering and decrease in transmittance on the surface layer are reduced. Without receiving
By applying thermal excitation light intermittently modulated at a predetermined cycle determined by the film physical property value and detecting the generated acoustic wave, it is possible to accurately measure the thickness of the surface layer in which the filler is dispersed in a laminated state. And found the present invention. That is, according to the present invention, first, in claim 1, when measuring the film thickness of the surface layer in which the filler is dispersed by using the photothermal conversion effect, the absorption coefficient of the surface layer in which the filler is dispersed is determined. There is provided a method for measuring the thickness of a surface layer of an electrophotographic photoreceptor, which comprises checking the quality of a surface layer film to be measured.

【0008】第二に、請求項2では、上記請求項1記載
の電子写真感光体表面層の膜厚測定方法において、フィ
ラーを分散した表面層の表面に、出力を変化させた熱励
起光を所定の周期で断続的に入射させ、発生する音響波
の振幅値を求めることにより励起光出力に対する振幅値
の比例係数を得、該比例係数により膜厚測定の対象とな
る表面層膜質の有無を確認することを特徴とする電子写
真感光体表面層の膜厚測定方法が提供される。
According to a second aspect of the present invention, in the method for measuring the thickness of the surface layer of the electrophotographic photosensitive member according to the first aspect, the thermal excitation light having an output varied on the surface of the surface layer in which the filler is dispersed. The light is intermittently incident at a predetermined period, and a proportional coefficient of the amplitude value with respect to the excitation light output is obtained by obtaining an amplitude value of the generated acoustic wave, and the presence or absence of the surface layer film quality to be measured for the film thickness is determined by the proportional coefficient. There is provided a method for measuring the film thickness of a surface layer of an electrophotographic photosensitive member, which is characterized by confirming the thickness.

【0009】第三に、請求項3では、上記請求項1また
は2記載の電子写真感光体表面層の膜厚測定方法におい
て、フィラーを分散した表面層の表面に、該表面層の膜
熱物性値より決定される所定の周期で断続的に変調した
熱励起光を入射させ、発生する音響波の振幅値を検出す
ることにより、該表面層の膜厚を推定することを特徴と
する電子写真感光体表面層の膜厚測定方法が提供され
る。
Thirdly, in a third aspect of the present invention, in the method for measuring the thickness of the surface layer of the electrophotographic photosensitive member according to the first or second aspect, the film thermophysical property of the surface layer is dispersed on the surface of the surface layer in which the filler is dispersed. An electrophotographic method characterized by estimating the film thickness of the surface layer by detecting the amplitude value of the generated acoustic wave by injecting thermal excitation light intermittently modulated at a predetermined cycle determined from the value. A method for measuring the thickness of a photoconductor surface layer is provided.

【0010】第四に、請求項4では、上記請求項1また
は2記載の電子写真感光体表面層の膜厚測定方法におい
て、フィラーを分散した表面層の表面に、該表面層の膜
熱物性値より決定される所定の周期で断続的に変調した
熱励起光を入射させ、発生する音響波の変調周波数に対
する位相遅れを検出することにより、該表面層の膜厚を
推定することを特徴とする電子写真感光体表面層の膜厚
測定方法が提供される。
Fourthly, according to a fourth aspect of the present invention, in the method for measuring the thickness of the electrophotographic photosensitive member surface layer according to the first or second aspect, the film thermophysical property of the surface layer is provided on the surface of the surface layer in which the filler is dispersed. The thermal excitation light intermittently modulated at a predetermined cycle determined from the value is incident, and by detecting a phase delay with respect to the modulation frequency of the generated acoustic wave, the film thickness of the surface layer is estimated. The present invention provides a method for measuring the thickness of the electrophotographic photosensitive member surface layer.

【0011】第五に、請求項5では、上記請求項1乃至
4の何れか1項に記載の電子写真感光体表面層の膜厚測
定方法において、フィラーを分散した表面層の熱拡散率
が0.0013cm2/sec以上で有ることを特徴と
する電子写真感光体表面層の膜厚測定方法が提供され
る。
Fifthly, according to a fifth aspect of the present invention, in the method for measuring the film thickness of the surface layer of the electrophotographic photosensitive member according to any one of the first to fourth aspects, the thermal diffusivity of the surface layer in which the filler is dispersed may be reduced. There is provided a method for measuring the film thickness of the surface layer of an electrophotographic photosensitive member, wherein the thickness is 0.0013 cm 2 / sec or more.

【0012】第六に、請求項6では、上記請求項1乃至
5の何れか1項に記載の電子写真感光体表面層の膜厚測
定方法において、表面層に分散されるフィラーが1種類
単独で分散されていることを特徴とする電子写真感光体
表面層の膜厚測定方法が提供される。
Sixthly, according to a sixth aspect, in the method for measuring the film thickness of the electrophotographic photosensitive member surface layer according to any one of the first to fifth aspects, only one kind of filler dispersed in the surface layer is used alone. A method for measuring the film thickness of the surface layer of the electrophotographic photosensitive member, characterized in that the film thickness is dispersed.

【0013】第七に、請求項7では、上記請求項1乃至
5の何れか1項に記載の電子写真感光体表面層の膜厚測
定方法において、表面層に分散されるフィラーが2種類
以上混合されていることを特徴とする電子写真感光体表
面層の膜厚測定方法が提供される。
Seventhly, according to a seventh aspect, in the method for measuring the film thickness of the electrophotographic photosensitive member surface layer according to any one of the first to fifth aspects, two or more kinds of fillers dispersed in the surface layer are provided. There is provided a method for measuring the film thickness of an electrophotographic photoreceptor surface layer, wherein the thickness is mixed.

【0014】第八に、請求項8では、上記請求項1乃至
7の何れか1項に記載の電子写真感光体表面層の膜厚測
定方法において、表面層に分散されるフィラー種が有機
フィラーで有ることを特徴とする電子写真感光体表面層
の膜厚測定方法が提供される。
Eighthly, according to the eighth aspect, in the method for measuring a film thickness of an electrophotographic photosensitive member surface layer according to any one of the first to seventh aspects, the filler species dispersed in the surface layer is an organic filler. And a method for measuring the thickness of the electrophotographic photosensitive member surface layer.

【0015】第九に、請求項9では、上記請求項1乃至
7の何れか1項に記載の電子写真感光体表面層の膜厚測
定方法において、表面層に分散されるフィラー種が無機
フィラーで有ることを特徴とする電子写真感光体表面層
の膜厚測定方法が提供される。
Ninthly, according to a ninth aspect, in the method for measuring the film thickness of the electrophotographic photosensitive member surface layer according to any one of the first to seventh aspects, the filler species dispersed in the surface layer is made of an inorganic filler. And a method for measuring the thickness of the electrophotographic photosensitive member surface layer.

【0016】第十に、請求項10では、上記請求項1乃
至9の何れか1項に記載の電子写真感光体表面層の膜厚
測定方法において、上記表面層が電荷輸送物質を含むこ
とを特徴とする電子写真感光体表面層の膜厚測定方法が
提供される。
Tenthly, a tenth aspect of the present invention is the method for measuring the thickness of a surface layer of an electrophotographic photosensitive member according to any one of the first to ninth aspects, wherein the surface layer contains a charge transport material. There is provided a method for measuring the film thickness of a surface layer of an electrophotographic photosensitive member, which is characterized by the following.

【0017】第十一に、請求項11では、上記請求項1
0記載の電子写真感光体表面層の膜厚測定方法におい
て、熱励起光源の波長が480nm以上で有ることを特
徴とする電子写真感光体表面層の膜厚測定方法が提供さ
れる。
Eleventh, Claim 11 provides the above-described Claim 1.
0. The method for measuring the film thickness of an electrophotographic photoreceptor surface layer according to item 0, wherein the wavelength of the heat excitation light source is 480 nm or more.

【0018】第十二に、請求項12では、上記請求項1
乃至11の何れか1項に記載の電子写真感光体表面層の
膜厚測定方法において、上記光熱変換効果をマイクロホ
ンを用いて検出することを特徴とする電子写真感光体表
面層の膜厚測定方法が提供される。
Twelfth, in claim 12, the above-mentioned claim 1
12. The method for measuring the film thickness of a surface layer of an electrophotographic photosensitive member according to any one of items 1 to 11, wherein the photothermal conversion effect is detected using a microphone. Is provided.

【0019】[0019]

【発明の実施の形態】以下に本発明を詳細に説明する。
上記光熱変換(光音響)信号の一般的な検出方式に関し
ては、例えば参考資料「澤田嗣郎編、“光音響分光法と
その応用−PAS”、学会出版センター(198
2)」、「澤田嗣郎編、“光熱変換分光法とその応
用”、学会出版センター(1997)」に詳しく示され
ている。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described below in detail.
Regarding the general detection method of the photothermal conversion (photoacoustic) signal, for example, reference materials “Edited by Shiro Sawada,“ Photoacoustic Spectroscopy and Its Applications—PAS ”, Gakkai Shuppan Center (198)
2) ", edited by Tsuguo Sawada," Photothermal Conversion Spectroscopy and Its Applications, "Gakkai Shuppan Center (1997).

【0020】上記のごとく、本発明は、フィラーを含む
表面層の膜厚測定を行う場合、フィラーに依る光散乱が
強く、従来の光学的手法では測定できない膜に対して光
熱変換(光音響)効果を利用するものである。これは、
測定しようとする表面層に熱励起光を断続的に入射さ
せ、熱励起光を吸収したフィラー分散表面層から発生す
る音響波を検出するものである。この際、フィラーを分
散した表面層の吸収係数を求めて、予め測定対象となる
表面層膜質の測定妥当性を確認し、計測結果に誤差が重
畳しないようにする。
As described above, according to the present invention, when the film thickness of a surface layer containing a filler is measured, light scattering due to the filler is so strong that a film which cannot be measured by a conventional optical method is subjected to photothermal conversion (photoacoustic). It uses the effect. this is,
The thermal excitation light is intermittently incident on the surface layer to be measured, and an acoustic wave generated from the filler-dispersed surface layer that has absorbed the thermal excitation light is detected. At this time, the absorption coefficient of the surface layer in which the filler is dispersed is obtained, the measurement validity of the surface layer film quality to be measured is confirmed in advance, and an error is not superimposed on the measurement result.

【0021】この音響波の振幅或いは変調周波数に対す
る位相遅れが、フィラーを分散した表面層の膜厚と任意
の条件下で比例関係になっていることに注目し、予め膜
厚が既知な標準試料で振幅信号或いは位相信号を取得し
ておき測定用の検量線を作成しておく。こうすることに
依って、膜厚が未知のフィラーを分散した表面層に対し
て検量線の補正による膜厚測定が可能となる。更に、光
熱変換効果を用いた測定方法において、熱励起光の変調
周波数を、表面層の熱物性値で決まる特定値に規定する
ことにより、必要な深さ方向の膜厚情報だけを抽出する
ことが可能となり、積層状態での表面層のみの膜厚測定
が可能となる。
Note that the phase delay with respect to the amplitude or modulation frequency of the acoustic wave is proportional to the film thickness of the surface layer in which the filler is dispersed under arbitrary conditions. To obtain an amplitude signal or a phase signal and prepare a calibration curve for measurement. This makes it possible to measure the film thickness by correcting the calibration curve for the surface layer in which the filler whose film thickness is unknown is dispersed. Furthermore, in the measurement method using the photothermal conversion effect, by extracting the modulation frequency of the thermal excitation light to a specific value determined by the thermophysical property value of the surface layer, it is possible to extract only necessary thickness information in the depth direction. This makes it possible to measure the film thickness of only the surface layer in the laminated state.

【0022】本発明における有機フィラーとしては、ポ
リテトラフルオロエチレンのようなフッ素樹脂粉末、シ
リコーン樹脂粉末、a−カーボン粉末等が挙げられ、無
機フィラーとしては、銅、すず、アルミニウム、インジ
ウムなどの金属粉末、酸化錫、酸化亜鉛、酸化チタン、
酸化インジウム、アルミナ等の金属酸化物、チタン酸カ
リウムなどの無機材料が挙げられる。これらの一種類単
独または二種類以上を混合して用いる表面層にも本発明
は有効である。これらのフィラーは、表面層塗布液の状
態で適当な分散機を用いることにより分散できる。
Examples of the organic filler in the present invention include fluororesin powder such as polytetrafluoroethylene, silicone resin powder, and a-carbon powder. Examples of the inorganic filler include metals such as copper, tin, aluminum and indium. Powder, tin oxide, zinc oxide, titanium oxide,
Metal oxides such as indium oxide and alumina, and inorganic materials such as potassium titanate are exemplified. The present invention is also effective for a surface layer using one of these alone or a mixture of two or more. These fillers can be dispersed in the state of the surface layer coating liquid by using an appropriate disperser.

【0023】測定対象となるフィラーを分散した表面層
の熱拡散率は、膜物性値より決定される変調周波数を用
いた信号抽出のダイナミックレンジを考慮すると0.0
013cm2/sec以上で有ることが好ましく、この
時、多くの表面層で良好な信号取得が実現できる。
The thermal diffusivity of the surface layer in which the filler to be measured is dispersed is 0.0 considering the dynamic range of signal extraction using the modulation frequency determined from the physical properties of the film.
It is preferably at least 013 cm 2 / sec. At this time, good signal acquisition can be realized with many surface layers.

【0024】更に必要に応じて電荷輸送物質を表面層に
添加した表面層も有効であり、電荷輸送物質の例として
はヒドラゾン系化合物、スチルベン系化合物、ピラゾリ
ン系化合物、オキサゾール系化合物、チアゾール系化合
物、トリアリールメタン系化合物等が挙げられる。
If necessary, a surface layer having a charge transporting substance added to the surface layer is also effective. Examples of the charge transporting substance include hydrazone compounds, stilbene compounds, pyrazoline compounds, oxazole compounds, thiazole compounds. And triarylmethane compounds.

【0025】またこれらの電荷輸送物質は主に480n
m以下の紫外域に吸収を持ち、紫外領域の光に対しては
電荷輸送物質における化学変化即ちドナー劣化による光
ダメージを伴う為、熱励起光源波長を480nm以上と
することで電荷輸送層の光ダメージを無くすことが可能
となる。
These charge transport materials are mainly 480 n
m, which absorbs light in the ultraviolet region, and causes light damage due to chemical change in the charge transport material, that is, deterioration of the donor, with respect to light in the ultraviolet region. Damage can be eliminated.

【0026】更に光熱変換効果の利用としては、マイク
ロホンにより音響波を検出する光音響法とすることによ
り、圧電素子等で膜内の熱弾性波信号を取得したりする
場合よりも、非接触でSN比の高い信号を取得すること
が可能となる。これは測定対象がフィラーを分散した表
面層の場合顕著である。
As for the use of the photothermal conversion effect, the photoacoustic method of detecting an acoustic wave by a microphone is used in a non-contact manner compared to a case where a thermoelastic wave signal in a film is obtained by a piezoelectric element or the like. A signal with a high SN ratio can be obtained. This is remarkable when the measurement target is a surface layer in which a filler is dispersed.

【0027】フィラーを分散した表面層膜厚を測定する
為に入射された熱励起光レーザー光は、その一部が表面
層により吸収される。一般に、膜を構成する分子が光エ
ネルギーを吸収して励起状態になると、様々な過程を経
て基底状態に戻る。特に、非発光緩和過程を経て、励起
エネルギーが周辺の分子に熱エネルギーとして放出され
たものが光熱変換効果の測定対象となる。励起光は一定
の周波数で強度変調されるので、熱エネルギーも同じ周
期で繰り返し発生し、表面層膜内を熱波の形で伝播して
いく。この熱エネルギーの一部が周囲の空気層にリーク
して発生した疎密波をマイクロホンを用いて音響波とし
て検出する。この音響波の強度は、フィラーを分散した
表面層膜厚と線形関係にある為、この強度を測定するこ
とにより膜厚を知ることが可能となる。また、この音響
波の変調周波数に対する位相遅れは、フィラーを分散し
た表面層膜厚と直線関係にある為、この位相遅れを測定
することにより膜厚を知ることが可能となる。
A part of the thermally excited light laser light incident to measure the thickness of the surface layer in which the filler is dispersed is absorbed by the surface layer. Generally, when a molecule constituting a film absorbs light energy and becomes an excited state, it returns to a ground state through various processes. In particular, those in which excitation energy is released as thermal energy to surrounding molecules through a non-emission relaxation process are to be measured for the photothermal conversion effect. Since the intensity of the excitation light is modulated at a constant frequency, heat energy is also repeatedly generated in the same cycle, and propagates in the surface layer film in the form of a heat wave. A compression wave generated by a part of the heat energy leaking into the surrounding air layer is detected as an acoustic wave using a microphone. Since the intensity of this acoustic wave has a linear relationship with the thickness of the surface layer in which the filler is dispersed, it is possible to know the thickness by measuring this intensity. In addition, since the phase delay with respect to the modulation frequency of the acoustic wave has a linear relationship with the thickness of the surface layer in which the filler is dispersed, the thickness can be known by measuring the phase delay.

【0028】光熱変換効果では、音響波検出は表面に伝
わってきた熱を検出することと等価である為、表面層下
深くで発生した熱は表面まで伝わるのにある種の時間を
要することになる。仮に光熱変換現象の生じる不透明な
基質或いは層の上に、光学的に透明な膜が存在する場
合、この光学的に透明な層の厚さと光熱変換信号の位相
遅れの間には密接な関係が発生し、ガス−マイクロホン
法で測定した際の位相遅れΔθと厚さdは次式で与えら
れるようになる。
In the photothermal conversion effect, since acoustic wave detection is equivalent to detecting heat transmitted to the surface, heat generated deep below the surface layer requires some time to be transmitted to the surface. Become. If an optically transparent film is present on an opaque substrate or layer where photothermal conversion occurs, there is a close relationship between the thickness of the optically transparent layer and the phase lag of the photothermal conversion signal. The phase lag Δθ and the thickness d that occur and are measured by the gas-microphone method are given by the following equations.

【0029】[0029]

【数1】 α:熱拡散率 δ:装置系の機械的位相遅れ この様に膜厚dと位相差Δθは、きれいな直線関係とな
ってくる。下記文献に、前述の式が記載されている。 G.F.Kirkbright,R.M.Miller:Analyst 107,798(1982) また光の変調周波数fが小さい(断続周期が長い)場合
には、深い場所の発熱も表面まで影響するが、変調周波
数fが大きい場合は表面近くだけが光熱変換(光音響)
信号に寄与する。即ち、光の変調周波数fを変えると表
面層の測定深さをコントロールすることが可能となり、
任意の膜厚範囲の情報だけを抽出できる。測定深さの目
安は、一般に熱拡散長μs=(α/πf)1/2,α=κ/
ρcで定義される。ここでα:熱拡散率、κ:熱伝導
率、ρ:密度、c:比熱である。例えば本実施例におい
ては、熱励起光の変調周波数:f=750Hzで測定し
た光熱変換信号は、熱拡散率:α=0.0015cm2
/secとした場合、熱拡散長はμsは8μm程とな
り、積層状態の電子写真感光体における表面層下8μm
の厚み情報を測定することが可能となる。また式からも
判る様に、対象となるフィラーを分散した表面層の熱拡
散率が高いほど測定深さを大きくすることができ信号も
抽出しやすくなる。膜熱物性値より決定される変調周波
数を用いた信号抽出のダイナミックレンジを考えると熱
拡散率が0.0013cm2/sec以上で有ることが
好ましく、このとき多くの表面層で良好な信号取得が実
現できる。
(Equation 1) α: thermal diffusivity δ: mechanical phase delay of the device system As described above, the film thickness d and the phase difference Δθ have a clear linear relationship. The following formula describes the above formula. GFKirkbright, RMMiller: Analyst 107, 798 (1982) In addition, when the modulation frequency f of light is small (intermittent period is long), heat generation in a deep place also affects the surface, but when the modulation frequency f is large, only the vicinity of the surface generates light Transform (photoacoustic)
Contribute to the signal. That is, by changing the light modulation frequency f, it becomes possible to control the measurement depth of the surface layer,
Only information of an arbitrary film thickness range can be extracted. The standard of the measurement depth is generally the thermal diffusion length μ s = (α / πf) 1/2 , α = κ /
ρc. Here, α: thermal diffusivity, κ: thermal conductivity, ρ: density, c: specific heat. For example, in this embodiment, the photothermal conversion signal measured at the modulation frequency of the thermal excitation light: f = 750 Hz has a thermal diffusivity: α = 0.0015 cm 2.
/ Sec, the thermal diffusion length μs is about 8 μm, and the thermal diffusion length is 8 μm below the surface layer in the electrophotographic photosensitive member in a laminated state.
Thickness information can be measured. Also, as can be seen from the equation, the higher the thermal diffusivity of the surface layer in which the target filler is dispersed, the greater the measurement depth can be, and the easier the signal can be extracted. Considering the dynamic range of signal extraction using the modulation frequency determined from the film thermophysical property value, it is preferable that the thermal diffusivity is 0.0013 cm 2 / sec or more, and at this time, good signal acquisition can be obtained with many surface layers. realizable.

【0030】測定において一般に、光熱変換効果を用い
て膜厚に依存した信号を取得するためには、計測対象の
膜質が均一で有ることが必要であるが、製造工程の不安
定さにより表面層の膜質が時に不均質になる場合があ
る。特に、電子写真感光体の表面層からガス−マイクロ
ホン法を用いて光熱変換(光音響)信号をして表面層膜
厚に依存した信号を得るためには、膜質の吸収係数がサ
ンプル間で一定である必要が有る。これは光熱変換検出
法が表面層の膜質や組成に影響を及ぼす物理パラメータ
を検出し、検量線の補正により膜厚を推定する手法であ
ることに起因する。
In general, in order to obtain a signal dependent on the film thickness by using the photothermal conversion effect in measurement, it is necessary that the film quality of the object to be measured is uniform. May sometimes be heterogeneous. In particular, in order to obtain a signal dependent on the surface layer thickness by performing a photothermal conversion (photoacoustic) signal from the surface layer of the electrophotographic photosensitive member using the gas-microphone method, the absorption coefficient of the film quality is constant between samples. Must be This is because the photothermal conversion detection method detects physical parameters that affect the film quality and composition of the surface layer, and estimates the film thickness by correcting the calibration curve.

【0031】固体試料の場合、光熱変換(光音響)信号
の解析に良く用いられるのはRG理論といわれるもの
で、これに基づいた光音響信号の発生と検出の原理が説
明されている。詳しくはA.RosencwaigとA.Gershoによっ
て考察されている「一次元ガス−マイクロホンモデル」
における熱拡散方程式の解に詳しい。前述の熱拡散方程
式の解に関しては、例えば、文献「A.Rosencwaig,A.Ger
sho,J.Appl.Phys.,47,64(1976)」において論じられてい
る。ここで重要なパラメータは吸収係数或いは吸収係数
の逆数で光の侵入する深さの目安を与える光吸収長で有
る。一般に吸収係数は物質に固有で、膜厚が変化しても
吸収係数は変わらない。波長に依存するので、光熱変換
(光音響)法では分光吸収スペクトル測定が可能とな
る。ここで吸収係数の指標として物質の吸収を見るため
に、出力を徐々に変化させた熱励起光を所定の周期で断
続的に入射させ、発生する音響波の振幅値を求めること
により励起光出力に対する振幅値の比例係数を得、比例
係数が吸収量の指標となることを利用して測定対象膜質
の妥当性を確認する。発熱量(光熱変換信号強度)P
は、吸収係数が一定のとき入射光強度I0の関数となる
為、比例係数P/I0=βを求めることによりβが吸収
係数の代替となる。ここで、トランスデューサーとなる
表面層での光熱変換効率や他の定数は一定であることが
必要である。また熱励起光の照射光量は事前にサンプル
面での光量との比例関係が確認され、その係数が求めら
れていることがより望ましい。光熱変換効果を用いた場
合、試料には吸収係数が一定である為に膜質や組成の均
質性が求められるが、一般には液質や塗工によって膜質
や組成に不均一さを生ずることが有る。この場合、前述
した重要パラメータである吸収係数も変化する可能性が
有るので、必然的に検量線による補正値も真値からずれ
ることから、予め吸収係数の指標となる比例係数βで評
価することによりこれらの問題を未然に回避することが
可能になる。
In the case of a solid sample, the RG theory is often used for analyzing a photothermal conversion (photoacoustic) signal, and the principle of generation and detection of a photoacoustic signal based on this is explained. "One-dimensional gas-microphone model" discussed in detail by A. Rosencwaig and A. Gersho
Details on the solution of the thermal diffusion equation in. Regarding the solution of the above-mentioned heat diffusion equation, for example, see the document "A. Rosencwaig, A. Ger.
sho, J. Appl. Phys., 47, 64 (1976) ". The important parameter here is the absorption coefficient or the reciprocal of the absorption coefficient, which is the light absorption length that gives a measure of the depth of light penetration. Generally, the absorption coefficient is peculiar to the substance, and does not change even when the film thickness changes. Since it depends on the wavelength, the photothermal conversion (photoacoustic) method enables spectral absorption spectrum measurement. Here, in order to observe the absorption of a substance as an index of the absorption coefficient, the thermal excitation light whose output is gradually changed is intermittently incident at a predetermined cycle, and the amplitude value of the generated acoustic wave is obtained. Is obtained, and the validity of the film quality to be measured is confirmed using the fact that the proportionality coefficient is an index of the amount of absorption. Heat value (light-to-heat conversion signal strength) P
Is a function of the incident light intensity I 0 when the absorption coefficient is constant. Therefore, β is a substitute for the absorption coefficient by obtaining a proportional coefficient P / I 0 = β. Here, it is necessary that the photothermal conversion efficiency and other constants on the surface layer serving as the transducer are constant. Further, it is more desirable that the irradiation light amount of the thermal excitation light be confirmed in advance in proportion to the light amount on the sample surface and the coefficient thereof be determined. When the light-to-heat conversion effect is used, the sample must have uniform film quality and composition because the absorption coefficient is constant, but in general, the film quality and composition may be uneven due to the liquid quality and coating. . In this case, since the absorption coefficient, which is an important parameter described above, may change, the correction value based on the calibration curve inevitably deviates from the true value. Thus, these problems can be avoided beforehand.

【0032】[0032]

【実施例】次に、積層型電子写真感光体のフィラーを分
散した表面層の膜厚の測定に本発明を適用した実施例に
ついて述べる。ただし、本発明は以下の実施例によって
限定されるものではない。 実施例1 図1には、本発明で用いる光熱変換信号センシングシス
テムの構成を示す。ここで光源は、レーザー1を熱励起
光源とする1系統のレーザーで構成され、紫外域を避け
た480nm以上の可視領域の波長を発振している。本
実施例では、発振波長532nmLD励起(DPSS)
レーザーを用いている。熱励起光として用いたレーザー
1を発振させて、出射された光線を回転ブレード式の光
強度変調器2或いは音響光学素子(AOM)により所定
の矩形波に強度変調したのち、ビームエクスパンダ3で
所望のビーム径に拡大させる。ビームエクスパンダ3の
焦点位置にはピンホール4を配置させ、集光スポットの
ピーク部の周辺に存在する高次回折光成分を遮光してお
り、ピンホール通過直後の光強度分布はピーク部だけが
残る形になる。この後、熱励起光を導光用の光ファイバ
ー6に集光レンズ5を用いて集光する。その後、光ファ
イバー6を介して音響セル7まで導かれ、コンデンサレ
ンズ13等によりフィラーを分散した表面層12へとフ
ォーカス照射される。実施例では、熱励起光の照射面上
でのビーム径はφ7μm、レーザーパワーは150mW
である。熱励起光の照射後は、フィラーを分散した表面
層12のフィラー分子がこの熱励起光を吸収し、光熱変
換信号発生過程、即ち、被輻射遷移によって原子の振
動、熱となり、熱励起光が断続光として変調されている
場合、加熱は変調周波数と一致して繰り返され、結果と
して変調周波数に従ったガス(空気)の圧力変化を引き
起こし音響波を発生し、検出器であるマイクロホン14
に到達していく。音響信号検出に関しては、強度変調し
た熱励起光の周波数帯域がマイクロホン14の感度帯域
に入っていれば検出が可能となり、音波の大きさは、励
起光の変調周波数やトランスデューサーである表面層1
2に於いて吸収されたエネルギー量により一義的に決ま
る。マイクロホン14としては、一般的に静電容量変化
を利用して音圧を測定する静電容量型マイクロホンが用
いられる。本実施例では、静電容量型マイクロホンとし
て(株)リオン:UC−31を使用している。マイクロ
ホン14で検出された音響信号は、その後、プリアンプ
15(NFELECTRONIC INSTRUMEN
T:LI−75A)で増幅された後、振幅及び位相遅れ
を同時に観測できる2位相ロックインアンプ16(NF
ELECTRONIC INSTRUMENT:56
10B)で熱励起光変調周波数成分と同じ周波数のもの
だけが取り出されるようになる。17は光変調器コント
ローラで、ロックインアンプ16にホモダイン計測の為
の参照信号を出している。次いで、ロックインアンプの
出力信号は、A/Dコンバータ18を介してコンピュー
ター19に入力され、膜厚測定に必要な演算処理が行わ
れる。この信号強度から、フィラーを分散した表面層の
膜厚を決定する。また、この信号強度或いは変調周波数
に対する位相遅れから、フィラーを分散した表面層の膜
厚を決定する。ここで膜厚が判っている試料で音響信号
の振幅信号と位相信号を検出しておき膜厚値との検量線
を準備しておく。こうすることにより、膜厚が未知のフ
ィラーを分散した表面層に対しての膜厚推定が可能にな
り、検量線の補正を行うことによる膜厚測定が可能とな
る。但し、ポリエチレンテレフタレート樹脂、ブチラー
ル樹脂にフィラーを分散した表面層のように熱拡散率が
0.0013cm2/sec以下となる場合は、膜自体
が熱的に厚くなってしまい良好な信号取得が得られな
い。ポリカーボネート樹脂にTiO2或いはSiO2を分
散した表面層では熱拡散率が0.00137〜0.00
156cm2/secとなり膜厚に対して熱的に薄い膜
になるため必要なダイナミックレンジでの検量線の取得
が可能となる。
Next, an example in which the present invention is applied to the measurement of the film thickness of a surface layer in which a filler of a laminated electrophotographic photosensitive member is dispersed will be described. However, the present invention is not limited by the following examples. Embodiment 1 FIG. 1 shows a configuration of a photothermal conversion signal sensing system used in the present invention. Here, the light source is composed of one type of laser using the laser 1 as a heat excitation light source, and oscillates at a wavelength in the visible region of 480 nm or more avoiding the ultraviolet region. In this embodiment, an oscillation wavelength of 532 nm LD excitation (DPSS)
A laser is used. A laser 1 used as thermal excitation light is oscillated, and the emitted light is intensity-modulated into a predetermined rectangular wave by a rotating blade type light intensity modulator 2 or an acousto-optic device (AOM). Enlarge to the desired beam diameter. A pinhole 4 is arranged at the focal position of the beam expander 3 to block high-order diffracted light components existing around the peak portion of the condensed spot, and the light intensity distribution immediately after passing through the pinhole has only the peak portion. It will remain. After that, the heat excitation light is condensed on the light guide optical fiber 6 using the condenser lens 5. Thereafter, the light is guided to the acoustic cell 7 via the optical fiber 6 and focused by the condenser lens 13 or the like onto the surface layer 12 in which the filler is dispersed. In the embodiment, the beam diameter of the thermal excitation light on the irradiation surface is φ7 μm, and the laser power is 150 mW.
It is. After the irradiation with the thermal excitation light, the filler molecules of the surface layer 12 in which the filler is dispersed absorb the thermal excitation light, and the light-to-heat conversion signal generation process, that is, the vibration of the atoms and heat due to the radiated transition, generate the thermal excitation light. When modulated as intermittent light, heating is repeated in accordance with the modulation frequency, resulting in a change in pressure of gas (air) according to the modulation frequency, generating an acoustic wave, and the microphone 14 serving as a detector.
To reach. Regarding acoustic signal detection, detection is possible if the frequency band of the intensity-modulated thermal excitation light falls within the sensitivity band of the microphone 14, and the magnitude of the sound wave depends on the modulation frequency of the excitation light and the surface layer 1 that is a transducer.
2 is uniquely determined by the amount of energy absorbed. As the microphone 14, a capacitance type microphone that measures sound pressure using a change in capacitance is generally used. In the present embodiment, Lion Corporation UC-31 is used as a capacitance type microphone. The acoustic signal detected by the microphone 14 is then transmitted to a preamplifier 15 (NFELECTRONIC INSTRUMENT).
T: LI-75A), and a two-phase lock-in amplifier 16 (NF) capable of simultaneously observing amplitude and phase delay
ELECTRONIC INSTRUMENT: 56
In 10B), only those having the same frequency as the frequency component of the modulation frequency of the thermal excitation light are extracted. An optical modulator controller 17 outputs a reference signal for homodyne measurement to the lock-in amplifier 16. Next, the output signal of the lock-in amplifier is input to the computer 19 via the A / D converter 18, and the arithmetic processing required for the film thickness measurement is performed. From this signal intensity, the thickness of the surface layer in which the filler is dispersed is determined. Further, the thickness of the surface layer in which the filler is dispersed is determined from the phase delay with respect to the signal intensity or the modulation frequency. Here, an amplitude signal and a phase signal of an acoustic signal are detected from a sample whose film thickness is known, and a calibration curve for the film thickness value is prepared. This makes it possible to estimate the thickness of the surface layer in which the filler whose thickness is unknown is dispersed, and to measure the thickness by correcting the calibration curve. However, when the thermal diffusivity is 0.0013 cm 2 / sec or less, such as a surface layer in which a filler is dispersed in a polyethylene terephthalate resin or a butyral resin, the film itself becomes thermally thick and good signal acquisition is obtained. I can't. In the surface layer where TiO 2 or SiO 2 is dispersed in a polycarbonate resin, the thermal diffusivity is 0.00137 to 0.00.
Since the film thickness is 156 cm 2 / sec, which is thermally thin with respect to the film thickness, it is possible to obtain a calibration curve in a necessary dynamic range.

【0033】図2はフィラーを分散した表面層膜厚と光
熱変換信号の振幅値の関係を表す相関図であり、図示す
る様に高い線形性が存在するので、光熱変換信号の振幅
値を抽出することにより検量線での補正を経て表面層膜
厚を求めることができる。
FIG. 2 is a correlation diagram showing the relationship between the thickness of the surface layer in which the filler is dispersed and the amplitude value of the photothermal conversion signal. As shown in FIG. Thus, the thickness of the surface layer can be obtained through correction using a calibration curve.

【0034】また、図3はフィラーを分散した表面層膜
厚と光熱変換信号の変調周波数に対する位相遅れの関係
を表す相関図であり、図示する様に高い線形性が存在す
るので、位相差信号を抽出することにより検量線での補
正を経て膜厚を求めることができる。本実施例ではフィ
ラーとしてSiO2の単一無機フィラーを用いた場合を
示しているが、フィラー種が変わった場合でも分散され
るフィラーが2種類以上混合された場合でも同様の効果
を得ることが出来る。
FIG. 3 is a correlation diagram showing the relationship between the surface layer thickness in which the filler is dispersed and the phase delay with respect to the modulation frequency of the photothermal conversion signal. As shown in FIG. Is extracted, the film thickness can be obtained through correction using a calibration curve. Although the present embodiment shows a case where a single inorganic filler of SiO 2 is used as the filler, the same effect can be obtained even when the filler type is changed or when two or more kinds of dispersed fillers are mixed. I can do it.

【0035】図4は熱励起光出力を100mWから25
0mWまで50mWピッチで徐々に変化させ、f=75
0Hzの条件下で発生する光熱変換信号振幅値を取得し
たものである。図中傾きを示したβが、吸収係数の指標
となる励起光出力に対する振幅値の比例係数である。
FIG. 4 shows that the thermal excitation light output is changed from 100 mW to 25.
0mW gradually change at 50mW pitch, f = 75
This is an acquisition of the amplitude value of the photothermal conversion signal generated under the condition of 0 Hz. In the figure, β indicating the slope is a proportional coefficient of the amplitude value to the pump light output, which is an index of the absorption coefficient.

【0036】図5は図4で求めた各サンプルの比例係数
を比較したグラフで有る。比例係数βはどのサンプルも
0.002近傍であり、このレベルで有れば膜厚の許容
誤差範囲内で表面層の測定が可能である。
FIG. 5 is a graph comparing the proportional coefficients of the respective samples obtained in FIG. The proportionality coefficient β is close to 0.002 in all the samples, and if it is at this level, the surface layer can be measured within the allowable error range of the film thickness.

【0037】図6は別の実施例として、熱励起光出力を
100mWから250mWまで50mWピッチで徐々に
変化させ、f=750Hzの条件下で発生する光熱変換
信号振幅値を計測し、比例係数βを取得したもので有
る。サンプル内の比例係数βが、図6の様になった場合
は、膜質の吸収係数の影響を受けてしまい、検量線での
補正の際に誤差が重畳されるので許容誤差範囲内での精
度の高い表面層の膜厚計測が不可能になる。
FIG. 6 shows another embodiment in which the thermal excitation light output is gradually changed from 100 mW to 250 mW at a pitch of 50 mW, and the amplitude of the photothermal conversion signal generated under the condition of f = 750 Hz is measured. Has been acquired. When the proportional coefficient β in the sample is as shown in FIG. 6, the influence of the absorption coefficient of the film quality is exerted, and an error is superimposed during the correction using the calibration curve. It becomes impossible to measure the film thickness of the surface layer having a high density.

【0038】図7は、本発明において使用する感光体の
構成例を示す断面図であり、導電性支持体8上に、感光
層20と表面層12が形成されたものである。図8は、
別の構成例を示す断面図であり、導電性支持体8上の感
光層が電荷発生層10と電荷輸送層11の積層タイプで
構成されたものである。12は表面層である。図9は、
更に別の構成例を示す断面図であり、導電性支持体8上
に電荷発生層10と電荷輸送層11のタイプで積層され
たものである。この場合、電荷輸送層11が表面層とな
る。図1に示す電子写真感光体は導電性支持体8と感光
層の間に下引層9を構成したものである。
FIG. 7 is a cross-sectional view showing an example of the structure of a photoreceptor used in the present invention, in which a photosensitive layer 20 and a surface layer 12 are formed on a conductive support 8. FIG.
FIG. 4 is a cross-sectional view illustrating another configuration example, in which a photosensitive layer on a conductive support 8 is a stacked type of a charge generation layer 10 and a charge transport layer 11. 12 is a surface layer. FIG.
It is sectional drawing which shows another example of a structure, Comprising: It laminated | stacked on the electroconductive support body 8 by the type of the charge generation layer 10 and the charge transport layer 11. FIG. In this case, the charge transport layer 11 becomes a surface layer. The electrophotographic photosensitive member shown in FIG. 1 has an undercoat layer 9 between a conductive support 8 and a photosensitive layer.

【0039】[0039]

【発明の効果】以上のように、請求項1の電子写真感光
体表面層の膜厚測定方法によれば、フィラーを分散した
表面層の吸収係数を求めて、測定対象となる表面層膜質
の有無を予め確認しているので、光熱変換効果を用いた
膜厚測定を行う場合、許容誤差範囲内で表面層を精度良
く測定することができる。
As described above, according to the method for measuring the thickness of the surface layer of the electrophotographic photosensitive member according to the first aspect, the absorption coefficient of the surface layer in which the filler is dispersed is determined, and the quality of the surface layer film to be measured is determined. Since the presence / absence has been confirmed in advance, when performing the film thickness measurement using the photothermal conversion effect, the surface layer can be accurately measured within an allowable error range.

【0040】請求項2の電子写真感光体表面層の膜厚測
定方法によれば、測定対象となる表面層の膜質を上記吸
収係数の指標となる熱励起光出力に対する音響波の振幅
値の比例係数で評価することから、比例係数が吸収係数
の指標となるので、測定対象膜質の有無を容易に確認す
ることが可能となり、製造工程の不安定さにより表面層
の膜質が時に不均質になってもこれらの問題を未然に回
避することができる。
According to the method for measuring the film thickness of the surface layer of the electrophotographic photosensitive member according to the second aspect, the film quality of the surface layer to be measured is proportional to the amplitude value of the acoustic wave with respect to the thermal excitation light output which is an index of the absorption coefficient. Since the proportional coefficient is an index of the absorption coefficient because the coefficient is evaluated, the presence or absence of the quality of the film to be measured can be easily confirmed, and the film quality of the surface layer sometimes becomes uneven due to instability of the manufacturing process. However, these problems can be avoided.

【0041】請求項3の電子写真感光体表面層の膜厚測
定方法によれば、フィラーを分散した表面層の表面に、
該表面層の熱物性値より決定される所定の周期で断続的
に変調した熱励起光を入射させ、発生する音響波の振幅
値を検出することから、従来法で困難であったフィラー
を分散した表面層の膜厚測定が単層及び積層双方で可能
になる。
According to the method for measuring the thickness of the surface layer of the electrophotographic photosensitive member according to the third aspect, the surface of the surface layer in which the filler is dispersed is
The thermal excitation light modulated intermittently at a predetermined cycle determined from the thermophysical property value of the surface layer is incident, and the amplitude value of the generated acoustic wave is detected. The measurement of the thickness of the formed surface layer becomes possible in both the single layer and the lamination.

【0042】請求項4の電子写真感光体表面層の膜厚測
定方法によれば、上記発生する音響波の振幅値に代え、
発生する音響波の位相遅れを検出することから、上記と
同様、従来法で困難であったフィラーを分散した表面層
の膜厚測定が単層及び積層双方で可能にすることができ
る。
According to the method for measuring the thickness of the electrophotographic photosensitive member surface layer according to the fourth aspect, the amplitude value of the generated acoustic wave is replaced with
Since the phase delay of the generated acoustic wave is detected, it is possible to measure the thickness of the surface layer in which the filler is dispersed, which is difficult in the conventional method, in both the single layer and the laminated layer, as described above.

【0043】請求項5の電子写真感光体表面層の膜厚測
定方法によれば、フィラーを分散した表面層の熱拡散率
が0.0013cm2/sec以上で有ることから、測
定深さを大きくすることができ信号も抽出しやすくな
り、多くの表面層で良好な信号取得が実現できる。
According to the method for measuring the thickness of the surface layer of the electrophotographic photosensitive member according to the fifth aspect, since the thermal diffusivity of the surface layer in which the filler is dispersed is 0.0013 cm 2 / sec or more, the measurement depth is increased. Therefore, signals can be easily extracted, and good signal acquisition can be realized with many surface layers.

【0044】請求項6の電子写真感光体表面層の膜厚測
定方法によれば、表面層に分散されるフィラーが1種類
単独で分散されていることから、本発明による光熱変換
効果による検出を有効に行うことができ、表面層の膜厚
測定を精度良く行うことができる。
According to the method for measuring the film thickness of the surface layer of the electrophotographic photosensitive member according to the sixth aspect, since one kind of filler dispersed in the surface layer is dispersed alone, the detection by the photothermal conversion effect according to the present invention can be performed. This can be performed effectively, and the thickness measurement of the surface layer can be performed with high accuracy.

【0045】請求項7の電子写真感光体表面層の膜厚測
定方法によれば、表面層に分散されるフィラーが2種類
以上混合分散されていることから、この場合も光熱変換
効果による検出を有効に行うことができ、表面層の膜厚
測定を精度良く行うことができる。
According to the method for measuring the thickness of the surface layer of the electrophotographic photosensitive member according to the present invention, since two or more kinds of fillers dispersed in the surface layer are mixed and dispersed, the detection by the photothermal conversion effect is also performed in this case. This can be performed effectively, and the thickness measurement of the surface layer can be performed with high accuracy.

【0046】請求項8の電子写真感光体表面層の膜厚測
定方法によれば、表面層に分散されるフィラー種が有機
フィラーで有ることから、表面層に分散するフィラーと
して光熱変換作用による検出を有効に行うことができ、
表面層の膜厚を精度良く測定することができる。
According to the method for measuring the thickness of the surface layer of an electrophotographic photosensitive member according to the present invention, since the filler dispersed in the surface layer is an organic filler, the filler dispersed in the surface layer is detected by a photothermal conversion action. Can be performed effectively,
The thickness of the surface layer can be accurately measured.

【0047】請求項9の電子写真感光体表面層の膜厚測
定方法によれば、表面層に分散されるフィラー種が無機
フィラーで有ることから、この場合も表面層に分散する
フィラーとして光熱変換作用による検出を有効に行うこ
とができ、表面層の膜厚を精度良く測定することができ
る。
According to the method for measuring the film thickness of the surface layer of the electrophotographic photosensitive member according to the ninth aspect, the filler dispersed in the surface layer is an inorganic filler. The detection by the action can be effectively performed, and the thickness of the surface layer can be measured accurately.

【0048】請求項10の電子写真感光体表面層の膜厚
測定方法によれば、表面層が電荷輸送物質を含むことか
ら、この場合も本発明を有効に実施することができる。
According to the method for measuring the thickness of the surface layer of an electrophotographic photosensitive member according to the tenth aspect, the present invention can be effectively carried out also in this case since the surface layer contains a charge transporting substance.

【0049】請求項11の電子写真感光体表面層の膜厚
測定方法によれば、上記電荷輸送物質を含む表面層の膜
厚測定に用いる熱励起光の波長が480nm以上で有る
ことから、電荷輸送物質の光ダメージを無くすことがで
きる。
According to the method for measuring the thickness of the surface layer of the electrophotographic photosensitive member according to the present invention, the wavelength of the thermal excitation light used for measuring the thickness of the surface layer containing the charge transport material is 480 nm or more. Light damage of the transport material can be eliminated.

【0050】請求項12の電子写真感光体表面層の膜厚
測定方法によれば、上記光熱変換効果をマイクロホンを
用いて検出することから、非接触でSN比の高い信号を
取得することができ、測定対象がフィラーを分散した表
面層の場合は特にその効果が顕著である。
According to the method of measuring the thickness of the electrophotographic photosensitive member surface layer according to the twelfth aspect, since the photothermal conversion effect is detected using a microphone, a signal having a high SN ratio can be obtained in a non-contact manner. In particular, when the measurement object is a surface layer in which a filler is dispersed, the effect is remarkable.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明で用いる光熱変換信号センシングシステ
ムの構成を示す図。
FIG. 1 is a diagram showing a configuration of a photothermal conversion signal sensing system used in the present invention.

【図2】フィラーを分散した表面層膜厚と光熱変換信号
の振幅値の関係を表す相関図。
FIG. 2 is a correlation diagram showing the relationship between the thickness of a surface layer in which a filler is dispersed and the amplitude value of a photothermal conversion signal.

【図3】フィラーを分散した表面層膜厚と光熱変換信号
の変調周波数に対する位相遅れの関係を表す相関図
FIG. 3 is a correlation diagram showing the relationship between the thickness of a surface layer in which a filler is dispersed and the phase delay with respect to the modulation frequency of a photothermal conversion signal.

【図4】熱励起光出力に対する光熱変換信号振幅値の比
例係数βを示す図。
FIG. 4 is a diagram showing a proportional coefficient β of a photothermal conversion signal amplitude value to a thermal excitation light output.

【図5】図4で求めた各サンプルの比例係数βを比較し
たグラフ。
FIG. 5 is a graph comparing the proportional coefficient β of each sample obtained in FIG. 4;

【図6】別の実施例による比例係数βを示す図。FIG. 6 is a diagram showing a proportional coefficient β according to another embodiment.

【図7】感光体の構成例を示す断面図。FIG. 7 is a cross-sectional view illustrating a configuration example of a photoconductor.

【図8】感光体の別の構成例を示す断面図。FIG. 8 is a sectional view showing another configuration example of the photoconductor.

【図9】感光体の更に別の構成例を示す断面図。FIG. 9 is a cross-sectional view showing still another configuration example of the photoconductor.

【符号の説明】[Explanation of symbols]

1 熱励起光源(レーザー) 2 光強度変調器 3 ビームエクスパンダ 4 ピンホール 5 集光レンズ 6 光ファイバー 7 音響セル 8 導電性支持体 9 下引層 10 電荷発生層 11 電荷輸送層 12 表面層 13 コンデンサレンズ 14 マイクロホン 17 光変調器コントローラ 19 コンピューター 20 感光層 DESCRIPTION OF SYMBOLS 1 Thermal excitation light source (laser) 2 Light intensity modulator 3 Beam expander 4 Pinhole 5 Condensing lens 6 Optical fiber 7 Acoustic cell 8 Conductive support 9 Undercoat layer 10 Charge generation layer 11 Charge transport layer 12 Surface layer 13 Capacitor Lens 14 Microphone 17 Optical modulator controller 19 Computer 20 Photosensitive layer

Claims (12)

【特許請求の範囲】[Claims] 【請求項1】 フィラーを分散した表面層の膜厚を光熱
変換効果を用いて測定するにあたり、フィラーを分散し
た表面層の吸収係数を求め、膜厚測定の対象となる表面
層膜質の有無を確認することを特徴とする電子写真感光
体表面層の膜厚測定方法。
When measuring the film thickness of a surface layer in which a filler is dispersed using a photothermal conversion effect, an absorption coefficient of the surface layer in which a filler is dispersed is determined, and the presence or absence of a surface layer film quality to be subjected to film thickness measurement is determined. A method for measuring the thickness of a surface layer of an electrophotographic photoreceptor, characterized by confirming.
【請求項2】 請求項1記載の電子写真感光体表面層の
膜厚測定方法において、フィラーを分散した表面層の表
面に、出力を変化させた熱励起光を所定の周期で断続的
に入射させ、発生する音響波の振幅値を求めることによ
り励起光出力に対する振幅値の比例係数を得、該比例係
数により膜厚測定の対象となる表面層膜質の有無を確認
することを特徴とする電子写真感光体表面層の膜厚測定
方法。
2. The method for measuring the thickness of a surface layer of an electrophotographic photosensitive member according to claim 1, wherein the thermal excitation light whose output is changed is intermittently incident on the surface of the surface layer in which the filler is dispersed at a predetermined cycle. And calculating the amplitude value of the generated acoustic wave to obtain a proportional coefficient of the amplitude value with respect to the excitation light output, and confirming the presence or absence of the surface layer film quality to be measured for the film thickness by the proportional coefficient. A method for measuring the thickness of the photoreceptor surface layer.
【請求項3】 請求項1または2記載の電子写真感光体
表面層の膜厚測定方法において、フィラーを分散した表
面層の表面に、該表面層の熱物性値より決定される所定
の周期で断続的に変調した熱励起光を入射させ、発生す
る音響波の振幅値を検出することにより、該表面層の膜
厚を推定することを特徴とする電子写真感光体表面層の
膜厚測定方法。
3. The method for measuring the film thickness of an electrophotographic photoreceptor surface layer according to claim 1, wherein the surface of the surface layer in which the filler is dispersed has a predetermined period determined by a thermophysical property value of the surface layer. A method for measuring the thickness of a surface layer of an electrophotographic photoreceptor, comprising estimating the thickness of the surface layer by detecting the amplitude value of the generated acoustic wave by applying intermittently modulated thermal excitation light. .
【請求項4】 請求項1または2記載の電子写真感光体
表面層の膜厚測定方法において、フィラーを分散した表
面層の表面に、該表面層の熱物性値より決定される所定
の周期で断続的に変調した熱励起光を入射させ、発生す
る音響波の変調周波数に対する位相遅れを検出すること
により、該表面層の膜厚を推定することを特徴とする電
子写真感光体表面層の膜厚測定方法。
4. The method for measuring the thickness of a surface layer of an electrophotographic photoreceptor according to claim 1, wherein the surface of the surface layer in which the filler is dispersed has a predetermined period determined by a thermophysical property value of the surface layer. Film thickness of the electrophotographic photoreceptor surface layer, characterized by estimating the film thickness of the surface layer by injecting intermittently modulated thermal excitation light and detecting a phase delay with respect to the modulation frequency of the generated acoustic wave. Thickness measurement method.
【請求項5】 請求項1乃至4の何れか1項に記載の電
子写真感光体表面層の膜厚測定方法において、フィラー
を分散した表面層の熱拡散率が0.0013cm2/s
ec以上で有ることを特徴とする電子写真感光体表面層
の膜厚測定方法。
5. The method for measuring the film thickness of an electrophotographic photoreceptor surface layer according to claim 1, wherein the thermal diffusivity of the surface layer in which the filler is dispersed is 0.0013 cm 2 / s.
ec or more, wherein the thickness of the electrophotographic photosensitive member surface layer is measured.
【請求項6】 請求項1乃至5の何れか1項に記載の電
子写真感光体表面層の膜厚測定方法において、表面層に
分散されるフィラーが1種類単独で分散されていること
を特徴とする電子写真感光体表面層の膜厚測定方法。
6. The method for measuring the film thickness of an electrophotographic photosensitive member surface layer according to claim 1, wherein one kind of filler dispersed in the surface layer is dispersed alone. The method for measuring the thickness of the electrophotographic photosensitive member surface layer.
【請求項7】 請求項1乃至5の何れか1項に記載の電
子写真感光体表面層の膜厚測定方法において、表面層に
分散されるフィラーが2種類以上混合されていることを
特徴とする電子写真感光体表面層の膜厚測定方法。
7. The method for measuring the thickness of an electrophotographic photosensitive member surface layer according to claim 1, wherein two or more fillers dispersed in the surface layer are mixed. Method for measuring the thickness of the electrophotographic photosensitive member surface layer.
【請求項8】 請求項1乃至7の何れか1項に記載の電
子写真感光体表面層の膜厚測定方法において、表面層に
分散されるフィラー種が有機フィラーで有ることを特徴
とする電子写真感光体表面層の膜厚測定方法。
8. The method for measuring the film thickness of a surface layer of an electrophotographic photosensitive member according to claim 1, wherein the filler species dispersed in the surface layer is an organic filler. A method for measuring the thickness of the photoreceptor surface layer.
【請求項9】 請求項1乃至7の何れか1項に記載の電
子写真感光体表面層の膜厚測定方法において、表面層に
分散されるフィラー種が無機フィラーで有ることを特徴
とする電子写真感光体表面層の膜厚測定方法。
9. The method for measuring the film thickness of an electrophotographic photosensitive member surface layer according to claim 1, wherein the filler species dispersed in the surface layer is an inorganic filler. A method for measuring the thickness of the photoreceptor surface layer.
【請求項10】 請求項1乃至9の何れか1項に記載の
電子写真感光体表面層の膜厚測定方法において、前記表
面層が電荷輸送物質を含むことを特徴とする電子写真感
光体表面層の膜厚測定方法。
10. The electrophotographic photosensitive member surface measuring method according to claim 1, wherein said surface layer contains a charge transporting material. Method for measuring layer thickness.
【請求項11】 請求項10記載の電子写真感光体表面
層の膜厚測定方法において、熱励起光源の波長が480
nm以上で有ることを特徴とする電子写真感光体表面層
の膜厚測定方法。
11. The method according to claim 10, wherein the wavelength of the heat excitation light source is 480.
A method for measuring the thickness of a surface layer of an electrophotographic photosensitive member, wherein the thickness is not less than nm.
【請求項12】 請求項1乃至11の何れか1項に記載
の電子写真感光体表面層の膜厚測定方法において、前記
光熱変換効果をマイクロホンを用いて検出することを特
徴とする電子写真感光体表面層の膜厚測定方法。
12. The electrophotographic photosensitive member according to claim 1, wherein the photothermal conversion effect is detected by using a microphone. A method for measuring the thickness of a body surface layer.
JP2001169791A 2001-06-05 2001-06-05 Method of measuring film thickness of surface layer of electrophotographic photoreceptor Pending JP2002365817A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001169791A JP2002365817A (en) 2001-06-05 2001-06-05 Method of measuring film thickness of surface layer of electrophotographic photoreceptor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001169791A JP2002365817A (en) 2001-06-05 2001-06-05 Method of measuring film thickness of surface layer of electrophotographic photoreceptor

Publications (1)

Publication Number Publication Date
JP2002365817A true JP2002365817A (en) 2002-12-18

Family

ID=19011823

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001169791A Pending JP2002365817A (en) 2001-06-05 2001-06-05 Method of measuring film thickness of surface layer of electrophotographic photoreceptor

Country Status (1)

Country Link
JP (1) JP2002365817A (en)

Similar Documents

Publication Publication Date Title
Adams et al. Analytical optoacoustic spectrometry. Part III. The optoacoustic effect and thermal diffusivity
US6069703A (en) Method and device for simultaneously measuring the thickness of multiple thin metal films in a multilayer structure
Welsch et al. Photothermal measurements on optical thin films
JPS5985908A (en) Method of measuring thickness of thin film using heat-wave detecting system and depth profile method
US4679946A (en) Evaluating both thickness and compositional variables in a thin film sample
Suter et al. Spectral and angular dependence of mid-infrared diffuse scattering from explosives residues for standoff detection using external cavity quantum cascade lasers
Farahi et al. Pump–probe photothermal spectroscopy using quantum cascade lasers
US20170211977A1 (en) Devices and methods for sensing targets using photothermal speckle detection
Yang et al. Modeling optical absorption for thermoreflectance measurements
EP0233120A2 (en) Method and device for the measurement and analysis of the physical parameters of a layered material using thermal radiometry
US6393915B1 (en) Method and device for simultaneously measuring multiple properties of multilayer films
Lima et al. Measurement of the thermal properties of liquids using a thermal wave interferometer
Chigarev et al. Surface displacement measured by beam distortion detection technique: Application to picosecond ultrasonics
US6587794B1 (en) Method for measuring thin metal films
Younes et al. Mid-IR photothermal beam deflection technique for fast measurement of thermal diffusivity and highly sensitive subsurface imaging
Marcano et al. Photothermal mirror method for the study of thermal diffusivity and thermo-elastic properties of opaque solid materials
JP2000205833A (en) Non-destructive method and device for measuring depth of recessed material
JP2002365817A (en) Method of measuring film thickness of surface layer of electrophotographic photoreceptor
FR2980846A1 (en) METHOD FOR NON-CONTACT DETERMINATION OF THE THICKNESS OF A SAMPLE, CORRESPONDING SYSTEM
Lara Hernandez et al. Comparative performance of PLZT and PVDF pyroelectric sensors used to the thermal characterization of liquid samples
Thomas et al. Thermal diffusivity of solids by photoacoustic cell rotation and phase lag measurement
JP2002181521A (en) Method for measuring membrane thickness of electrophotograph photoconductor surface layer and evaluating method
US20070109540A1 (en) Method for measuring thin films
JP2002277229A (en) Film thickness measuring method for surface layer of electrophotograhic sensitive body
König et al. Real-time phase-shift detection of the surface plasmon resonance

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20050225